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Abstract

This paper presents a study of the solutions characteristic of the localized failures in inelastic solids
under general dynamic conditions. The paper is divided in two parts. In the first part, we present
a general framework for the inclusion of localized dissipative mechanisms in a local continuum.
This is accomplished by the consideration locally of discontinuities in the displacement field, the
so-called strong discontinuities, as a tool for the modeling of these localized effects of the material
response. We present in this context a thermodynamically based derivation of the resulting
governing equations along these discontinuities. These developments are then incorporated in
the local continuum framework characteristic of typical large-scale structural systems of interest.
The general multi-dimensional case is assumed in this first part of the paper. In the second part,
we present in the context furnished by the previous discussion a study of the wave propagation
in the one-dimensional case of a localized softening bar. We obtain first the exact closed-form
solution involving a strong discontinuity with a general localized softening law. We consider
next the approximate problem involving the softening response of the material in a zone of finite
length. Closed-form analytic solutions are obtained for the case of a linear softening law. This
analysis reveals the properties of the approximation introduced by the spatial discretization in
numerical solutions of the problems. Finally, we present finite element simulations that confirm
the conclusions drawn from the previous analyses.
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1. Introduction

The failure of many engineering materials is often characterized by the localization
of the inelastic effects in small zones, usually band-type patterns, previous to the final
collapse of the solid or structure. Typical examples are adiabatic shear banding in metals
(Ba1 & DobpD [1992]), shear bands in soils (VARDOULAKIS [1978]), and localization bands
of cracking in brittle materials like concrete and rocks (READ & HEGEMEIER [1984]), to
mention just one representative reference among many others. Given the clear implications
for practical applications, the analysis and numerical simulation of this phenomenon have
received an important amount of attention.

As the name strain localization implies, localized solutions are characterized by narrow
zones where the strain concentrates. Narrowness is understood in terms of much larger
characteristic lengths in the particular problem under study. The multiple-scale nature
of the problem is then apparent, with the large scale governing the overall response of
the solid or structure previous to failure, but with the small-scale effects controlling the
characteristic softening response of the solid at failure previous to its final collapse. This
multi-scale setting is common to many other problems in solid and fluid mechanics, and
as described in HUGHES [1996], its consideration leads to the proper context for the devel-
opment of numerical methods for their analysis. The interest in this type of formulations
is nowadays very intensive, and motivates in part the presentation in this paper.

The high levels of strain present in the narrow localization bands lead to the concen-
tration of the inelastic response of the material and the corresponding energy dissipation
in these localized zones. In fact, the appearance of strain localization needs to be under-
stood backwards as a consequence of the inelastic effects in the material. In this way, the
inception of localized solutions has been related to a material bifurcation caused by the
change of type of the governing equations in rate-independent inelastic solids or, in the
general context of rate-dependent models, as the appearance of unstable modes in spec-
tral analyses of the linearized governing equations. Classical references for the former are
THOMAS [1961], HILL [1962], and MANDEL [1966], with more recent accounts presented
in RICE [1976], OTTOSEN & RUNESSON [1991], and NEILSEN & SCHREYER [1993]. The
rate-dependent case can be found treated in detail in MOLINARI & CLIFTON [1987], among
many other references.

The multi-scale character of the problem makes the analysis and numerical simulation
of these localized solutions difficult. The first difficulty appears when the constitutive
model does not have the information regarding the small scales. This is the case for local,
rate-independent inelastic models. These models do not define a characteristic length
and, therefore, the concept of a band of finite width is lost, leading necessarily to the
consideration of the limiting surfaces. An infinite strain in the limit case of a band of zero
thickness corresponds to a discontinuous displacement across the limiting surface. The
existence of these discontinuous solutions, referred to as strong-discontinuities, has been
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shown in rigorous analyses of the boundary value problem of rate-independent plasticity;
see JOHNSON [1976], MATTHIES et al [1979], SUQUET [1981], and the complete account in
TEMAM [1984]. These solutions are consistent with the change of type of the governing
equations from elliptic to hyperbolic in the quasi-static problem, with the discontinuities
associated to the real characteristics that appear in the problem. These ideas are not
new. In fact, they are found in the early developments of the theory of plasticity (see e.g.
PRANDTL [1920]), and are the basis of the classical slip-line theory of rigid plasticity. See
e.g. HILL [1950] for complete accounts.

However, the consideration of discontinuous solutions in the displacement field is not
enough to arrive to a correct characterization of the phenomenon of strain localization.
In this regard, an important contribution was made in BAZANT & BELYTSCHKO [1985],
showing clearly this point in the simple one-dimensional setting furnished by the analysis
of wave propagation in a softening bar. This problem is studied in detail in the present
paper. Briefly, after applying a stress pulse at both ends of a bar, the reflection at the
center triggers the activation of the softening response of the material. Assuming a simple
one-dimensional inelastic model with continuum strain-softening, BAZANT & BELYTSCHKO
[1985] were able to obtain an exact solution of the boundary value problem, which involves
a discontinuity in the displacement at the center of the bar. However, since a strain-
softening law defines a finite amount of dissipated energy per unit volume, and since the
volume of the softening zone is zero, no energy dissipation is associated to the final solution,
a completely non-physical result. These inconsistencies have been linked to the ill-posed
character of local continuum formulations of rate-independent models with strain-softening
and, more importantly, to the lack of a characteristic length in this type of models. We
note, however, that the problem can be better characterized by the absence of a localized
dissipative mechanism in classical strain-softening models of the local continuum.

Different approaches can be found in the literature to overcome these inconsistencies
by including a length scale in the constitutive model. We refer to these approaches as
“small-scale regularizations.” A first simple and natural approach is the consideration of
rate-dependent models, as investigated in NEEDLEMAN [1988]. However, the small impor-
tance of viscous effects in some materials motivated the search for alternative approaches.
These alternative formulations include non-local models (BAZANT et al [1984]), higher-
order gradient models (COLEMAN & HODGON [1985]), and Cosserat continua (DEBORST
& SLuys [1991]), among many other references. Following with the discussion above, we
note the second difficulty in the modeling of strain localization. Even though a partic-
ular formulation may include the localized dissipative effects in a band of finite width,
the resulting solutions are highly non-smooth as seen in the large-scale limit. In addition,
if small length parameters are introduced in the problem, they must be resolved by the
tools employed in the analysis (e.g. by the spatial discretization in numerical methods).
The issue is not so much of computational cost, but the need of considering alternative
(and often complex) formulations when modeling the large-scale response of the solid, even
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before localization or away from the localized patterns. These observations identify the
main goal of the present work, that is, the formulation and numerical implementation of
a general framework that captures the localized dissipative effects while maintaining the
structure of the local continuum.

In this context, we presented in SIMO et al [1993] and ARMERO & GARIKIPATI
[1996] an analysis of strong discontinuities that showed the consistency of classical rate-
independent plasticity models with the presence of a localized softening response along
these discontinuities. In particular, we described in ARMERO & GARIKIPATI [1995,96] the
formulation of enhanced finite element methods in the general finite deformation range
that accommodate at the element level this localized laws. The proposed methods capture
the propagation of these discontinuities in an objective and efficient way by maintaining
the standard numerical implementation of traditional finite element methods for local
continuum models. Related approaches can be found in LARSSON & RUNESSON [1996],
OLIVER [1996], and STEINMANN et al [1997] for regularized discontinuities. Similarly,
finite element formulations incorporating local enhancements in terms of discontinuous
displacement fields have also been presented in ORTIZ et al [1987] and DVORKIN et al.
[1990], and in the form of a localization band in BELYTSCHKO et al [1988].

More recently, we have presented in ARMERO [1997] a general framework for the
modeling of localized dissipative mechanisms in the local continuum. In this way, strong
discontinuities are considered as a tool for the modeling of the localized effects observed
in the response of the material. We refer to the resulting constitutive models as localized
models. In this context, we presented in this last reference the so-called large-scale requ-
larization of reqularized models, viscoplastic models more precisely. As motivated by the
discussion presented above, the idea behind this approach is the formulation of a frame-
work that is able to capture the localized dissipation in the large scale, even though the
associated small length scales may not be resolved.

The consideration of large-scale models incorporating objectively the localized dissi-
pative effects is not new. In fact, these ideas can be identified as the foundation of the
so-called smeared crack approach for the analysis of the cracking in brittle materials; see
e.g. BAZANT & OH [1983], WILLAM et al [1984], and ROTs et al [1985], among many oth-
ers. Similarly, we can include in this group the approaches based on classical constitutive
models in combination with a strain-softening modulus regularized through a character-
istic length of the spatial discretization employed in the analysis; see e.g. PIETRSZCZAK
& MROz [1981] and OLIVER [1989]. However, the formal nature of these regularization
approaches motivated much of the interest in the alternative formulations described above.
Perhaps, one of the main criticism is the dependence of the constitutive model on arti-
ficial length parameters usually related to numerical approximations of the problem, or
of unknown origin, but motivated from physical considerations on the energy dissipation
required in the final computed solution. One of the goals of the present work is to arrive
to a better understanding of these approaches and, at the same time, to develop different
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variations and alternatives, like the finite element methods incorporating the propagation
of strong discontinuities and the regularization of viscous models mentioned above; see the
aforementioned references for details. As discussed herein, these goals are accomplished
by focusing in the limit case of the discontinuous solutions of interest, and by developing
a systematic procedure for their incorporation in the local continuum.

