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Integrated Molecular Characterization of Testicular Germ Cell 
Tumors

A full list of authors and affiliations appears at the end of the article.

SUMMARY

We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of 

genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high 

aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved 

significance—KIT, KRAS, and NRAS—exclusively in samples with seminoma components. 

Integrated analyses identified distinct molecular patterns that characterized the major recognized 

histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. 

Striking differences in global DNA methylation and microRNA expression between histology 

subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. 

We also identified a subset of pure seminomas defined by KIT mutations, increased immune 

infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential 

biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others 

with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying 

embryonal carcinomas.
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Shen et al. identify molecular characteristics that classify testicular germ cell tumor types, 

including a separate subset of seminomas defined by KIT mutations. This provides a set of 

candidate biomarkers for risk stratification and potential therapeutic targeting.

INTRODUCTION

The most common malignancy of young adult males of European descent are testicular germ 

cell tumors (TGCTs) of the type derived from germ cell neoplasia in situ (GCNIS) (Moch et 

al., 2016). There are two major histologic types: pure classic seminoma and 

nonseminomatous germ cell tumors (NSGCTs). The latter, comprising embryonal carcinoma 

(EC), choriocarcinoma, yolk sac tumor, and teratoma, can contain a mix of both 

seminomatous and nonseminomatous components. Seminoma often has more indolent 

behavior, while NSGCT tends to occur at younger ages and confer higher mortality 

(Cortessis, 2003). TGCTs are now highly treatable, and overall relative survival of men with 

TGCTs exceeds 95% (Stang et al., 2013). However, survivors can experience devastating 

late effects of treatment, and a pressing research goal is the discovery of rational means of 

risk stratification that could spare some patients unnecessary chemotherapy, radiation, and 

surgery.

GCNIS is postulated to arise from incompletely differentiated fetal germ cells (primordial 

germ cells [PGCs]), based on shared morphology and immunohistochemical expression 

(Jørgensen et al., 1995). Both TGCTs and GCNIS cells are typically aneuploid, with 

hypertriploid to subtetraploid karyotypes (Summersgill et al., 2001), but GCNIS rarely 

exhibits 12p gains, which are pathognomonic for TGCTs (Ottesen et al., 2003). A model of 

tumor evolution postulates that nondisjunction creates tetraploid precursor cells, followed by 

a gain of isochromosome 12p during the transition from GCNIS to malignant NSGCTs 

(Frigyesi et al., 2004). A shared biological basis of seminoma and NSGCTs is supported by 

karyotypic similarities, TGCT risk alleles (Litchfield et al., 2016; Wang et al., 2017), and a 

report that tumor histology is unassociated in men with two primary TGCTs after adjustment 
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for age (Thomas et al., 2013). DNA exome sequencing of several small cohorts of TGCTs 

have identified few significantly mutated somatic genes, primarily KIT and KRAS 
(Cutcutache et al., 2015; Litchfield et al., 2015; Taylor-Weiner et al., 2016). Lack of DNA 

methylation at CpG islands as determined by microarrays has been observed in seminomas 

(Smiraglia et al., 2002), and a global lack of methylated cytosines by immunohistochemistry 

staining has been described for GCNIS but not NSGCTs (Netto et al., 2008). Here, we 

characterize 137 TGCTs by DNA exome sequencing, RNA and microRNA (miRNA) 

sequencing, DNA SNP arrays, DNA methylation arrays, and reverse phase protein arrays.

RESULTS

Histologic Classification

Four pathologists reviewed fresh-frozen sections immediately adjacent to the tissue used for 

molecular analysis to confirm TGCT histology (Figure 1A). A consensus diagnosis was 

determined when at least three of four pathologists agreed on the tumor components and 

their percentage (within 10%) in the tissue block. Frozen sections of less than ideal quality 

were re-evaluated along with formalin-fixed, paraffin-embedded tissue sections to arrive at a 

final diagnosis. We used the final consensus histology from our pathology review for all of 

the analyses.

Samples were classified as “pure” for 100% and “dominant” for >60% presence of a given 

histology. The set of 137 tumors consisted of 72 seminoma, 18 EC, 9 EC dominant, 3 

mature teratoma, 10 mature teratoma dominant, 3 immature teratoma dominant, 5 yolk sac 

tumor, 8 yolk sac tumor dominant, and 9 mixed tumors with no dominant component (Table 

S1). Two-class analyses compared pure seminoma (n = 72) with NSGCTs (n = 65). For 

patient-level analyses, we used the histology of the first or the only primary tumor (Table 

S2).

Sample Characteristics

We studied 137 primary TGCTs from 133 patients, including 2 tumors from 4 patients with 

metachronous diagnoses. NSGCTs tended to be diagnosed at younger ages than were 

seminomas (median 30 versus 34 years, t test p value = 0.02). A personal history of 

cryptorchidism was more common among men diagnosed as having seminoma (17 of 68) 

rather than NSGCTs (5 of 65, χ2 p value = 0.008), but prevalence of a positive family 

history did not differ between these groups (χ2 p value = 0.3). Clinical characteristics were 

consistent with prior reports (Table S2).

Unsupervised Classification of TGCTs

Unsupervised clustering analyses were performed to stratify tumor samples by each 

molecular platform (Figure S1). Seminomas were clearly distinguished from NSGCTs by 

DNA methylation, mRNA, miRNA, and protein. DNA copy number also distinguished 

seminoma from NSGCTs, although less completely.

