
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Algorithms in Tropical Geometry

Permalink
https://escholarship.org/uc/item/7wp3n846

Author
Zhang, Leon Yue

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7wp3n846
https://escholarship.org
http://www.cdlib.org/

Algorithms in Tropical Geometry

by

Leon Zhang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Bernd Sturmfels, Chair
Professor David Eisenbud

Professor John Huelsenbeck

Spring 2021

Algorithms in Tropical Geometry

Copyright 2021
by

Leon Zhang

1

Abstract

Algorithms in Tropical Geometry

by

Leon Zhang

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Tropical geometry is an emerging field with strong connections in a wide array of areas
both inside and outside mathematics. Efficient algorithms in tropical geometry take on
a particular importance for developing these applications to other fields and for providing
access to non-experts. The purpose of this dissertation is to provide novel and effective
algorithms for the computation of various tropical objects of interest in pure mathematics
and in phylogenetic data analysis.

We begin in the first chapter by describing some basic notions in tropical geometry which
arise repeatedly throughout this thesis. We introduce tropical hypersurfaces, varieties, and
prevarieties. We then discuss two classes of objects which are tropically convex, tropical
linear spaces and tropical polytopes, and the ways in which they serve as tropical analogues
to their classical equivalents. We also detail the connection between tropical geometry and
the space of phylogenetic trees.

In the second chapter we discuss the computation of implicit tropicalizations of a very affine
curve. We reduce the problem to the calculation of a basis for the group of units in the
coordinate ring of the variety. We describe practical algorithms for computing such a basis
for rational normal curves and elliptic curves. Our approach is rooted in divisor theory,
based on interpolation in the case of rational curves and on methods from algebraic number
theory in the case of elliptic curves.

In the third chapter we study the problem of computing the tropicalization of zero-dimensional
varieties, which is a fundamental component of some algorithms for computing general trop-
ical varieties. Our approach is via projections of the variety onto well-chosen lines, which
are used to reconstruct the original variety. Our main algebraic tools for doing this are fast
monomial transforms of triangular sets. Given a Gröbner basis, we show that our algorithms
require only a polynomial number of arithmetic operations, and for ideals in shape position
we demonstrate that the algorithm performs well in practice against alternative approaches.

2

In the fourth chapter we describe the first time-bounded complexity algorithms for realizing
the min-convex hull of a finite collection of points in the affine building of SLd as a tropical
polytope lying inside a tropical linear space. These min-convex hulls describe the relations
among a finite collection of invertible matrices over a field with valuation. As a consequence,
we obtain a bound on the dimension of the tropical projective space needed to realize the
min-convex hull as a tropical polytope.

In the fifth chapter we describe two tropical analogues of principal component analysis for the
dimensionality reduction of ultrametric tree datasets. In one approach, we study the Stiefel
tropical linear space of fixed dimension closest to the data points in the tropical projective
torus; in the other, we consider the tropical polytope with a fixed number of vertices closest
to the data points. We relate tropical best-fit hyperplanes to the tropical volume and prove
that the polytropal decomposition of a tropical polytope spanned by ultrametrics refines
the decomposition of the polytope into different tree topologies. We also give heuristic
algorithms for both approaches and apply them to phylogenetics, testing the methods on
simulated phylogenetic data and on an empirical dataset of Apicomplexa genomes.

i

To my father

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Tropical varieties . 1
1.2 Tropical linear spaces . 4
1.3 Tropical convexity . 8
1.4 Tropical geometry and phylogenetics . 9
1.5 Contributions in this dissertation . 11

2 Intrinsic tropicalizations of curves 16
2.1 Introduction . 16
2.2 Background . 17
2.3 General results on varieties . 20
2.4 Fermat curves and plane conics . 23
2.5 Rational normal curves . 30
2.6 Elliptic curves . 33

3 Zero-dimensional tropical varieties via projections 41
3.1 Introduction . 41
3.2 Background . 42
3.3 Unitriangular transformations on triangular sets 43
3.4 Computing zero-dimensional tropical varieties via projections 45
3.5 Complexity . 49
3.6 Magma comparison . 53
3.7 Implementation . 53
3.8 Timings . 56
3.9 Discussion . 59

4 Min-convex hulls in the affine building 61

iii

4.1 Introduction . 61
4.2 Background . 62
4.3 Min-convex hulls . 63
4.4 Simultaneously-adaptable bases . 69
4.5 Constructing enveloping membranes . 71
4.6 Convex triangles . 75

5 Tropical principal component analysis 81
5.1 Introduction . 81
5.2 Tropical principal linear spaces . 83
5.3 Tropical principal polytopes . 91
5.4 Computing tropical principal polytopes . 94
5.5 Simulations . 97
5.6 Apicomplexa genome . 101

Bibliography 104

iv

List of Figures

1.1 The tropical hypersurface trop(V (f)) in Example 1.4. 3
1.2 The Newton polygon of f in Example 1.5. 3
1.3 The tropical plane in Example 1.12. 5
1.4 The tropical linear space Lp from 1.15, along with projections of three points not

in Lp. 7
1.5 A 2-dimensional tropical polytope in TP2 spanned by four vertices, and its de-

composition into three polytropes, labeled with their types. 9
1.6 The standard triangulation of TP2, with the origin colored cyan. 10
1.7 Two equidistant phylogenetic trees . 11
1.8 The tropicalization and intrinsic tropicalization respectively of the conic in Ex-

ample 1.31, with coordinates and nontrivial multiplicities labeled. 12
1.9 Newton polygons of g3 and other polynomials relevant to Example 1.33. Below

each vertex is its height, above each edge is its slope. 13
1.10 The convex hull of the matrices M1,M2, and M3 in B3. 14
1.11 Projected points in the tropical principal polytope. 15

2.1 The block matrix whose columns are divisors of the units described in Example
2.24 for the Fermat curve xd + yd = zd. Here am×n is an m × n matrix whose
elements are all a, and In is the n× n identity matrix. 25

2.2 The tropicalization and intrinsic tropicalization respectively of the conic in Ex-
ample 2.29, with coordinates and nontrivial multiplicities labeled. 29

2.3 Two directed trees describing two different bases for the intrinsic torus of Example
2.28. 30

2.4 The tropicalization and intrinsic tropicalization respectively of the elliptic curve
in Example 2.49, with coordinates and nontrivial multiplicities labeled. 39

3.1 Computing zero-dimensional tropical varieties via projections. 46
3.2 Newton polygons of g3 and the resultants in Example 3.10. Below each vertex is

its height, above each edge is its slope. 49
3.3 Visualisation of different gluing strategies. 56
3.4 Timings for the randomly generated ideals in shape position. 57
3.5 Timings for the 27 tropical lines on a tropical honeycomb cubic. 58

v

4.1 Left: the building B2 for K = Q3. Right: the star of the identity in this building. 63
4.2 A membrane, in red, contained in the building B2 over K = Q2. 64
4.3 The convex hull of Λ1 and Λ2 in B3, labeled by representative lattices. 65
4.4 The convex hull of the matrices M1,M2, and M3 in B3. 68
4.5 A tropical polytope isomorphic as a simplicial complex to conv(M1,M2,M3), with

coordinates of spanning vertices labeled. 68
4.6 The tropical polytope P obtained by using the membrane [M] for the lattices