The paper is divided in two parts. In the first part, we summarize the ideas behind the
formulation of localized models, that is, the modeling of localized dissipative mechanisms
in the local continuum. After identifying in Section 2.1 the large-scale problem of interest
(defined by the classical local formulation of balance of linear momentum), the kinematics
of strong discontinuities are summarized briefly in Section 2.2. The crucial aspect of the
proposed formulation is the introduction of these discontinuous solutions in a small local
neighborhood of a given material point. A complete characterization of the material re-
sponse in this local neighborhood is then undertaken in Section 2.3. The assumption of
a decoupled strain energy function, in term of a bulk and a localized part along the dis-
continuity, allows for the modeling of the localized dissipative mechanisms of interest. We
present briefly the examples of a localized elastoplastic model and a localized anisotropic
damage model, both formulated from the principle of maximum inelastic dissipation in a
general thermodynamic context.

The incorporation of these local effects into the large-scale problem described previ-
ously is presented in Section 2.4. Perhaps the most significant result in these considerations
is the identification of the relation equating the dissipation obtained in the local constitutive
considerations with the dissipation observed in the large-scale problem as the fundamental
equation that allows to arrive to a consistent large-scale formulation incorporating these
localized effects objectively. In this way, the resulting model is understood in the limit case
of a vanishing local neighborhood. These developments show that the modeling of these
localized dissipative mechanisms in the local continuum can be accomplished without the
need of introducing smearing or smoothing assumptions of the limit discontinuous solu-
tions. The constructive way in which the proposed procedure is described leads naturally
to its finite element implementation. However, this step is not undertaken in this paper;
the reader is referred to ARMERO [1997] for further details in this respect.

Instead, the second and main part of the paper reconsiders the one-dimensional prob-
lem proposed in BAZANT & BELYTSCHKO [1985] of the wave propagation in a softening
bar. A brief description of the problem and of the solution obtained for the case of con-
tinuum strain-softening in this last reference is presented in Section 3.1. We obtain next
the exact closed-form solution for the limit case of a strong discontinuity incorporating a
localized dissipative mechanism, as characterized in the previous discussion. A general co-
hesive softening law is assumed on the discontinuity. This solution is presented in Section
3.2. The different features of the solution, including the objective energy dissipation and
the resulting wave profiles, breaking times, etc. are described in detail and contrasted with
the non-physical solution for the strain-softening case.
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Next, we consider in Section 4 the same one-dimensional problem but with a finite
local neighborhood accounting for the localized softening effects, in the context discussed in
Section 2. A linear interpolation of the displacements is assumed in this local neighborhood,
thus allowing for the analysis of the effects of typical finite element interpolations in the
approximation of the exact limit solution obtained in Section 3. The continuum elastic
equation, with no numerical discretization, is maintained in the rest of the bar. This allows
to obtain closed-form solutions of the resulting problem and, therefore, characterize in
detail the effects of a discrete approximation of the softening response of the material. The
extrapolation of the results learned in this analytical study to full finite element simulations
is validated in Section 4.2, where we briefly present the results for representative numerical
simulations.

Even though our main motivation for considering this approximate problem is, as
indicated above, to gain a better understanding of the discretization effects in the approx-
imations of localized solutions, the proposed analysis has other applications. Given the
constant stress approximation assumed in the local softening zone, the resulting equations
coincide in this simple one-dimensional setting with a classical regularized softening ap-
proach, and with the approaches based on a regularized strong discontinuity, as mentioned
above. The results presented in this paper apply then to these cases. In fact, the solution
obtained herein is an exact closed-form expression for these regularized approaches based
on a finite, and fixed, width of the localized zone. Full details are presented in Section 4.1.
Finally, we include in Section 5 several conclusions drawn from these analyses.

2. Modeling of Localized Dissipative Mechanisms in Inelastic Solids.

This section summarizes the formulation of localized models, understood as large-scale
constitutive models that incorporate a localized dissipative mechanism. By a large-scale
model, we refer to a constitutive model formulated in the local continuum framework, as
described in Section 1. Localized dissipative effects are modeled independently of the bulk
response of the material through the consideration of strong-discontinuities, the limit case.
Section 2.3 develops these ideas. Next, the resulting localized dissipative mechanism is
incorporated in the original large-scale problem as described in Section 2.4.

For completeness, the developments presented in this section are presented in the
general multi-dimensional setting, even though the main interest of the subsequent sections
is the analysis of one-dimensional dynamic solutions. Focus is directed to the infinitesimal
case.
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2.1. Problem definition

Consider a domain 2 C R™™ (ng;, = 1,2 or 3) representing the reference placement
of a solid body. Given a certain time interval T, we introduce the displacement field
u: 2 x[0,T] — R™™ and the (symmetric) stress field o : 2 x [0,T] — R™dimX7ndim_
Standard regularity conditions are assumed for the displacement fields u, which we refer as
the large-scale displacements. In particular, the assumed regularity allows for the common
consideration of C° finite element interpolations. Additional effects due to the localized
material response (e.g., discontinuities) are introduced in Section 2.3.

Given this regularity, the weak form of the balance of momentum equations reads
then in the standard form

/pii-nd9+/a:s(n)d!2:/pb-ndQ—i—/ t-ndl, (2.1)
2 17 Q arf2

for all admissible variations 7, that is, satisfying the homogeneous essential boundary
conditions in part of the boundary 0,2 C 02 where the unknown displacement field u is
fixed. In (2.1), we have denoted the specific body force by b : 2 — R™¥i™ and the applied
boundary tractions by ¢ : rf2 — R™™ acting on the part 972 C 942 of the boundary
of the solid, with the usual assumption 9,2 N orf2 = @ and 9,2 U Orf2 = 12 in each of
the ngim components. Similarly, we have denoted the acceleration by 4 := 82u/dt?, the
reference density of the solid by p, and the infinitesimal large-scale strain variations

e(n) :=V°n:=§ [Vn+(Vn)T], (2:2)

where the superscript (-)* denotes the symmetric part and (-)7 the matrix transpose.
Initial conditions u(x, 0) = u,(x) and u(x,0) = v,(x) in the displacements and velocities,
respectively, are assumed.

The stress field o is given by the constitutive model developed in the following section.
A standard argument based on integration by parts of the weak form (2.1) shows the
continuity of tractions, leading to the well-defined vector

Tr = )

on a smooth material surface I', defining a unit vector n at a point x € 2.

2.2. The kinematics of discontinuous solutions

The previous section introduced the large-scale problem leaving undefined the consti-
tutive relation for the stress field. The assumed regularity of the large-scale displacements
and corresponding strains may not incorporate all the effects observed in the response of
the material. As indicated in Section 1, our goal is the solution of the problem governed
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FIGURE 2.1. Illustration of the large-scale problem, involving stan-
dard boundary conditions, and the local neighborhood 2, C 2 at a
material point &, with the smooth surface of displacement discontinuity
Iy

by the local equations summarized in the previous section, with the localized effects of the
material response taken into account as an added discontinuity of the displacement fields,
that is, in the large-scale limit.

To this purpose, consider a local neighborhood (2, C {2 of a material point = € {2,
whose dimensions and full characterization will be detailed in Section 2.4. In this context,
we consider of a discontinuity in the displacement field across a surface I, C {2, passing
through € 2, with unit normal . This normal is usually determined by a local condition
at x, like the loss of ellipticity condition in a elastoplastic solid or the maximum stress
direction in a brittle solid; see e.g. ARMERO & GARIKIPATI [1995,96] for details. We then
consider the local decomposition

u,=u+& Mr, in 2, , (2.4)

for a smooth function & : 2, x [0,T] — R™™ and a function M r, : 2, — R smooth in
£2:\I'; and normalized to have a unit jump across the discontinuity I, (that is, [M,] =1
on I;). If Hp, denotes the Heaviside function across I, the function M, can be written

Mr, =Hp, + N, , (2.5)

for some smooth function N, in §2,. With these considerations the displacement jump
across I is given by [u,] = £ We note that no compatibility requirements between
the large-scale u and small-scale u, displacement fields are imposed a-priori on the local
decomposition (2.4).
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The infinitesimal strains corresponding to the displacement (2.4) are then given by
e, = €(u) + Eunres in 2, (2.6)
where the unresolved strains are given by
Eunres = (6 ® VN1,)* + V°€ Hr, + (£ ® n)® or, , in £2,. (2.7)
= G

The singular part of the strain €, is expressed in terms of the singular distribution ., the
Dirac delta across I'; see STAKGOLD [1979] for mathematical details. The regular part £,
of €, can then be written as

£y =c(w)+ G, (2.8)
for the linear operator G(-) of the displacement jumps &.

2.3. The localized constitutive model

The previous section summarized the kinematics of strong discontinuities, our tool for
the modeling of localized dissipative mechanisms. To characterize a localized dissipative
mechanism along I, in the local neighborhood §2,, we introduce the following constitutive
decomposition of the stored energy in 2,

W(eu,I) = W(E,, )+ W(,I) or, , (2.9)

for a given set of internal variables Z. That is, we assume that the stored energy function
of the material can be decomposed in a regular part W in £2,\I; and a singular part W on
I';, depending respectively on the regular and singular parts of the small-scale strains and
internal variables. Uncoupled thermal conditions are assumed for simplicity. The internal
variables Z characterize a bulk inelastic response in {2, whereas its singular counterparts
7 do so along the discontinuity I.

The decomposition (2.9) of the stored energy function together with the decomposition
(2.6) of the strains results in the decomposition of the dissipation functional

DM:=/Q [a:éﬂ—v’v] d2,

x

:/Qw [a:éﬂ—m‘/] d_Qw+/Fz [T-é—ﬁ/] dr, (2.10)

= Dp, = ﬁu

after using the relation

/ o: (yon) o, dez/ T~ dl, (2.11)
[0 Iy
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for all the variations of displacement jumps =, defining the vector field T' on I, in the
small scale £2,. A decoupled expression of the dissipation is obtained, accounting for the
contributions of the continuum and localized dissipative mechanisms, respectively.

