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Abstract: 

A treatment of nuclear masses and deformations is des~ribed which combines the 

Droplet Model with the folding model surface and Coulomb energy integrals. An ad­
ditional exponential term, inspired by the folding model, but treated here as an an 

independent contribution with two adjustable parameters, is included. With this 
term incorporated, the accuracy of the predicted masses and fission barriers was 
improved significantly, the ability of the Droplet Model to account for isotope 
shifts in charge radii was retained, and the tendency of the Droplet Model to over­
predict the surface-tension squeezing of light nuclei was rectified. 

1. Introduction 

For almost fifty years the Bethe-Weizsacker,1•2) or Liquid Drop Model (LDM), 

nuclear mass formula has been spectacularly successful in predicting the binding 
energy of atomic nuclei. Even in its simplest form the accuracy over the whole 
periodic table is within a percent or so {10 MeV out of 1000 MeV). The invention 

of the two-part approach for adding she11 corrections3•4) and various other re~ 
finements (see refs. 5- 9)) have led to an order of magnitude improvement in the 
accuracy (predictions within 1 MeV). In addition, the LDM and its associated re­

finements have been applied to predictions of nuclear radii, fission bar~iers, and 

dynamical situations such as giant monopole and dipole resonances. 
The work described here was undertaken in order to combine the features of two 

different approaches to improving the LDM10 •11 ). In ref. 10 ) (and in earlier 

work cited there) a Droplet Model {OM) was developed that introduced the possi­
bility of nuclear compression (or dilatation) and the possibility of a neutron skin 
for nuclei with a substantial neutron excess. The introduction of these degrees of 
freedom allowed the LDM expansion of the binding energy in terms A-l/J and r2 

(where I = (N-Z)/A) to be carried to one higher order in a consistent way. The 
folding model approach of ref. 11 ) had other virtues. The use of a finite range 

force for calculating the surface energy automatically generates various correc­

tions necessary for bringing the calculated fission barriers into better agreement 
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with the measured values. In addition we have recently begun to investigate the 

possible importance of exponential terms similar to those associated with the fold­
; n g i i1 te gr a 1 s 12 ) • 

In the next section we describe how the folding model surface energy and an 

improved calculation of the Coulomb energy can be incorporated into the OM. Sec­
tion 3 presents the complete mass formula consisting of OM terms and various other 

contributions, such as the odd-even mass difference, the Wigner term and the bind­

ing of the atomic electrons. A subsequent section is devoted to comparisons be­
tween the calculated and measured values of masses, deformations, fission barriers, 
radii and isotope shifts. 

2. Finite Range Droplet Model 

In ref. 13 ) the general Droplet Model (OM) expression for the energy of a 

nucleus is written as a function of the neutron skin thickness and bulk density 

degrees of freedom for arbitrary nuclear shapes. Then the specific form of the OM 
needed for predicting masses, radii, etc. is obtained by analytic minimization of 

the energy with respect to these new degrees at freedom. The Finite Range Droplet 

Model (FROM) can be derived in exactly the same way. Since the basic elements of 

the discussion are identical to those in ref. 13 ), we will use the same notation 

here and address only those points where the finite range approach brings in some­
thing new. Familiarity with the earlier work will be assumed. 

The volume terms are the usual OM ones, 

[ --2 1 --2 --2 :--4] -a1 + Jo + 2 (K£ - 2Lto + Mo ) A ( 1) 

The first important difference is that the OM surface energy term, a2A213(1 + 2~)Bs 
in eq. (35) of ref. 13 ) is replaced by an analogous term which can be derived on 

the basis of the folding model, a2A213(Fs + 2Fs2£), where, 

Fs(>.,shape) (2) 

In this expression the two volume integrations are over a uniform density distribu-
4 3 .... .... \.1 

tion of volume 3 nR, and>. = R/a, !;; = ir1 - r2 i/a, a= range. Finally, it should be 

noted that eq. (2) is simply the generalization of the expression, 

asin(r
0

,a,A,shape), from eq. (2.3) of ref. 11 ) that is necessary when ad~pting 
the folding approach to the DM where the nuclear volume is allowed to vary. 

