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ARTICLE OPEN

An electrostatic spectral neighbor analysis potential for lithium
nitride
Zhi Deng1, Chi Chen1, Xiang-Guo Li1 and Shyue Ping Ong 1

Machine-learned interatomic potentials based on local environment descriptors represent a transformative leap over traditional
potentials based on rigid functional forms in terms of prediction accuracy. However, a challenge in their application to ionic
systems is the treatment of long-ranged electrostatics. Here, we present a highly accurate electrostatic Spectral Neighbor Analysis
Potential (eSNAP) for ionic α-Li3N, a prototypical lithium superionic conductor of interest as a solid electrolyte or coating for
rechargeable lithium-ion batteries. We show that the optimized eSNAP model substantially outperforms traditional
Coulomb–Buckingham potential in the prediction of energies and forces, as well as various properties, such as lattice constants,
elastic constants, and phonon dispersion curves. We also demonstrate the application of eSNAP in long-time, large-scale Li diffusion
studies in Li3N, providing atomistic insights into measures of concerted ionic motion (e.g., the Haven ratio) and grain boundary
diffusion. This work aims at providing an approach to developing quantum-accurate force fields for multi-component ionic systems
under the SNAP formalism, enabling large-scale atomistic simulations for such systems.

npj Computational Materials            (2019) 5:75 ; https://doi.org/10.1038/s41524-019-0212-1

INTRODUCTION
A potential energy surface (PES) that yields potential energy of a
system of atoms with given atomic coordinates is the fundamental
enabler for atomistic simulation methods. In principle, ab initio or
first principles methods that solve the Schrödinger equation,
typically some approximation within the Kohn-Sham density
functional theory (DFT) framework,1,2 can be applied to directly
calculate the PES. While such methods are highly accurate and
transferable across diverse chemistries and bonding types, their
high computational cost limit their application in molecular
dynamics (MD) simulations to relatively small and simple systems
containing up to a few hundreds of atoms and sub-nanosecond
time scales. Empirical interatomic potentials, on the other hand,
are a much cheaper alternative. The functional form of these
potentials are drastically simplified with only a few fitting
parameters to satisfy physical considerations.3,4 However, the
accuracy of the empirical potentials is necessarily limited by the
approximations made in selecting the functional form, which are
generally not transferable to another system with different
bonding types.
In recent years, an alternative approach has gained popularity in

constructing interatomic potentials with improved transferabil-
ity.5–10 In this approach, the atomic coordinates are featurized
using local environment descriptors that are invariant to transla-
tions, rotations and permutations of homo-nuclear atoms, and are
differentiable and unique.8,11 A machine learning model is then
trained to map the structural features to data (energies, forces,
etc.) from first principles calculations. Such potentials have been
demonstrated to achieve accuracy close to first principles
methods at much lower computational costs.5,7,9,10

The coefficients of the bispectrum of local atomic density were
first applied in the Gaussian approximation potential by Bartók
et al.7 Thompson et al. later showed that a linear model of

bispectrum coefficients from the lowest order—the so-called
spectral neighbor analysis potential (SNAP)—can accurately
reproduce DFT energies and forces as well as a variety of
calculated properties (e.g., elastic constants and migration barrier
for screw dislocations) in bcc Ta and W.9,12 More recently, the
current authors have extended the SNAP formalism to bcc Mo, fcc
Ni, and Cu, and the binary fcc Ni-bcc Mo alloy systems and
showed that it outperforms traditional embedded atom method
(EAM) and modified EAM potentials across a wide range of
properties.13,14 Thus far, SNAP models have mainly been devel-
oped for metallic systems.
For ionic systems, a common strategy in constructing intera-

tomic potentials is to incorporate long-ranged electrostatic
interactions (e.g., through the use of the Ewald summation) on
top of energy model. This has been done for both traditional
empirical models15,16 as well as modern local atomic environment
descriptor-based potentials (e.g., GAP for the mixed ionic-covalent
GaN7 and neural network potential for ZnO6). In this work, we
develop a highly accurate electrostatic SNAP (eSNAP) model for
ionic α-Li3N (see Fig. 1a). α-Li3N is one of the earliest lithium
superionic conductors ever reported,17 and remains a promising
solid electrolyte/anode coating candidate today due to its stability
against Li metal.18,19 A highly accurate potential model for α-Li3N
would enable large-scale, long-time-scale diffusion studies of this
highly important prototypical lithium conductor, as well as serve
as a platform in which to develop similar potentials for more
complex systems.