The formulation the constitutive equations of the bulk of the material follows standard
arguments based on the dissipation functional 15“, after the decoupling of the localized
dissipative mechanism. We proceed with the characterization of the localized dissipative
mechanism with the consideration of two model examples.

i. Example I: An elastoplastic localized model. An elastoplastic model of the localized
dissipative mechanism on [, can be characterized by the additive decomposition of the
displacement jumps

E=¢°+¢7, (2.12)

in elastic and plastic parts, respectively. Furthermore, we assume that the localized strain
energy W is a function of the elastic (or reversible) part of the displacement jump

W =W a), (2.13)

where we have considered a single scalar variable & to model the evolution of the irre-
versible processes along I, for simplicity in the exposition that follows, and without loss
of generality. Introducing the stored energy (2.13) in the localized dissipation (2.10),, and
following standard arguments known as Coleman’s method (that is, imposing 25” > 0 for
all admissible processes; see e.g. TRUESDELL & NOLL [1965]) we obtain the relations

oW - .
T:8§e and D,=T-(&+q0>0, (2.14)
with ¢ := —-317[// da. The localized elastoplastic response can be characterized by ngy,s

yield surfaces g-b'j = éj (T, q) depending on the thermodynamical forces T' and g conjugate
to the rate of internal variables, as identified by the expression of the localized dissipation
(2.14). The maximization of the dissipation functional (2.14) constrained by the yield
conditions ij < 0 leads in the rate-independent case to the plastic evolution equations

Nsurf ot Nsurf 7

. 5 a¢ . _ a¢

p:Z’Yj—aIZ, a=27j—8;, (2.15)
=1 =1

for (localized) consistency parameters 7; satisfying the Kuhn-Tucker loading/unloading
conditions _
¢ <0, % =>0, and %;¢; =0, (2.16)

and the consistency conditions
vi¢; =0, (2.17)
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for j = 1, ngyrs. For ductile materials, a simple example is furnished by a rigid-plastic slip
relation along the discontinuity characterized by the single slip surface

¢(T, &) = || Tr| - Ty(&) <0, (2.18)
for the tangential component of the traction Tr, and £¢ =0 (i.e., W = W(&)).

ii. Example II: A localized anisotropic damage model. The damaged response of brit-
tle materials due to cracking can be easily considered in this framework by the introduction
of the crack compliance D defined by the relation

¢=DT. (2.19)
The consideration of the localized complimentary energy function
X(T,D,a)=T-£-W(¢, D,a)=iT DT - 4(a), (2.20)
in terms of the internal variables D and &, leads to the localized damage dissipation
D,=1D:T®T+4a, (2.21)

The introduction of damage surfaces éj (T'®T,q) <0 for j =1,nsf, leads after maxi-
mization of (2.21) to the localized damage evolution equations

Nsurf T Nsurf e
= 99; s 99¢;
D= ; 2738(T®T) and &= J; Mgy (2.22)

with the consistency parameters satisfying the Kuhn-Tucker loading/unloading conditions
(2.16) and the consistency conditions (2.17).

Remarks 2.1.

1. Several extensions of the previous developments are readily available. For instance, a
Perzyna-type viscous regularization is obtained by replacing the Kuhn-Tucker load-
ing/unloading conditions (2.16) and the consistency relation (2.17) by the evolution
equation _

:)"j =< ¢j > /nL (.7 = 1ansurf) ’ (223)

for a localized viscous parameter 7y, and Macaulay brackets <  >:= (z+|z|)/2 while
retaining the evolution equations (2.15).

2. Similarly, the above developments extend to the finite deformation case with the
consideration of the deformation gradient F), := Gradyp,, decomposed as in (2.6)

F, = Gradg + Fypres +[pu] ® N 6r,
=F
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for a smooth deformation ¢ : £2 x [0, 7] — R™™ and unit material normal N. Objec-
tive constitutive equations are then developed in terms of the convected components
of the material displacement jumps € := F~1[p,] following the same arguments of
the infinitesimal case. The reader is referred to ARMERO [1997] for details, including
its use in the analysis of strain-localization in rate-dependent solids. O

2.4. The incorporation of the localized dissipation in the local continuum

Section 2.1 considered the large-scale problem in terms of the smooth displacements
u. The stresses o are obtained in terms of these displacements and the local field € in the
local neighborhood (2, through the localized constitutive model introduced in the previous
section. The two problems need to be connected. As indicated in Section 1, our final goal
is the solution of the large-scale problem incorporating objectively the observed localized
dissipation. Since the constitutive model developed in Section 2.3 accounts objectively for
the localized dissipation, the “bridge” connecting the two scales can be accomplished by
equating the dissipations observed when solving each problem, as shown by the following
developments. In this context, one may refer to this connection as the “equi-dissipation
bridge”.

The dissipation observed in the local neighborhood (2, C {2 solving (2.1) is given by

D= [o:e(@)- W] de, (2.24)
02,

where W corresponds again to the change of free energy of the material in 2, and 4 is
the rate of large-scale displacement u. Comparing (2.24) with (2.10), we observe that the
difference between the dissipation rates at the two different scales due to the stress o stems
from the difference of the stress power measured with the large and small scale strain rates.
Given the decomposition (2.6), we have

D=D,— / O : Eunres A8y . (2.25)

Equating the two dissipation rates for any variation of the local fields leads to the relation

/ O : Eunres A2, =0, (2.26)
2

for all the variations €,,es Of the local unresolved strains. It is important to point out
that, if we understand the unresolved strains as the strains enhancing the large-scale strains
e(u), we recover the orthogonality of the stress and the enhanced strain fields common to
enhanced strain finite element formulations (see SIMO & RIFAI [1990]).
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Given the expression (2.7) of the unresolved strains, we conclude that

ro, (u,&;7) :=/ o(u,€): G(v) di2, +/F TE) -~vdl,=0. (2.27)

xz

for all variations - of the local field £. The term T'(§) in (2.27) is given by the localized
constitutive model developed in Section 2.3. Equation (2.27) is to be added to the balance
of linear momentum equation (2.1) defining the the large-scale problem and the localized
model formulated in Section 2.1. It remains to be shown that the final set of equations
determines a well-defined formulation in the sense that a solution for the unknown fields
(i.e., the large-scale displacement v and the local fields €) can be found. We show next that
this is the case through a limiting procedure that recovers the local continuum framework,
defining in the process the operator G(§).

2.4.1. The consistency with the local continuum framework

An arbitrary fixed neighborhood {2, has been assumed in the preceding developments.
The model developed to this point exhibits then a non-local structure due to the appearance
of this finite neighborhood defining the material response at the point x € 2. However,
and as indicated in Section 1, our goal is to formulate a constitutive model that recovers
in the limit the local continuum framework (a simple material in the classical terminology
introduced in TRUESDELL & NOLL [1965]), and still captures the localized dissipation as
described in Section 2.3. The next step is then the consideration of the limit as the measure
of 2, tends to zero.

To this end, we introduce the following notation

Ay
Z ’
(2.28)
The case of interest corresponds to h; — 0, with A, = O(h,"4™) and I, = O(hw(”di"‘"l)),
so the neighborhood {2, reduces to the point  in the limit. The length scale h, is chosen
as the controlling parameter in this limit process.

A, = measure(§2;) = /

d$2, , 1l :=measure(ly) = / dl,, and hy:=
2, r,

In this context, we consider the expansions*
o(y) =0, +0(hs), Y(y)=7%+0h:) Vye,, (2.29)

and
T(y) =T, + O(hy) Vyel,, (2.30)

* The standard notation for the “big oh” O(:) (that is, hlimo O(he®)/hz® < 00) is
z—)

considered.
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where (-); = (-)(x), that is, the value of the corresponding quantity at the fixed point
x € {2. Introducing the expansions (2.29) to (2.30) in (2.27), we obtain after some algebraic
manipulations the condition

G(y) = —hix (e@n)S°+0(1) in 2, (2.31)

for the equation (2.27) to be consistent with the local relation (2.3) (i.e., T, = o,n) of
the large-scale problem as h; — 0. We observe also that given (2.31), equation (2.27) can
be written as

T(E,) = Aim /Q on d2 +O(hy) | (2.32)

identifying the tractions T' with the average of on in 2, to first order in the limit A, — 0.
Higher order approximations of G(-) can be obtained by equating higher order terms,
leading in principle to the consideration of more details of the strain field in the local
neighborhood (2.

It remains to be shown that the displacement jump &, is determined by the nonlin-
ear equation (2.27) in terms of the large-scale displacement w as h, — 0, leading to a
well-defined formulation. To this purpose, we introduce the linearization of the localized

softening model _
AT = C A, (2.33)

and the acoustic tensor
Qir = Cijrininy (i, k =1, ndim) , (2.34)

associated to the constitutive tangent operator C' of the bulk response of the material in
2., that is,
Ao =C Ag,,

for the direction n. The tensor @ is assumed positive definite. For instance, if the only
assumed dissipative mechanism is given by the localized inelastic law along I, elastic
response is considered for the regular part in 2, leading in the isotropic case to

Qik = 1 ik, + (A + 1) ng ny (2.35)

for Lamé constants A and p, which is positive definite if > 0 and A + 2u > 0.

