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Adeeppopulation referencepanelof tandem
repeat variation

Helyaneh Ziaei Jam1, Yang Li2, Ross DeVito 1, Nima Mousavi3, Nichole Ma 2,
Ibra Lujumba 4, Yagoub Adam 5, Mikhail Maksimov1, Bonnie Huang 6,
Egor Dolzhenko 7, Yunjiang Qiu 7, Fredrick Elishama Kakembo4,
Habi Joseph 4, BlessingOnyido 8,9, JumokeAdeyemi 8,9,MehrdadBakhtiari1,
Jonghun Park 1, Sara Javadzadeh1, Daudi Jjingo4,10, Ezekiel Adebiyi5,8,9,11,
Vineet Bafna 1 & Melissa Gymrek 1,2

Tandem repeats (TRs) represent one of the largest sources of genetic variation
in humans and are implicated in a range of phenotypes. Here we present a
deep characterization of TR variation based on high coverage whole genome
sequencing from3550 diverse individuals from the 1000Genomes Project and
H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes
from four separate methods resulting in high-quality genotypes at more than
1.7 million TR loci. Our catalog reveals novel sequence features influencing TR
heterozygosity, identifies population-specific trinucleotide expansions, and
finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype
panel which can be used to impute most TRs from nearby single nucleotide
polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and
reference haplotype panel generated here will serve as valuable resources for
future genome-wide and population-wide studies of TRs and their role in
human phenotypes.

The availability of whole genome sequencing (WGS) datasets from
thousands of individuals has enabled characterization of human
genetic variation at unprecedented scale. Initial variant discovery
efforts using low-coverage WGS were focused on single nucleotide
polymorphisms (SNPs) and short insertions or deletions (indels)1.
More recently, high-coverage WGS has enabled more accurate cata-
logs of short indels and structural variation2. Although multiple large
WGS datasets now exist2–4, variants in tandem repeat (TR) regions are
largely underrepresented, in part because they require more specia-
lized bioinformatics approaches.

Here we consider two types of TRs: short tandem repeats (STRs)
consist of repeat units of 1–6bp in tandem, whereas variable number
tandem repeats (VNTRs) have longer repeat units. TRs experience rapid
mutation rates that result in frequent changes in copy number5. Collec-
tively, they comprise around 3% of the human genome6 and occur at
more than 2million distinct loci7,8. TRs have been implicated in a variety
of Mendelian disorders9 and complex traits10. Although TRs represent
one of the largest sources of human genetic variation, they are techni-
cally challenging to genotype, and are only partially captured by general
SNPand indelgenotyping toolsused in standardvariant callingpipelines.
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Over the last decade, TR genotyping has rapidly matured. Var-
iants, including large expansions, at STRs and VNTRs can now be
reliably detected by multiple methods from high-coverage short read
WGS7,8,11–14. These methods have been applied to catalog genome-wide
TR variation across thousands of individuals fromdiverse populations.
One of the earliest catalogs profiled nearly 700,000 STRs using low-
coverage WGS from phase 1 of the 1000 Genomes Project (1000GP)
cohort15. Subsequent studies have analyzed TR variation in deep WGS
from other cohorts4,10,16–20. However, these have faced important lim-
itations. Most available large WGS datasets have been biased toward
European individuals. Those including more diverse populations were
either low-coverage, resulting in low accuracy and high rates of miss-
ing genotypes, or had relatively small sample size.

Another important limitation of existing TR catalogs is that none
provides a comprehensive viewof TR variation.Most tools beginwith a
reference set of TRs based on a reference genome. However, reference
sets vary dramatically across tools due to differences in parameters
used to define repeats, which are often based on the limitations of
individual genotyping approaches. For example, GangSTR13 can iden-
tify large expansions but only genotypes TRs with no sequence
imperfections, whereas imperfect repeats are considered by HipSTR8.
ExpansionHunter12 models imperfect repeats, but the reference set
must be semi-manually defined by the user and may differ from that
used by other tools. Further, the set of repeat unit lengths considered
differs by tool (HipSTR considers 1–6 bp units, GangSTR 1-20 bp,
adVNTR 6+bp). Thus, no single tool captures the full spectrum of TR
variation.

Here, we develop a new method, EnsembleTR, which takes TR
genotypes output by existing tools (currently ExpansionHunter,
adVNTR, HipSTR, and GangSTR) as input, and outputs a consensus TR
callset by converting TR genotypes to a consistent internal repre-
sentation and using a voting-based scheme. We apply EnsembleTR
to genotype 1.7 million TRs based on the hg38 reference genome
across deep PCR-free WGS for 3202 individuals from the 1000GP2 and
PCR+WGS data for 348 individuals from H3Africa Project21. We apply
this resource to characterize population-specific TR variants, identify
novel sequence-context features contributing to TR variability, iden-
tify TRs associated with gene expression, and generate an improved
phased SNP-TR reference haplotype panel. The full set of phased
genotypes as well as population-specific summary statistics are made
publicly available to facilitate useby the genomics community.Overall,
we envision this will be a powerful resource enabling the study of TR
variation across a wide range of future applications.

Results
A genome-wide catalog of TR variation
We performed genome-wide genotyping of TRs using high-coverage
PCR-freeWGSdata available for 3202 samples from the 1000Genomes
Project (1000GP) and PCR+WGS data for 348 samples from the
H3Africa Project (Methods). Both datasets were sequenced to an
average of approximately 30x coverage. We applied four separate TR
genotyping methods which consider a variety of TR classes, including
short STRs (HipSTR, ExpansionHunter, GangSTR), STR expansions
(GangSTR, ExpansionHunter), and VNTRs (GangSTR, adVNTR). All four
methods take as input a reference set of TRs and output inferred
diploid repeat lengths in each sample. HipSTR additionally identifies
sequence differences between repeat alleles. Genotypes from each
method were filtered to remove poor-quality calls (Methods).

We next developed a novel ensemble calling method (Ensem-
bleTR) which takes as input VCF files fromdifferent TR genotypers and
outputs a consensus set of genotypes (Fig. 1a). TRs genotyped by a
single tool do not requiremerging and are simply added to the output.
EnsembleTR then identifies overlapping TR regions genotyped by two
or more tools, infers a mapping between alternate allele sets reported
by eachmethod, and outputs a consensus genotype and quality score

for each call (Methods).We applied EnsembleTR to jointly genotype all
samples, which resulted in consensus calls at 1,785,572 unique TRs
(42% homopolymers) on autosomal chromosomes. After removing
TRs called in fewer than 75% of samples, 1,714,353 TRs (41% homo-
polymers) remained. Of those, 55% were only genotyped by a single
method (Fig. 1b), largely reflecting differences in TR reference sets
published for each tool.

We evaluated whether the resulting consensus genotypes capture
the expected patterns of genetic variation in our cohort. We first
examined patterns of Mendelian inheritance (MI) in the 602 available
trios (Methods). Overall, 94% of calls followMI, and this rate increases
with increasingly stringent score thresholds (Fig. 1c). TRs called by
multiplemethods typically show higher MI rates (Fig. 1b). Further, TRs
called by HipSTR and ExpansionHunter have higher overall MI rates
than TRs called by GangSTR and adVNTR (Fig. 1b).

Some improvement in MI at TRs genotyped by multiple methods
could result from differences in TR composition across reference sets
for each method, with TRs considered by multiple methods being
potentially easier to genotype compared to those genotyped by a
single method. To test this, we computed MI separately for each
genotyper at calls on Chromosome 1 that are shared vs. unique across
methods. adVNTRwas excluded from this analysis since it genotypes a
largely distinct set of TRs (Fig. 1b). For all methods, MI was highest at
calls genotyped by all 3 methods compared to those called by a single
method (SupplementaryData 1). This differencewasmost pronounced
for GangSTR,which showedMI of 98.2% at shared calls vs. 88% for calls
made by GangSTR alone.

Next, to determine whether ensemble-based calling improves
genotype quality beyond what can be explained by differences in TR
composition alone, we compared the MI of EnsembleTR calls vs. that
obtained by individual methods at TRs on Chromosome 1 genotyped
by multiple tools. For most combinations of methods, although in
most cases the different genotypers were highly concordant (range
80-95%), we still observed that EnsembleTR calls either exhibited
greater Mendelian consistency or achieved comparable MI to the
genotyper with the highest MI level (Supplementary Data 2). For
example, at 15,250,413 calls genotyped by both HipSTR and GangSTR,
the EnsembleTR MI rate is 99.3%, compared to 99.1% for HipSTR and
98.1% for GangSTR. The only exception was for TRs called only by
GangSTR and ExpansionHunter but not HipSTR, for which Ensem-
bleTR calls showed lower MI than ExpansionHunter alone. However,
theseTRsmakeupa small percentage (approximately0.1%)of the total
callset, and typically are longer (mean 30bp in hg38 vs. 19 bp for other
TRs) making them more difficult to genotype precisely. We also
observed that in 72% of calls that were genotyped bymultiplemethods
but where at least one method did not follow MI, EnsembleTR calling
resulted in Mendelian consistency, compared to 65% obtained by a
naïve approach of always choosing the HipSTR genotype. Overall, our
results suggest that while TRs called by multiple methods tend to be
easier to genotype in general, EnsembleTR still improves call quality
over any single method at these loci. For downstream analyses, we
filtered calls from TRs with Mendelian error rates above 5% which
resulted in 1,443,686 unique TRs.