M1,M2,M3, and M4 with Algorithm 4.17. Points spanning the tropical convex
hull are marked in yellow. 74

4.7 The tropical polytope P ′ whose standard triangulation is isomorphic to the convex
hull of M1,M2,M3, and M4, with spanning vertices marked in yellow. 74

4.8 The 3-dimensional tropical polytope isomorphic to the convex hull of our matrices
M1,M2,M3,M4, whose standard triangulation has f -vector (30, 95, 102, 36). . . 76

4.9 Frequency counts for the number of columns of enveloping membranes produced
by Algorithm 4.38 for random convex triangles. 79

4.10 The tropical polytope isomorphic to the convex hull of M1,M2,M3, with spanning
vertices in yellow. Note that the x- and y-axes have been flipped. 80

5.1 A tropical matrix A gives rise to both a Stiefel tropical linear space and a tropical
polytope. 82

5.2 A best-fit tropical line for the data in Example 5.10. 88
5.3 A best-fit tropical line for the data in Example 5.11. 88
5.4 Both (0,−2, 0) and (0,−1, 0) are contained in the Stiefel tropical linear space

spanned by (0,−2, 0) and (0, 0, 0), but the Stiefel tropical linear space spanned
by the two points is not. 90

5.5 Both tropical lines attain a minimum sum of distances from the points (0,−1, 2),
(0,−2,−2), and (0, 2,−1). But only one contains the Fermat-Weber point (0,−1,−1). 91

5.6 D(1), D(2), D(3) for Example 5.27 . 98
5.7 Topology frequencies after projections: the parenthesized numbers are frequen-

cies, and the last tree gives the species tree topology. 100
5.8 Projected topology frequencies from the Apicomplexa dataset: parenthesized

numbers give the frequencies of each topology, while the color labels are used
in Figure 5.10 below. 102

5.9 Projected points in the tropical polytope PCA, colored as in Figure 5.8. 103
5.10 The second order PC for the Apicomplexa data set. 103

vi

List of Tables

5.1 Vectorized Distance Matrices of the Simulated Trees 98
5.2 Vectorized Distance Matrices of the 2nd PCs . 98

vii

Acknowledgments

First and foremost, I would like to thank my advisor, Bernd Sturmfels, for his expansive
enthusiasm and his steady guidance throughout my doctoral studies. Thank you to all of my
collaborators: Madeline Brandt, Marie Charlotte-Brandenburg, Justin Chen, Sophia Elia,
Christopher Eur, Miriam Farber, Paul Görlach, Charles Johnson, Guido Montúfar, Robert
Page, Yue Ren, Melissa Sherman-Bennett, Sameera Vemulapalli, Ruriko Yoshida, and Xu
Zhang. I learned so much from working with you. Thank you to Anna, Bo, Maddie, Made-
line, Mahsa, Paul, and Tim, my academic siblings, for your guidance and companionship
throughout graduate school. Thank you David Eisenbud and John Huelsenbeck for taking
the time to be on my dissertation committee. Thank you to Zvezdelina Stankova and Kelli
Talaska for helping me to grow as an instructor. Thank you to Vicky Lee and Isabel Seneca
for your help through every administrative hurdle.

I would like to thank Alborz, Eric, Jack, James, Katherine, Ryan, and Yajit, with whom
I developed my interest in science and mathematics in high school. Thank you to Alex,
Daniel, Fermi, and Yajit for so many late nights working on problem sets in college, and
for so many hours and conversations since. Thank you to Albert, Alborz, Amruth, Daniel,
Fermi, Harini, Katherine, Nick, Nitya, Ryan, and Sophie. You made the Bay Area my home
for the last six years.

Thank you to Melissa for sharing your life and keeping me anchored. Thank you to Lily:
you have been a role model since the very beginning. Thank you to Luke for all the fun
and all the joy. Thank you to Jian Wu: your love lives on in me. Finally, an enormous
thank you to Zhenyu Zhang and Zhengyuan Ju, for your encouragement, support, and the
opportunities you worked so hard to give me.

1

Chapter 1

Introduction

Tropical geometry is a piecewise-linear analogue to ordinary mathematics in which the
operations of addition and multiplication are replaced with minimum and addition, respec-
tively. Problems throughout mathematics and science involve the extraction of an extremal
value from a set of real numbers. As a consequence, connections to tropical geometry arise
both inside and outside pure mathematics, in areas as diverse as algebraic topology [16] and
optimization [2] within mathematics as well as auction theory [3, 86] and celestial mechanics
[42, 43] outside it. Efficient algorithms take on a particular importance for developing these
applications to other fields and providing access to non-experts. The purpose of this disser-
tation is to provide novel and effective algorithms for the computation of various tropical
objects of interest in pure mathematics and phylogenetics.

In this chapter, we describe the fundamentals of tropical mathematics on which we will
rely throughout this thesis, largely following the treatment in [52] and [63]. In Section 1.1, we
introduce the tropical semiring and review tropical hypersurfaces, varieties, and prevarieties.
In Section 1.2 we dive deeper into a particular class of tropical prevarieties called tropical
linear spaces. In Section 1.3 we recall the basics of the tropical analogue of convexity. In
Section 1.4 we explore an application of tropical geometry to phylogenetics, via the space
of ultrametric trees. Finally, in Section 1.5 we summarize the main novel results of this
dissertation.

1.1 Tropical varieties

In this dissertation we generally work over the tropical semiring T = (R ∪ {∞},⊕,�)
with the min-plus convention. In this semiring, the basic arithmetic operations of addition
and multiplication are redefined as follows:

a⊕ b := min(a, b), a� b := a+ b for any a, b ∈ T.

So, for instance, 3 ⊕ −5 = −5 and 3 � −5 = −2. The additive identity in T is ∞ and the
multiplicative identity is 0.

CHAPTER 1. INTRODUCTION 2

Remark 1.1. There is also an analogous max-plus tropical semiring (R∪{−∞},⊕,�),
wherein addition is defined as a ⊕ b := max(a, b). The min-plus and max-plus semirings
are isomorphic and everything that follows in this chapter can be adapted for the max-plus
tropical semiring. The max-plus semiring arises in many applications; we will accordingly
switch to the max-plus convention in discussing a tropical analogue of principal component
analysis in Chapter 5.