RESULTS
Optimized model parameters
In our proposed electrostatic SNAP (eSNAP) model, we write the
total potential energy Ep as the sum of the electrostatic
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contributions and the local energy (SNAP) due to the variations in
atomic local environments, as follows:

Ep ¼ γEel þ ESNAP (1)

Fj ¼ �∇jEp ¼ �γ∇jEel � Fj;SNAP (2)

where Eel and ESNAP are the electrostatic energy computed using
the Ewald summation approach20 and the energy from SNAP,
respectively, and γ is an effective screening prefactor for
electrostatic interactions. An iterative procedure was developed
to fit all model parameters using total energies and forces from
DFT calculations until the training and test errors are converged
(see Methods section for details).
For Li3N, we calculated the electrostatic energy by assigning

formal charges 1 and −3 to Li and N, respectively. For highly ionic
α-Li3N, we find that assigning formal charges, with screening
accounted for via a fitted parameter (γ in Eq. (1)), results in a
simpler, more stable potential model than variable charge models
such as the charge equilibration (QEq)21 method. The narrow
charge distribution of Li atoms from Bader analysis (see Fig. S1)
also supports the usage of fixed charge. The final hyperparameters
and coefficients for the optimized eSNAP model are given in
Table 1. The optimized effective screening parameter γ is 0.057.

Energy and force prediction
Figure 2a, b shows the comparison between DFT calculated and
eSNAP predicted energies and forces on both training and test
dataset in the final iteration. Both energy and force predictions
agree well with those from DFT calculations, indicating the eSNAP
model has successfully captured the fundamental relationship
between atomic environment and potential energy/atomic forces.
The mean absolute errors (MAEs) on energies and forces reached
convergence after only two iterations, as shown in Fig. 2c, d. In
comparison, the MAEs between DFT and the
Coulomb–Buckingham potential by ref. 22 on the initial training
configuration pool are substantially higher for both energies
(22 meV/atom) and forces (0.48 eV/Å).

Structural properties
Table 2 compares the computed physical properties of α-Li3N with
different potential energy surfaces. The lattice constants calcu-
lated from eSNAP agree with those from DFT and experiments.23

The calculated elastic constants from eSNAP also match

Fig. 1 a Unit cell of α-Li3N (space group: P6/mmm). Green: Li; gray:
N. b Intra-planar and c inter-planar Frenkel defect configuration. The
vacancy (white dashed circle X) forms at Li1 site for both cases, while
the interstitial (red) forms at Li2 and Li1 site for intra-planar and
inter-planar configurations, respectively

Table 1. Final hyperparameters and coefficients of SNAP

k 2j1 2j2 2j Li (w= 0.1, R= 2.0) N (w=−0.1, R= 2.8)