With the above notation, we consider the linearization of (2.27) with respect to the
local field &, to arrive at the expression

Dg(ro, )AL = [;}Q + C‘] A&z + O(hy) - (2.36)
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Consider the eigenvalue problem _
Cv=wQu, (2.37)

in the eigenvalues w € R and eigenvectors v € R"™. Then, a solution of (2.27) in the
limit of interest h, — 0 is assured by the implicit function theorem as long as

1
Wrnin + — >0, (2.38)
hy
where Wi = min{wy, ..., wn,,  } Condition (2.38) is satisfied for small h;, under the

assumption of finite wy,;,. We note that conditions similar to (2.38) appear also in typical
finite element implementations of smeared type models constraining the size of the finite
element. We refer to WILLAM et al [1986] for further details in this respect.

We conclude that the model developed in the previous sections determines the local
displacement jump &, in the limit h, — 0 in terms of the large-scale displacement wu,
as indicated by the nonlinear equation (2.27). After solving this local equation, the large
scale problem is completely formulated entirely in terms of the large-scale field u, a process
referred to as static condensation, specially because of its important implications in the
actual numerical implementation of these ideas.

In this way, the smooth displacement w can be understood for h, > 0 as the large-
scale regularization of the localized effects modeled through the strong discontinuity in the
small scale. This aspect is not to be confused with the so-called regularized strong discon-
tinuity approach, as in LARSSON & RUNESSON [1996]. In the former approach, the strong
discontinuity is smoothed out by a band of constant width in the small scale, following
the terminology employed here. In the current approach, the static condensation of the
local parameters does not eliminate the strong-discontinuity from the formulation. It is
available in the small scale through the bridge equation (2.27).

In fact, we note that, given (2.32) and the boundness of the tractions, we conclude
that

n-Ce(Au)NhiQAgw+0(1) n 2, (2.39)

identifying the singularity of the strains in the limit problem h, = 0. Note that as h, — 0,
the neighborhood (2, collapses to the material point x, with the total strain given only
by the large-scale field e(u) near the discontinuity. Physically, (2.39) states that in the
limit h, — 0, the strain field in the large-scale problem of interest captures the singularity
introduced by the strong discontinuity, being of the order 1/h, at a distance h, from it.

In conclusion, we have shown that equating the dissipation observed in the large and
small scale problems leads to a well-defined formulation consistent, in the limit, with the
local continuum structure of the large-scale problem of interest. The proposed approach
identifies the corresponding weak form of this condition (2.27) as the sufficient connecting
equation between the two problems. This approach is to be compared to the strong
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imposition of kinematic compatibility between the small and large scale displacement fields
on the boundary of the local neighborhood; see HUGHES [1996] for a discussion in a more
general setting.

3. An Analysis of Wave Propagation in a Localized Softening Bar:
Exact Closed-Form Solution

We apply the developments described in the previous sections to the analysis of wave
propagation in a softening bar. Section 3.1 presents a description of the problem, together
with a review of the solution for the elastic and continuum strain-softening cases. The
exact solution for the limit case of a strong-discontinuity with a general localized softening
law is presented in Section 3.2.

3.1. Problem description: the elastic and strain-softening solutions.

Consider an homogeneous bar 2 = [—L, L] with constant unit cross section and
density p, initially at rest. A stress 0 < 0, < 0, constant in time, is applied at both
ends x = £L, where o, denotes the elastic limit of the material. A linear elastic response,
characterized by a Young modulus £, is assumed in this range. The weak form (2.1) leads
to the usual one-dimensional longitudinal wave equation in the axial displacement wu(z, t)

2 02 |E

For the case of interest, the solution involves rectangular stress pulses o, propagating from
both ends at the speed c. Similarly, rectangular strain and velocity pulses propagate at
the same speed with values

€0 = — and Vo = C €&, (3.2)

respectively. All the developments that follow extend trivially to the case of a shear layer
under simple shear conditions by analogy.

The two pulses meet at the center of the bar at a time that we take as t = 0, so we
can write
u(z,0) =¢, x . (3.3)

Upon reflection, the stress doubles in the elastic range (for 20, < o.), imposing the
condition
u(0,¢) =0 = v(0,t)=0 vt, (3.4)
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FIGURE 3.1. Wave propagation in a bar. Displacement, velocity
and stress distribution for the elastic solution (20, < o¢).

where v(z,t) = Ou/0t denotes the velocity distribution along the bar. Then, loading pulses
propagate back at the wave speed c on each side of the bar, with stress value of 20, and
zero velocity. Denoting the one-dimensional Heaviside function by

1 iftn>0,
H(n) = 3.5
) {0 if 1 < 0, (3:5)
the displacement distribution can be written as
u(z,t) =€, (x+ct) + €, (x —ct) H(ct — x) forx >0 and ct<L. (3.6)

Due to the symmetry in the problem, we only consider in the following developments the
right half of the bar, that is, z > 0, with u(—z,t) = —u(z,t) by symmetry. Similarly, since
the interest is focused on the wave reflection at the center of the bar, we assume hereafter
that L >> ct, so no reflection at the opposite ends of the bar needs to be considered. As a
consequence, we note the complete equivalence of the assumed problem with the problem
defined by imposing the velocity to v, at x = +L. This elastic solution is depicted in
Figure 3.1. Note again that only half of the bar is depicted due to the symmetry of the
solution.
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FIGURE 3.2. Wave propagation in a bar. Displacement, velocity and
stress distribution for the continuum strain-softening solution (o./2 <
0o < 0¢), after BAZANT & BELYTSCHKO [1985].

The solution for the case of a continuum strain-softening bar was obtained by BAZANT
& BELYTSCHKO [1985] and is summarized next. Consider an one-dimensional inelastic
material model that leads to the stress-strain relation in rate form

EH
E+H

c=K €, with K = <0, (3.7)
during loading in the inelastic range, characterized initially by the elastic limit o.. In
(3.7), H < 0 denotes the continuum strain-softening modulus; E + H > 0 is assumed.
Introducing the constitutive relation (3.7) in the momentum balance equation (2.1) leads
to equation (3.1), but with 2 replaced by K/p < 0 in the loading range. A change of type
from the original hyperbolic character of (3.1) to elliptic occurs, and the initial boundary
value problem becomes ill-posed.

Nevertheless, BAZANT & BELYTSCHKO [1985] observed that a unique solution can still
be found having a discontinuous displacement at the center of the bar (z = 0), with the
associated infinite strain (a Dirac delta function). The solution involves an instantaneous
release of the stress at the center of the bar due to the softening response of the material.
This leads to an unloading wave that propagates elastically back along the bar. This wave
is characterized by a rectangular pulse of zero stress and velocity 2vg. The plastic zone is
then restricted to the point = 0 only. Figure 3.2 depicts the displacement, velocity and
stress distributions corresponding to this solution. Since no unloading from an inelastic
state occurs in the process, the solution applies both to a continuum elastoplastic and a
continuum damage model characterized by the rate equation (3.7).

This solution is consistent with the idea of the bar breaking at the center upon reflec-
tion. Note the zero stress. However, the final energy dissipated in the process vanishes, as
a simple calculation shows, indicating the non-physical nature of the solution. BAZANT &
BELYTSCHKO [1985] observed that this is due to the fact that the plastic (softening) zone
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reduces to a single material point, a consequence to the non-existence of a characteristic
length in the constitutive model. Furthermore, the solution does not depend continuously
on the data. In fact, the final solution does not depend on the particular form of the
softening law.

We can find in the literature several approaches to avoid the above inconsistencies.
Many of the proposed regularization approaches involve the introduction of a length scale
in the material model, the so-called localization limiters as described, for instance, in
BAZANT et al [1984]. We refer to these approaches as “small-scale reqularizations,” and
note that the inclusion of any characteristic small length scale in the problem requires its
resolution with the tools of analysis available.

In the context of the formulation presented in the previous sections, we observe that
the lack of an objective energy dissipation is due to the absence of a localized dissipative
mechanism along the strong discontinuity that forms at the center of the bar. We present in
the following section the exact analytic solution to the problem incorporating this localized
dissipative mechanism in the form of a cohesive softening law at x = 0.

3.2. Exact solution for a localized softening model

We obtain next the exact solution under the consideration of a strong discontinuity
with a localized dissipative mechanism in the form of a cohesive softening law at z = 0.
This situation corresponds to the limit case of h — 0 in the discussion of Section 2.4. For
the case of a localized rigid-plastic mechanism, we can write the equations

(3.8)

for the displacement jump £(¢) at = 0. Since no unloading from an inelastic state will
occur in the final solution obtained below, the developments below apply to the general
elastoplastic response along the discontinuity characterized by equations (2.14) to (2.17)
in the general multi-dimensional case. Moreover, under monotonic loading with T > 0 we
also have

0<elt) = alt) (3.9)

(§ =—-aif T <0), as a simple argument based on (3.8) shows.

Remark 3.1. Similarly, the developments below apply also in their entirety to the
localized damage model (2.22), since no damaged unloading is involved in the solution.
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In this unidimensional setting, the localized constitutive relations (2.22) reduce to the

following equations governing the evolution of the crack compliance D

¢=DT for T>0, £=0 for T<0,)
L7
D=
T7
PR , (3.10)
¢=T-§a)<0,
7>0, 76=0, 7¢=0, ,

a model of a brittle bar with tensile strength %(0) = f7. and cohesive softening law 0 <
7(&) < fr in the crack. Equation (3.9) applies also to this case. O

We introduce the notation
do(t) = u(0F,t) = —u(07,t) = £(t)/2 t>0, (3.11)

for the unknown displacement at the center of the bar z = 0% (and z = 0~ by symmetry).
The rest of the bar remains elastic, with u(z,t) satisfying equation (3.1) for x > 0. The
solution is then easily obtained as

u(z,t) =€, (x+ct)+ [eo (x —ct) +do(t — %)] H(ct —x), (3.12)

for t > 0 and > 0 (symmetric u(—x,t) = —u(z,t) for < 0). Given (3.12), the stress
distribution along the bar is given by

a@¢y=mﬁ-Pf-§d4r—§ﬂzﬂd_x% (3.13)

which particularizes to the value

E

00 (t) =200 — — do(t) (3.14)

at £ = 0F. After recalling (3.2)s, the velocity distribution is given by
; T
(@, t) = vo — [v,, —d(t— E)] H(ct - ), (3.15)

for t > 0 and z > 0 (symmetric v(—z,t) = —v(z,t) for z < 0).