We used Tumor Map to integrate mRNA expression, somatic copy number, and DNA 

methylation to visualize and spatially project relations among the samples (Newton et al., 
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2017). The resulting Tumor Map view (Figure 1B) completely distinguishes seminomas 

from NSGCTs in the molecular space, with EC-containing tumors positioned further apart 

from other NSGCTs. KIT mutation status further separates seminomas into two groups. The 

strong discrimination of histological types by unsupervised analysis leads us to focus 

subsequent analyses using the histological classification.

DNA Sequence and Content

Somatic mutation frequency varied by histology (Figure S2A). Overall median frequency, 

0.5 mutations/Mb of targeted DNA (Figure 2A), was higher than that reported in pediatric 

tumors, but lower than most adult tumors (Lawrence et al., 2014) studied in The Cancer 

Genome Atlas (TCGA) (Figure S2B). The frequency of nonsynonymous mutations, 0.3 

mutations/Mb, was similar to estimates from other TGCT exome-sequencing efforts 

(Cutcutache et al., 2015; Litchfield et al., 2015; Taylor-Weiner et al., 2016).

The most frequent type of mutation was the cytosine to thymine (C > T) transition, 

accounting for 40% of mutations (Table S1). Using mutational signature analysis as 

described by Covington et al. (2016), levels of C > T transition at CpG dinucleotides was 

significantly lower in seminoma with somatic KIT mutations than in either seminoma with 

wild-type KIT or NSGCTs (p = 0.002; Figure S2C). This signature, which correlates with 

Catalogue of Somatic Mutations in Cancer (COSMIC) mutation signature 1, is observed in 

most human tumors and postulated to result from the accumulation of 5-methylcytosine 

deamination events (Alexandrov et al., 2013).

Three genes were significantly somatically mutated: KIT (18%), KRAS (14%), and NRAS 
(4%) (Figure 2C), all described previously in TGCTs (Litchfield et al., 2015; Tian et al., 

1999). These genes were exclusive to seminomas except for one KRAS mutation in an 

NSGCT with 30% seminoma. The KIT mutations were located in the activation loop of the 

KIT protein tyrosine kinase 2 (n = 19), the juxtamembrane domain (n = 6), and the protein 

tyrosine kinase 1 domain (n = 1), resembling those previously described in TGCTs 

(Litchfield et al., 2015) and intracranial germ cell tumors (Wang et al., 2014) (Figure S2D). 

RAS mutations clustered at known mutation hotspots (Figure S2D) and mutations in KRAS 
and NRAS co-existed in only one seminoma (Figure 2C). These mutations were particularly 

prevalent in seminomas diagnosed in men with a history of cryptorchidism (13 of 17). Of the 

six seminomas with mutations in both KIT and KRAS/NRAS, four were in men with a 

history of cryptorchidism (odds ratio = 7.3 [95% confidence interval 1.2–45.0]), all in the 

ipsilateral testicle. The PI3-kinase pathway influences germ cell proliferation in a Kit/Kit 

ligand-dependent fashion (Cardoso et al., 2014). Of note, three seminomas contained 

PIK3CA mutations, two at E545K and one at N345K (Figure S2D). Somatic PIK3CA 
mutations have been reported previously in two platinum-resistant TGCTs (Feldman et al., 

2014). Only five other recurrently mutated genes were observed in our cohort, most with 

likely non-pathogenic mutations.

SCNAs

All TGCTs had ploidy exceeding two, but NSGCTs demonstrated significantly lower ploidy 

than seminomas (median 2.8 versus 3.1, p = 1.3 × 10−8, Mann-Whitney U test) with 
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variability across histology types (Figure S3A). Increased chromosomal content above a 

ploidy of two suggests that whole-genome duplication (WGD) occurred in all of the 

samples, and ten samples had evidence of two WGD events (Figure 2B), which is consistent 

with the proposed model of WGD followed by the deletion of chromosome arms (Frigyesi et 

al., 2004). Chromosome arm loss after WGD was specific to histological subtypes. NSGCTs 

had fewer copies of chromosomes (Chr) 19q, 15, 22, 19p, 10q, 8p, 2q, and 8q, whereas 

seminomas had fewer copies of 11q (Figure S1E). Even for arm-level somatic copy number 

alterations (SCNAs) shared between histologies, the timing of alterations differed between 

seminomas and NSGCTs, as inferred from the frequency of each event and the level of 

aneuploidy (Table S3; Figure S3C). For example, the deletion of Chr 4 was inferred to be an 

early event and 1p to be moderately early in all of the samples, whereas the deletion of 11q 

was inferred to be early only in seminomas and the deletion of Chr 15 to be early only in 

NSGCTs. We could not assess the copy number for six samples because of the low tumor 

purity.

We observed allelic copy number profiles consistent with the presence of at least one 

isochromosome 12p (i[12p]) in 114 of 131 (87%) tumors. All 17 tumors inferred lacking the 

i(12p) event were seminomas (Figure 2B) and retained at least 4 copies of 12p (Figure S1E). 

Only 2 of 131 samples exhibited loss of 12q heterozygosity, suggesting that most tumors had 

undergone a second WGD or a Chr 12 duplication event before i(12p) formation, as 

previously described (Geurts van Kessel et al., 1989).