To further evaluate our callsetweperformed fragment analysis via
capillary electrophoresis to genotype 48 TRs on a subset of samples.
Our validation panel includes 11 TRs implicated in repeat expansion
disorders, plus an additional 37 TRs spanning a range of repeat classes.
Each TR in our panel was tested on 48 samples, including 25 samples
chosen to represent diverse population groups from the 1000GP, 17
additional samples from the “Platinum Genomes” multi-generational
pedigree (6 of which are included as 1000GP trios), and 6 samples
from the Genome In a Bottle project (Supplementary Data 3–7; Sup-
plementary Figs. 1-2; Methods). Out of 1395 mutual calls between
EnsembleTR and fragment analysis, 1362 (98%) were concordant (96%
concordance for GangSTR and 98% for HipSTR calls). Of the 33
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discordant calls, 9 were from a single TR (C9orf72), a GC-pure repeat
(which comprises 0.67% of our catalog). Nearly all errors including
those at C9orf72 resulted either from discrepancies of a single unit or
by dropout of one of the alleles at a heterozygous locus in either
technology. Notably, our validation focused on TRs that could be
readily genotypedbyPCR, and thus excludedmore complex repeats as
well as homopolymer loci, for which error rates are likely higher. Still,
our results suggest that most non-homopolymer TR genotypes in our
catalog based on WGS are of comparable accuracy to those obtained
by the experimental gold standard of fragment analysis.

Next, we examined population-specific allele frequencies at well-
characterizedTRs, including knownpathogenic loci and those used for
forensics analysis, and found that EnsembleTR results recapitulated
published results for these loci (Methods; Supplementary Figs. 3, 4),
with mean Jensen-Shannon divergence ranging between 0.03-0.21 for
forensic loci and 0.1-0.31 for pathogenic loci across all super-
populations (compared to mean 0.43 and 0.55 when permuting loci;
Methods). We then examined genome-wide patterns of TR variation
across populations. Initial inspection of the number of variant TR
alleles per sample showed thatH3Africa samples had far higher rates of
polymorphism even compared to African samples in the 1000GP
(Supplementary Fig. 5). However,wehypothesized this couldbedriven
by the PCR+ nature of the H3Africa samples, which induces high error
rates, in particular at homopolymer TRs22. Repeating this analysis, but
excluding homopolymer loci, revealed similar patterns as were
observed for other classes of variants2 (Fig. 1d). Individuals from Afri-
can populations had the highest number of variant TR alleles

compared to the reference, whereas Europeans had the fewest. Fur-
ther, admixed African individuals showed the highest variability in the
number of variants per sample. As expected, the rate of discovery of
new TR alleles slows with each new individual, but this rate increases
after the addition of African samples and continues to increase when
H3Africa samples are added (Supplementary Fig. 6). Performing prin-
cipal component analysis (PCA) on a matrix of the sum of repeat
lengths at each TR for each sample captured expected patterns of
population structure (Supplementary Fig. 7).

Characterizing population-specific TR variation
We next characterized patterns of TR variation and how they vary
across populations. After filtering, we identified an average of 184,056
and 184,759 TRs in each sample for which one or both alleles did not
match the reference genome, respectively (Supplementary Data 8).
Our callset contains 6758 TRs entirely inside coding exons, corre-
sponding to 0.5% of TRs genotyped genome-wide (Supplementary
Data 9). On average, each sample contained at least one non-reference
allele at 295 coding TRs. As expected, TRs with repeat unit lengths that
are multiples of 3 are over-represented in coding exons whereas
mononucleotide, dinucleotide, and tetranucleotide TRs are far more
prevalent in non-coding regions of the genome (Supplementary
Fig. 8a). Additionally, a far lower percentage of TRs in coding regions
are polymorphic (51% for coding exons compared to 78% genome-
wide; Supplementary Fig. 8b).

We then summarized the variability in the length of each TR by
computing the heterozygosity (H) (and counting the number of alleles
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Fig. 1 | A deep catalog of TR variation across human populations. aOverview of
EnsembleTR workflow. Aligned reads are input to four TR genotyping tools
(GangSTR, HipSTR, adVNTR, and ExpansionHunter). Filtered VCFs are input to
EnsembleTR. EnsembleTR first identifies sets of mergeable loci (step 1) and iden-
tifies sets of compatible alleles between callers (step 2). Finally, it scores each
possible diploid genotype (step 3) and outputs the best genotype and its score. The
resulting VCF file is used to generate a phased SNP + TR reference haplotype panel.
b Overlap of TRs called by each method. Annotations below the bars indicate the
combination ofmethods a TRwas called in. Numbers next to eachmethod indicate
the number of unique TRs in each category. Numbers below the plot indicate the
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TRs are excluded. Box colors denote superpopulations. Gray denotes H3Africa.
Other colors denote 1000 Genomes superpopulations.
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with frequency ≥ 1%; Supplementary Fig. 9; Methods). TRs in our cat-
alog show a wide range of polymorphism rates, with 56% of non-
homopolymer TRs (6% of homopolymers) fixed or nearly fixed at a
single allele length (H< 0.001), 11% (29% of homopolymers) with two
common alleles, and 17% (50% of homopolymers) with three or more
common alleles. TRheterozygosity and the number of common alleles
are highly correlated across populations (Supplementary Figs. 10-11),
with few TRs being polymorphic in one population but not others.

The majority of alleles identified in each sample differ in length
from the reference genomebyonly a small number of repeat units, and
this trend is consistent across populations (Fig. 2a, b). All populations
show a slight bias toward alleles that are shorter than the reference
allele, and exhibit the highest rates of variation at homopolymer TRs.
Overall, alleles closest in length to the reference allele tend to be
common, whereas alleles tend to decrease in frequency as a function
of their length difference from the reference (Fig. 2c). However, we
observed 196 TRs at which more than 95% of observed alleles differed
from the reference by more than 2 repeats (Supplementary Data 10).
Many of these consisted of highly imperfect repeats or TRs with mul-
tiple distinct repeat units. We manually inspected available PacBio
“HiFi” reads from a single sample (Methods) overlapping each of these
TRs, and found that the EnsembleTR allele was supported at 194/196
loci (examples shown in Supplementary Fig. 12). We further investi-
gated these in the newT2T reference genome23 and found that for 194/
195 TRs that could be successfully lifted over, the T2T reference mat-
ched the most common allele called by EnsembleTR. Overall, this
suggests that a subset of complex TRs may not be correctly repre-
sented in the hg38 reference but are resolved in T2T.

We also observed a subset of common alleles with large expan-
sions compared to the reference (Fig. 2c). To identify population-
specific polymorphic repeat expansions, we searched for TRs with
common expansions in either Africans or non-Africans but not both.
We filtered homopolymer TRs and only considered expansions as
outlier alleles with copy number >10 (Methods). This method identi-
fied 264 candidate TRs (Supplementary Data 11). Of these, 198 were
specifically expanded in Africans and 66 in non-Africans. We addi-
tionally applied two methods specifically designed to detect patho-
genic repeat expansions (STRetch24 and ExpansionHunter Denovo11) to
identify candidate expansions in the H3Africa cohort. Of the 198 can-
didate TRs, 11 were supported by at least one and 5 were supported by
both methods. Two TRs had particularly dramatic Africa-specific
expansion alleles (Fig. 2d, e), bothofwhichwere supportedbySTRetch
and ExpansionHunterDenovo. These include an intronic CAG repeat in
CA10 (1.6% of African alleles have >+65 copies relative to hg38 com-
pared to 0.13% in non-Africans, originally genotyped by Expansion-
Hunter, HipSTR, and GangSTR) and a CTT repeat upstream of NEXN
(14% of African alleles have >+39.7 copies relative to hg38 compared to
1.2% in non-Africans, originally genotyped by ExpansionHunter and
HipSTR). Notably, previous studies of the CA10 locus reported
expansions at up to 30% of alleles25, far more than reported for any
population here. While we still likely underestimate expansion rates
(see below), we note these studies used a threshold of 40 total copies
to define expansions, compared to 86 total copies here (+65 relative to
the 21 copies in hg38) based on our outlier detection approach.