The traction T = T'(§) in (3.8) satisfies equation (2.27) or, equivalently, (2.32). For
the current limit case of interest (h — 0), it simply implies the equilibrium relation

T = 0o, . (3.16)
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FIGURE 3.3. Localized softening law (&) (3.19) for different values
of the non-dimensional parameter s = @ /&r .

Combining this relation with (3.8) and (3.9), and after noting that T = o,, > 0, we
conclude that >
g(Zdo(t)) =20, — - do(t) , (3.17)

(. J (. S

—— - ~
T 004

a first order ordinary differential equation for d,(t), with the initial condition d,(0) = 0.
The general solution of (3.17) is given by

2o(t) B da
2ct = — =, 3.18
/5 200 — 5@ (3.18)

defining implicitly the function d,(t) in terms of the general localized softening law §(a&),
the incident stress pulse amplitude o,, the Young modulus E, and the longitudinal wave
speed c of the bar.

As a model example, we consider the general localized softening law

(@]
IN
o}
INA
o}
o
Il
w
o}
s

e - | for
yla) = 14 — (3.19)
s Qp

0, for «a

[V
[o3}
o
l
»
o3
g




F. Armero 22

9 T T T T 2.8 T T T
s=4.0
8 j 24
N . r=1.25 -
o o
“-S’ 7 - éﬂ - i
S 6l ] S 20 F .
S A . g
- s = 1.0 (linear) | ~ 16 I r=1.50 ]
v 5 O . .
£ & i 1
o4 ] =12 F .
& S 08 F .
i - : |
04 r=1.75 N
1 i |
O | | | ] O | | |
1.0 1.2 1.4 1.6 1.8 2.0 0 0.5 1.0 1.5 2.0
r = 20,/0. s=ap/ar
a) b)

FIGURE 3.4. Non-dimensional breaking time m c tp,, versus: a)
r = 20,/0c for s = @p/ér, = 0.5, 1.0 (linear softening), 2.0 and s = 4.0.
b) s = ap/ar for r = 20,/0e = 1.25, 1.50, and 1.75. Closed-form
expression given by equation (3.22).

in terms of the three parameters o, > 0, @, > 0 and 0 < s(= &, /ap). We note that

— dy o ~
§0)=0e, §@)=0, and Z0)=-2°%.=H, <0, (3.20)
a ar

which gives an alternative parameter definition in terms of H ., the initial localized soft-
ening modulus. We also observe that a linear softening law is recovered by setting s = 1.
Figure 3.3 depicts three characteristic examples for different values of the ratio s = &;/a;.

Defining the “breaking time” t;_, as the time when the stress at the center of the bar
vanishes, we have the expression

E [% dé

tby = =— —— 3.21

b0 T 9¢ 0o 20,— (@) (3:21)
after (3.18). The subscript 0 in the symbol for the breaking time is motivated by the
introduction in Section 4.1 below of an additional parameter in the analysis. For the general
softening model (3.8), the following closed-form expression is obtained after integrating

(3.21)

th,, = %ﬂ? [log (%) +(s—1) ﬂ] , (3.22)
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where we have introduced the notation

m = —27;L >0, Bri=r— i-(r -1) and r:= 2;: : (3.23)

We observe that m has units of length inverse, whereas r and s are non-dimensional, with

1<r<2. (3.24)
We also note that
d(ty,)) = 52 = 5252 (3.25)
bso m mr’ )

with e, := 0./E. Relation (3.22) is depicted in Figure 3.4.

Integration of (3.18) for the model defined by (3.19) leads to the implicit expression
for dy(t)

1 Br m dy(t) s—1 md,(t)
=~ |log (1 , for 0<t<ty. ,
t m c [3? [og( +r—1 2¢, +Br s 2e, o =7 = "o
(3.26)
with
2
do(t)=3%+ 2w, (t—ty,), for t>ty,, (3.27)

after recalling (3.2). That is, the bar is released with twice the initial velocity, 2 v,.

For the linear softening case (s = 1), equation (3.22) reduces to

1 1
tbLo = —m———— lOg (1 - —) . (328)

c r
The subscript L refers to the linear case s = 1 hereafter. The solution (3.12) reduces in
this case to

2, T—1

do(t) =

- [exp (mct) — 1] , for 0<t<ty,, (3.29)

and (3.27) for t > tp,,. The velocity and stress at z = 0% are then given by

: —1
do(t) = 20, ! exp (mct) , and 0oy =0 [r—(r—1) exp(met)] , (3.30)
for t < ty,,, and do(t) = 2v, and 7o, (t) = 0 for ¢ > ty,,.

Defining the energy release rate Gp as the difference between the external power and
the total energy stored in the bar (kinetic plus elastic strain energy), we have after inte-
gration by parts

. d L o2 ~ -~ .
20p 1= 0ol — — / |:%’U2 + %E] dr| =D, — ¢ = 0,.do(1) , (3.31)
0
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for the softening potential ¢ with §(&) = 8¢/da+o.. The 1 /2 factor on the left-hand-side
of (3.31) accounts for the symmetry in the problem. Combining (3.31) with the solution
developed above, we obtain, as expected, the area below the localized softening law, that
is,

2d,
Gy(t) = /0 7(a) da

s? s mdy(t 1 md(t
=2gt0talL [mlog<l+3_1 60( ))_s o()

for the general softening law (3.8) with s # 1, and

m dy(t m dy(t
gp(t) == ZQtotalL 0( ) <]- - O( )> s (3.33)
Ee 2e,
for s = 1, where Giopa1, := 0cce/m is the total energy release for the linear softening

law. The expression (3.31) is appropriate for the localized rigid-plastic model (3.8) on
the discontinuity. For the localized damage model (3.10), the released energy G4 must be
defined

Gi=G,—1DT?, (3.34)

accounting for the elastic energy stored on the discontinuity at x = 0. A similar term is to
be added for a general elastoplastic response on the discontinuity; details are omitted. As
expected from physical considerations, the energy released in the solution obtained above
is finite.

3.2.1. Properties of the solution

Figure 3.5 depicts the distribution of the displacement (u m/(2e,)), velocity (v/v,),
and stress (0/o.) along the bar for different times. Figure 3.6 includes the evolution in
time of the displacement jump (§ m/(2¢,)), the velocity (v(0F,t)/v,), and the stress (o,.)
at = 0%. The energy release in time is also shown in Figure 3.6 for the localized rigid-
plastic model. The softening laws depicted in Figure 3.3 and given by s = 0.5, 1, and 2
are considered. In all cases, the value r = 1.5 is assumed for the initial stress pulse (i.e.,
0o =0.75 0e).

The final expressions of the closed-form solution obtained above identify the proper
normalizations for the different quantities. With this information, the graphs presented in
Figures 3.5 and 3.6 show the proper non-dimensional variables. In particular, the spatial
and temporal scales are normalized by the same parameters (c t,, and ¢3,,, respectively),
based on the linear softening law s = 1, in order to compare the solutions for different
softening models. Similarly, the energy release is normalized with the total energy released
for the linear case.
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the linear case s = 1 given by (3.28).

We observe that a loading front of magnitude o, in the stress, the elastic limit, forms
at t = 07 upon reflection, instead of doubling (20, > o.) as in the elastic solution, or
instead of vanishing as in the continuum strain-softening solution. The front propagates
back along the bar at the longitudinal wave speed ¢, with an associated value of the velocity

V]g=(ct)- = € (260 — €¢) = 20, — cee , and V|z=(ct)t = Vo » (3.35)

as it can be easily argued from the balance of linear momentum across the propagating
front.
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After the sudden formation of this loading front, the localized softening mechanism is
activated at £ = 0. The stress at x = 0 is then gradually released from the elastic limit o,
to zero in a finite time, unloading the bar. The displacement discontinuity at the center of
the bar can be easily observed in the plots of the displacement in Figure 3.5. Note again
that only the right half of the bar is depicted, and still u(07,¢) = d,(t) # 0. The evolution
of this displacement jump is shown also in Figure 3.6. Similarly, the velocity increases
in time from the value (3.35); to 2v, at the breaking time. We can observe in the time
evolutions of Figure 3.6 the increase of the breaking time ¢;,, with the parameter s, as
expected. The dependence of the breaking time on the softening law s is illustrated in
Figure 3.4, a plot of relation (3.22). Similarly, the total energy release, the area enclosed
by the constitutive relation §(&), increases as s increases.

After breaking at ¢y, , the center of the bar becomes a free end at zero stress. It moves
at a constant velocity 2v,, twice the initial velocity, for all the cases. The final values of
the reflected stress and velocity (0 and 2v,, respectively) propagate along the elastic bar
at the wave speed c. No further dissipation occurs after breaking.