We observed significantly recurrent focal amplifications of KIT, KRAS, and MDM2 
(Figures 2D and S3D)(McIntyre et al., 2004, 2005; Mostert et al., 2000). These 

amplifications contained entire genes and occurred with similar frequency in seminomas and 

NSGCTs. Seminomas with increased copies of KRAS (Chr 12) were more likely to have 

wild-type KIT (Figure 2D; t test p = 0.0007). Significantly reccurring focal deletions in 

chromosomal fragile sites GRID2/ATOH1, JARID2, WWOX, NEGR1, PDE4D, and PARK2 
occurred almost exclusively in NSGCTs and were shorter than the genes that they affected 

(Figure S3D).

Inferred Order of Major Genetic Alterations

We inferred the relative order of alterations in tumors with mutations and sufficient tumor 

purity for estimating copy number. We used the variant allele fraction, allelic integer copy 

number, WGD, and purity estimates to calculate the mutation multiplicity, an inferred 

measurement of the number of alleles with a mutation. Four examples with mutations in 

both KIT and KRAS/NRAS are illustrated in Figure 3. Somatic KIT mutations were inferred 

to occur before WGD in two samples. KIT mutant multiplicities of an additional eight 

seminomas present a similar pattern, with variant allele fractions from DNA and RNA 

indicating a clonal nature. Genetic activation of KIT may arise early in TGCT 

tumorigenesis. In contrast, RAS mutations were inferred to be later events, all occurring 

after WGD. With the KRAS locus on 12p, we were able to infer the relative order between 

KRAS mutations and inferred i(12p) formation for 10 samples. Six samples had low 

mutation multiplicities, suggesting that they arose after i(12p) on either allele, while four 

samples had increased mutation multiplicities, suggesting that mutations arose before or 
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during i(12p) formation. The other samples lacked i(12p) (n = 3), had low purity (n = 2), or 

we were unable to infer the order of events (n = 4). The number of wild-type (WT) KRAS 
copies was correlated with expression, but the number of mutant KRAS copies was not 

(Figure S3E).

DNA Methylation

Histological subtypes exhibited dramatically different global DNA methylation patterns. 

DNA methylation level as methylation fraction at a single locus is measured by the beta 

value, ranging from 0 to 1. For NSGCTs, the overall distribution of beta values at canonical 

CpG sites (Figure 4A) followed the bimodal pattern that is characteristic of most primary 

human tissue samples, with peaks for unmethylated and methylated CpGs. However, the 

methylated peak was not observed in seminomas, which instead demonstrated intermediate 

DNA methylation peaks in addition to the unmethylated peak, suggesting that seminoma 

samples contained two major cell types, one completely unmethylated and the other with 

full methylation at a subset of the loci. Using cell-type DNA methylation signatures, we 

identified infiltrating lymphocytes as the contaminant (Figure S4A), which is consistent with 

prior reports of extensive lymphocytic infiltration in seminomas (Hvarness et al., 2013; 

Parker et al., 2002). We estimated the percentage of lymphocytes in each tumor using cell-

specific DNA methylation patterns. We also estimated tumor purity with ABSOLUTE 

(Carter et al., 2012), using copy number and mutation data (Figure S3B). A near-perfect 

anti-correlation (R = −0.93, p < 0.0001; Figure 4B) was observed between estimated 

lymphocyte fraction and tumor purity, validating both methods. Subtraction of lymphocyte 

DNA methylation contribution from all tumors led to the disappearance of intermediate 

methylation peaks in seminomas (Figure 4A), whereas the methylated peak remained in 

NSGCTs (Figure S4B). Consistent with a PGC origin for seminoma, the corrected density 

plot shows the majority of CpGs to be completely unmethylated in seminomas, similar to 

public PGC data (Figure 4A).

EC exhibited extensive methylation at non-canonical cytosine sites (e.g., CpA, CpT, CpC), 

collectively termed CpH sites (Figure 4A). CpH methylation was observed in tumors with an 

EC component, which is highly correlated with the pathological quantification of EC content 

(R = 0.86; Figure S4E) and associated with a high mRNA level of de novo DNA 

methyltransferases, DNMT3A/3B (Figure S4G). CpH methylation was first described in 

embryonic stem cells (ESCs) (Lister et al., 2009). Analysis of external PGC data (Figure 

4A) revealed a lack of CpH methylation, indicating that this epigenetic similarity between 

EC and ESCs is not shared with PGCs (Figure S4D).

Global methylation is low in seminomas, with recurrent methylation observed at only <1% 

of all of the sites included on the HM450 array (Figure 4C). After correction for 

lymphocytes, the remnant methylation is absent in a subgroup of seminomas that are highly 

enriched for KIT/KRAS mutations (Figures 4C and S4C; p < 0.0001), suggesting an 

essentially complete lack of DNA methylation in this subset.