βLi, k βN, k

−41.973239307589510000 5.070489350565292000

0 0 0 −0.006975291543708552 1.456429449741217000

1 0 1 1.943443830363772200 −0.741751895178898800

1 1 2 1.943960665209158600 1.391487252718133000

2 0 2 1.896372127297504700 −0.057993919814256490

2 1 3 0.818415025331073900 4.490489555500009000

2 2 2 −0.115525745627534120 1.038809274414984000

2 2 4 0.024662060558673055 2.017342084202995000

3 0 3 0.645913664832655000 0.297752638364790700

3 1 4 0.029473213939390678 2.234672087302177000

3 2 3 −0.835569404051590300 0.864212802963693300

3 2 5 0.260421577039490040 2.027941600818144300

3 3 4 −0.531877413286821100 0.534495092798581400

3 3 6 0.297955449169754300 0.299436757239075040

4 0 4 0.100238669102941730 −0.149453371719054230

4 1 5 −0.569297582876690400 0.541280152554589700

4 2 4 −0.683610621813019800 0.181446484735933700

4 2 6 0.076839221845524830 0.324534968809946260

4 3 5 0.157477937603063170 −0.112365239839474810

4 4 4 0.245396146771298870 0.143146336052880570

4 4 6 0.218995247596486900 0.008000929122986318

5 0 5 −0.203265539796318980 −0.191267051611771400

5 1 6 −0.232726613086012750 −0.167152854094159280

5 2 5 −0.352838031703020600 −0.369717312625315600

5 3 6 0.112930317776087000 −0.123035057771956320

5 4 5 0.537951697554698000 0.559745649003179100

5 5 6 0.082284784064962830 0.290496672932174600

6 0 6 −0.178966722576012600 −0.029092905917972420

6 2 6 −0.283676416415676500 −0.180134374249985380

6 4 6 0.089012939842931950 0.252331183046023500

6 6 6 0.044042461635336136 0.008318824055866198

Fig. 2 Energy and force prediction errors for eSNAP. Comparisons
between DFT and eSNAP predictions for a energies and b forces on
both training and test dataset in the final iteration. Convergence of
the test and training MAEs for c energies and d forces with
iteration number
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reasonably well with DFT calculated and experimental values.24

This excellent agreement on structural properties can be expected
from the fact that the energies of unit cells with various distortions
have been fed to the model with a large sample weight. In
comparison, the lattice constants and elastic constants from the
Coulomb–Buckingham potential match poorly with both DFT and
experimental values, despite the fact that these physical proper-
ties were used to determine the potential parameters.22

We have also calculated the formation energy of Li Frenkel
defects and the migration barrier of these defects. We considered
two Frenkel configurations where a vacancy is introduced on a
Li2 site and the interstitial Li is located at either Li2 site (intra-
planar, Fig. 1b) or Li1 site (inter-planar, Fig. 1c), and all defect
configurations are fully relaxed within each potential. The eSNAP
model yields reasonably close formation energy of intra-planar
defect to the DFT value, but slightly overestimates the value of
inter-planar defect by 0.12 eV. On the other hand, the
Coulomb–Buckingham potential underestimates the defect for-
mation energies, likely due to the use of unsatisfactory lattice
constants in building the defect configurations. Using the nudged
elastic band (NEB) method,25 we calculated the migration barrier
of two types of hops, namely intra-planar (Li2 to Li2) vacancy
migration and inter-planar (Li1 to Li2) Li interstitial migration. As
shown in Table 2, the eSNAP barrier for intra-planar vacancy
migration is in good agreement with the DFT barrier, while the
eSNAP barrier for inter-planar interstitial migration underestimates
the DFT barrier by 0.13 eV. We note that the eSNAP defect
formation energies and migration barriers for the dominant intra-
planar diffusion direction are reasonably close to the DFT values,
while the overestimation of the inter-planar defect formation
energy by eSNAP is compensated by the underestimation of the
vacancy migration barrier. Similar errors and error compensations
have been reported in prior non-electrostatic SNAP models on
metals such as Mo and Ni.13,14 On the other hand, we are unable
to converge the NEB barriers using the Coulomb–Buckingham
potential due to its inability to model the transition states.
Finally, Fig. 3 compares the calculated phonon dispersion

curves of α-Li3N from eSNAP with those from DFT calculations. The
phonon dispersion curves were calculated using the finite
displacement approach on a 3 × 3 × 3 supercell as implemented
in the phonopy package.26 We find that the phonon dispersion
curves calculated from eSNAP are in good agreement with that
from DFT. The only discrepancy is the imaginary phonon mode at
Γ point observed in DFT phonon dispersion. According to Wu
et al.,27 this lattice instability is associated with the vibration of
Li2 sites along the c axis, resulting in a more stable phase that is

only 0.3 meV/atom lower in energy after displacing Li2 site by
~0.1 Å. This energy difference is well within the energy prediction
error of the eSNAP model. We also note that the experimentally
measured phonon dispersion curves at room temperature do not
exhibit this lattice instability.24 In contrast, the phonon dispersion
curve calculated from the Coulomb–Buckingham potential show
severely overestimated frequencies (Fig. S2) due to its unsatisfac-
tory force prediction.