Throughout this dissertation, we let K be a field with valuation ν : K∗ → R. For instance,
we might have K = Q be the rational numbers with the 3-adic valuation, so ν(x) picks out

the exponent of 3 in the irreducible form of x, as in ν

(
73

27

)
= −3. Another example is the

field K = C((t)) of formal Laurent series, with the valuation ν picking out the exponent of
the term of lowest order, as in ν(t−1 + (3 + 2i)t2 + 7t5) = −1.

Definition 1.2. Fix a multivariate Laurent polynomial ring K[x±] := K[x±1 , . . . , x
±
n]. Given

a vector v = (v1, . . . , vn) ∈ Zn, we write xv = xv11 · xv22 · · · · · xvnn . Then the tropicalization
trop(f) of a Laurent polynomial f =

∑
v∈Zn avxv ∈ K[x±] is obtained by replacing each av

with its valuation ν(av) and sums and products with tropical sums and products respectively.
Explicitly,

trop(f) =
⊕
v∈Zn

ν(av)� x�v = min
v∈Zn

(ν(av) + v · x).

So, for example, if K = Q with the 3-adic valuation and f = 6x2+4xy+27y2 ∈ K[x±, y±],
then trop(f) = min(1 + 2x, x+ y, 3 + 2y). Tropicalizations of polynomials allow us to define
tropicalizations of hypersurfaces.

Definition 1.3. Let f =
∑
avxv ∈ K[x±] be a Laurent polynomial over K. The tropical-

ization trop(V (f)) is defined as

trop(V (f)) = {x ∈ Rn | min(ν(av) + v · x) is attained at least twice}.

When f is homogeneous, the tropical hypersurface trop(V (f)) contains a 1-dimensional
lineality subspace spanned by the all-ones vector 1 := (1, 1, . . . , 1). We often consider such
tropical hypersurfaces and other tropical objects as lying inside the tropical projective torus
Rn /R1. When illustrating this space, as in Figure 1.4, we always choose the affine chart in
which the first coordinate is 0.

Example 1.4. Let K = C((t)) be the field of formal Laurent series and f the polyno-
mial f = 3t−1x + 5y + 7t−2z ∈ K[x±, y±, z±]. Then trop(f) = min(x − 1, y, z − 2), and
trop(V (f)) ⊆ R3 /R1 comprises the three infinite rays starting at the point (0,−1, 1) illus-
trated in Figure 1.1. We can verify that the point (0, 1, 1) lies in trop(V (f)), as the minimum
in min(0, 1 + 1, 1− 1) is attained at least twice.

In the univariate case, the tropical hypersurface of a Laurent polynomial f =
∑

i∈Z aix
i ∈

K[x±] simply consists of the negated slopes of the Newton polygon of f [71, Proposition
II.6.3], where the Newton polygon of f is the lower convex hull of the points (i, ν(ai)).

CHAPTER 1. INTRODUCTION 3

(0,−1, 1)

(0,−3,−1)

(0, 1, 1)

Figure 1.1: The tropical hypersurface trop(V (f)) in Example 1.4.

Example 1.5. Consider K = Q equipped with the 2-adic valuation and f = 2x4 + 3x3 +
24x2 +x+ 12. The Newton polygon of f is displayed in Figure 1.2; taking the negated slopes
tells us that trop(V (f)) = {2, 0,−1}.

−2
0

1
2

0

3

0

1

Figure 1.2: The Newton polygon of f in Example 1.5.

We can also define tropicalizations of general algebraic varieties. The following definition
in terms of tropical hypersurfaces suffices for our purposes.

Definition 1.6. Let I ⊆ K[x±] be a Laurent polynomial ideal. The tropical variety trop(I) ⊆
Rn is given by

trop(I) =
⋂
f∈I

trop(V (f)),

the intersection of the tropical hypersurfaces corresponding to all polynomials in I.

Again, if I is homogeneous, we often consider the tropicalization trop(I) lying inside the
tropcial projective torus Rn /R1.

Remark 1.7. The remarkable Fundamental Theorem of Tropical Geometry states that tropi-
cal varieties can also be defined in terms of coordinate-wise valuations of points in the original
variety, or in terms of weight vectors whose corresponding initial ideal is monomial-free [63,

CHAPTER 1. INTRODUCTION 4

Theorem 3.2.3]. We will not require the precise definitions in this dissertation so do not
state the theorem in full.

Theorem 1.8 ([63, Theorem 3.3.5]). Let X be an irreducible d-dimensional subvariety of
the torus T n. Then trop(X) is the support of a balanced weighted polyhedral complex pure of
dimension d.

Note that while tropical hypersurfaces and varieties can be defined with multiplicities, we
are largely only interested in them set-theoretically. Also, in general, if f1, . . . , fk generate an
ideal I ⊆ K[x±], it need not be the case that the intersection

⋂
trop(V (fi)) equals trop(I),

or indeed any tropical variety at all. We call a finite intersection of tropical hypersurfaces a
tropical prevariety.

1.2 Tropical linear spaces

Tropical linear spaces are a well-studied combinatorial class of tropical prevarieties. As
the name suggests, tropical linear spaces provide a tropical twist on classical linear spaces:
they arise via tropical analogues of matroids and Plücker relations, and in fact tropicaliza-
tions of ordinary linear spaces form an important subclass of tropical linear spaces. We now
give a brief computational introduction to tropical linear spaces, adapting the treatment in
[52, Chapter 10]. In what follows, let [n] denote the set of integers {1, 2, . . . , n} where n is
a positive integer.

Definition 1.9. Let p :
(

[n]
d

)
→ T be a map from the set of all d-sized subsets of [n] to T.

Take subsets σ and τ of [n] of size d−1 and d+1 respectively, and suppose that the minimum

min
i∈τ

p(σ ∪ {i}) + p(τ − {i})

is attained at least twice, where by convention we say that p(γ) = ∞ if |γ| < d. If this
property holds for all choices of σ and τ , we call p a valuated matroid [24] or tropical
Plücker vector.

The definition above is simply the tropicalization of the corresponding quadratic Plücker
relation for ordinary linear spaces [52, Equation 10.9]. As Plücker coordinates correspond to
linear spaces, tropical Plücker coordinates give rise to tropical linear spaces.

Definition 1.10. Let p be a tropical Plücker vector. The tropical linear space Lp consists
of all points x ∈ Rn /R1 such that, for any (d + 1)-sized subset τ of [n], the minimum of
the numbers

min
i∈τ

p(τ − {i}) + xi

is attained at least twice.

CHAPTER 1. INTRODUCTION 5

Again, the tropical polynomials appearing in Definition 1.10 are tropicalizations of the
circuit equations which cut out the ordinary linear space corresponding to a Plücker vector
[63, Equation 4.3.6]. Tropical linear spaces are thus natural tropical-geometric analogues to
ordinary linear spaces. Indeed, though they need not be tropical varieties, they are similarly
well-behaved.