We comprehensively surveyed imprinted loci identified on the HM450 platform (Court et 

al., 2014). In seminomas, the degree of observed DNA methylation at these imprinted loci 

was in general lower than the levels that are characteristic of the biparental imprinting of 

Shen et al. Page 6

Cell Rep. Author manuscript; available in PMC 2018 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



soma (~0.5) and consistent with lymphocytic infiltration (Figure 4D). This pattern is 

expected in seminomas free of methylation at imprinted loci but contaminated by 

lymphocytes. The methylated CpG signal at these imprinted sites disappeared after 

correction for lymphocyte methylation in seminomas (data not shown), confirming the 

general lack of methylation at these sites. DNA methylation at imprinted loci was largely 

erased in NSGCTs as well, although some NSGCTs exhibited methylation at certain 

imprinted loci (Figure 4D), notably the GNAS complex imprinted locus, for which 

paternally, maternally, and biallelically expressed transcripts have been reported. Non-EC 

NSGCTs tended to be methylated at the paternal differentially methylated region (DMR), 

while EC had intermediate to high methylation at the maternal DMR (Figure 4E). RNA 

sequencing (RNA-seq) data from this region confirmed alternative usage of the promoters 

(Figure 4F) consistent with the observed DNA methylation pattern.

We investigated whether the presence of global DNA methylation in NSGCTs was random 

or followed certain patterns by examining the distribution of methylation by chromatin states 

in H1 ESCs (Figure S4F). We observed that active promoters in H1 ESCs, usually CpG 

islands, are generally unmethylated, whereas heterochromatin regions are extensively 

methylated. Thus, if this methylation was re-established after the DNA methylation nadir of 

PGCs, it largely followed preset rules similar to those in normal development, despite a 

failure to correctly establish imprinting methylation. EC exhibited overall DNA methylation 

similar to H1 ESCs (Figure S4D). However, poised (bivalent) promoters, which are prone to 

cancer-specific gain of methylation (Widschwendter et al., 2007), exhibited gain of 

methylation in NSGCTs. These sites include tumor suppressors, for which epigenetic 

silencing could contribute to tumorigenesis.

We observed epigenetic silencing of important tumor suppressors, including BRCA1 (Koul 

et al., 2002), MGMT (Martinelli et al., 2016), and RASSF1A (Honorio et al., 2003) 

exclusively in NSGCTs (Figure S4H). We found epigenetic silencing of RAD51C in 16 

NSGCTs (Figure S4I). BRCA1 and RAD51C both are involved in the homologous 

recombination (HR) DNA repair pathway. Epigenetic silencing of RAD51C has been 

described in ovarian cancer with BRCA1 deficiency (The Cancer Genome Atlas Research 

Network, 2011) but not in TGCTs. A locus containing RAD51C has been associated with 

TGCT susceptibility (Chung et al., 2013), highlighting the potential importance of 

homologous repair deficiency in TGCTs. We also found epigenetic silencing in 

DNAJC15/MCJ (Figure S4H), which in breast and uterine cancer cells has been associated 

with drug resistance (Fernández-Cabezudo et al., 2016).

Expression of miRNA, mRNA, and Protein in TGCTs

Profiles of miRNA, mRNA, and protein differed between seminomas and NSGCTs. We 

noted several associations and confirmed previously reported characteristics, such as high 

KIT gene and protein expression in seminoma (Tables S4, S6, and S7).

EC tumors were distinguished by the high expression of numerous miRNAs. Expression of 

the miR-519 genomic cluster on 19q13.42 was 25- to 50-fold higher in EC than in 

seminoma and 300- to 600-fold higher than in other types of NSGCTs, but it was not 

associated with copy number gain (Figure S5A). The miRNAs in this cluster have been 
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shown to also be expressed in ESCs (Wilson et al., 2009). These miRNAs are likely to 

negatively regulate the expression of mRNA in EC because many of their targets have lower 

expression in EC (Table S6).

The miRNAs miR-371, miR-372, and miR-373 have been proposed as serum biomarkers for 

monitoring patients with TGCTs for active disease as a strategy to minimize systemic 

therapy and attendant late effects (Syring et al., 2015). Highest sensitivity and specificity 

were reported for miR-371a-3p (Dieckmann et al., 2017). We interrogated 30 other TCGA 

tumor types and found miR-371a-3p to be dramatically overexpressed in TGCTs (Figure 

S5B), specifically seminoma, EC, and mixed NSGCTs, but minimally expressed in 

teratomas (Figure S5C). Conversely, miR-375 was highly expressed in teratomas, yolk sac 

tumors, and mixed tumors containing these elements, but not in seminoma or EC (Figure 

S5C). Using a random forest classification, we defined a ranked series of miRNAs that 

distinguish seminoma, EC, and other NSGCTs (Table S5).

Using Paradigm to infer the activity of proteins, complexes, and general processes based on 

copy number and gene expression data, we identified seven major pathway activity clusters 

(Figure S1G). Three clusters, including KRAS signaling and immune infiltration, showed 

enriched activity in seminomas. All NSGCTs had enriched pathway activity for Wnt and 

MYC signaling. Samples with teratoma components had high pathway activities for the 

mammalian target of rapamycin (mTOR) and myogenesis, which is consistent with their 

differentiated nature.

Immune Infiltration in Seminomas

Extensive immune infiltration was noted in many of our seminoma samples during 

pathologic review and in the DNA methylation analysis (Figure S4A). Expression of 78 

published immune gene expression signatures correlated with our DNA methylation-based 

lymphocyte content estimates (Figure 5A) and were highest in seminoma with KIT 
mutations compared to other samples (Figures 5B and 5C). The gene signatures suggest 

infiltration of several specific types of T cells (cytotoxic, CD8+, T central memory, T 

effector memory, and regulatory T cells), B cells, and activated dendritic cells.