Bulk diffusion
MD simulations were performed using the optimized eSNAP to
investigate Li diffusion in bulk α-Li3N. Built from the unit cell with
equilibrium volume, the simulation box is a 5 × 5 × 5 supercell of
bulk α-Li3N containing 500 atoms. MD simulations were carried
out at elevated temperatures from 600 to 1200 K in an NVT
ensemble for 1 ns long.
We first validated the eSNAP by comparing the mean square

displacement (MSD) and diffusivities obtained from eSNAP MD
simulations with those obtained from ab initio molecular dynamics
(AIMD) simulations at high temperatures (1000 and 1200 K). Runs at
lower temperatures were not chosen due to the poor convergence
of diffusivity at limited simulation length (40 ps). It should be noted
that even though 1200 K is above the melting point of Li3N, the
lattice did not melt in either AIMD or eSNAP MD during the short
period of simulations. As shown in Fig. S3, the generally high Li
mobility and anisotropic diffusion in α-Li3N are successfully
reproduced with eSNAP MD simulations. The tracer diffusivities
(given by the slope of the MSD with respect to time) from eSNAP
MD (1.48 × 10−4 cm2/s at 1000 K, 2.35 × 10−4 cm2/s at 1200 K) are in
generally good agreement with those from AIMD (1.28 × 10−4 cm2/s
at 1000 K, 2.16 × 10−4 cm2/s at 1200 K), showing a slight over-
estimation of about 15% and 8% at 1000 K and 1200 K, respectively.
Beyond tracer diffusivities, the orders of magnitude lower

computational cost of the eSNAP relative to DFT affords us the
capability to compute the charge diffusivity Dσ. For each
temperature, 100 independent simulations were performed
starting from different initial velocities. Diffusivities were obtained
by averaging square displacements over all simulations at a
particular temperature. Figure 4 plots the predicted Haven ratio
and Arrhenius plot for Li3N from eSNAP MD simulations. The
activation energies, extrapolated room temperature conductivities
and average Haven ratio across all temperatures are tabulated in
Table 3. The anisotropic diffusion in α-Li3N observed experimen-
tally28,29 is reproduced in many aspects, including the magnitude
of diffusivity, activation energy, and Haven ratio. The higher
diffusivities and lower activation energy in the direction perpen-
dicular to c axis is consistent with the lower Haven ratio found. The
activation energy perpendicular to c axis is close to the one in
single crystal measurement, though the value parallel to c axis is

Table 2. Calculated structural properties from different potentials and
lattice constants23 and elastic constants24 from experimental
measurements

DFT eSNAP Coul–Buck Exp.

Lattice constant (Å) a 3.641 3.641 3.528 3.648

c 3.874 3.872 3.628 3.875

Elastic
constant (GPa)

c11 123 116 165 114

c33 137 144 193 118

c44 17 17 19 17

c66 48 39 53 38

Defect formation
energy (eV)

Intra-planar 0.60 0.64 0.44

Inter-planar 0.51 0.63 0.46

Defect migration
barrier (eV)

Intra-planar
(vacancy)

0.04 0.04 N/A

Inter-planar
(interstitial)

0.22 0.09 N/A

Fig. 3 Phonon dispersion curves of α-Li3N calculated from DFT
and eSNAP
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much lower compared with experiments.28 The lower activation
energies lead to much higher extrapolated room temperature
ionic conductivity for both directions. The Haven ratios obtained
from eSNAP MD are reasonably close to the NMR measured
values. We note that the activation energies obtained from MD
simulations are lower than the sum of defect formation and
migration energies. This is a result of the concerted motion of ions
lowering the energy barriers, which is confirmed by the low Haven
ratio. In comparison, we also performed a similar series of MD
simulations with the Coulomb–Buckingham potential,22 and the
results significantly underestimate the fast ionic conduction in α-
Li3N, and significantly overestimates the Haven ratio. In particular,
the Haven ratio for the direction parallel to the c-axis is computed
to be >1 using the Coulomb–Buckingham potential.