Theorem 1.11 ([63, Theorem 4.4.5]). Let Lp be the tropical linear space corresponding to
a tropical Plücker vector p. Then Lp is a balanced contractible polyhedral complex pure of
dimension d− 1.

Example 1.12. Let p : [4]3 → T be defined as follows: p({i, j, k}) = min(i, j, k) if i 6= j 6= k
and p({i, j, k}) =∞ otherwise. Then p is a tropical Plücker vector, and Lp is a 2-dimensional
tropical plane as illustrated in Figure 1.3, consisting of six two-dimensional orthants all
meeting at the corner (0, 1, 1, 1).

Figure 1.3: The tropical plane in Example 1.12.

One particularly well-behaved class of tropical linear spaces arises in analogy to the Stiefel
map for ordinary linear spaces.

Definition 1.13. Let A be an m×m matrix with entries in T. We can define its tropical
determinant tdet(A) in analogy with the classical operation as

tdet(A) =
⊕
σ∈Sm

(
m⊙
i=1

Ai,σ(i)

)
.

If the tropical determinant of A is attained by at least two distinct permutations in Sm, the
symmetric group on m elements, we say that A is tropically singular.

Definition 1.14. Let A be a d×n matrix with entries in T such that d ≤ n. Given a d-sized
subset ω ⊆ [n], we write Aω for the d×d matrix whose columns are the columns of A indexed
by elements of ω. Then the map

p : [n]d → R ∪ {∞}

CHAPTER 1. INTRODUCTION 6

ω 7→ tdet(Aω)

is a tropical Plücker vector. The corresponding tropical linear space is called the Stiefel
tropical linear space given by A.

Example 1.15. Let

A =

(
0 −3 −1
1 0 3

)
and let p be its associated tropical Plücker vector. For ease of notation we write pij =
p({i, j}). Then

p12 = tdet

(
0 −3
1 0

)
= −2,

p13 = tdet

(
0 −1
1 3

)
= 0,

p23 = tdet

(
−3 −1
0 3

)
= −1.

The Stiefel tropical linear space corresponding to A is a tropical line in R3 /R1. It is the
same hypersurface as in Example 1.4, pictured in Figure 1.1.

Throughout this dissertation, we will repeatedly want to project onto a tropical linear
space. In order to describe a projection, we first need a notion of distance. In tropical
geometry, this is given by the tropical metric.

Definition 1.16. The tropical distance metric dtr in Rn /R1 is given by

dtr(v, w) := max{|vi − vj + wj − wi| : 1 ≤ i < j ≤ n}, (1.2.1)

which in essence compares the largest and smallest entries of the vector v − w.

Equipped with the tropical metric, we can now describe a projection operation onto a
tropical linear space via the Red and Blue Rules. From [52, Proposition 10.76] we have:

Theorem 1.17 (The Blue Rule). Let p : [n]d → T be a tropical Plücker vector and Lp ⊆
Rn /R1 the corresponding tropical linear space. Fix u ∈ Rn /R1, and define the point
w ∈ Rn /R1 whose ith coordinate is

wi = min
σ

max
j 6∈σ

(p(σ ∪ {i})− p(σ ∪ {j}) + uj),

where σ runs over all (d − 1)-subsets of [n] that do not contain i. Then w ∈ Lp, and any
other x ∈ Lp satisfies dtr(u, x) ≥ dtr(u,w). In other words, w attains the minimum tropical
distance of any point in Lp to u.

CHAPTER 1. INTRODUCTION 7

Theorem 1.18 (The Red Rule). Let p : [n]d → T be a tropical Plücker vector and Lp ⊆
Rn /R1 the corresponding tropical linear space. Fix u ∈ Rn /R1 and let v be the all-zeros
vector. For every (d + 1)-sized subset τ of [n], compute min p(τ − τi) + uτi. Let γτ,τi be
the nonpositive difference between this minimum and the second-minimum, and set vτi =
max(vτi , γτ,τi).

Then v gives the difference between u and a closest point of Lp. In particular, if w is the
point in Lp returned by the Blue Rule, we have

w = u+ v.

We write πLp as the projection map which takes a point u ∈ Rn /R1 and returns the
nearest point w ∈ Lp given by the Blue Rule. Depending on the size of d, one might prefer
to use either the Blue Rule or the Red Rule to compute πLp(u). We note that this closest
point πLp(u) computed by the Red and Blue Rules may not be unique; there may be other
points in Lp which are of the same tropical distance from u.

Example 1.19. Let A be the matrix of Example 1.15, with p and Lp its associated tropical
Plücker vector and Stiefel tropical linear space. Let u be the point (0,−2, 3) ∈ R3 /R1. The

(0,−1, 1)

(0,−1,−1)

(0,−1, 3)

(0, 0, 1)

(0,−2, 3)

(0, 1, 2)

Figure 1.4: The tropical linear space Lp from 1.15, along with projections of three points
not in Lp.

Blue Rule constructs a point w ∈ R3 /R1 whose first coordinate is

min(max(p12 − p12 + u1, p12 − p23 + u3),max(p13 − p13 + u1, p13 − p23 + u2)).

Substituting in, we get the first coordinate of w as

w1 = min(max(−2 + 2 + 0,−2 + 1 + 3),max(−4 + 4 + 0, 0− 1− 2)) = min(2, 0) = 0.

Similarly, we get w2 = −1 and w3 = 3. So the Blue Rule outputs the vector (0,−1, 3).

CHAPTER 1. INTRODUCTION 8

The Red Rule constructs a vector v as follows. First, we begin with v = (0, 0, 0). Next
we take the set τ = {1, 2, 3} and compute min(p23 + u1, p13 + u2, p12 + u3) = min(−2 + 3, 0 +
−2,−1 + 0) = −2. So the Red Rule redefines v2 = −1 − (−2) = 1, and hence outputs the
vector v = (0, 1, 0), which by Theorem 1.18 satisfies w = u+ v.

Definition 1.20. Let v = (v1, . . . , vn) be a real vector, and define the tropical linear func-
tional

⊕
(−vi) � xi. Let H be the tropical solution set of this linear functional: that is, H

consists of all x ∈ Rn /R1 such that the minimum of
⊕

(−vi)�xi is attained at least twice.
We call any H obtained in this way a tropical hyperplane.

Remark 1.21. Let A be a tropical matrix of dimensions (n−1)×n. Then the Stiefel tropical
linear space of A is a tropical hyperplane. Furthermore, any tropical hyperplane is the Stiefel
tropical linear space of such a tropical matrix A.

1.3 Tropical convexity

We next review some basics of tropical convexity, again following [52, Chapters 5] and
[63, Chapter 4]. In discussing tropical convexity, it is often convenient to work in tropical
projective space TPn−1 = (Tn\(∞,∞, . . . ,∞))/R1, which contains the tropical projective
torus Rn /R1. Indeed, the tropical projective space TPn−1 is a compactification of the
tropical projective torus, and the pair of spaces (TPn−1,Rn /R1) is homeomorphic to the
(n− 1)-dimensional simplex and its interior [52, Proposition 5.3].