We further analyzed T cell receptor (TCR; Figure S6A) and B cell receptor (BCR; Figure 

S6B) diversity across the sample set. Seminoma samples had both higher levels of TCRs and 

higher diversity of BCRs and TCRs. Examining total mutation load and predicted 

neoantigens, we identified high-affinity peptides but no specific antigen. Neither neoantigen 

signal nor total mutation load correlated with immune signatures (data not shown). We also 

did not find any association between immune cell signatures and either total or individual 

viral loads by mapping RNA-seq data to viral genomes (data not shown). Seminomas had 

higher expression of T effector memory cell signatures, suggesting the presence of antigen-

experienced T cells. We interrogated mRNA levels of established cancer-testis-specific 

antigen (CTA) genes (Almeida et al., 2009) and noted higher levels in seminomas (Figure 

5A), which may explain a polyclonal antigen-driven immune response around the tumor. 

However, although immune infiltration was increased in seminomas with KIT mutations, 

CTA genes expression levels did not differ by KIT status within seminomas (Figure 5D).
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KIT Pathway Alterations

Spermatogenesis requires coordinated germ cell proliferation and apoptosis, partly governed 

by KITLG-mediated KIT signaling via the PI3K pathway in mammals. All of the tumors 

had at least one risk allele as defined by each of two KITLG polymorphisms, which is 

consistent with prior germline data (Kanetsky et al., 2009). We calculated the percentage of 

alterations from mutations, copy number, and gene expression, and the KIT-PI3K pathway 

was the only enriched pathway, predominantly in seminomas (Figure 6A). This pathway 

includes five recurrently mutated genes: KIT, KRAS, NRAS, PIK3CA, and PIK3CD. Not 

only were KIT mutations enriched in seminomas but also KIT mRNA and protein were 

highly expressed in seminomas (Figure 6B). Within seminomas, KIT gene expression was 

higher in KIT-mutated tumors than in KIT-WT tumors, confirming the gain-of-function 

nature of these mutations (p = 0.001; Figure S7A). KIT focal amplifications were rare and 

did not, in general, amplify mutated copies of KIT (Table S1). Compared to NSGCTs, even 

seminomas without a KIT mutation or KIT focal amplification had higher expression of KIT 
mRNA and protein. KIT mutant seminomas had lower-level copy number levels and gene 

expression of KRAS than either KIT WT seminomas or NSGCTs. Gene signatures 

downstream of KIT signaling such as AKT, PI3K, KRAS, and JAK/STAT were high in 

seminomas, regardless of KIT or KRAS mutation status.

CBL, which regulates ubiquitin-mediated degradation of KIT, was deleted in 48% of KIT-

WT seminomas, leaving just one copy (Figure 6B). CBL copy number negatively correlated 

with KIT protein expression for most tumors; however, seminomas with KIT or KRAS 
mutations maintained high protein levels of KIT regardless of CBL copies, apparently 

escaping CBL regulation (Figure S7C). In NSGCTs, we also observed high expression of 

miR-222-3p, a validated miRNA regulator of KIT. In tumors expressing the miR, KIT gene 

expression levels were low (Spearman’s rho = −0.55; Figure S7B; Gits et al., 2013).

Double Primary TGCTs

Approximately 2%–4% of men diagnosed as having TGCTs develop a second primary 

TGCT in the contralateral testicle (Fosså et al., 2005). We molecularly profiled both tumors 

from four men. One first primary was seminomas and three were NSGCTs; all second 

primaries were seminomas. The three histologically discordant pairs exhibited notably 

different profiles of all molecular features. Among all of the data types, the miRNA data 

were most highly correlated within all of the pairs (Figure 7). No mutation was shared 

between paired primaries (Figure 7A), as reported in three other pairs (Brabrand et al., 

2015). Data from the two seminoma primaries of TCGA-2G-AAHP were the most similar 

across all of the platforms, even though this patient had received radiation between 

primaries. The apparent difference in ploidy and DNA methylation was the result of 

different amounts of lymphocytic contamination. Somatic mutation profiles yet again 

diverged between the two tumors, suggesting that genetic mutations are likely later events in 

these patients, and early copy number, epigenetic alterations, or both produce cells that are 

prone to transformation. The primaries from TCGA-2G-AAKG were divergent in histology, 

with the first tumor being a mixed tumor with 40% EC and the second being a pure 

seminoma. However, their DNA methylation profiles, both at CpG and CpH sites, were 

highly similar. The presence of CpH methylation in the first tumor is explained by the EC 
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component, but CpH methylation in the second was unexpected, considering this sample had 

molecular and histologic appearances consistent with seminoma. This patient was the only 

one of the four with documented chemotherapy delivered between the two primary tumors.

DISCUSSION

Integration of tumor characteristics and genomic and epigenomic data revealed distinctive 

molecular landscapes of TGCT histologic types and identified previously unappreciated 

diversity within seminomas (Table 1). All of the samples evinced WGD and a low mutation 

density. Only a few driver mutations were identified, exclusively in seminomas or samples 

with seminoma components. KIT-mutated seminomas separated from the KIT-WT 

seminomas on the Tumor Map and exhibited unique characteristics, including the highest 

levels of lymphocyte infiltration, the absence of global DNA methylation, reduced KRAS 
mutation frequency and copy number alterations, reduced frequency of estimated presence 

of inferred i(12p) events, and a more prevalent history of cryptorchidism (Table 1). Because 

KIT mutation was never observed in tumors lacking seminoma components, we postulate 

that this subset of seminomas is locked in a PGC-like status and remain pure seminomas, 

while those lacking KIT mutations may have the potential to differentiate into other 

histologies. We showed that cryptorchidism was enriched in seminomas, especially in men 

with KIT-mutated seminomas, shedding new light on established cryptorchidism-TGCT 

associations that warrant further investigation (Banks et al., 2013). All of the subtypes of 

NSGCTs shared genomic characteristics, including lower ploidy and higher purity than 

seminoma, and universal i(12)p. Recurrent somatic mutations were rarely present in 

NSGCTs, even though the overall mutation density was not dramatically different from 

seminomas (Table 1).