The differences with the non-physical solution obtained for the continuum strain-
softening case depicted in Figure 3.2 are apparent. We observe that one of the main
features added by the localized softening mechanism is the introduction of a characteristic
time (tp,,) during which the dissipation of energy takes place. Given that any signal
propagates at the speed c in the elastic bar, this characteristic time defines a profile in the
different quantities (stress, velocity and displacement) of width ¢ ¢,_,. Using (3.22), we see
that this width is given by

rs

1
cty, = —— |log
0 m (2 r—

that is, proportional to the length scale 1/m = —E/(2#,) defined by the localized softening
law. We note that this width depends also on the initial conditions through the parameter
r. Therefore, it is not a material property. The presence of the localized dissipative
mechanism at x = 0 leads in an subtle way to the introduction of dispersive effects in the
problem, in the sense that the original rectangular pulses give rise to the aforementioned
profile of width ¢ t5,,. As shown in Figure 3.5, this wave profile is narrower and sharper
as s decreases. In fact, we observe that for the limit case s — 0, we recover the solution
for the strain-softening continuum model depicted in Figure 3.2, except for the technical
point that the stress front at ct is to be understood as the collapse of a front from 0 to
oe and from o, to 0. Note that the limit s — 0 implies no dissipation in the localized
dissipative mechanism (a sudden drop of the stress from the elastic limit; see Figure 3.4,
and therefore a non-physical response as observed for the continuum solution.

1) +(s—1) B] : (3.36)

It is important to emphasize that the objective energy dissipation in this exact solu-
tion did not require the introduction of a localization limiter, in the sense that no finite
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length parameter defining a softening zone is needed. Length scales appear in the solu-
tion, as given by (3.36), the width of the resulting propagating wave profiles, but they are
not associated to a finite characteristic length of the bar exhibiting a softening response.
Instead, we observe that the important feature needed to arrive at an objective solution is
simply the inclusion of the localized dissipative mechanism, a cohesive softening law along
the discontinuity as fully characterized in Section 2 in this local continuum.

Furthermore, the solution that we just found is, apparently, unique. Indeed, we cannot
have a solution showing unloading along the discontinuity For the localized rigid-plastic
model (3 8), this would imply € = 0, leading to d, = 0 by (3.11). More generally, unloading
implies £ < 0, or equivalently d, < 0 by (3.11), for the one-dimensional counterparts of
the localized elastoplastic model (2.14)-(2.17) or the localized damage model (3.10). But
according to (3.14), this would imply a stress higher than the elastic limit o, in the bar,
and thus it is not a valid solution.

Moreover, we note the continuous dependence of the solution on the constitutive
parameters of the material (m, s, and c). In particular, the solution depends continuously
on the shape of the localized softening law, as given by the parameter s. This property is
to be contrasted with the solution for the ill-posed continuum problem. We also obtain a
continuous dependence on the initial conditions in terms of r for » < 1 (elastic range) and
1 < r < 2 (fracture range). At r =1 (that is, 0, = 0./2), the solution changes suddenly
from elastic to fracture, a manifestation of the unstable nature of the physical problem
(see BAZANT & BELYTSCHKO [1985]).

We conclude this section by pointing out that the exact solution obtained herein
does not rely on any smearing or smoothing assumptions. The assumed localized model,
understood in the limit described in Section 2.4.1, is mechanically sound, in the sense that
no ad-hoc or artificial length parameters are needed to obtain the desired localized energy
dissipation. Still, the numerical solution of more complex problems requires the inclusion
of these localized effects in a spatially discretized continuum. This motivates the analysis
developed in the following section considering a finite softening zone in the context of the
formulation presented in Section 2.

4. An Analysis of the Approximation of Strong Discontinuities

We study in this section the effects of a discrete approximation to the exact limit
solution obtained in the previous section. In the context described in Section 2, approxi-
mate solutions are obtained by considering a finite local neighborhood 2, with A, > 0. In
fact, the ideas presented in Section 2 apply directly to the development of finite element
methods by identifying the local neighborhood 2, = (2., a finite element. These issues
can be found discussed in detail in ARMERO [1997].
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We consider in Section 4.1 a linear interpolation of the large-scale displacement u in
the local neighborhood §2,. Our main goal is to clearly identify the effects of the spatial
discretization of the softening response. In particular, it is our intention to investigate the
approximation properties of common finite element treatments of the problem. However,
the proposed analysis provides also the exact closed-form solution for the problem of in-
terest involving the so-called regularized strong discontinuities, where the discontinuity is
replaced by a band of finite width. This issue is described in detail in Remark 4.1 below,
after the introduction of the governing equations. Finite element simulations of the prob-
lem are reported in Section 4.2, confirming the conclusions obtained from the analytical
study presented next.

4.1. An approximate solution for h > 0: analytical results

The analysis presented in this section is based on the consideration of the following
special class of functions approximating the unknown displacement

d%(t)2Tx, for 0<xz<h/2,

u(z,t) = (4.1)
a(z,t), for x>h/2,
for a fixed parameter h > 0, with
. h
U(E, t) = d% (t) ) (42)
and symmetric u(—z,t) = —u(z,t) for x < 0. That is, we consider a linear approximation

of the displacement u(z,t) in the local neighborhood 2, = (—h/2, h/2) of x = 0. This sit-
uation is characteristic of linear finite elements (and quadratic elements, in this particular
case, by symmetry). A general function @(z,t) is assumed outside £2,.

We note that the large-scale displacement u(z,t) given by (4.1) is continuous and
satisfies the symmetry (boundary) condition u(0,¢) = 0. As discussed in Section 2, the
function u(x,t) is understood as the large-scale regularization of the limit discontinuous
solution obtained in Section 3.2. With the assumed class of functions (4.1), the analysis
focuses on the effects of a linear approximation of the localized effects of the material
characterized by h > 0. The effects of a spatial discretization outside the localized zone
are neglected. In particular, numerical dispersive effects outside {2, are neglected. As
shown next, these considerations allow for a complete analytical characterization of the
approximate solution. Full finite element simulations are considered separately in Section
4.2.

The particularization of the developments presented in Section 2 to the one-dimensional
case of interest leads to the following considerations. The stress o outside {2, is given by
the linear elastic relation 9%

U
=F — for x> h/2, 4.3
o=F / (43)
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where again we consider only half of the bar by symmetry. The linear approximation of
the displacement in {2, leads to a constant large-scale strain e(u) = 2 dj/2/h. The material
response inside the local neighborhood (2, is characterized by an elastic response

o, =F

o

d in £2,, (4.4)

N>

SN

until the elastic limit o, is reached. Thereafter, the material response in {2, is characterized
by the displacement jump &(¢) of the small-scale displacements (2.4) at x = 0. In the
following analysis, we consider the first order approximation of the unresolved strain in
the finite local neighborhood §2, given by the first term in (2.31), leading to the constant
stress

2 1 .

0o, =FE (ﬁ dy — 7 §) in £2,, (4.5)
for an elastic response in §2,/I,. Given the constant approximation of the unresolved
strains and constant stress (4.5) in {2,, equation (2.27) leads to the small-scale equilibrium
relation

h)2
T(e) = % /0 e (4.6)

with T'(§) given by the localized model at z = 0.

We consider again the constitutive relations (3.8) for the localized model along the
discontinuity at = 0. Under monotonic loading (as it can be verified a-posteriori),
relation (3.9) holds, thus leading to the relation

) =19(), (4.7)

after imposing the consistency condition ¢ = 0 (3.8)1, and noting also that 7' > 0 for
the solution obtained below. Similarly, the comments in Remark 3.1 hold, that is, the
approximate solution obtained below applies also to the localized damage model (3.10).

Combining (4.7) with (4.5) and (4.6), we obtain during monotonic loading the equation

h _
¢+ % yl§) =24y, (4.8)

defining the displacement jump € in terms of d A For the general localized softening law
(3.19), straightforward algebraic manipulations following the arguments after (2.36) (i.e.,
imposing that the derivative of the left-hand-side of (4.8) with respect to £ does not vanish)
show that this equation can be solved in £ if
h  hi
0<d:=m 5 = ——E——Ii < min{1, s?} , (4.9)
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which is condition (2.38) for the displacement jumps £ to be uniquely defined in terms of
the large-scale displacement dj, /o in this particular case. The general solution is obtained
by solving a quadratic equation in &, and is given by

e=<[VRTiB+H]. (4.10)

for s # 1, where

S m €e
Ri=B-——(1-9), B._g[d%—éa], (4.11)
and by
2 €e _ Em re.
f: m [d% - (SE] and Op, = ]__——6 [E - d%] . (412)

for the linear softening case s = 1. Expressions (4.10) and (4.12) hold before the breaking
time ,,, which corresponds to the displacement d (tv,,) = S €¢/ms. After breaking, we
have

o

§=2dy, and 0,5, =0, (4.13)

during the assumed monotonic loading. Note that for s = 1 (linear softening) and in
the limit § — 1 the bar breaks suddenly (i.e., o,, = 0 as the localized softening law is
activated).

Remarks 4.1.