To further validate the CA10 and NEXN expansions, we compared
EnsembleTR calls to genotypes obtained by manual inspection of
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Fig. 2 | Characterizing population-specific TR variation. a, b Distribution of
variant allele sizes. Bars show the percent of variant alleles that have a specified
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expansions and negative numbers indicate contractions relative to the reference.
Panel (a) shows data for all non-homopolymer TRs and (b) shows data for homo-
polymer TRs. Bar colors denote superpopulations. Gray denotes H3Africa. Other
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shows the frequency of each allele across all populations. Different panels denote

different repeat unit lengths. Dots corresponding to expansion alleles highlighted
in the text are annotated with dashed boxes. Only alleles with frequency at least
0.1% are shown. Alleles with the same length as the reference allele are excluded.
d, e Population-specific allele distributions at example loci. In each panel, the x-axis
denotes allele length (number of repeats relative to hg38) and the y-axis denotes
the frequency of each allele. Each panel shows a different superpopulation. Panel
(d) shows an intronic trinucleotide repeat in CA10. Panel (e) shows a trinucleotide
repeat upstream of NEXN. Both repeats have expansion alleles common in African
populations compared to non-Africans.

Article https://doi.org/10.1038/s41467-023-42278-3

Nature Communications |         (2023) 14:6711 4



PacBio HiFi reads available for 27 1000GP samples (Supplementary
Data 12). Notably, long alleles at both repeats aremuch longer than the
Illumina read length, and so repeat length estimates are inexact. Still,
allele lengths estimated by EnsembleTR are strongly correlated with
length estimates based on HiFi reads (Pearson r =0.78/0.89, two-sided
p = 1.5e-6/3.6e-10 for CA10 and NEXN respectively). Further, all large
expansion alleles identified by EnsembleTRwere supported by PacBio,
although some large expansions were missed as a result of a bias in
EnsembleTR’s voting scheme which down-weights lower confidence
alleles (see Discussion). We additionally performed PCR amplification
of the CA10 repeat in four 1000GP samples with a range of allele
lengths, which confirmed EnsembleTR genotypes including a large
expansion at this locus (Supplementary Fig. 13). Interestingly, manual
inspection of both TRs in HiFi reads revealed common variation not
only in TR length, but also in TR sequence. At the CA10 TR, which is
annotated as a CAG repeat in hg38, most alleles are perfect CAG
repeats but expansions of CCG or CGG were also observed (Supple-
mentary Fig. 13c). Similarly, at the NEXN TR, which is annotated as a
CTT repeat, many observed alleles instead consist of repeats of the
hexamer sequence CTTCTC. This alternate repeat unit was observed
on both expanded and normal range allele lengths.

Finally, we assessed whether these sequence imperfections are
captured by HipSTR, the only method used here that attempts to infer
the sequence as well as the length of TR alleles. We used TRViz26 to
visualize sequence structure for alleles at the CA10 and NEXN TRs
(Supplementary Fig. 14). HipSTR successfully identified the CTTCTC
motif in shorter alleles at NEXN as well as CAC and CAT motifs at the
CA10 locus. Longer alleles could only be genotyped by Expansion-
Hunter or GangSTR, which report perfect repeats even for genotypes
where manual inspection of PacBio reads confirmed the presence of
alternate motifs. Notably, EnsembleTR output annotates the method
of origin of each call, which could be used to determine in which cases
repeat allele sequence information is reliable.

Sequence determinants of TR heterozygosity
We next used our catalog to examine determinants of polymorphism
patterns across different TRs by correlating sequence features with TR
heterozygosity. As widely observed previously15,27,28, we found that TR
heterozygosity ismost strongly correlatedwith total repeat length and
the length of the repeat unit (Fig. 3a), with TRs with longer total
stretches of uninterrupted repeat sequence and shorter repeat units
being typically the most polymorphic. This trend is consistently
observed across populations (Supplementary Fig. 15). Among TRs in
our catalog with the same repeat unit length, heterozygosity also
varies to a lesser extent across different repeat unit sequences
(Fig. 3b–e). For example, CG and AT dinucleotide repeats have higher
average heterozygosities at a given length compared to AG or AC
repeats. For tetranucleotides and pentanucleotides, AGAT and AAAAG
repeats tend to have the highest heterozygosities across a range of
repeat lengths. When visualizing reference TR length in bp vs. abun-
dance in the genome, we additionally observed an unexpected peri-
odic pattern for multiple repeat classes. Trinucleotides with length 0
mod 3 are less abundant than those consisting of a non-integer num-
ber of total repeat copies, similar to a previous observation29. Similarly,
dinucleotides with an even total length (e.g. ACACAC) tend to be
slightly less abundant than those with an odd total length (e.g. ACA-
CACA). Similar periodic trends were observed for other repeat unit
lengths (Fig. 3a).

Beyond the sequence of the TR, we reasoned that features of the
genomic sequence flanking a TR may also impact its variability. To
investigate this further, we focused on non-’GC’ dinucleotide STRs in
our catalog with repeat units AC/GT, AT, or AG/CT with reference
length between 12 and 17 bp. We first classified TRs as either “stable”
(major allele frequency = 1) or “polymorphic” (major allele frequency
<0.99), resulting in a set of 3435 polymorphic STRs and 6922 stable

STRs (Fig. 3f). Of these 4829 had an AC/GT repeat unit, 3051 had AG/
CT, and 2477 had AT. We then applied two methods to identify
sequence features characteristic of stable TRs. First, we applied
HOMER30, a motif discovery tool, to sequences extracted from a 64 bp
window on each side of the TRs of each repeat unit separately. For AC
repeats, HOMER identified five motifs enriched in the context of
polymorphic vs. stable TRs. Of these, four contain a repetitive motif
with a dinucleotide repeat unit (Fig. 3g). Similar top motifs were
identified for AT, but not AG/CT repeats (Supplementary Fig. 16).

Second, we trained a convolutional neural network (CNN) using
58 bp flanking each TR plus 6 directly adjacent bases that make up the
TR from both sides, and used gradient-based attribution scores to
quantify the importance of each input base (Methods). Our model
achieved an overall accuracy of 73% on a held out test set with area
under the precision recall curve 0.82/0.62 when considering stable/
polymorphic STRs as the target class (precision = 0.76/0.64 for stable/
polymorphic and recall = 0.87/0.46 for stable/polymorphic). Visuali-
zation of attribution scores for the TRsmost confidently and correctly
predicted to be polymorphic identified that nearby dinucleotide
repeat-like sequences have the strongest influence on whether the
model predicted an STR to be polymorphic (Fig. 3h). This pattern was
not visible in TRs confidently correctly predicted to be stable (Sup-
plementary Fig. 17). This result is consistent with our HOMER findings
that dinucleotide repeat-like sequences in the flanking regions of
dinucleotide TRs results in increased heterozygosity.

To validate these results and quantify the strength of the rela-
tionship, we found the count of all 4-mers composed of adjacent
dinucleotide or mononucleotide motifs (e.g. ATAT, ACAC, AAAA, etc.)
in a 64 bp window around all dinucleotide STRs. When dividing the
counts of these repetitive 4-mers in context regions into quintiles,
polymorphic STRs are highly prevalent in the upper quintile (27.6% of
polymorphic STRs fall into this bin, compared to 15.5% of stable STRs)
and depleted in the lowest quintile (which contains 16.1% of poly-
morphic STRs and 23.1% of stable STRs). Overall, the count of these
context 4-mers is significantly correlatedwith STRheterozygosity both
overall and individually for STRs with AT, AC/GT, and AG/CT repeat
units (Bonferroni corrected P-values 1.5 × 10−124, 9.7 × 10−10, 5.3 × 10−30,
and 1.0 × 10−5). Although these context dinucleotides are predictive, in
all cases the strength of the correlation with these sequence context
features is less than the correlation with copy number (Fig. 3i; Sup-
plementary Data 13).

Detecting TRs associated with gene expression
To assess the utility of our catalog in identifying trait-associated TRs,
we performed expression quantitative trait loci (eQTL) discovery in
452 unrelated samples (363 EUR and 89 AFR) with available RNA-
sequencing derived from lymphoblastoid cell lines (LCLs) from the
Geuvadis project31. We tested for association between the sum of the
repeat length of the alleles of each individual and gene expression for
each TRwithin 100 kb of each gene (Methods; SupplementaryData 14-
15; Data Availability; Fig. 4a). Tests were performed separately in the
EUR and AFR cohorts. In total, we identified 74,340 (EUR) and 400
(AFR) individual significant TR-gene pairs (FDR <0.05) and 3664 (EUR)
and 81 (AFR) total eGenes (gene-level FDR <0.05). Effect sizes of eTRs
significant in at least one cohort (EUR or AFR) were strongly correlated
across these two cohorts (Pearson r = 0.40; p < 10−200; n = 64,760;
Fig. 4b). For comparison, a previous eTR analysis we performed in this
cohort32 based on low-coverage WGS from the 1000GP identified only
2060 eGenes at the same FDR threshold.