Given a finite collection P of points in TPn−1, we define their tropical convex hull or
tropical polytope P = tconv(P) as the tropical semimodule spanned by these points, i.e.:

tconv(P) = {λ1 � p(1) ⊕ · · · ⊕ λs � p(s) : λi ∈ T, p(i) ∈ P},

where λ � p = (p1 + λ, . . . , pn + λ) is tropical scalar multiplication. In fact, tropical linear
spaces in TPn−1 can be viewed as tropical polytopes, spanned by points on the boundary of
TPn−1 called their cocircuits [52, Proposition 10.33].

Let P = tconv(P) ⊆ TPn−1 be a tropical polytope. The (tropical) type of a point x
in TPn−1 with respect to P is the collection of sets S = (S1, . . . , Sn), where an index i is
contained in Sj if

p
(i)
j − xj = min(p

(i)
1 − x1, . . . , p

(i)
n − xn).

The tropical polytope P consists of all points x whose type S = (S1, . . . , Sn) has all Si
nonempty. Each collection of points with the same type in P is called a cell, and each cell
with all Si nonempty is a polytrope: a tropical polytope that is classically convex [53]. In
this way all tropical polytopes have a decomposition into polytropes.

Example 1.22. Consider the tropical polytope in TP2 spanned by vertices (0, 2, 2), (0, 0, 1),
(0, 4, 0), and (0, 5, 4). Its cellular decomposition contains three full-dimensional polytropes,
which are illustrated in Figure 1.5.

CHAPTER 1. INTRODUCTION 9

(0, 4, 0)

(0, 0, 1)

(0, 2,−2)

(0, 5, 4)

4

1

2

3

{1}, {2, 4}, {3}

{1, 2}, {4}, {3}

{1}, {2}, {3, 4}

Figure 1.5: A 2-dimensional tropical polytope in TP2 spanned by four vertices, and its
decomposition into three polytropes, labeled with their types.

Let P = tconv(p(1), p(2), . . . , p(s)) be a tropical polytope. There is a projection map πP
sending any point x to a closest point on the tropical polytope P in the tropical metric given
in Definition 1.16:

πP(x) = λ1 � p(1) ⊕ λ2 � p(2) ⊕ · · · ⊕ λs � p(s), where λk = max(x− p(k)). (1.3.1)

Viewing a tropical linear space as a tropical polytope spanned by its cocircuits, this projection
map generalizes the Blue Rule [52, Proposition 10.77].

The lattice of integral points Zn ⊆ Rn induces a flag simplicial complex structure on
TPn−1, with the quotients of lattice points in Zn as the vertices and a 1-simplex between
two lattice points if they are of tropical distance 1 apart, as illustrated in Figure 1.6 for
TP2. This is called the standard triangulation of TPn−1. Given points P ⊆ Zn, we call their
tropical convex hull a tropical lattice polytope. The standard triangulation of TPn−1 descends
to a standard triangulation of any tropical lattice polytope [51, Theorem 11].

1.4 Tropical geometry and phylogenetics

In this section we describe some of the tropical structures underlying the space of ultra-
metric trees. In keeping with Chapter 5, we switch to the max-plus tropical semiring for this
section. In what follows, let m ≥ 2 be a natural number and e =

(
m
2

)
. Our treatment of this

subject largely follows [63, Section 4.3].

Definition 1.23. A dissimilarity map d is a function d : [m] × [m] → R≥0 such that
d(i, i) = 0 and d(i, j) = d(j, i) ≥ 0 for each i, j ∈ [m]. If, furthermore, we have that

CHAPTER 1. INTRODUCTION 10

(0, 0, 0)

Figure 1.6: The standard triangulation of TP2, with the origin colored cyan.

d(i, j) ≤ d(i, k) + d(k, j) for all i, j, k ∈ [m], we call d a metric. Note that for convenience
we often write dij for the term d(i, j).

We can represent a dissimilarity map d by an m×m matrix D whose (i, j)th entry is dij.
Because D is symmetric and all diagonal entries are zero, there is a natural encoding of d as

a vector in Re = R(m
2). The metrics we are most interested in come from phylogenetic trees:

Definition 1.24. Let T = (V,E) be a tree with m labeled leaves and no vertices of degree
two. We call such a tree a phylogenetic tree.

Definition 1.25. Let T be a phylogenetic tree with m leaves labeled by the elements of [m],
and assign a length `e ∈ R to each edge e of T . Let d : [m]× [m]→ R be defined so that dij is
the total length of the unique path from leaf i to leaf j. We call a function d obtained in this
way a tree distance. If, furthermore, each entry of the distance matrix D is nonnegative,
then d is in fact a metric. We call such a d a tree metric.

As before, we can embed D as a vector into Re. Any tree distance differs from a tree
metric by some scalar multiple of 1; hence the sets of tree distances and tree metrics coincide
in the tropical projective torus.

Definition 1.26. Let d : [m]× [m]→ R≥0 be a metric which satisfies the following strength-
ening of the triangle inequality for each choice of i, j, k ∈ [m]:

d(i, k) ≤ max(d(i, j), d(j, k)).

We call such a metric an ultrametric, and denote by Um the set of all ultrametrics in Re/R1.

CHAPTER 1. INTRODUCTION 11

All ultrametrics can be derived from an equidistant tree with non-negative edge weights,
where all leaves have the same distance to some distinguished root vertex. Furthermore,
the tree metric of an equidistant tree with non-negative edge weights is an ultrametric;
hence ultrametrics and equidistant trees with non-negative edge weights convey equivalent
information.

Example 1.27. Consider the two equidistant phylogenetic trees in Figure 1.7. In the first

Figure 1.7: Two equidistant phylogenetic trees

tree, the distance between leaves A and B is 4, as is the distance between leaves A and C,
while the distance between B and C is 2. We can view the tree as the vector v = (4, 4, 2) in

R(3
2), and similarly we view the second tree as w = (2, 4, 4).

Remark 1.28. The tropical distance in Equation (1.2.1) between two ultrametric trees mea-
sures the range of disagreement between the two tree metrics. Consider the two phylogenetic
trees v = (4, 4, 2) and w = (2, 4, 4) in Example 1.27. The largest disagreement between v and
w in which tree v finds a longer distance between two leaves is max{vi − wi} = 2, and the
largest disagreement between v and w in which tree w shows a bigger distance between two
leaves is max{wj − vj} = 2. So dtr(v, w) = 2 + 2 = 4.