Grain boundary diffusion
To investigate grain boundary (GB) diffusion, we first computed
the GB energies of two low Σ twist GB configurations—Σ4 [1000]
and Σ7 [0001]. Both configurations are fully relaxed using DFT and
eSNAP. The eSNAP-calculated GB energies for twist Σ4 [1000] and
Σ7 [0001] GBs are 1.41 and 0.85 J m−2, respectively, in good
agreement with the DFT values of 1.64 and 0.86 J m−2,
respectively.

The lower-energy twist Σ7 [0001] GB is then used in large-scale
diffusion studies, as shown in Fig. 5. The simulation box (Fig. 5a)
contains 5040 atoms in total. Due to the periodic boundary
conditions, two GBs are separated by 10× lattice vector c present
in the box. NVT MD simulations were carried out at 300 K, with
thermalization lasting for 30 ps followed by the production
simulation of 1 ns. We find that the MSD of Li atoms within the
GB plane is much higher than that in the bulk region, as shown in
Fig. 5b, c, and there are few migration events occurring between
the GB layer and the bulk layers. From the MSD, we estimate the
2D Li self-diffusivity within the twist GB to be 7.09 × 10−8 cm2/s,
about three times of extrapolated total value (2.24 × 10−8 cm2/s in
3D) in the bulk at 300 K. These results indicate that grain
boundaries may provide a rapid pathway for Li diffusion in α-Li3N.

DISCUSSION
In this work, we demonstrate that modern potentials based on
local environment descriptors such as the SNAP can be adapted
for ionic systems by incorporating long-range electrostatics.
The introduction of γ as a hyperparameter offers more flexibility

to the potential model in order to achieve higher predictive
power. Physically, γ can be interpreted as the inverse of dielectric
constant. Indeed, the optimized value of γ is 0.057, which implies
an effective dielectric constant of 17.5, reasonably close to the
experimental dielectric of α-Li3N of 14.30 We note that while the
experimentally measured dielectric constant could have been
provided as an input to model development, the goal of this effort
is to develop a general approach to training eSNAP models for
materials, some of which may not have measured dielectric
constants. We have also attempted to fit a regular SNAP model for
Li3N without the use of electrostatic interactions, but using a
larger cutoff radius of 8 Å to allow the model to learn screened
electrostatic interactions. The resulting SNAP model has significant
higher MAEs in energies and forces of 2.3 meV/atom and 0.15 eV
Å−1, respectively.
Unlike earlier works where the sample weights are treated as

hyperparameters optimized toward structural properties (lattice
constants, elastic constants, etc.),13,14 we used fixed sample
weights in linear regression as the different scales between
energies and forces are unified by using standardized z-scores as
targets. Sample weight assignment then effectively becomes an
exercise in assigning importance of matching various computed

Fig. 4 a Haven ratio and b Arrhenius plot for Li charge diffusivity in
bulk α-Li3N obtained from eSNAP MD simulations

Table 3. Bulk diffusion results from MD simulations using eSNAP and
Coulomb–Buckingham potential and single crystal dc conductivity28

and NMR29 measurements

eSNAP Coul–Buck Exp.

Ea (eV) ⊥c 0.255 0.422 0.290

∥c 0.327 0.597 0.490

Overall 0.269 0.432

σRT (mS/cm) ⊥c 29.6 0.228 1.20

∥c 2.32 0.0004 0.01

Overall 17.3 0.129

Avg. HR ⊥c 0.42 0.47 0.3

∥c 0.54 1.2 0.5

Overall 0.44 0.51

(a)

(b)

(c)

z

Fig. 5 a Constructed simulation box with twist Σ7 [0001] GBs. b
Trajectories for selected Li ions in the box with twist GBs in 0.5 ns. Li
ions on the left lie in the bulk region, and the ones on the right are
close to one of the GBs. c MSD (by components) vs. time plot for Li
ions located at the twist GBs only (bulk Li ions are excluded). The z
direction is perpendicular to the GBs. Diffusivity is computed within
the 2D GB plane
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properties from DFT. Note that reproducing energetic calculations
where atoms are relaxed remains a challenge, as eSNAP could not
distinguish the difference of defect formation energies in different
Frenkel defect configurations.
It should be noted that the focus of the current eSNAP model is