We compared eTR effects measured here to eSTRs we identified
previously across 17 tissues in the Genotype-Tissue Expression (GTEx)
cohort16. Effect sizes computed for overlapping sets of TR-gene pairs
across studies were significantly correlated in all tissues (p < 10−200 and
p = 5.7e−12 in all tissues considering eTRs significant in European and
African Geuvadis cohorts, respectively) but were most strongly
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correlated with Cultured Fibroblasts (Supplementary Data 16, Fig. 4c,
d). The previous GTEx analysis excluded LCLs due to low sample size,
and so we could not directly compare to data from the same cell type.
eQTLs discovered here recapitulate known signals, and also identify
novel trait-associated TRs. For example, one of our top eTR signals is a
dodecamer repeat in the promoter of CSTB, which has been reported
by multiple previous studies16,33 and is associated with myoclonus
epilepsy34 (Fig. 4e). We identified a total of 2996 eTRs significant at the
gene-level that were either not previously tested (2917) or did not
reach at least nominal significance (79) in any tissue tested inGTEx. An
example novel association of a dinucleotide AT repeat with TIMM10
expression is shown in Fig. 4f.

Phased reference panel allows accurate imputation of TR
variants
Finally, we generated a phased reference haplotype panel of SNPs/
short indels and TRs from the 1000GP samples. We used our pre-
viously published pipeline35 to phase each TR separately onto a

backbone of phased SNPs in a ±50kb window, resulting in a single
panel containing both phased SNPs and TRs (Methods). The resulting
panel contains a total of 1,091,550TRs, compared to 453,671 TRs in the
previously published panel. We assessed the utility of this panel for
imputing TRs by performing a leave-one-out analysis at TRs on chro-
mosome 21 and observed an average concordance of 99% between
imputed genotypes and observed genotypes in all 5 superpopulations
of 1000GP. For comparison, we performed a naive imputationmethod
in which each genotype is imputed as the most common diploid
genotype, which resulted in an average concordance of 87%. As
expected, imputation performance is strongest at the least poly-
morphic TRs, and weakest at those that are highly multi-allelic and/or
have the highest heterozygosity (Supplementary Fig. 18; Fig. 5a).

We then evaluated the effectiveness of our panel in imputing
medically relevant TRs. Utilizing our panel, we imputed genotypes for
92 repeats, comprising 16 widely recognized pathogenic loci involved
in expansion disorders as well as 76 potential causal variants asso-
ciated with blood traits that were included in our panel
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(Supplementary Data 17). Notably, our panel is comprised of healthy
controls, and thus imputation is restricted to common normal range
alleles for the known pathogenic loci. Our analysis revealed an average
concordance range0.95–0.97 across populations for all examined loci.
Performance was lower at known pathogenic TRs, with highly poly-
morphic TRs implicated in Huntington’s Disease and spinocerebellar
ataxia 3 being most challenging (concordance range 0.68–0.90).
Overall the average concordance across all pathogenic loci remained
high (range 0.89–0.92 across populations) indicating that common,
non-pathogenic alleles at a range of medically relevant repeats can be
accurately imputed.

Multiple TRs have recently been implicated as causal drivers of
genotype-phenotype associations discovered using genome-wide
association studies (GWAS)10,36. In these cases, although the TRs are
likely causal, the signals were originally identified using nearby tagging
SNPs in at least moderate linkage disequilibrium (LD) with the TR. We
used our haplotype panel to explore the ability of nearby SNPs or small
indels to tag TRs. We determined the best tag SNP for each TR as the
SNP/indel within a ± 50 kb window with the strongest LD (Supple-
mentary Data 18). As expected, TRs that are largely bi-allelic are often
well-tagged by nearby SNPs (mean best tag SNP r2 = 0.90), whereas the
LD of the best tag SNP decreases for TRs with an increasing number of
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expression.
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common alleles (Fig. 5b). For example, for TRs with five common
alleles the mean r2 of the best tag SNP in Europeans is 0.68, with
generally weaker tagging in the African superpopulation. Themajority
of tag SNPs are located within a small window around the TR, and in
some cases the top tag SNP is within or directly adjacent to the TR
(Fig. 5c). Overall, these results indicate that while bi-allelic TRs are
likelywell captured by existing variant panels used by GWAS and other
studies, more polymorphic TRs are often not well tagged by a single
nearby SNP or indel.

Discussion
TRs represent some of the most polymorphic regions of the genome,
but have so far not been systematically included in large genetic var-
iation databases, in large part due to technical challenges in geno-
typing as well as discrepancies in how TRs are defined by different
tools. Here, we developed a novel framework, EnsembleTR, whichuses
an ensemble approach to integrate the output of multiple TR geno-
typers and generate a deep catalog of TR variation in the 1000GP and
H3Africa cohorts. After filtering low-quality calls, our ensemble
approach genotyped more than 1.7 million TR loci. We applied
EnsembleTR to identify population-specific repeat expansions, char-
acterize sequencedeterminants of TR stability, performeQTL analysis,
and generate a phased TR-SNP reference haplotype panel.

Our TR catalog based on EnsembleTR contains substantially more
TRs than can be genotyped with any single method. The largest gain
comes from the fact that recommended reference TR sets have low
overlap across tools (Fig. 1b), with many TRs included only by a single
method. This lack of overlap stems from the algorithm design of each
tool. For example, whereas HipSTR can genotype TRs with sequence
imperfections, GangSTR is restricted to perfect repeats. On the other
hand, adVNTR is designed specifically for VNTRs and not STRs. Beyond
improving the quantity of TRs called, ensemble-based genotyping also
increases genotype quality atTRs called bymore thanonemethod. For
example, at TRs called by multiple methods in almost all cases
EnsembleTR genotypes showed Mendelian consistency levels that
were either better than any individual method or comparable to the
best-performing method (Supplementary Data 2).

The TR dataset presented here provides important improvements
over previous population-wide TR panels and their applications. Pre-
vious TR panels were primarily based on hg19 and on a single TR
genotyper4,15,37, or are under controlled access restrictions and have
limited representation of diverse ancestries16,18,20,36. In contrast, this
dataset ismade freely available, is basedon the hg38 reference genome,
and integrates TR calls from four different tools. We also improve upon
published efforts to identify TRs acting as eQTLs. We previously iden-
tified eTRs using low-coverage Phase 3 1000GP data32, which was
underpowered due to low TR genotyping quality. A separate study
performed eTR analysis based on targeted sequencing of promoter TRs
but focused on TRs within 1 kb of transcription start sites38, therefore
missing the majority of TRs. More recently, we analyzed eSTRs16 and
eVNTRs17 in theGTExdataset, but excluded LCLs in the STR analysis due
to low sample number. The current study shows high concordancewith
these previous eTR efforts, but identifies 2996 novel TR-gene associa-
tions in LCLs. Finally, we present a new TR-SNP reference haplotype
panel, with 1,091,550 loci compared to our previous panel of 453,671
TRs35. This panel can be used for imputing TRs into external GWAS
datasets, an approach which has already proven successful by us and
others to identify novel trait-associated STRs36 and VNTRs10.

While overall patterns of TR variation are highly similar across
populations, detailed analysis of individual TRs revealed individual loci
with population-specific patterns. For example, we identified multiple
Africa-specific repeat expansions, including common trinucleotide
expansions in an intron of CA10 and in the promoter of NEXN which
often involve expansions containing multiple distinct repeat units.
These expansions are supported by both the African cohorts within

1000GP as well as within H3Africa. Common expansions of the repeat
in CA10, a brain-expressed gene, have been previously reported (pre-
viously referred to as the ERDA1 locus39), and have been speculated to
be associated with psychiatric disorders40. NEXN mutations have pre-
viously been shown to result in dilated cardiomyopathy41, which is
particularly prevalent in Africa42. Because 1000GP andH3Africa do not
have phenotype information available, future efforts are needed to
determine the potential phenotypic impacts of these population-
specific expansions.

This study faced several limitations, many of which will be over-
come as sequencing technology and genotyping algorithms continue
to improve. First, our TR catalog is based on genotypes obtained from
short reads. While this enables reliable genotyping of nearly 2 million
TRs, including TRs longer than Illumina read lengths, it is far from
comprehensive and many long and complex TRs are still missing. In
particular, long alleles with complex structures consisting of multiple
repeat units, such as pathogenic alleles in RFC1 linked to CANVAS43, or
the imperfect repeats at long alleles at the NEXN and CA10 repeats
described above, are still challenging to resolve with short reads. Long
reads such as PacBioHiFi showgreat promise to genotype themajority
of these loci. Intriguingly, the new TRGT method44 can reliably infer
both repeat length and sequence structure even at complex repeats
such as RFC1. However, PacBio data is currently only available for
several dozen 1000GP samples. Second, while the 1000GP data is PCR-
free, WGS from H3Africa is PCR+, likely resulting in high error rates in
particular at homopolymer TRs and preventing reliable assessment of
repeat expansions specific to that cohort. Third, several technical
improvements to the EnsembleTR pipeline may improve future gen-
otyping efforts. For example, it currently onlymerges TR records from
two or more methods if the repeat unit is determined to be identical
for that locus across allmethods. This occasionally fails, for example at
the CSTB promoter TR which is called as a 5-mer by HipSTR but a 12-
mer by adVNTR. Further, EnsembleTR currently prioritizes allele
lengths that canbemost precisely estimated,which in somecases such
as the CA10TR results in incorrectly choosing high-confidence HipSTR
calls over large but inexact expansions identified by ExpansionHunter.
Another future improvement is to incorporate ensemble-calling of TRs
into pangenome-based methods, which have resulted in important
improvements to variant calling at other variant types but are still not
optimized for TRs45.