1. We observe that in this one-dimensional case, with linear displacement interpolations
and constant approximation of the unresolved strains, the final formulation can be
understood as a regularized softening modulus through the length scale h. Note, for
example, that the relation (4.12), can be written in rate form as

2

; Em h FE(H
&Qo:Kh, <_d%> with Kh = — m __M

(1-0)2  E+ (H,h)

- (4.14)

This expression is characteristic of traditional approaches based on the smearing as-
sumption, with h representing a measure of the finite element size; see e.g. WILLAM
et al [1984] or ROTS et al [1985]. The quantity £/h can be identified as the “smeared
inelastic strain” in this unidimensional setting. For this particular case then, the ap-
proach presented in Section 2 focuses on the structure of the limit case of interest
(h — 0) underlying the smeared approach, with the variational framework of the re-
sulting localized model described in Section 2.3. The analysis presented below applies
then to these more traditional approaches in this case. We note that this analogy
does not extend to more general implementations in the multi-dimensional case in-
cluding, for example, general viscous models in the finite deformation range. We refer
to ARMERO [1997] for details.
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2. Similarly, the expression (4.14) can be found in constitutive theories that consider a
band of finite and constant width (h in the notation above) to represent the local-
ized effects in the material. A constant strain is usually assumed inside the band.
We can find in this group the so-called regularized strong discontinuity approach, as
in e.g. LARSSON & RUNESSON [1996]. We can also mention the related approach
in BELYTSCHKO et al [1988] for similar ideas in the development of finite elements.
Therefore, the analysis presented below obtains then the exact closed-form solution for
formulations based on this constitutive assumption. We note, however, that the full
potential of the general framework presented in Section 2 lies in the objective and
systematic modeling of localized dissipative mechanisms in the limit case involving
a strong discontinuity, and the proposed framework for the consistent incorporation
of the associated singular fields into the local continuum framework of typical large-
scale structural problems. The analogy with these approaches does not hold for more
general multi-dimensional setting either. O

The introduction of the variations corresponding to the class of functions (4.1) in the
weak equation (2.1) leads to

% . 4;1;2 % 2

L L ot*
+A pl G dx-l—[l v - dx = 4*(L,t) o9 , (4.15)

2

for all variations 4*(x, t) with @*(h/2,t) = d*(t), after making use of the symmetry present
in the problem. After integration by parts in > h and following standard arguments, we
arrive at the equations

%4 , 0% h . ot
52 = 9.2 for x> 5 with %(L’ t)=¢eo, (4.16)
and the equation
po
ﬂﬁd%+ago—0%+=0, (417)

in the unknown function d 5 (t), with 9 = 1/3 for the consistent mass approximation
implied by (4.15) (9 = 1 for a lumped mass approximation). Comparing (4.17) and (4.6)
with equation (3.16) for the exact limit solution, we observe that the first consequence
of the discretization (i.e., 6 > 0) is the introduction of an inertial term in the softening
response.

The solution of equation (4.16) is given in terms of the unknown function d » (t) by

t(z,t) =€, (x+ct)+ |eo (x —ct+h)+d (t_a:———ch/2)] H(ct—a:-l-g), (4.18)

h
2
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for ¢t + h/2 < L avoiding reflections at x = L, as in Section 3.2. Introducing (4.18) in
(4.3), we obtain

o4, (1) = 205 -if dy (1) . (4.19)

Therefore, and after using (4.4), the differential equation (4.17) reads

o - . mc
’l9m Cd% —|—d% + 5 d% = 2¢, for t<te,,, (4.20)
where t.,, denotes the time at which the elastic limit is reached
€e 2¢e,
Oa,(teys) = 0c = dy(teys) =6 o ) — (4.21)

The initial conditions for ds (t) are given by (3.3), and read in the notation introduced
above as

dp(0)=6-—",  and dn(0) = v, , (4.22)
when solving (4.20)

Upon activation of the softening response on the discontinuity x = 0 at ¢.,,, the
differential equation (4.17) reads for the linear softening law s = 1

)

mc

9

d%+d%—1_5

with the breaking time tp,, characterized by

€ 2¢e
T(E(tors)) = 00, (tors) =0 = dy(toy,) = — = — (4.24)
After breaking, equation (4.17) reads
5 . .
19m Cd% +dy =2e0c, for t>tp,, . (4.25)

Continuity of the displacement dx and velocity d 1 is imposed at t,; and tp,,.

Equation (4.23) can be easily generalized to the nonlinear softening law s # 1 using
(4.6) and (4.10). The analysis below focuses, however, on the linear softening case s = 1,
since this assumption allows to obtain closed-form expressions of the final solution. In this
way, the linear differential equations (4.20), (4.23) and (4.25) with the initial conditions
(4.22) can be solved exactly to arrive at the final expressions

20 —1
d%(t) = 52;0 -0 %O cos(wit) — Ja—1 sin(wlt)] et for 0 <t <te,,, (4.26)
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dy(t) = (1 - (1= 4)r) %0 4 S [l (ﬁd%(teu) -(1- 5)) sinh (wz(t - teLa))

mr m |[wy \ v,
+ (1 — 6) cosh (wg(t - tew))] e~ (-t for to,, <t <ty , (4.27)
20 Lors —27(t—to,4)
dy(t) = 2+ 5 ARE 200 € 1) 420, (t—ty,,) for t > ty,, , (4.28)

where r = 2¢, /e, as defined in (3.23)3,

mc / 1)
7.—-21’7, wi .—’)/v4’l9—1, and Wy (=7 1+4m (429)

The times t.,, and tp,, are found by imposing the values (4.21);) and (4.24)5 of du,
respectively.

A simple calculation based on the definition (3.31) shows that the energy release G,
is given by

Cp=0 for t<te,, and Gy=0,¢ for to, <t<ty,. (4.30)

After integration, the energy release G, is given by the same expressions (3.32) and (3.33)
for the exact solution with § = 0, but with d, replaced by £/2. The approximate and
exact solutions dissipate the same energy for a given value of the displacement jump. The
dissipation is then determined only by the localized softening law, confirming the objectivity
of the approximation. This situation is consistent with the developments of Section 2.4,
where the foundation of the regularized formulation with finite {2, was identified as the
incorporation of this localized energy dissipation in the large-scale problem, the problem
solved in this section.

4.1.1. Properties of the solution

Figure 4.1 depicts the distribution of the displacement (u m/(2¢,)), velocity (v/v,),
and stress (o/o.) along the bar at two different times. Figure 3.6 includes the evolution
in time of the displacement (dj/o m/(2¢,)) and the velocity (dh/z /o) at * = h/2, and
the displacement jump (£ m/(2¢,)) and the stress (o,,/0.) in §2,. The energy release
(Gp/Gtotal,, ) for the localized rigid-plastic model is also depicted. Different values of the
length parameter ¢ are considered, in combination with the linear softening law (s = 1). In
all cases, the value r = 1.5 is again assumed for the initial stress pulse (i.e., 0, = 0.75 o).
A consistent mass approximation (¢ = 1/3) is assumed; similar results apply to the lumped
approximation (¢ = 1). We have used the same normalization parameters as in the exact
solution described in the previous section.
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FIGURE 4.1. Displacement, velocity and stress distributions along
the bar for 6§ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.9999,
and at two given times: t/ty,;, = 0.625 (t < tp;,) left column, and
t/tor, = 2.5 t > tbLs) right column. Here, ¢4, is the breaking
time for § = 0 given by (3.28), and t;, , is the breaking time for the
corresponding § parameter.
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FIGURE 4.2. Displacement dj /5, velocity (ih/2, stress og,, stress
O(h/2)+ displacement jump ¢, and energy release Gp/Giotal ; Vversus
time for 6 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.9999. The
reference value tp, ; is the breaking time for § = 0 given by (3.28).



On the Characterization of Localized Solutions in Inelastic Solids 37

1.0 T T T T T T T T
2 08 R ]
ey
<
-~
g
0.6 [ ]
.g ty, 5, analytical
© tp.s, FEM o 1
R t analytical ———
‘S04 [ ere? ]
% teyss FEM O
g s Sl
S o2 .o~ .
-a~ "
-o--
0 g . ! . | \ ! .
0 0.2 04 0.6 0.8 1.0
)

FIGURE 4.3. Yielding te;; and te;, breaking times for the linear
softening law versus the non-dimensional parameter §. The normaliza-
tion parameter t, ; is the breaking time for § = 0 given by (3.28).

The solution for the limit case § = 0 is also included in Figures 4.1 and 4.2. This case
corresponds to the exact solution described in the previous section. The first difference
that we can observe between the solutions with § > 0 and this limit solution is the presence
of an initial time interval t.,, during which the response of the bar, including the center
x = 0, is elastic. This leads to a gradual variation of the stress in {2, from the initial value
0, to the elastic limit o.. The “yielding time” ., is depicted in Figure 4.3 as a function
of the length parameter §. We verify the increase of this time with 4.

The main consequence of the existence of this initial elastic phase is the absence of
a propagating discontinuous loading front in the spatial distributions of the stress and
velocity, as it occurs in the limit solution for § = 0. Instead, a smooth wave profile
propagates along the bar, with a maximum stress value smaller that the elastic limit o,
the value associated to the front for 6 = 0. This feature can be explained as follows.

We first note the discontinuity of the stress at the fixed point £ = h/2. This is due to
the equivalent concentrated mass pdh/2 at * = h/2, with the corresponding acceleration,
introduced by the assumed interpolation of the displacement; see equation (4.17). The
constant approximation of o, in {2, can be observed in Figure 4.1. No smoothing of the
stress distribution has been used in the plots. A negative acceleration Jh /2 < 0 is to be
expected in this initial elastic phase, since it corresponds to the decrease of the velocity
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cih /2 characteristic of the loading that is occurring in §2,. Compare this situation with the
elastic solution depicted in Figure 3.1. This negative acceleration can be verified in the
graph of the velocity in Figure 4.2. As a consequence, the value of the stress o, /2)+ outside
§2, is smaller than the value of the stress o,, in (2,, as concluded from equation (4.17).
Therefore, the stress o,  in {2, reaches the elastic limit o, before the stress outside (2,.
This value is propagated elastically along the bar and, therefore, with a value smaller than
0e. The resulting profile that propagates in the bar falls then below the limit case § = 0
in the magnitude of the stress. The corresponding value of the velocity is consequently
higher than the value (3.35); associated to the front for § = 0. In summary, the loading
in this initial elastic phase occurs in a longer time interval as ¢ increases, but one can say
that the loading in the bar outside {2, reaches a lower level.