on reproducing the energies and forces on solid-phase α-Li3N for
the purposes of scaling MD simulations beyond the limited
simulation cells and time scales in AIMD for diffusion studies. As
such, the training structures were selected mainly for this purpose
and no attempt was made to include a broad diversity of training
structures from different polymorphs of Li3N, liquid configurations,
etc. in the training pool.
Our choice of the SNAP approach is motivated by its simple

linear form and its efficient implementation in the widely available
open-source LAMMPS Molecular Dynamics Simulator.31 Though
the MAEs of linear SNAP may not be as low as those achieved
using other regression models and descriptors,8,32 its efficiency
and low training data requirements are the decisive factors for our
choice. In terms of scaling performance, we tested the running
time of a 1000-step MD simulation with various system sizes
(500–500,000 atoms). Despite the O(N log N) time complexity of
Ewald summation, eSNAP generally shows linear scaling perfor-
mance (Fig. S4), presumably governed by the time-consuming
bispectrum coefficient calculations.
Finally, we applied the eSNAP model to conduct long-time-scale

(~1 ns) simulations of complex models (500–5000 atoms) of α-
Li3N. We report the Haven ratio of α-Li3N by directly calculating
charge diffusivity and show that grain boundaries may provide
faster diffusion pathways (relative to bulk). The calculation of
charge diffusivity, which is difficult to converge in AIMD
simulations, enables us to compute much more reliable estimates
of the anisotropic diffusivities of α-Li3N. Interestingly, though we
find that conductivity in the c-crystallographic direction is in
general slower than the ab plane, the value is only one order of
magnitude lower, contrary to single crystal measurements.28 Li
et al.19 have recently grown pinhole-free Li3N nanofilms as a
protective layer on Li metal anodes by flowing nitrogen gas. A
critical design requirement is that the conductivity of Li in the
[001] direction is sufficiently high. Li et al.19 measured conductiv-
ities of up to 0.5 mS/cm, which is in good agreement with our
predictions and in disagreement with prior experiments and
simulations with the Coulomb–Buckingham potential. It should be
emphasized that the conductivity of ~0.01 mS/cm in the c
direction reported in previous work28 would lead to a highly
resistive, low-performing coating. We hope that further careful
experiments in the near future may shed further light on these
discrepancies in anisotropic diffusivities between different experi-
ments and computational simulations on this highly important
lithium conductor.

METHODS
Electrostatic SNAP (eSNAP) model
The atomic environment around atom i at coordinates r can be described
by its atomic neighbor density ρi(r) with the following equation:7,9

ρiðrÞ ¼ δðrÞ þ
X
rii0 <Rii0

fcðrii0 Þwi0δðr� rii0 Þ; (3)

where rii' is the vector joining the coordinates of central atom i and its
neighbor atom i′, the cutoff function fc ensures that the neighbor atomic
density decays smoothly to zero at cutoff radius Rii′, and the dimensionless
neighbor weights wi′ distinguish atoms of different types. This density
function can be expanded as a generalized Fourier series in the 4D hyper-
spherical harmonics Uj

m;m0ðθ;ϕ; θ0Þ as follows:

ρiðrÞ ¼
X1

j¼0;12;:::

Xj

m¼�j

Xj

m0¼�j

ujm;m0U
j
m;m0 ðθ;ϕ; θ0Þ; (4)

where the coefficients ujm;m0 are given by the inner product hUj
m;m0 jρi. The

bispectrum coefficients are then given as:

Bj1 ;j2 ;j ¼
Xj1

m1 ;m0
1¼�j1

;
Xj2

m2 ;m0
2¼�j2

Xj

m;m0¼�j

ujm;m0

� ��
H

jmm0

j1m1m0
1

j2m2m0
2

uj1m1 ;m0
1
uj2m2 ;m0

2
; (5)

where the constants H
jmm0

j1m1m0
1

j2m2m0
2

are coupling coefficients.