Overall, this studypresents a dataset of 1.7millionTRs across 3550
diverse individuals, as well as a phased TR-SNP reference haplotype
panel. These calls are made publicly available (see Data Availability)
and will serve as an important resource for future efforts to identify
population-wide patterns of TR variation and study the effect of
genetic variation at TRs on human phenotypes.

Methods
Dataset description
Whole genome sequencing CRAM files for 3202 1000GP samples,
including 1598 males and 1604 females, aligned to GRCh38 were
obtained from European Nucleotide Archive accessions PRJEB31736
(unrelated samples) and PRJEB36890 (related samples). Population
and superpopulation labels for each sample were obtained from the
1000GP data portal (https://www.internationalgenome.org/data-
portal/sample). As described on the 1000GP data portal (https://
www.internationalgenome.org/1000-genomes-summary/), all collec-
tions included in the 1000GP Project followed their ethical guidelines
and model informed consent language.

CRAM files for 348 H3Africa samples are available from the Eur-
opean Genome-Phenome Archive with accession code EGAS
00001002976 and were generated as part of the H3AChip Design
project. The samples in the H3Africa dataset represent individuals
from West, Central, and South African countries. Gender information
for samples in the H3Africa cohort was not available to the authors.
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CRAM files were accessed through the H3Africa Genome Analysis
Working Group. As previously described in the original paper21, all
sampleswere collected after appropriate approvals had been obtained
from local Ethics Boards and Committees in each of the represented
countries, and participants gave informed consent.

Information on age of samples was not available for any of the
cohorts. Gender of samples was not used in any of the downstream
analyses unless otherwise specified.

TR genotyping with published tools
We first used each tool (HipSTR, GangSTR, adVNTR, ExpansionHunter)
to genotype TRs and generate raw calls in VCF format, with a single
VCF file per population.

GangSTR. GangSTR13 v2.4.5 was run on each sample separately with
non-default parameters --str-info str_info_file (see below), --bam-samps
sample_id, --samp-sex sample_sex, and --grid-threshold 250. We gen-
erated an initial set of reference TRs for the hg38 assembly using
Tandem Repeats Finder46 with the following parameters: match=2,
mismatch=5, indel=17, maxperiod=20, pm=80, pi=10 and min-
score=24. We then refined the reference set by applying a series of
filtering steps. First, we removed repeats longer than 1 kb. Then, we
kept a single repeat with the shortest repeat unit length among those
with identical start or stop coordinates. Compound and imperfect
repeats were removed and any extra bases not matching the repeat
motif were trimmed from both sides. Any duplicated repeats were
discarded post-trimming. We then removed any repeats from the
reference that didnot have aminimumnumber of 10, 5, 4, and 3 copies
for homopolymers, di-, tri-, and tetra/penta/hexa-nucleotide repeats
respectively. Finally, we filtered out any overlapping repeats if their
motifs consisted of identical nucleotide types. The reference set is
available at https://s3.amazonaws.com/gangstr/hg38/genomewide/
hg38_ver17.bed.gz.

The file str_info_file contains the per-locus stutter parameters
obtained by training the stutter model on 19 samples using amodified
version of HipSTR v0.6.2 (https://github.com/mikmaksi/HipSTR) with
non-default parameters --stutter-model-only (to skip genotyping),
--chrom (to run separately for each chromosome), --min-reads 20, and
--output-filters. mergeSTR47 v3.0.3 was used to merge the VCF files of
each sample into a unified VCF file for each population.

HipSTR. We used HipSTR8 v0.6.2 with non-default parameter --max-
reads 2000000 toperform joint autosomal STRgenotyping separately
for each population using the hg38 STR reference available at https://
github.com/HipSTR-Tool/HipSTR-references/blob/master/human/
hg38.hipstr_reference.bed.gz.

adVNTR. adVNTR7 v1.4.0 was run on each sample separately with a
custom reference TR set (https://cseweb.ucsd.edu/~mbakhtia/
adVNTR/vntr_data_recommended_loci_hg38.zip). For adVNTR’s refer-
ence set, a total of 10,264 loci were selected. We started with TRs
detectedby TandemRepeats Finder46 to identify an initial set of VNTRs
located in coding, untranslated, or promoter regions. To identify
VNTRs in coding exons and UTRs, we used RefSeq gene coordinates
downloaded from UCSC Table Browser48. For VNTRs within promoter
regions, we considered 500bp upstream of the transcriptional start
sites of genes as the promoter regions. A total of 13,081 VNTRs were
identified, of which 10,262 VNTRs were within the size range for short-
read genotyping. We subsequently added two VNTRs known to be
linked tohumandisease49.mergeSTRv4.0.1was used tomerge theVCF
files of each sample into a single VCF file for each population.

ExpansionHunter. ExpansionHunter12 v5.0.0 was run separately on
each sample using a variant catalog of polymorphic STRs (https://
github.com/Illumina/RepeatCatalogs/blob/release-v0.1.x/polymorphic_

STR/hg38/polymorphic_STR.json). mergeSTR v4.0.1 was used to merge
the VCF files of each sample into a unified VCF file for each population.

Filtering initial TR genotypes
Prior to EnsembleTR calling, all population-level VCF files from each
tool were leniently filtered with dumpSTR47 v3.0.3 with the following
options: --min-locus-callrate 0.75 (to remove TRs with low call rate),
--min-locus-hwep 0.000001 (to remove TRs whose genotypes do not
follow Hardy-Weinberg Equilibrium), and --filter-regions hg38_seg-
dup.sorted.bed.gz --filter-regions-names SEGDUP (to remove TRs
overlapping segmental duplications obtained from the UCSC Genome
Browser50). For GangSTR, we additionally used options --gangstr-filter-
spanbound-only and --gangstr-filter-badCI to remove low quality calls.
For AdVNTR calls, we additionally devised a motif complexity filter,
which discards TRs where the consensus motif has imperfect internal
repeat structures. For example, a VNTR with consensus motif
TTTTTCTTmay actually be capturing a homopolymer repeat resulting
in incorrect VNTR calls.

For this filter, we iteratively mask out characters in the motif and
compute the Hamming distance between the masked motif against a
sliding window of itself, while allowing themasked character tomatch
any other character in the motif. LetM be a motif of length n, we first
compute M’ by masking k characters. For a pre-selected k and i 2
½0, n

k

� �� 1� (using 0-based string indexing), M’i,k is defined as a string
matching the originalmotif except characters that are in the i’th subset
of length k of the motif are masked.

For eachM’i,k , we concatenate it to itself to formM’’i,k to identify
any possible internal repetitions. The motif score is then computed as
follows:

Score Mð Þ= max
i2 0, n

kð Þ�1ð Þ,j2 1,n�1ð Þ
distðM 0

i,k ,M
’’
i,k j : j +n� 1½ �Þ ð1Þ

where dist(x,y) gives the Hamming distance between two strings x and
y with equal length. The value k is determined based on the motif
length n: k = d n

10e if n ≤ 40, else 1.
Finally, Score (M) is normalized by the motif length n, to ensure

values are between 0,1½ �, with values closer to 1 indicating the presence
of an internal repeat structure. We filtered all VNTRs with motif
score > 0.8.

Merging all populations
Finally, filtered population-level VCF files from each tool were merged
using mergeSTR v4.0.1 to generate a single VCF file containing all
samples. HipSTR in some cases adjusts the coordinates of an STR
region to encompass polymorphic flanking regions around the repeat.
In some cases, this can lead to the same STR having slightly different
genomic coordinates in the VCF output for different populations.
Thus, merging HipSTR VCF files across populations required specific
modifications in mergeSTR code. When mergeSTR tries to merge
records from different populations, three scenarios can happen: 1) A
TR has the same starting position and reference allele sequence in
populations A and B, in which case mergeSTR correctly merges them
into one record. 2) A TR has different starting positions in populations
A and B, inwhich casemergeSTRwrites twodistinct records for repeat
X in the output. 2) A TR has the same starting position in populations A
and B, but the end coordinate and reference allele sequence is differ-
ent in these populations, in which case mergeSTR will skip the locus
due to the inconsistency in the reference allele. To address this issue,
we first modified mergeSTR to write the loci with different reference
alleles and identical starting position asmultiple records. Themotified
version of mergeSTR is available at (https://github.com/gymreklab/
TRTools/tree/conf_ref). Then, a python script (https://github.com/
gymreklab/1000Genomes-STRs/blob/main/Hipstr_correction.py) was
used to correct the output VCF file of mergeSTR. First, all the records
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with the same repeat ID are collected, then the largest overlapping
region among all reference alleles is identified and all alleles are trim-
med accordingly. If an allele sequence is empty after trimming, all
genotypes with that allele were considered as no call. Genotypes are
updated based on the new list of alleles and a correctedmerged record
is written in the output VCF file.