Let Lm denote the subspace of Re defined by the linear equations xij − xik + xjk = 0 for
1 ≤ i < j < k ≤ m. The tropicalization trop(Lm) ⊆ Re /R1 is the tropical linear space
consisting of points (v12, v13, . . . , vm−1,m) such that max(vij, vik, vjk) is obtained at least twice
for all triples i, j, k ∈ [m]. This is in fact a rephrasing of the ultrametric condition, meaning
the space of ultrametrics is itself a tropical linear space:

Theorem 1.29. The image of Um in the tropical projective torus Re /R1 coincides with
trop(Lm).

1.5 Contributions in this dissertation

Having developed some basics of tropical geometry, we now state the main new results
of this dissertation. We focus on the development of new algorithms for the computation of
interesting objects in tropical geometry.

CHAPTER 1. INTRODUCTION 12

Chapter 2 is based on [17], which is joint work with Justin Chen and Sameera Vemulapalli.
It will be published in the Journal of Symbolic Computation in May 2021. The chapter
focuses on developing algorithms for computing intrinsic tropicalizations of various classes
of curves. The notion of tropical variety in Definition 1.6 depends in an essential way on the
particular embedding of the very affine variety V (I) into the torus. Intrinsic tropicalizations
provide a path toward removing this embedding dependence, but no general methods for
computing intrinsic tropicalizations existed prior to our work, as the notion relies on an
explicit Z-basis for the unit group of the corresponding very affine variety. Chapter 2 provides
effective methods for the computation of intrinsic tropicalizations for plane conics, rational
normal curves, and elliptic curves.

Theorem 1.30. Algorithm 2.26, Algorithm 2.34, and Algorithm 2.47 correctly compute Z-
bases for the unit groups of very affine plane conics, rational normal curves, and elliptic
curves, respectively.

Example 1.31. Let C be the conic defined by f = (1 + t)x2 + (1 + t)y2 + (1 + t)z2 − (2 +
2t + t2)xy − (2 + 2t + t2)yz − (2 + 2t + t2)xz over the field of Puiseux series in t over C.
Consider the very affine curve C given by intersecting with the canonical torus. We note
that the tropicalization of f is simply the tropical line 0⊕ x⊕ y shown in the left in Figure
1.8. The intrinsic tropicalization has the following snowflake structure typical of a generic
tropical conic as shown in the right in Figure 1.8.

(0, 0, 0)

(−2,−3,−2)

(−1,−2,−1)

(−1,−1,−1)

(0, 2, 3)

(0, 1, 1)

(0, 1, 2)
(2, 1,−1)

(1, 1,−1)

(1, 0, 0)

(0, 1)

2

2

2
(1, 0)(0, 0)

(−1,−1)

Figure 1.8: The tropicalization and intrinsic tropicalization respectively of the conic in Ex-
ample 1.31, with coordinates and nontrivial multiplicities labeled.

In Chapter 3, which is based on joint work with Paul Görlach and Yue Ren [37] sub-
mitted to Computational Complexity, we describe new methods for the computation of
zero-dimensional tropical varieties. A number of algorithms for the computation of general
tropical varieties rely on reductions to the zero-dimensional case. We describe a new approach

CHAPTER 1. INTRODUCTION 13

for the computation of such a base case, by computing projections of the zero-dimensional
tropical variety onto 1-dimensional lines and using these projections to reconstruct the orig-
inal variety. Recall that the tropical variety of an ideal in a single variable can be read
straightforwardly from the slopes of the corresponding Newton polygon.

Theorem 1.32. Let K be a field with non-trivial valuation ν and let I ⊆ K[x±] be a
zero-dimensional ideal in triangular form. Then Algorithm 3.9 correctly computes the tropi-
calization trop(I) using polynomially-many arithmetic operations in K and Q.

Example 1.33. Consider K = Q equipped with the 2-adic valuation and the ideal

I = 〈 2x4
3 + x3

3 + x2
3 + x3 + 2︸ ︷︷ ︸

=:g3

, x2 − 2x3︸︷︷︸
=:f2

, x1 − 4x3︸︷︷︸
=:f1

〉 ⊆ K[x±1 , x
±
2 , x

±
3].

Using the Newton polygons in Figure 1.9, we can reconstruct the tropicalization of I as

trop(I) = trop(I){1,2,3} = {(3, 2, 1), (2,1,0), (1, 0,−1)}.

−1
0 0

1
1

0 0 0

1

g3
−9

−5

−5
−1

23

14

9

4 3

Resx3
(g3, x1 − f ′1)

−6

−2
−2 2

11

5

3

1

3

Resx3
(g3, x1 − f ′′1)

Figure 1.9: Newton polygons of g3 and other polynomials relevant to Example 1.33. Below
each vertex is its height, above each edge is its slope.

In Chapter 4, we consider certain subsets of the affine building of SLd called min-convex
hulls. This chapter is based on [91], which will be published in Discrete & Computational
Complexity. Min-convex hulls were originally introduced by Faltings [27], who noted that
their points in Bd correspond to smooth irreducible components of the special fiber of certain
regular schemes M(Γ) called Mustafin varieties or Deligne schemes over the spectrum of
a discrete valuation ring. Joswig, Sturmfels, and Yu showed that min-convex hulls were
isomorphic to tropical polytopes in some tropical projective torus and provided a partial
algorithm for the computation of min-convex hulls in this way [51]. However, their algorithm
required a certain structure called an enveloping membrane containing the min-convex hull
of interest. We describe effective algorithms for the computation of enveloping membranes,
yielding the first time-bounded complexity algorithms to calculate min-convex hulls as well.

CHAPTER 1. INTRODUCTION 14

M1

M3

M2

Figure 1.10: The convex hull of the matrices M1,M2, and M3 in B3.

Theorem 1.34. Let M1, . . . ,Ms ∈ Kd×d represent lattices Λ1, . . . ,Λs ∈ Bd. Then Algo-
rithm 4.29 correctly computes an enveloping membrane for conv(Λ1, . . . ,Λs), whose repre-
sentative matrix M has at most d · 2d · (d!)s−3 columns.

Example 1.35. Let K = Q5 and consider the matrices

M1 =

1 0 0
0 1 0
0 0 1

 ,M2 =

1 0 0
0 1

5
0

0 0 1
125

 ,M3 =

5 625 150
0 25 1
0 0 1

5

 .

Let M be the matrix

M =

1 0 0 0
0 1 0 5
0 0 1 1

 .

The membrane [M] contains the min-convex hulls of M1,M2, and M3. We can use [M] to
compute their min-convex hull as shown in Figure 4.4.