Previous studies noted both extensive lymphocytic infiltration and lack of DNA methylation 

in seminomas, features that we show for the first time to be more extreme in KIT-mutated 

seminomas. Signals from infiltrating cells influence genomic readout from the mixture of 

cellular components in the bulk tissue analyzed and need to be distinguished from tumor-

specific signals. In our study, almost all of the DNA methylation signal in seminomas came 

from lymphocytes. Only by removing it were we able to reveal that seminomas lacked 

methylation genome wide and that those with KIT mutations had more complete lack of 

methylation. Although the recruitment and role of lymphocytes in TGCTs remain unclear, 

this immune response is likely multiclonal in nature because we did not observe clonal 

restriction of BCRs or TCRs. Demethylating agents were shown to elicit an immune reaction 

via “viral mimicry” caused by demethylation and consequent expression of endogenous 

retroviral elements (Chiappinelli et al., 2015; Roulois et al., 2015). Globally demethylated 

genomes of KIT-mutated seminoma cells could provoke a similar immune response. In line 

with this hypothesis, overexpression of human endogenous retroviral loci was reported in 

several seminoma samples (Gimenez et al., 2010). Global demethylation in KIT-mutated 

seminomas also may explain their significantly lower COSMIC mutational signature 1, 

because 5-methylcytosine, which occurs primarily in the CpG context, is 10 times more 

likely to mutate than a regular cytosine (C → T in the CpG context, explaining the majority 

of mutations that are observed in human cancers) (Shen and Laird, 2013).
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TGCT models acknowledge that seminomas most closely resemble PGCs and GCNIS based 

on histologic appearance, gene expression, and lower levels of DNA methylation. GCNIS or 

seminomas are proposed precursors of EC, which is in turn the proposed precursor for 

extraembryonic (yolk sac tumor and choriocarcinoma) and somatic (teratoma) lineages 

(Honecker et al., 2006). We postulate that only seminomas without KIT mutations may be 

capable of acquiring nonseminomatous histology because all NSGCTs, including mixed 

TGCTs with seminoma components, lacked KIT mutations. Activating KIT mutations may 

lock KIT mutant seminoma cells into a PGC-like state in which UHRF1 and DNMT1 
expression are suppressed, preventing the development of NSGCT components, which 

appear to require DNA methylation capacity. This may explain why seminomas have proven 

difficult to propagate in vitro, because DNA methylation at certain sites is essential for the 

survival of cancer cell lines (De Carvalho et al., 2012). Analysis of an external dataset 

(GSE60787) shows that TCAM-2, the sole seminoma cell line derived to date, has 

substantial DNA methylation.

Likely starting from an unmethylated precursor (PGC/GCNIS), NGSCTs re-establish 

methylation patterns corresponding to their cellular phenotypes: the epigenetic profile of EC 

resembles that of ESC, with extensive non-canonical CpH methylation (Lister et al., 2009), 

while non-EC NSGSTs adopt DNA methylation patterns resembling soma and 

extraembryonal lineages. Frequent promoter DNA methylation inactivating genes in the HR 

pathway also occurs in non-EC NSGSTs, so acquisition of DNA methylation capacity could 

be a key step for NSGCT precursors to embark on the path toward EC and its differentiated 

lineages. However, because imprinting methylation is never properly re-established, early 

genetic, epigenetic, or genetic and epigenetic defects likely occur before the re-

establishment of imprinting methylation (i.e., in utero).

Treatment refractory TGCT is rare and mortality is now low, but late effects of 

chemotherapy and morbidity associated with surgery remain a clinical challenge that several 

of our results may help to address. Despite considerable effort (Gilbert et al., 2016; 

Vergouwe et al., 2003), a need remains to identify, among patients with stage I NSGCTs, the 

50%–70% of men without occult metastases who could be cured by orchiectomy alone. A 

panel interrogating circulating miR-371 plus miR-375 is envisioned for identifying patients 

free from residual disease following orchiectomy, who could be spared adjuvant 

chemotherapy from which they would receive no benefit. miR-371, already proposed for this 

purpose (Syring et al., 2015), was highly expressed in seminomas and EC, but expression 

was low in yolk sac tumors and minimal in teratomas. We found miR-375 to be highly 

expressed in teratomas and yolk sac tumors, for which it is a promising serum marker 

because circulating levels are reportedly low in healthy young men (Zhang et al., 2015). 

miR-375 alone also is a promising marker for identifying, among patients with residual 

masses ≥1 cm following chemotherapy for stage II tumors, the 55%–60% whose masses 

contain only scar tissue (Daneshmand et al., 2012). These patients presently undergo 

extraordinarily invasive surgery because they cannot be distinguished before the procedure 

from patients whose masses harbor teratoma cells, requiring surgery to achieve cure. 