Finally, for GangSTR calls, after merging samples from all popu-
lations, we identified repeats with overlapping coordinates and among
them, we only kept the first one.

Ensemble genotyping
EnsembleTR takes VCF files frommultiple TR genotypers as input and
outputs a merged consensus callset. The specific steps of EnsembleTR
are described below.

Identifying overlapping TRs between callsets. EnsembleTR starts by
finding the mutual samples across all callers. Then EnsembleTR walks
through the list of TR loci (records) called by each method in sorted
order to identify sets of mergeable calls. Records are deemed merge-
able if they have overlapping coordinates and identical repeat unit
sequences. EnsembleTR allows at most one record from each caller in
each mergeable set.

Matching alleles. Mergeable sets may contain records from multiple
callers, each of which might have genotyped a locus using slightly dif-
ferent representationsof thepossible alleles (see Fig. 1a for anexample).
To overcome this issue, EnsembleTR forms an internal representation
of the consensus set of alleles such that alleles will be directly com-
parable across methods. It first extends all alleles to the maximum
region spanned by all records. In this way, all alleles from different
callers will start and end at the same position on the genome. It then
extends the original alleles to span this entire region by prepending or
appending flanking sequences extracted from the reference genome.

After identifying mergeable alleles, a representative sequence is
determined for each allele set. If the mergeable set contains a HipSTR
record, EnsembleTR uses the HipSTR allele sequences and discards
alleles from othermethods with the same length as the HipSTR alleles.
This is done becauseHipSTR is the onlymethodof the four usedwhich
reports the actual allele nucleotide sequence rather than only copy
numbers. If there are two HipSTR alleles with the same length but
different sequences in the allele set, both allele sequences are stored,
and the original allele called by HipSTR for each sample is retrieved. In
the case that an allele set contains two different HipSTR alleles, but a
sample does not have a HipSTR call at that locus, we choose the most
common allele of that length output by HipSTR. If a HipSTR record is
not in themergeable set, allele sequences are retrieved fromone of the
available callers randomly.

Ensemble calling. For each sample at each locus in a mergeable set,
EnsembleTR matches calls from each method to the consensus alleles
determined in the previous step. It then determines a consensus
genotype by choosing the diploid genotype with the highest score as
defined below. In case of ties, it gives priority to callers with the order
of HipSTR, GangSTR, ExpansionHunter, and adVNTR. Let Sg be the
score for a diploid genotype g. Sg is computed as

Sg =

P

m2M
Qg,m

P
g 02G

P
m2MQg 0 ,m

*max
m2M

Qg,m
ð2Þ

Where M is the set of methods considered, G is the set of possible
diploid genotypes (pairs of consensus alleles), and Qg,m is the quality
score for method m for genotype g. If the genotype returned by
methodm is not equal to g, thenQg,m is set to 0. Otherwise,Qg,m is set
to a quality score specific to each method. For HipSTR, AdVNTR, and

GangSTR the quality score is obtained from the Q score of the original
VCF file, which ranges from 0 to 1. For ExpansionHunter, we defined a
quality score based on the copy numbers and confidence intervals of
each allele in the called genotype. Each allele’s score is calculated by
the formula:

1
expð4 * CI

CNÞ
ð3Þ

where CN is the copy number and CI is the length of the confidence
interval. Then a final score for the ExpansionHunter genotype is cal-
culated as aweighted averagebetween two alleles’ scores. A coefficient
of 0.8 is used for the lower score and 0.2 for the higher one to give
prominence to the low-quality genotype. We tried coefficients other
than (0.8, 0.2) in score definition and compared their performance in
terms of alignment with the Mendelian Inheritance rates in Expan-
sionHunter calls. While all settings of score coefficients are effective in
capturing the true quality of calls according to MI error rates,
differences in their performance are negligible. EnsembleTR outputs
a new VCF file with the final genotypes with the highest score, along
with the score Sg for each call.

Experimental validation of TR genotypes
For each candidate TR, we obtained primers to amplify the TR and
surrounding region (Supplementary Data 3). A universal M13(−21)
sequence (5’-TGTAAAACGACGGCCAGT-3’) was appended to each
forward primer. We then amplified each TR using a three-primer
reaction previously described51 consisting of the forward primer with
the M13(−21) sequence, the reverse primer, and a third primer con-
sisting of the M13(−21) sequence labeled with a fluorophore.

The forward (with M13(−21) sequence) and reverse primers for
each TR were purchased through IDT. The labeled M13 primers were
obtained through ThermoFisher (#450007) with fluorescent labels
added to the 5’ ends (either FAM,VIC, NED, or PET). TRswere amplified
using the forward and reverse primers plus anM13 primer with one of
the four fluorophores with GoTaq polymerase (Promega #PRM7123)
using PCR program: 94 °C for 5min, followed by 30 cycles of 94 °C for
30 s, 58 °C for 45 s, 72 °C for 45 s, followed by 8 cycles of 94 °C for 30 s,
53 °C for 45 s, 72 °C for 45 s, followed by 72 °C for 30min.

For several loci which were difficult to amplify using the above
conditions, we used separate PCR conditions. Full experimental details
for these loci are provided in Supplementary Methods. For HTT,
C9orf72, and FMR1 we used available kits from Asuragen for geno-
typing (HTT: AmplideX® PCR/CE HTT Kit52, C9orf72: AmplideX® PCR/
CE C9orf72 Kit53, FMR1: AmplideX® PCR/CE FMR1 Kit54).

Fragment analysis of PCR products was performed on a Ther-
moFisher SeqStudio instrument using the GSLIZ1200 ladder, G5 (DS-
33) dye set, and long fragment analysis options. Raw PCRproduct sizes
are given in Supplementary Data 4. Product sizes were converted to
allele lengths using a binning process described in the Supplementary
Methods.

Asuragen results are reported in Supplementary Data 5. To make
Asuragen results (reported in total repeat copy number) comparable
toWGS calls (reported as the number of repeat units relative to hg38),
we applied an offset of −3 and −19 for C9orf72 and HTT genotypes,
respectively. While AmplideX® PCR/CE FMR1 Kit results are also
reported for FMR1, we did not include that locus in our validation
analysis since our WGS calls include only autosomal loci.

For HTT only, we performed a sequence-specific analysis to
compare WGS and experimentally validated genotypes. The repeat
region inHTT consists of the sequence (CAG)nCAACAGCCGCCA(CCG)
n. While EnsembleTR identifies changes in either the CAG or CCG
repeat, the AmplideX® PCR/CE HTT Kit specifically analyzes only the
CAG repeat. Therefore, we extracted the total number of CAG repeats,
rather than the entire repeat length, from EnsembleTR before
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performing comparisons. Notably, the SCA1 locus consists of an
imperfect repeat. While EnsembleTR, HipSTR, and the capillary elec-
trophoresis calls measure the total change in repeat length, GangSTR
considersonly the longestperfect repeat stretch,which likely accounts
for the discrepancy with GangSTR calls at this locus.

Published allele frequencies for forensics and disease-
associated TRs
Population-specific allele frequencies for the CODIS forensics TRs in
EUR, AMR, AFR, and EAS populations were obtained from NIST
STRBase (https://strbase.nist.gov/, https://strbase.nist.gov/1036-
Revised-Allele-Freqs-PopStats-July-19-2017.xlsx). SAS allele fre-
quencies were obtained from literature sources55,56. Control allele fre-
quencies for disease-associated TRs were obtained from various
sources: (1) HTT: Validated repeat lengths were previously obtained13

from Huntington’s Disease patients (dbGaP accession “phs000371.v2.
p1”). We used non-expanded alleles from table pht002988.v1.p1.c1 to
estimate control allele frequencies in European samples. For other
populations, allele frequencies were extracted from Masuda, et al. 57

(EAS), Baine, et al. (AFR and H3Africa)58, Saleem, et al. 59 (SAS), and
Paradisi, et al. 60 (AMR); (2) DMPK: Allele frequencies were obtained
from Ambrose, et al. 61 (EAS), Acton, et al. 62 (AFR), andMagana, et al. 63

(AMR); (3) PPP2R2B: Allele frequencies for Europeans were obtained
fromMajounie, et al. 64 Similarity between published allele frequencies
and those obtained from EnsembleTR was measured using Jensen-
Shannon divergence, implemented in the python scipy library65 v1.5.2.
To obtain a null value for the divergence, for each locus/population
pair, we first calculated the average Jensen-Shannon divergence
between its EnsembleTR frequency and the published frequency for all
other locus/population pairs. We then calculated the mean over
all pairs.