In the original formulation of the non-ionic SNAP model,9 the energy
and forces are expressed as a linear function of the bispectrum coefficients,
as follows:

ESNAP ¼
X
α

βα;0Nα þ
X

k¼fj1 ;j2 ;jg
βα;k

XNα

i¼1

Bk;i

0
@

1
A (6)

Fj;SNAP ¼ �
X
α

X
k¼fj1 ;j2 ;jg

βα;k
XNα

i¼1

∂Bk;i
∂rj

: (7)

where α is the chemical identity of atoms, Nα is the total number of α
atoms in the system, and βα,k are the coefficients in the linear SNAP model
for type α atoms.
For ionic systems, electrostatic interactions spanning in the entire range

of interatomic distances are indispensable in the construction of energy
model due to the long-range tail beyond the cutoff distance for local
environment description (see Fig. 6). In our proposed electrostatic SNAP
(eSNAP) model, we write the total potential energy as the sum of the
electrostatic contributions and the local energy (SNAP) due to the
variations in atomic local environments, as follows:

Ep ¼ γEel þ ESNAP (8)

Fj ¼ �∇jEp ¼ �γ∇jEel � Fj;SNAP (9)

where Eel is the electrostatic energy computed using the Ewald summation
approach20 and γ is an effective screening prefactor for electrostatic
interactions. The coefficients (γ and β) can be solved by fitting the linear
model to total energies and forces from DFT calculations.
In addition, nuclei repulsions emerge at extremely short interatomic

distances. In this work, the Ziegler-Biersack-Littmark (ZBL) potential is used
to account for short-ranged nuclei repulsions.33 To ensure that the fitting
process captures the relevant relationship between the bispectrum
coefficients and the DFT energies and forces, the cutoff distances of ZBL
were chosen to be short enough (Ri= 1.0 Å, Ro= 1.5 Å) such that the ZBL
potential has negligible contribution to energies or forces among the initial
training configurations where extremely close interatomic distances were
not sampled. More details about ZBL settings used in this work can be
found in Supplementary Information.

Training data generation
Figure 1a shows the hexagonal P6/mmm unit cell of α-Li3N, where Li2 sites
form Li2N layers with N sites in the ab plane and Li1 sites connect N sites in
neighboring Li2N layers along the c axis. To sample a diverse set of
configurations, the initial training set includes two major components:

Fig. 6 Schematic of energy contributions vs. interatomic distances
in ionic systems. Rii′ denotes the cutoff radius in considering
contributions from local environment
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1. Starting from the relaxed α-Li3N unit cell, we first generated two
series of unit cells with lattice distortions. One series samples
different lattice constants a and c, and the other samples unit cells
with different levels of strains (−1% to 1% at 0.2% intervals) applied
in six different modes as described in de Jong et al.34

2. Snapshots were extracted from AIMD simulations at temperatures
from 400 to 1200 K at 200 K intervals under an NVT ensemble.
Starting from a 3 × 3 × 3 supercell with equilibrium volume, for each
temperature, 200 snapshots were taken from a 40 ps AIMD
simulation.

To ensure accurate energies and forces, static DFT calculations were
performed on all configurations (including snapshots from AIMD).

DFT calculations
All DFT calculations were performed using the Vienna Ab initio Simulation
Package (VASP)35 within the projector augmented wave approach.36 The
Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation was
adopted as the exchange-correlation functional.37 To ensure the conver-
gence of energy and atomic force, a plane-wave energy cutoff of 520 eV
and Γ-centered k-point meshes with a density of at least 30 Å were
employed for all static DFT calculations. For AIMD simulations, a single Γ k-
point and a much lower-energy cutoff of 300 eV were used for rapid
propagation of trajectories.

Model training and test
Table 4 shows the weights applied on the different sets of training
configurations during model training. As the initial training dataset contains
many more configurations from AIMD snapshots with larger number of
atoms, a much larger weight was applied on the energies of the distorted
unit cells relative to those from the AIMD snapshots. A zero weight was
applied on the negligibly small forces for the distorted unit cells.
As shown in Fig. 7a, the energies and forces differ greatly in magnitude

and distribution due to differences in the scales and units. In the original
SNAP training approach, the effect of this difference in magnitude and
distribution is partially accounted for by treating the data weights as
hyperparameters to be optimized.13,14 In this work, we use the
standardized z-scores of energies and forces (plotted in Fig. 7b) as the
targets in model training to avoid incorporating the effect of the
distribution in the data weights, which are therefore fixed at the values
in Table 4. The “standardized” eSNAP model in the fitting process is then

given by the following:
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where e is the energy per atom, e is the mean of e, and σe and σF are the
standard deviations of e and F, respectively. The mean of forces is omitted
since it is close to zero. The coefficient vector βT to be solved can be
written as:

βT ¼ γ βα;0 � e βα;1 ¼ βα;k ¼
� �T

: (12)

For bispectrum coefficient calculations, we used the implementation
available in LAMMPS.9 The two hyperparameters (cutoff distance Rα and
atomic weight wα) for each element (Li and N in the case of Li3N) were
determined using a two-step grid search scheme for the atomic weights
and then followed by the cutoff distances. The MAE of forces from a linear
model trained on the initial training set was chosen as the metric. For the
atomic weights, it should be noted that the atomic density in ionic systems
is generally higher than that in metallic systems; hence the search of
atomic weights was performed in the range where |wα| < 1. Similarly, the
search space for cutoff radius was limited to the range where Rα < 4 Å. The
results from grid search (Fig. S5) are available in Supplementary
Information, and the final hyperparameters can be found in Table 1.
Figure 8 shows the flow chart of the iterative procedure used for training

the eSNAP model in this work. A preliminary eSNAP model was first trained
using the initial training set. Using this fitted eSNAP model, MD simulations
were then carried out using a 3 × 3 × 3 supercell in equilibrium volume at
temperatures ranging from 300 K to 1200 K at 100 K intervals under an NVT
ensemble for 40 ps. Ten snapshots were sampled from each MD simulation
to form a new set of test configurations. Static DFT calculations were
performed on these test configurations. If the test MAEs for either energies
or forces were significantly larger than the corresponding training MAEs,
the test set was then merged into the training set to form a new extended
training set. The entire eSNAP fitting, simulation and testing procedure was
repeated until there is no significant over-fitting in both energies and
forces. In this work, we use 150% of training MAE as the threshold to
achieve a balance between the benefit gained by adding more training
instances and the associated costs of performing more DFT calculations. It
should be noted that this strategy is designed to bias the eSNAP model to
improve the predictions on energy and force of MD simulations, which is
the target application of interest in this work.

Diffusivity calculations
The tracer diffusivity of Li D* is calculated from the MSD of all diffusing Li
ions as described by the Einstein relation:

D� ¼ 1
2dt

1
N

XN
i¼1

ΔriðtÞ½ �2
D E

; (13)

where d is the number of dimensions in which diffusion occurs, N is the
total number of diffusing Li ions, Δri(t) is the displacement of the ith Li ion
at time t.
The charge diffusivity of Li Dσ is calculated from the square net

displacement of all diffusing Li ions, as described below:

Dσ ¼ 1
2dt

1
N

XN
i¼1

ΔriðtÞ
" #2* +

(14)

Table 4. Data distribution and applied weights on different types of data points in the initial training dataset

Type Total configurations Atoms in each configuration Weight on energy Weight on force

Distorted unit cells 109 4 103 0

AIMD snapshots 1000 108 1 10−3

Fig. 7 Distribution of a original atomic energies and forces and b
normalized z-score of atomic energies and forces

Z. Deng et al.

6

npj Computational Materials (2019)    75 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



The Li conductivity at temperature T (unit: K) can be calculated from the
charge diffusivity Dσ using the Nernst-Einstein equation:

σ ¼ ρz2F2

RT
Dσ ; (15)

where ρ is the molar density of Li, z is the charge of Li (+1), F is the Faraday
constant, and R is the gas constant.
In addition, the ratio between the tracer and charge diffusivities is

referred to as the Haven ratio HR=D*/Dσ.
All the simulations with the eSNAP were performed using LAMMPS.31 All

the structure manipulations and interfacing with VASP and LAMMPS were
handled by the Python Materials Genomics (pymatgen) library.38

DATA AVAILABILITY
The training configurations and their DFT computed total energy and atomic forces
are available in the SNAP development repo on Github (https://github.com/
materialsvirtuallab/snap).
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