In Chapter 5 we explore a tropical analogue of principal component analysis for phy-
logenetics. The chapter is based on joint work with Ruriko Yoshida and Xu Zhang [90]
which is published in the Bulletin of Mathematical Biology, as well as another paper with
Ruriko Yoshida and Robert Page [89] which will be published in Bioinformatics. Advances
in genome sequencing have produced large datasets of phylogenetic trees. These datasets are
ill-suited for analysis with classical statistical tools like principal component analysis as the
underlying data spaces are non-Euclidean. Conversely, as described in Section 1.4, the space
of ultrametrics has an intrinsic tropical structure as a tropical linear space. We describe two
tropical analogues of principal component analysis using tropical linear spaces and tropical

CHAPTER 1. INTRODUCTION 15

polytopes. We characterize an existing notion called the tropical volume in terms of tropical
principal hyperplanes and show that the polytropal decomposition of a tropical polytope
spanned by ultrametric trees preserves tree topologies. We also describe methods for com-
puting tropical principal components and conduct experiments with real-world phylogenetic
datasets.

Theorem 1.36. Let D(1), . . . , D(e) be a collection of e points in Re /R1. Then any best-fit
hyperplane attains a distance from the e points equal to their tropical volume, and Algo-
rithm 5.12 attains such a hyperplane with high probability.

Theorem 1.37. Let P = tconv(D(1), . . . , D(t)) be a tropical polytope spanned by ultrametrics,
as computed for example by Algorithm 5.24. Then the polytropal decomposition of P refines
the decomposition of P into different tree topologies.

Example 1.38. The genomes of eight species of protozoa in the Apicomplexa phylum were
sequenced and converted into a dataset of 252 equidistant trees by [57]. These equidistant
trees lie in a non-Euclidean 28-dimensional space. We computed a two-dimensional tropical
principal polytope minimizing the sum of tropical distances of the datapoints and plotted their
projections in Figure 1.11. Note that different polytropal components of the principal polytope
correspond to particular tree topologies, which are color-coded.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

D[1,]

D
[2

,]

Figure 1.11: Projected points in the tropical principal polytope.

16

Chapter 2

Intrinsic tropicalizations of curves

The original material in this chapter is joint work with Justin Chen and Sameera Vem-
ulapalli. The chapter appeared in modified form under the title “Computing unit groups of
curves” in the Journal of Symbolic Computation [17].

2.1 Introduction

Among the invariants of a commutative ring, the group of units is one of the most
fundamental. However, explicit computation of this group is difficult, and even its structure
remains mysterious in general [34]. To date, most progress has centered on rings of integers
of algebraic number fields, or localizations thereof, driven by a need for practical algorithms
in computational number theory [18]. These results rely fundamentally on Dirichlet’s unit
theorem, which describes the group of units, modulo torsion, of a number field as a free
abelian group of finite rank specified by simple invariants of the number field.

An analogous theorem, proved independently by Rosenlicht and Samuel [76, 78], states
that for a finitely generated domain over an algebraically closed field, the group of units,
modulo scalars, is free abelian of finite rank. In contrast to the number field case, no formula
for the rank is known. However, there is still interest in understanding the unit group: for
a very affine variety, generators for the unit group of the coordinate ring yield an embed-
ding of the variety into its so-called intrinsic torus [63, Chapter 6.4]. In tropical geometry,
this embedding of a very affine variety into its intrinsic torus realizes its intrinsic tropi-
calization, from which all other tropicalizations can be recovered. Computing the intrinsic
tropicalization is difficult, though, because one must first compute the unit group.

In this work we describe effective methods for computing unit groups of smooth very
affine curves of low genus. Our methods rely on divisor theory for projective varieties: we
embed the unit group of a very affine variety into the Weil divisor group of the projective
closure, and study the cokernel of this embedding as a subgroup of the divisor class group.
This allows us to give algorithms for computing unit groups of rational normal curves and
elliptic curves:

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 17

Theorem 2.1. Let C ⊆ Pnk be a rational normal curve over an algebraically closed field k,
given parametrically as the image of a map P1

k ↪→ Pnk . Let C := C ∩Tn be the corresponding
very affine curve, with coordinate ring R. Then Algorithm 2.34 correctly computes a Z-basis
of R∗/k∗.

Theorem 2.2. Let k = Q, let E ⊆ P2
k be an elliptic curve, and let E := E ∩ T2 be

the corresponding very affine elliptic curve with coordinate ring R. Then Algorithm 2.47
correctly computes a Z-basis of R∗/k∗.

We briefly describe the structure of the chapter. The basics of unit groups and intrinsic
tropicalizations are discussed in Section 2.2. In Section 2.3 we interpret the problem of com-
puting units via the geometry of boundary divisors, and give an algorithm for interpolating
divisors of rational functions to Laurent polynomials. We consider two families of plane
curves in Section 2.4, namely Fermat curves and conics. Section 2.5 deals with rational
normal curves in parametric form. Finally, we discuss elliptic curves in Section 2.6.

Many of our algorithms have been implemented in Macaulay2 [38], Singular [20], or Sage
[77]. Our code for the examples in this chapter can be found at:

https://github.com/leonyz/unitgroups/

2.2 Background

We begin by stating the problem in a general setting. Let k be an algebraically closed
field, and let R be a finitely generated k-algebra which is a domain. The inclusion k ⊆ R
induces a short exact sequence of multiplicative abelian groups

1 −−−→ k∗ −−−→ R∗ −−−→ R∗/k∗ −−−→ 1 (2.2.1)

Our goal is to compute, as explicitly as possible, the group R∗/k∗. Although this may
seem to be a purely algebraic problem, the key to progress is to use insights from geometry,
particularly divisor theory on projective varieties. Thus, writing R = k[x1, . . . , xn]/I as a
quotient of a polynomial ring by a prime ideal I, set X := SpecR ⊆ An

k , the affine variety
corresponding to R, and let X ⊆ Pnk denote the projective closure of X in projective n-space.
Write ∂X := X \X = X ∩V (x0) for the boundary of X, which is the intersection of X with
the hyperplane at infinity in Pnk .

The main point is that a unit in R corresponds, via homogenization, exactly to a rational
function on X which has zeros and poles only on ∂X. To be precise:

Lemma 2.3. With notation as above, let R → R be the homogenization map f 7→ f :=
xdeg f

0 f(xi
x0

). Then:

i) For any f, g ∈ R, fg = fg, and
ii) f ∈ R∗ if and only if V (f) ∩X ⊆ ∂X.

https://github.com/leonyz/unitgroups/

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 18

Proof. First, note that dehomogenization is evaluation at x0 = 1, hence is a ring map with
kernel (x0 − 1). As the kernel contains no nonzero homogeneous elements, it follows that if
f1, f2 are homogeneous of the same degree with the same dehomogenization, then f1 = f2.

i) Since fg and fg are both homogeneous of the same degree and dehomogenize to fg,
by the above reasoning they must be equal.

ii) As ∂X = X ∩ V (x0), it suffices to show that f ∈ R∗ if and only if V (f)∩X ⊆ V (x0).
If g1, . . . , gr is a Gröbner basis for the defining ideal I of X with respect to a term order
refining total degree, then X has defining ideal (g1, . . . , gr) [25, Prop. 15.31b]. It thus suffices

to show 1 ∈ (f, g1, . . . , gr) if and only if x0 ∈
√

(f, g1, . . . , gr). The “if” direction follows

by dehomogenizing. For the “only if” direction, pick h with 1 − fh ∈ I. Then 1− fh ∈
(g1, . . . , gr). But 1− fh = xd0 − fh, where d = deg(fh), as both sides are homogeneous and
dehomogenize to 1− fh. Applying (i) gives xd0 ∈ (f, g1, . . . , gr) as desired.