Mendelian inheritance analysis
We analyzed 602 trios available in 1000GP. For each trio, we only
assess the Mendelian Inheritance if 1) calls were available for all three
samples and 2) at least one of the samples is not homozygous for the
reference allele. The score assigned to each trio is the minimum score
reported by EnsembleTR among all samples in the trio. In all analyses
except the TR expansion analysis, TRs with Mendelian error rates >5%
were filtered, leaving 1,443,686 total TR loci.

Characterization of population-specific TR variation
We performed principal component analysis on a matrix Xn,m where n
is the number of TR loci andm is the number of samples. Each cell ci,j of
X denotes the sum of allele lengths for a diploid call of the j th sample
at the i th locus. In the caseof a no call, ci,j is set toNaN.Due to the large
size of X, we used a memory-efficient method, Incremental Principal
Component Analysis (IPCA), implemented in the python scikit-learn
library66 v1.0.2.

Inspecting TRs not matching hg38
To validate the 196 TRs forwhich themajority of alleles ( > 95%) differ
bymore than 2 repeat units from the hg38 reference (Supplementary
Data 10), we examined the length of those TRs separately in both the
T2T23 reference and PacBio HiFi reads for sample HG00438 obtained
from the Human Pangenome Reference Consortium67 (HPRC)
(https://s3-us-west-2.amazonaws.com/human-pangenomics/index.
html?prefix=working/HPRC/). For the PacBio HiFi dataset, we used
the Integrative Genomics Viewer68 tomanually inspect reads aligning
to each TR. To compare to the T2T reference v1.1 (https://s3-us-west-
2.amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/
chm13.draft_v1.1.fasta.gz), hg38 coordinates of the 196 TRs were
converted to T2T v1.0 first and then converted to v1.1 using the
UCSC liftOver50 utility with the corresponding chain files at http://t2t.
gi.ucsc.edu/chm13/hub/t2t-chm13-v1.0/hg38Lastz/hg38.t2t-chm13-

v1.0.over.chain.gz and https://s3-us-west-2.amazonaws.com/human-
pangenomics/T2T/CHM13/assemblies/changes/v1.0_to_v1.1/v1.0_to_
v1.1_rdna_merged.chain. For TRs that failed to convert due to partial
deletion, we added additional flanking sequences (up to 1000 bp) to
the start and end coordinates and reattempted liftOver, which
resulted in successful conversion of 195/196 TRs to T2T v1.1. One TR
failed due to deletion in the T2T v1.1 reference. For each TR, We used
samtools69 v1.5 to extract its sequence with flanking regions from
both the T2T v1.1 and hg38 references and compared the two
sequences using BLASTN70 v2.13.0 + . We used a similar method to
compare the TR lengths between the T2T v1.1 reference and the
major alleles called in EnsembleTR by replacing the hg38 reference
with the EnsembleTR major allele at each TR.

Detecting population-specific expansions
For each TR with repeat unit length >1 bp, we defined an expanded
allele to be any allele with copy number greater thanQ3 + 3*IQR, where
Q3 is the third quartile, and IQR is the difference between the third and
first quartile. We calculated the frequency of expansions in African
(1000GP AFR and H3Africa) and Non-African populations (all other
1000GP super-populations). We defined TRs with population-specific
expansions as those forwhich 1) the expansion threshold copy number
(Q3 + 3*IQR) is greater than 10, 2) the frequency of expansions is
greater than 0.01 in at least one population and, 3) the expansion
frequency in one population is at least 10 times larger than the other
population. Gene annotations for repeat expansions were based on
Ensembl version 108 available at https://ftp.ensembl.org/pub/release-
108/gtf/homo_sapiens/Homo_sapiens.GRCh38.108.gtf.gz.

To support these results, we applied two additional TR genoty-
pers (STRetch24 and ExpansionHunterDenovo11) to identify expansions
in the H3Africa cohort. STRetch v.0.4.0 takes as input a reference
genomewith decoy STR contigs of length 2000bp, aCRAMorBAM file
and a bed file with genome locations of TRs. A STRetch STR catalog
was generated for GRCh38 and the recommended pipeline for WGS
was run for each sample.We ran STRetch twice, once using 143 control
samples provided and oncewithout any controls and using all samples
in one batch. However, due to the distinct nature of the sequencing
data for control samples in STRetch, which were PCR-free unlike the
H3Africa samples, we consider the results from the second analysis to
be more reliable and therefore use them for downstream analysis.
STRetch results for each samplewere thenmerged into a singlefile and
filtered using the criteria p_adj <0.05, locuscoverage >=3 and outlier
Z-score >= 8. The filtered loci were annotated using the OrganismDbi71

R package v1.40.0.
ExpansionHunter Denovo v.0.9.0 was used to generate genome-

wide STR profiles for each sample with default parameters of --min-
unit-len 2, --max-unit-len 20, --min-anchor-mapq 50, and --max-irr-
mapq 40 in order to restrict the search ofmotif lengths of up to 20bp.
Unlike STRetch, ExpansionHunter Denovo does not require prior
knowledgeof the location of repeats in the genome. Amanifest filewas
synthesized where each sample was labeled as a case and STR profiles
were merged to allow comparisons among samples after read depth
normalization. Outlier locus and motif analyses were performed using
scripts available in the ExpansionHunter Denovo package and the
output was ranked using Z scores. Annotation of locus-based analysis
results was done using ANNOVAR72. To find the overlap between our
set of expansions and expansions found by ExpansionHunter Denovo
and STRetch, for each repeat expansion r in our list, we checked if
there is any expanded repeat reported by either ExpansionHunter
Denovo or STRetch that meets two conditions: 1) it is located in the
surrounding ±1000bp window of r, 2) the repeat unit sequence of
both expansions are the same.

To validate the candidate repeat expansion in an intron of CA10,
we designed primers to amplify the TR and surrounding region using
the three-primer reaction described above. consisting of the forward
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primer with the M13(-21) sequence (5’-TGTAAAACGACGGCCAGTTG
GCTCCAAGTAGCACATCTT-3’), the reverse primer (5’-TGCAACTAG
CGGTGACCTTA-3’), and a third primer consisting of the M13(-21)
sequence labeledwith a fluorophore. Primers were purchased through
IDT. The labeled M13 primers were obtained through ThermoFisher
(#450007) with FAM fluorescent labels added to the 5’ ends. The locus
was amplified with GoTaq polymerase (Promega #PRM7123) using the
PCR program: 94 °C for 5min, followed by 30 cycles of 94 °C for 30 s,
59 °C for 45 s, 72 °C for 45 s, followedby 8 cycles of 94 °C for 30 s, 53 °C
for 45 s, 72 °C for 45 s, followed by 72 °C for 30min. We tested on
4 samples from 1000GP (HG01119, NA20847, NA19434, NA12878).
Fragment analysis of PCR products was performed on a ThermoFisher
SeqStudio instrument using the GSLIZ1200 ladder, G5 (DS-33) dye set,
and long fragment analysis options. We used the reference allele
AAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC
AGCAGCAGCAGCAGCAGCAG (22 repeats) to set up bins for analysis
using the Genemapper software.

Visualizing repeat composition with TRviz
We used TRviz v1.0.126, a python library to visualize TR alleles, for a
subset of 27 1000GP samples.

Finding sequence determinants of TR heterozygosity
We summarized the variability of each TR using heterozygosity,
computed as 1�Pn

i = 1p
2
i , where pi is the frequency of allele i and n is

the total number of alleles. Heterozygosity was computed using the
statSTR utility from TRTools47 v4.2.1 with flags --het --vcftype hipstr.

For classifying dinucleotide TRs as stable vs. polymorphic, we
usedpure (no sequence imperfections) dinucleotide STRswith lengths
of 12-17 bp based on the HipSTR STR reference set that were geno-
typed in at least 3000 samples between 1000GP and H3 Africa. The 82
perfect ‘GC’motif STRswere omitted to prevent overfitting and due to
the low number of those TRs.

HOMER30 v4.11.1 was run twice for each TR repeat unit type (AC/
GT, AT, and AG/CT), alternating having the variable or stable STRs as
the foreground set and the other as the background. For each
sequence, we input either the forward or reverse complement
sequence such that the TR repeat unit matched the canonicalized
repeat unit sequence (AC for AC/GT repeats, AT for AT repeats, and AG
forAG/CT repeats). The input sequences for eachgroupwere the64 bp
flanks on either side of the TRs. The sequences before and after each
STRwere separate examples but part of the same variable or stable set.
HOMER was run to find motifs 4-12 bases long without GC correction
with the command findMotifs.pl <targetSequences.fa> fasta <output
directory > -fasta <background.fa > -len 4,5,6,7,8,9,10,11,12 -noweight.