The DM surface energy also depends on the neutron excess. From studying the 

derivation in r~f. 13 ) we were able to determine that this dependence could also 

be incorporated into the folding model by making the replacement, Q .... (Fs/Bs)Q, 

where Bs is the usual ratio of the surface area to that of a sphere of equal 
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volume. The quantity Bs also appears in the auxiliary expression, 3'TBs 
2(I- 6)A113, that relates the bulk and global nuclear asymmetries (5 and I) to the 

average skin thickness 'T. 

The Coulomb energy was calculated using the expression, c1z
2A-113(Fc- ~Fc2 ), 

where the shape dependence is included and the diffuseness correction is calculated 
exactly by using the folding integral of ref. 11 ),. 

15 ff = 32w2x5 

2 d(Fc/x) 
= -x dx 

and x = R/aden' ~ = 1;1 - ; 21/aden' aden= range of the density folding function. 
In addition to the revised surface and Coulomb energy expressions with their 

corresponding dependences on shape (through the folding integrals) and scale 

(through the terms linear in;) we added a new term, 

A1/3 
-C A e-y ; 

with two new adjustable parameters C and y. 

This type of exponential term, non-analytic in the Droplet Model expansion 

parameter A""" 1' 3, appears in folding-type expressions for the interaction energy. 

(3) 

(4) 

It becomes important quantitatively for nuclear configurations in which portions of 

the surface approach each other to within the range of the folding function. A 

well-known example is the proximity potential representing the interaction energy 

of two nuclei about to come into contact. For a single nucleus this type of term 

becomes important when the nucleus is small enough so that one side of the nucleus 

can feel the effect of the surface on the other side (i.e. the absence of nuclear 
matter beyond a certain distance). The usual Yukawa or Yukawa-exponential folding 

integrals have in them this type of term, but we found that adding an independent 

contribution of the type of eq. {4) had striking advantages. 

Once the OM has been reformulated along the lines described above, the next 
step is to minimize the energy with respect to variations in € and o just as was 
done in ref. 13 ). When the new expressions given above are used the final form 

of the FROM part of the mass formula is given by, 

where 

(5) 

( 6) 
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e: = 

3. The Complete Mass Formula 
In addition to the FROM of eqs. (5-7) the expression for the atomic mass 

defect includes the terms, 

(7) 

( 8) 

where MH and Mn are the mass defects of the hydrogen atom and of the neutron, 
respectively. The last term represents the binding energy of the atomic electrons. 

Also included are the terms, 
---~---- --- --

w ~~I + {:-1 
+ (AA-1/2 - ~ oA-1] z and N odd 

for Z • N odd] 1 A-1 + 
"'2" 0 z or N odd ( 9) 

otherwise 
(AA-1/2 - i oA-1] z and N even , 

which are a "Wigner term" and a conventional even-odd correction10 ). 

Three other terms that are included are, 

-c4z413A-113 - c (N - Z) + f a o (10) 

The first of these is an exchange correction to the Coulomb energy, the second is 
related to a small charge asymmetry of the nuclear force, and the last is a small 
correction to the Coulomb energy from the proton form factor11 ). 

Finally, we have also included the shell, pairing and zero point energies from 
ref. 11 ), 

Eshell + Epairing + Ezero point ( 11) 

but with additional effects added in two regions. For radium and some nearby 
nuclei we added a correction associated with the octupole degree of freedom 
originally proposed by Leander,14 ) and in the actinide region we used an analytic 

approximation (fitted to two points from ref. 11 ) and to some later studies we 

have made) for including the effect of an e: 6P6 term in the single particle 
potential. The greatest effect this term has is -1.4 MeV and the values we used 
were taken from the expression, 

(Z - 100) 2 
+ (N - 150) 2 

= 36 SO - 1.4 MeV 

when the value is negative. When the quantity on the right hand side is positive 
AE is set to zero. 