Translational studies to validate these miRNAs as predictive serum markers could start to fill 

these significant unmet needs.
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Other results suggest strategies for targeted therapy. DNA methyltransferase inhibitors in 

NSGCT could reprogram the epigenome into a hypomethylated state and induce 

immunogenicity. A study showed that cells from refractory TGCTs are highly sensitive to 

guadecitabine (Albany et al., 2017). BRCA1 and RAD51C promoter methylation in 35% of 

non-EC NSGCTs makes a significant proportion of these tumors candidates for treatment 

with PARP inhibitors (Cavallo et al., 2012). Finally, recurrent epigenetic silencing of 

DNAJC15/MCJ in NGSCTs makes these genes candidate predictive markers, because their 

expression in breast and uterine cancer cells is reportedly associated with drug resistance 

(Fernández-Cabezudo et al., 2016).

We have provided a rich source of data from multiple platforms that describe a large set of 

well-characterized TGCTs. Integrative analysis identified numerous molecular features that 

distinguish each histology and reflect the histological composition of mixed tumors; it also 

identified molecularly defined subsets of seminomas associated with KIT mutations. These 

data afford a more complete view of previously articulated hypotheses, provide additional 

insights into mechanisms of TGCT tumorigenesis, and identify possible new approaches to 

the treatment of TGCTs.

EXPERIMENTAL PROCEDURES

Tumor tissue and normal whole-blood samples were obtained from patients at contributing 

centers with informed consent, according to their local institutional review boards (IRBs). 

Biospecimens were centrally processed, and DNA, RNA, and protein were distributed to 

TCGA analysis centers.

TCGA project management has collected the necessary human subjects documentation to 

ensure that the project complies with 45 CFR 46 (the “Common Rule”). The program has 

obtained documentation from every contributing clinical site to verify that IRB approval has 

been obtained to participate in TCGA. Such documented approval may include one or more 

of the following items:

• An IRB-approved protocol with informed consent specific to TCGA or a 

substantially similar program. In the latter case, if the protocol was not TCGA 

specific, the clinical site’s principal investigator (PI) provided a further finding 

from the IRB that the already-approved protocol was sufficient to participate in 

TCGA.

• A TCGA-specific IRB waiver has been granted.

• A TCGA-specific letter that the IRB considers one of the exemptions in 45 CFR 

46 to be applicable. The two most common exemptions cited were that the 

research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for 

informed consent because the received data and material do not contain directly 

identifiable private information.

• A TCGA-specific letter that the IRB does not consider the use of these data and 

materials to be human subjects research. This was most common for collections 

in which the donors were deceased.
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This study included 137 primary TGCTs and matched germline control DNA obtained from 

133 male patients. The median age of diagnosis was 31 years, with a range of 14–67. Patient 

tumor histology was classified according to a consensus of expert pathologists. Molecular 

and genomic data were collected using reverse phase protein arrays (RPPAs), whole-exome 

DNA sequencing, RNA-seq, miRNA sequencing, DNA methylation arrays, and SNP arrays 

for copy number analysis. Detailed methods are provided in the Supplemental Experimental 

Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• KIT-mutated seminoma has distinct DNA methylation and immune 

infiltration profiles

• DNA methylation and miRNA expression differ greatly between histology 

types

• Significant somatic mutations are present only in TGCTs with seminoma 

components

• All histology types exhibit extensive aneuploidy and low mutation frequency
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Figure 1. Histologic and Molecular Classification of TGCTs
(A) Representative images of H&E-stained slides of frozen sections are shown for 

seminomas, EC, mature teratomas, and yolk sac tumors. Box at right shows two 

asynchronous primaries from the same patient. All images 100× magnification.

(B) Tumor Map visual representation of molecular heterogeneity separating seminomas and 

NSGCTs. Samples are displayed as hexagons, and the spatial layout reflects sample 

groupings and molecular relations between samples. Samples are colored based on their 

histological classification. In the seminoma inset, samples are colored by KIT mutation 

status. KIT wild-type, green; KIT mutant, blue.

See also Figures S1 and S5 and Tables S4, S5, S6, and S7.
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Figure 2. Molecular Alterations and Features across 137 TGCT Samples
(A) Somatic mutation frequency (mutations/Mb) from exome sequencing. The horizontal 

gray dashed line marks the median mutation rate of 0.5 mutations/Mb. The vertical gray line 

divides pure seminomas from NSGCTs.

(B) Tumor and patient features per sample. Whole genome doubling (WGD) and i(12p) 

status are using the ABSOLUTE algorithm. Calls for WGD or inferred i(12p) status could 

not be made for six low-purity samples. Cryptorchidism status, family history of testicular 

germ cell tumor (TGCT) or other cancer, and presence of double primaries are displayed. 

Unk, unknown.

(C) Significant recurrent mutations (KIT, KRAS, and NRAS) or curated based on frequency 

or biological relevance.

(D) Three known oncogenes were significantly focally amplified. Values represent the 

number of gene copies detected using the ABSOLUTE integer copy number.

See also Figures S2 and S3 and Table S3.