Another curious feature of the solution for § > 0 is the fact that the propagating profile
travels ahead of the discontinuous front corresponding to the limit case § = 0. See Figure
4.2. We recall that this front propagates at a speed c. Therefore, it may appear like signals
propagate at a higher velocity for the case § > 0. Obviously, all signals in the elastic bar
propagate at the constant wave speed c. Note that neither the profiles, nor the difference
between profiles, become distorted during propagation, due to the absence of dispersive
effects in the elastic bar. A careful observation reveals that the profile propagating ahead
is due to the assumed interpolation in the finite width of £2,. In the finite length h/2, stress
signals propagate instantaneously, as a consequence of the assumed interpolation (4.1)1,
defining the displacements and corresponding stress instantaneously everywhere in 2, in
terms of the parameter dj 5. Therefore, since a finite time is required for the front in the
limit solution & = 0 to transverse the distance h/2, the propagating profile for § > 0 will
be ahead. This explanation is confirmed by the plot of the velocity distribution in Figure
4.1 for t = 2.5 tp,,. Note that the width of §2,, as it can be estimated from the linear
variation at x = 0, corresponds to the distance between the discontinuous front and the
tip of the propagating profile for § > 0. We emphasize that this feature is not associated
to the presence of softening, like a change of type of the equations to elliptic, since we are
still in the elastic range. The same effect will occur in a fully elastic solution, and it is
purely an artifact of the assumed interpolation in the approximate solution.

Upon activation at ¢, , of the localized softening mechanism on the discontinuity at
xr = 0, the stress o,, in {2, softens gradually. This decrease of the stress in 2, (on the
left of x = h/2) leads to an increase of the acceleration C.l.h/g from the previous elastic
negative value in the initial elastic phase. Note here that the convention defines a positive
displacement dj /o pointing to the right. The velocity dp, /2 eventually reaches a minimum
value, and starts increasing afterwards as shown in Figure 4.2. The stress o9y, outside
£2, follows with elastic unloading. However, the positive acceleration indicates that the
the stress o(x/2); is now higher that the stress in §2,. This can be verified in stress
distribution shown in Figure 4.1 for ¢t = 0.625 ¢,, < tp,,. This difference increases with
the length parameter § at a fixed time. This difference decreases, however, in time for a
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TABLE 4.1. Problem definition. Material and geometric parameters.

Young modulus E 2-10%
Density p 4-1078
Elastic limit Oe 2-10°
Localized softening modulus ~ H, —4-1072
Length L 4city,
Initial conditions r 1.5

fixed parameter ¢, especially after the stress o, in {2, vanishes (i.e., breaking), as discussed
below.

This situation identifies a faster release of the stress in {2, as ¢ increases. This feature
can be observed explicitly in the evolution of o, in time depicted in Figure 4.2. Surpris-
ingly, even though the time required to activate the softening response t.,, is larger for
a larger J, the final breaking time t;,, is smaller. This is shown in Figure 4.3, depict-
ing both characteristic times as a function of the length parameter §. As a consequence,
the time interval during which the softening response takes place reduces with the width
approximating the localized effects. The more brittle response of the discretized bar as
0 increases follows. This feature is to be expected given the more negative value of the
regularized tangent modulus in (4.12)5. In fact, in the limit § — 1, the stress is released
instantaneously. We note, however, that the dissipated energy is still finite, as shown in
Figure 4.2. The reason is that this sudden release of the stress is accompanied by a sudden
change of the displacement jump on the discontinuity inside §2,. The displacement jump
becomes discontinuous in time, that is, the bar breaks suddenly, a limit brittle response.

After breaking at t;_,, the velocity dy, /2 and the stress o(5/2), at £ = h/2% gradually
evolve to their limit values 2v, and 0, respectively, as in the exact solution for § = 0. This
can be observed in the time plots of Figure 4.2. In fact, according to (4.28), and given the
expression (4.19) for the stress at z = h/2*, these limit values are approached exponentially
at a rate given by the parameter v defined in (4.29). All the different properties of the
solution described above lead to a final profile propagating along the elastic bar that can
be considered as a smooth approximation of the exact solution given by the limit case
0 = 0, its large-scale regularization.

4.2. Representative finite element simulations

To validate the extrapolation of the above conclusions to actual finite element simu-
lations of the full boundary value problem, we present in this section the results obtained
for several representative simulations. We consider the bar 2 = [—L, L] discretized sym-
metrically by an odd number of equal length linear finite elements. The treatment of the
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constitutive relations in the central element follows exactly the discussion presented in the
previous section. Outside this central element the response is confirmed to be linear elastic
as in the analytical solution obtained before.

The initial conditions (3.3) are considered at ¢ = 0, with an initial constant velocity
Vo. A stress of r = 1.5 (i.e., 0, = 0.75 0¢) is imposed at the ends of the bar as in the
previous discussion. For completeness, we summarize in Table 4.2 the material and geo-
metric properties assumed in the simulations. Given the scaling of the different quantities
when depicting the results, the solutions reported herein are, however, independent of the
actual values of these material parameters. We consider the average acceleration Newmark
approximation (3 = 1/4, v = 1/2) of the governing equations in time, with a consistent
mass matrix and a constant time step of At = ¢;,,/80 for all the simulations. Our goal
is to study the effects of the spatial discretization in the final solution and, in particular,
validate the conclusions drawn above from the analytical solutions. Alternative temporal
approximations and/or non-uniform spatial discretizations are not considered for the sake
of brevity.

Figures 4.4 and 4.5 depict the results obtained with different number of elements.
Only one half of the bar is depicted (and, in fact, computed by considering half of the
central element), by symmetry. The reported number of elements, however, indicates
again the number of equal elements for the full bar of length 2L. The corresponding non-
dimensional length parameter J is also reported in these figures, and it ranges from 0.87
to 0.002. As it is customary in finite element analyses, the reported stress distributions in
Figure 4.4 are obtained by projecting the element values to the nodes. The time evolution
of the stresses o, and o By in Figure 4.5 correspond, instead, to the computed values in
the central and adjacent element, respectively.

Comparing the finite element solutions with the analytical solutions in Figures 4.1 and
4.2, we can observe a very good agreement. In fact, the conclusions drawn in the previous
section from the study of the analytical solutions can be confirmed in these fully discrete
results, although with the difficulty of considering the pollution added to the numerical
solutions by the discretization of the elastic part of the bar. In particular, the smoothing
of the front present in the limit solution 6 = 0 with increasing § can be clearly verified.
All quantities correlate well. In particular, we have included in Figure 4.3 the yielding
and breaking times estimated in the finite element simulations. The good agreement
with the analytical curves (obtained by solving (4.21); and (4.24),, respectively) is to be
noted. We conclude that the analysis presented in Section 4.1 gives a good understanding
of the properties of discrete approximations of the singular fields associated to strong
discontinuities in this general dynamic setting.
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5. Concluding Remarks

The developments presented in this paper identify a general framework for the incor-
poration of localized dissipative effects in the large-scale problem of the local continuum.
In particular, we have shown that the local consideration of strong discontinuities leads
to an efficient tool for the modeling of localized dissipative mechanisms characteristic of
localized failures of inelastic solids. We have presented briefly the examples of localized
elastoplastic and damage responses, both formulated in the thermodynamic framework
furnished by the principle of maximum inelastic dissipation.

It is important to emphasize that the characterization of these localized mechanisms
is accomplished in the small scale without the need of introducing any type of smearing.
nor any type of artificial length parameters. Still, this characterization is done in a local
neighborhood of the material points. It is the bridge between the two problems, the large-
scale balance equations and the local constitutive equations, that identifies the proper
length scales present in the problem. In particular, we have shown that equating the
dissipation of the two problems leads to a consistent formulation in the limit of the local
continuum, involving no artificial length scale parameters in this limit, and incorporating
by construction the dissipative effects of the material in the large-scale problem of interest.
The resulting localized models are then mechanically sound.

Furthermore, the constructive procedure employed in these developments identifies
the framework of what we refer to as large-scale regularizations of the problem. These
regularizations are characterized by a smooth large-scale displacement, with the local sin-
gular fields associated to the strong discontinuity available at the finite local neighborhood
through the bridge equation. They should not be confused with the so-called regularized
strong discontinuity approaches, consisting of a finite band even at the local level. We note
in this respect the importance that the focus on the limit problem involving discontinuous
solutions has in these considerations. We believe that these ideas identify an interesting
framework for the understanding of related existing techniques like, for example, tech-
niques based on the traditional smeared assumption. Moreover, although it has not been
investigated in this paper, the generality gained by the proposed approach leads, in par-
ticular, to alternative finite element techniques for the solution of these problems, as we
have presented in our previous work in this area.

Instead, we have directed our attention in this paper to the analysis of wave propaga-
tion in an softening bar. The focus on the limit case of a discontinuous solution incorporat-
ing the localized response of the material has proven again to be very useful for a complete
understanding of the problem. In particular, it allows to obtain the exact closed-form
solution for a general cohesive softening law on the discontinuity. The final solution shows
to be physically meaningful, in contrast with the non-physical solution obtained for a con-
tinuum strain-softening material model. The finite amount of energy dissipation and the
continuous dependence on the model parameters, as expected from physical considerations,
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are present in the solution.

The consideration of a discrete large-scale regularization of the problem and its analyt-
ical solution has revealed several approximation properties of commonly used discretization
techniques for the solution of these problems. This analysis also furnishes the exact closed-
form solution for the case of a regularized discontinuity, involving a band of constant width.
In the context of the one-dimensional dynamical problem under study, we have identified
the addition of a transient term in the softening response of the material when a finite dis-
crete length is assumed to represent the localized softening effects. The main consequence
of this approximation can be summarized as the smoothing of the propagating fronts that
appear in the solution, accompanied with the expected more brittle response of the dis-
crete solid. These conclusions have been verified in actual finite element simulations of the
problem.
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