A preliminary set of values for the various coefficients that enter the final 
mass formula are, 

I I 
"._/ 
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a1 = 16.2663 MeV r = 1.16 fm 
0 

a2 23.0 MeV 3 2 
c1 =-(e/r) 5 0 

ao = 2.5 MeV c2 
1 2 9 + 1 

= 84 c1 ( 2K 4J) 

J = 32.5 MeV 5 2/3 
c4 = 4 (3/2Tr) c1 

Q = 29.4. MeV 1 2 
c5 = 64 (c1/0) 

K = 240 MeV 

c = 230 MeV y = 1.27 

a3 = L = M = 0 (12) 

MH 7.289034 MeV 

ae£. = 1.433 x 10-5 MeV 
Mn = 8.071431 MeV 
w = 34 MeV 

6 = 12 MeV d = 20 MeV 

ca = 0.428 MeV fo = _ 1 (r2e2/r3)(145) 
~ P o4"S" 

a = 0.68 fm 
e2 = 1.4399764 MeV fm 

aden = (0.99/y~) fm 

rp = 0.8 fm 

4. Results 

Of the preliminary parameters listed in eq. (12) only 9 were actually adjusted 

in the final fit to masses and fission barriers. These were the primary coeffi­
cients a1, a2, a

0
, J and Q; the two new coefficients C and y in the ohenomen­

ological exponential term, and the Wigner and charge asymmetry coefficients W and 
ca. The quantity r

0 
was not easy to vary because of the way the fitting pro-

gram was originally organized, and comparisons of measured and calculated charge 
radii suggest that its value should probably be about 1% larger. The quantity ac-

. 1 
tually minimized was S = a'fN-lL(&m.) 2 + .f7r (1- a), fNt/L)&h.) 2, where the sums V m i 1 vc. y i 1 

are over the Nm mass deviations &mi and the Nb barrier deviations &hi. We 
used a weight of a = 0.8 but found that the fit was rather insensitive to this 
choice. 

The data set to which our fitting procedure was applied consisted of 1323 
masses (with N and Z = 8 or greater, and experimental errors less than 1 MeV) from 
the 1977 compilation of Wapstra and Bos 15 ) supplemented by 165 additional masses 

from ref. 16 ) The set of 28 fission barriers was the same as the one used earlier 
b ""11 . 11) y Mo er and N1x • 

The r.m.s. deviation that we obtained was 0.676 MeV for the masses ~nd l.l3S 

Mev for the fission barriers. The upper part of fiq. 1 comrares the measured and 

calculated deviations from the smooth part of the mass formula (the shell effect). 

The bottom part of fig. 1 displays the difference between the two, which is also 
the difference between calculated and measured atomic masses . There is no syste-
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matic long-range structure (either along or across the valley of beta-stability) as 

far as we can tell. The measured and calculated fission barriers are compared in 
fig. 2. 

I S r""1""""'T.....,......,"'""T'....,.....,.......,.....,...'"'!""""T"""T""'..,......,......,'r'"'1 
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Fig. 1 Comparison of measured and calculated 
ground-state shell effects for 1488 
nuc 1 ides. 
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Fig. 2 Comparison of measured and 
calculated fission-barrier 
heights for 28 nuclei. 

The key to the substantially improved results we have obtained here seems to be the 

empirical, exponential term of eq. (4). We had hoped that all finite range effects 

would be adequately represented by the folding model surface energy expression but 

this was not the case. Fig. 3 serves to illustrate this point. The quantity plot­

ted here versus A-113 ·iS (~pfp 0 )bulk' which is the fractional deviation of the 

central density of a nucleus from the nuclear matter value. For the idealized case 

of N = Z nuclei \'lithout Coulomb energy the FROM expression for this quantity is, 

1/3 
(~PIP 0 )bulk = 6(a2/K)A-113Fs2 - 3(C/K)e-yA (13) 

The solid line in the figure is the old OM prediction obtained by keeping only the 

first term and setting Fs 2 = 1. Inclusion of the Fs 2 folding model term (using 

eq. (2)) produces a small reduction in t:.pfp
0 

that is negligible on the sGale of 

this figure. The dashed line illustrates the much more dramatic.effect which is 

produced by including the second term in eq. (13). The behavior of this complet= 

expression corresponds very closely to that found in earlier Thomas-Fermi calcu­

lations. (See fig. 30 of ref. 17 ).) It also corresponds quite closely to the 
1? 

behavior we have noted recently in studies of Hartree-Fock calculations-~). This 

\i 



.u( 
! I 

·v·' 

-7-

is all the more remarkable when we recall that the coefficients of this new pheno­

menological term were determined solely from a least squares fit to masses and fis­
sion barriers. No considerations regarding density distributions governed their 

determination • 

-0.1 __ -....~. __ l ____ ~_I-__ L_ __ j_.l _____ j ____ l ___ ...____j_ 

0.0 0. I D.2 G.l 0... 0.5 

Fig. 3 

A_,, 

Fractional deviation of the 
central density versus A-1/3 
predicted by the model for 
hypothetical uncharged nuclei 
with N = Z. 