Our neural network model consists of a 1-D CNN with inception
blocks73 implemented with Pytorch. Instead of applying convolutional
kernels of a single width, inception blocks in parallel apply filters of
multiple widths in addition to a pooling and single-width convolution.
Our best performingmodel used six inception blocks with kernel sizes
5, 9, and 15 followedby global average pooling and a single linear layer.
The data was split 70:15:15 into train, validation, and test splits and
reverse complements were added to the same split as the forward
strand sample.

To blind the model from STR length and focus on nearby
sequence information, themodel input is the 58 bp flanking the STR
and the 6 directly adjacent bases that make up the STR from both
flanks. The model input is then these two flank sequences con-
catenated together into a single sequence. The input was repre-
sented using one-hot encoding, so a zero matrix was used as a
baseline for generating attribution scores with Integrated
Gradients74. We found that using a global average pooling layer
instead of a global max pooling layer led to more informative
attribution scores.

eQTL analysis in the GEUVADIS cohort
We obtained gene-level reads per kilobase of transcript per million
mapped reads (RPKM) values for 452 unrelated individuals generated
from lymphoblastoid cell lines by the GEUVADIS project31 (https://
www.internationalgenome.org/data-portal/data-collection/geuvadis).
Duplicated samples were removed by arbitrarily keeping the first
dataset for each. Genes with RPKM above 0.1 in more than 10 samples
were kept for downstream analysis. Expression values for remaining
genes were quantile-normalized on sample level followed by quantile-
normalization to a standard normal distribution separately for each
gene. Genes overlapping segmental duplications were removed, and
analysiswas restricted toprotein-codinggenes basedonGENCODEv12
annotation. Gene coordinates were adjusted from hg19 to hg38 using
the liftOver available from theUCSCGenomeBrowser50. After filtering,
12,607 genes remained for analysis.

To control for population structure, we obtained publicly available
genotype data on 2318 unrelated individuals from the 1000GP geno-
typed with Omni 2.5 SNP genotyping arrays (http://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/).
We removed all indels, multiallelic SNPs, and SNPs with a minor allele
frequency of less than 5%. We then used plink75 v.1.90b3.44 to subset
these remaining SNPs to a set of SNPs in approximate linkage equili-
brium with the command --indep 50 5 2. We excluded any remaining
SNPs with a missingness rate of 5% or greater. We lastly ran principal
component analysis using smartpca76,77 v.13050withdefault parameters.

Association tests were performed separately on the African and
European populations. For each TR, we tested for association with
each gene within 100 kb. We performed a linear regression for each
test between the TR dosage (the sum of allele lengths relative to the
hg38 reference genome) and normalized gene expression. We inclu-
ded the top 10 genotypeprincipal components as computed above, 44
PEER factors78, and sex as covariates. The number of PEER factors was
chosen based on the recommended 1/10 of the sample size. PEER
factors were calculated using PEER v1.0 based on the normalized gene
expression data of all 452 samples. In cases where fewer than 50 sam-
ples had non-missing TR genotypes, the TRwas removed fromanalysis
in that population.

To identify individual significant eTRs, we obtained adjusted
p-values using the Benjamini-Hochberg approach for controlling the
false discovery rate79 applied to P-values for all TR-gene pairs sepa-
rately in Europeans and Africans. To identify gene-level significant
eTRs, we followed the steps in our previous eTR analyses16,32. For each
gene, we determined the TR association with the strongest P-value.
This P-value was adjusted using a Bonferroni correction for the num-
ber of TRs tested per gene to give a P-value for observing a single eTR
association for each gene. We then used the list of adjusted P-values
(one per gene) as input to the Benjamini-Hochbergmethod to obtain a
q-value for the best eTR for each gene.

eTR summary statistics based on the GTEx dataset used for effect
size comparisons were obtained from Supplementary Dataset 2 of
Fotsing et al. 16. TR coordinates were lifted over to hg38 for compar-
ison. Because coordinates can vary slightly between callsets, we iden-
tified TRs as overlapping if their coordinates were within 20 bp.

Phasing and imputation
Phased SNPs for 1000GP samples were downloaded from the
1000GP FTP server (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/1000G_2504_high_coverage/working/20201028_3202_
phased). We used Beagle v4.080 to phase each TR separately. To
produce a high-quality TR callset for phasing, we performed addi-
tional filtering to remove all calls with quality score below 0.9, TRs
with call rate below 0.8, and TRs with average Mendelian Error rate >
5%. We manually included three pathogenic loci (HTT, SCA1, and
SCA3) that did not meet the filtering criteria.

Article https://doi.org/10.1038/s41467-023-42278-3

Nature Communications |         (2023) 14:6711 12

https://www.internationalgenome.org/data-portal/data-collection/geuvadis
https://www.internationalgenome.org/data-portal/data-collection/geuvadis
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased


Our pipeline is based on our previously published framework35

and takes the unphased TR and surrounding phased SNPs froma 50kb
window centered at the TR as input (--gt). We set the --usephase
parameter to True to allow Beagle to use the phase information of
provided phased SNPs to phase the target TR. This step outputs a
phased VCF file containing both SNPs and the target TR. We apply a
custom script to ensure the phase order matches the original SNP
input. We then extract and concatenate phased TR genotypes from
each locus and combine them with the original phased SNPs into a
single phased VCF file. In order to complywith Beagle’s requirement of
amaximumof 126 alleles per record,manualmodifications weremade
to the VCF entries for HTT and SCA1. The alteration involved unifying
alleles with the same length but different sequences, and subsequently
updating the corresponding genotypes to meet the specified
requirement.

We thenusedBeagle v5.481 to performa Leave-One-Out analysis to
assess concordance. This analysis was restricted to Chromosome 21
due to thehigh computationalburden. For each sample S, phasedSNPs
+TRs for all samples except S are given to Beagle as --ref and phased
SNPs for sample S are given to Beagle as reference panel (--gt). Beagle
will use these inputs to impute themissing TRs for S. After performing
imputation for n = 100 randomly chosen samples from each popula-
tion (excluding trio samples), concordance for each locus is computed
as follows: For each sample Si,i 2 f1::ng, let xij be the EnsembleTR
genotype and yij be the imputed TR genotype for sample Si at the j th
locus. Each genotype for a diploid sample contains two alleles, there-
fore we will define xij = ðxij1, xij2Þ and yij = ðyij1, yij2Þ. Then concordance
cij for Si at the j th locus is computed as: 1 if both genotypes match:
sortedðxij1, xij2Þ= = sortedðyij1, yij2Þ; 0 if neither imputed allelematched
an EnsembleTR allele; else 0.5 if one but not both imputed alleles
matched the EnsembleTR alleles. Total concordance for the j th locus
cj is computed by averaging over concordance values for each sam-
ple cj =

1
n

P

i
cij .

To compute LD between each TR and a nearby SNP, we calculated
the squared Pearson correlation coefficient between the SNP and TR
genotype vectors, where each vector has 2n elements, n is the number
of samples and each sample has two alleles. We used the phased and
imputed TR genotypes for this analysis and we selected the SNP with
the highest r2 as the candidate tag SNP for each target TR.

To evaluate imputation of trait-associated TRs (Supplementary
Data 17), we obtained coordinates of 95 blood-trait associated loci
from Supplementary Table 4 of Margoliash, et al. 36. TR coordinates
were converted from hg19 to hg38 using the UCSC liftOver tool50.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TR genotypes, the phased TR-SNP reference panel, and population-
specific summary statistics generated in this study are available from
the EnsembleTR GitHub webpage [https://github.com/gymrek-lab/
EnsembleTR]. Summary statistics are alsomade available in browsable
format at WebSTR [https://webstr.ucsd.edu]. Summary statistics of all
tested TR-gene pairs in African and European samples are deposited in
the Figshare database [https://figshare.com/articles/dataset/
1000GenomesH3Africa_SuppData16_zip/24164367]. The WGS data-
sets for the 1000GP samples used in this study are available from the
European Nucleotide Archive under accessions PRJEB31736 (unrelated
samples) and PRJEB36890 (related samples). The H3Africa WGS data-
sets used in this study are available in the EuropeanGenome-Phenome
Archive under accession EGAS00001002976. Geuvadis datasets used
in this study are available from the 1000GP website [https://www.
internationalgenome.org/data-portal/data-collection/geuvadis]. Ana-
lyses are based on the GRCh38 reference genome [https://storage.

googleapis.com/genomics-public-data/resources/broad/hg38/v0/
Homo_sapiens_assembly38.fasta].

Code availability
EnsembleTR is available on GitHub: https://github.com/gymrek-lab/
EnsembleTR82.
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