Shen et al. Page 21

Cell Rep. Author manuscript; available in PMC 2018 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Inferred Order of Somatic Mutations and DNA Copy Number Alterations in TGCTs
Four seminomas with co-existing somatic mutations in KIT, KRAS, and NRAS were 

selected. The timing of somatic events within each sample was inferred by integrated 

analysis of mutation multiplicity, allelic integer copy number, and whole-genome doubling 

status. Mutation multiplicity (sq) was calculated from purity, total copy number (CN), and 

tumor variant allele fraction (TVAF) as follows: sq = TVAF[(CN*purity)+(2*(1–purity))]/

purity. Integer copy number, whole-genome doubling status, and purity of tumor genomes 

were calculated using the ABSOLUTE algorithm. Cryptorchidism (crypt), isochromosome 

12p [i(12p)]. Gray and black identify homologous chromosomes.
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Figure 4. Dramatic DNA Methylation Differences Observed between TGCT Histology Types
(A) Smoothed density plots show overall distributions of beta values at CpG (left) and CpH 

sites (right) grouped by seminoma, EC and EC dominant, and other (OTHER) tumors. 

Vertical dashed lines indicate locations corresponding to unmethylated (U) and methylated 

(M) sites. Four primordial germ cell (PGC) samples from external whole-genome bisulfite 

sequencing (WGBS) studies are plotted for the same sites included on the HM450 arrays.

(B) Overall correlation between the DNA methylation signature-based lymphocyte estimates 

(x axis) versus mutation and SNP array-based (ABSOLUTE) tumor purity estimates (y axis) 

for 131 tumors. Six additional tumors without ABSOLUTE estimates as a result of 

extremely low purity are plotted with hollow circles.

(C) DNA methylation at 2,083 (0.5%) loci (rows) with residual methylation in seminomas 

(columns) differs based on KIT/RAS mutation status. Data are corrected for lymphocyte 

infiltration (uncorrected data shown in Figure S1D). Blue to red indicates 0% to 100% 

methylation. Top color bars annotate the histology of each tumor and mutation status in KIT/
KRAS/NRAS (black, mutants; gray, wild-type).

(D) DNA methylation patterns at 57 imprinted loci. Inferred lymphocyte fraction is included 

as the second column color bar (blue to red: low to high level of contamination). External 

reference data (right) are plotted for the same set of loci representing paternal (Pat; 1, sperm; 

2, hydatidiform mole; 3, paternal Unipaternal Disomy [pUPD] leukocyte), maternal (Mat; 4, 

maternal Unipaternal Disomy [mUPD] leukocyte; 5, parthenogenetically derived oocytes), 

and placental (Pl; 6, placenta)-imprinting patterns, in addition to ESCs (7, ESCs from 2, 

oocyte) and somatic tissues (8, somatic tissues).

(E) The GNAS complex locus demonstrates contrasting DNA methylation patterns in 

different subtypes. Seminomas show an overall lack of methylation (observed methylation 

explainable by lymphocytic infiltration); EC and EC-dominant tumors show extensive 
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methylation at the paternal DMR at the NESP55 promoter, and other tumors tend to have 

methylation at the maternal DMR near the XLαs promoter.

(F) RNA-seq reads for different GNAS transcripts are consistent with DNA methylation 

patterns. Eleven tumors with relatively high purity of different histologies are shown.

See also Figure S4.
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Figure 5. Immune Signatures Are High in Seminomas
(A) Gene expression data (log2 median-centered RNA-seq by expectation maximization 

[RSEM] values) are displayed for 78 published gene expression signatures and ordered by 

immune category (left vertical bar). Tumors are ordered by histology and clustered by gene 

expression. Annotation tracks for DNA methylation lymphocyte infiltration score and 

mutation status are displayed.

(B–D) Boxplots of immune features comparing seminoma KIT mutant, seminoma KIT WT, 

and NSGCTs. (B) Median expression of immune signatures, (C) DNA methylation 

lymphocytic infiltration scores, and (D) median cancer-testis-specific antigen gene 

expression. Boxplots display the median value, upper and lower quartiles, and the whiskers 

represent the interquartile range. Each dot represents the value of a single sample.

See also Figure S6.
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Figure 6. Analysis of KIT and KIT Ligand in TGCTs
(A) Integrated analysis of the Kit pathway indicating the frequency of multiple genomic 

alterations within the Kit pathway.

(B) A multiple platform characterization of KIT and KIT ligand across testicular germ cell 

tumors. Samples are first ordered by tumor histology. Within histology, tumors are ordered 

by KIT mutation status and then by KIT mRNA expression from high to low. Missing values 

are depicted as blank or white space within each heatmap.

See also Figure S7.
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Figure 7. Genomic Alterations and Features in Four Patients with Asynchronous Double 
Primaries
(A) Venn diagrams showing no overlap between somatic mutations identified in the first and 

second primary tumors, with number of significantly mutated genes shown. 01, first 

primary; 05, second primary; R, right; L, left.

(B) SCNAs across the genome relative to the tumor ploidy (also shown). Red, amplification; 

blue, deletion.

(C) For each platform, the first primary tumor is on the x axis and the second primary tumor 

is on the y axis. From left to right: beta values as a measure of DNA methylation across 

probes, with color representing the smoothed density of the probes; the reads per million 

(RPM) abundance of 303 miRNAs used in unsupervised clustering analysis on a log scale; 

log2 mRNA expression (RSEM) of 2,878 variably and highly expressed genes used for 

unsupervised clustering; RPPA expression values for 218 antibodies assayed. RPPA was not 

assessed for at least one primary tumor for patients TCGA-2G-AAGI and TCGA-2G-AAHP.
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