o.a 

0.6 

0.5 Liquid drop model 1 
0,, 

E 0.3 :t: 
~ 01 .... 
~ • c: 0.1 
0:::· 
"'l 

0.0 

-0.1 

-0.2 
0 

I ~ 
Droplet model , 

i 

20 '0 60 80 IJO 

Proton number 

Fig. 4 The slope t:.Rn (times A213) of 
the equivalent sharp change radius 
versus neutron number is plotted 
against the charge number Z of the 
isotopic sequence being considered. 

Earlier OM fits to masses had suffered from a disturbing tendency of some of 

the parameters (notably K and L) to take on unphysical values unless they were 

constrain~d. The fit that resulted from fixing the values of such quantities 10 ) 

gave values of J and Q that resulted in poor mass predictions for nuclei far from 

stability. Discussions of these discrepancies often centered around the asymptotic 

nature of the OM expansion, and this is just the point that is being addressed by 

eq. (4). Its inclusion (which must be regarded as empirical at this point) results 

in substantial improvement in the predictions, elimination of the problem of un­

physical parameter values, and significant improvement for nuclei far from 

stability. 
We find that the quantity Lis approximately zero (and not well determined). 

This result also characterizes a number of Skryme forces whose nuclear asymmetry 

properties have been studied in detail 18 ). We also find that· the value of Q has 

increased substantially over· earlier determinations. The increase in Q and re­

duction in L combine to leave nearly unchanged the predictions of the mod~·l for 

isotope shifts in nuclear charge radii. In fig. 4, from ref. 19 ), the quantity 

plotted against the charge number z is A213 times the slope governing the increasing 

size of the charge distribution with increasing neutron number, 6Rn. As can be 

seen in the figure, the Liquid Drop Model predicts that this quantity should be a 

constant, (r
0
/3), which is about twice as large as the measured values for nuclei 

''· / 
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throughout the periodic table. The Droplet Model of ref. 101 is represented by 

the dashed line in the figure, and the predictions of the FROM described here are 
given by the dot dashed line. 

It is interesting to note that the further developments of the Droplet Model 

that are described here a~e bringing the values of the coefficients more in line 
with those associated with the Skyrme force Hartree-Fock calculations discussed by 

F. Tondeur in these proceedings. 

5. Final Remarks 
The development of nuclear mass formulae since the thirties has been charac­

terized by a dramatic improvement in the treatment of shell effects in the sixties 

and by a more gradual improvement in the smooth part of the equations. Very 

roughly speaking, the standard Liquid Drop formula considered energy terms of order 
A and A213, the Droplet Model extended the.expansi~n to order A113, and ref. 
11 ) brought out a significant improvement in the fits associated with an A0 

term (a constant). In the past few years the folding model has also begun to focus 

attention on the existence of an exponential, non-analytic term in A-113, inacces­

sible to a Droplet Model type of expansion in this parameter (see also 
Grammaticos 20 )). The development described in the present paper, based on 

including an adjustable exponential term of this type, demonstrates the practical 

utility of such a term and its relation to the problem of surface-tension squeezing 

of light nuclei. It seems to us that the limit of a useful Droplet Model type of 
power expansion in A-1/ 3 is probably reached around A0 , and that future efforts 

~hould c6ncentrate on a better understanding of the "exponential," non-analytic 

term. This term focuses attention on a specific feature of a light system, for 

which the range of the interaction begins to be comparable with its size. This is 

the opposite extreme from the limit underlying the standard (leptodermous) treat­

ment of saturating systems. Such non-analytic terms might be described as dealing 

with "desaturating" effects, which begin to dominate for small (holodermous) sys­

tems. A general discussion of such terms and their incorporation in mass formulae 

is an outstanding problem for the future. 

The authors wish to acknowledge stimulating discussions with J. R. Nix con­

cerning a number of important features of this work and the continued critical 
interest of J. M. Pearson and F. Tondeur in the Droplet Model and its limitations. 

This work was supported by the Director, Office of Energy Research, Division 

of Nuclear Physics of the Office of High Energy and Nuclear Physics of th~ U.S. 

Department of Energy under Contract DE-AC03-76SF00098. 
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