Suppose now that X is normal, and write Div(X) (resp. Cl(X)) for the group of Weil
divisors (resp. the divisor class group) on X. Let Div0(X) (resp. Cl0(X)) denote the
subgroup of divisors (resp. divisor classes) of degree zero.

Definition 2.4. We define

Div0
∂(X) :=

{∑
finite

aiPi

∣∣∣ Pi component of ∂X, ai ∈ Z,
∑

ai = 0

}
⊆ Div0(X)

i.e. the subgroup of Div0(X) supported on ∂X (which makes sense as ∂X is codimension 1
in X).

By Lemma 2.3(i), we have a composition of abelian group homomorphisms

R∗ → Frac(R)∗ → Div0(X) (2.2.2)

u 7→ u, f 7→ div(f)

consisting of homogenization followed by the divisor map. Lemma 2.3(ii) shows that the

image of R∗ is contained in Div0
∂(X), so there is an induced map φ̃ : R∗ → Div0

∂(X). Now

ker φ̃ consists of functions which have no zeros or poles anywhere on X. Such an element
must be a scalar, i.e. lies in k∗. Thus we have a map φ : R∗/k∗ ↪→ Div0

∂(X).
Putting the above reasoning together yields a classical theorem of Rosenlicht and Samuel

[76, 78] on the structure of the unit group:

Theorem 2.5. Let k be an algebraically closed field, and let R be a finitely generated k-
algebra that is a domain. Then R∗/k∗ is a finitely generated free abelian group.

Proof. Let R be the homogenization of R with respect to some new variable x0. If X =
Proj(R) is normal, then the reasoning above shows that R∗/k∗ embeds in the finitely gen-
erated free abelian group Div0

∂(X), and subgroups of finitely generated free abelian groups
are again finitely generated free abelian.

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 19

If X is not normal, let X̃ be the normalization of X. The normalization map X̃
η−→ X

identifies η−1(X) with Spec(R̃), where R̃ is the integral closure of R in its fraction field. This

gives an inclusion map R∗/k∗ ↪→ (R̃)∗/k∗. As (R̃)∗/k∗ is finitely generated free abelian by
the previous case, R∗/k∗ is as well.

Remark 2.6. Note that the unit group of the coordinate ring of a projective variety is
trivial to compute: indeed, in this case R

∗
= k∗, as any positively graded domain has units

concentrated in degree 0. Thus Theorem 2.5 is only interesting for rings which are not
positively graded.

Remark 2.7. The assumptions in Theorem 2.5 are necessary: if k is not algebraically closed,
then the unit group modulo scalar units may have torsion, i.e. roots of unity. If R is not a
domain, then R∗/k∗ need not be Z-free or even finitely generated: e.g. for R = k[x]/〈x2〉,
one has R∗/k∗ ∼= (k,+) is the additive group of the field.

However, Theorem 2.5 still holds if R is reduced: if p1, . . . , pm are the minimal primes
of R, then the diagonal embedding ∆ : R ↪→

∏m
i=1 R/pi gives R∗ ↪→

∏m
i=1(R/pi)

∗, and since
∆−1(

∏m
i=1 k

∗) = k∗ (as zeros/poles must appear on some component if they appear at all),
one has that R∗/k∗ ↪→

∏m
i=1(R/pi)

∗/k∗ is a subgroup of a finite product of free abelian groups.

Remark 2.8. In the setting of Theorem 2.5, freeness of R∗/k∗ implies the exact sequence
(2.2.1) splits, i.e. R∗ ∼= k∗ ⊕R∗/k∗. Thus if we understand R∗/k∗, then we also understand
R∗.

Intrinsic tropicalization

We now discuss some motivation for computing unit groups coming from tropical geome-
try [85], following the presentation in [63]. Recall that a varietyX is said to be very affine ifX
admits a closed embedding into an algebraic torus T. Intuitively, a subvariety of Pm is affine
if it misses a coordinate hyperplane, and very affine if it misses all coordinate hyperplanes.
Algebraically, this means that the coordinate ring R of X is (isomorphic to) a quotient of
a Laurent polynomial ring k[x±1 , . . . , x

±
m]. We note that given a very affine variety X ⊆ Tn,

one can take its projective closure X ⊆ Pn with boundary ∂X := X \X = X ∩ V (x0 · · · xn),
and the above discussion (cf. Lemma 2.3, Definition 2.4) carries over to this setting.

In general, there are many different closed embeddings of X into tori Tm for various
m. To remove the dependence on the choice of embedding, one must choose a “natural”
embedding of X into a fixed torus. As it turns out, the right object to consider is the
so-called intrinsic torus of X, which is by definition [63, Definition 6.4.2]

Tin := HomZ(R∗/k∗, k∗).

Note that by Theorem 2.5, R∗/k∗ is free abelian, so the Hom group is isomorphic to a product
of copies of k∗, which is an algebraic torus over k. A Z-basis f1, . . . , fn of R∗/k∗ gives rise
to an embedding i : X ↪→ Tin, via x 7→ (f1(x), . . . , fn(x)). With such a choice of basis,

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 20

the importance of the intrinsic torus is immediate from the following “pseudo-universal”
property [63, Proposition 6.4.4]: for every closed embedding j : X ↪−→ Tm of X into a torus,
there is a map of tori ϕ : Tin → Tm given by Laurent monomials (which need not be an
embedding) such that the following diagram commutes:

X Tin

Tm

i

j
ϕ

It is a basic task in tropical geometry to tropicalize a very affine variety with respect to a
particular embedding in a torus. From a foundational viewpoint, it is desirable to have an in-
trinsic tropicalization, with respect to the intrinsic torus, so that the tropicalization depends
only on the very affine variety X and not the specific embedding X ↪→ Tm. Furthermore,
in the setup of the commutative diagram above, the tropicalization of X embedded in Tm is
given by the image of the intrinsic tropicalization under the affine map trop(ϕ). Hence any
other tropicalization of X can be recovered from the intrinsic tropicalization.

However, from a computational standpoint, the very affine variety is most often described
by its ideal in a fixed embedding. To obtain an intrinsic tropicalization one must be able to
compute the defining ideal of the very affine variety in its intrinsic torus; the key to doing so
is to first compute a basis of R∗/k∗. Although an embedding into the intrinsic torus depends
on our choice of basis for R∗/k∗, we nevertheless often speak of the intrinsic embedding into
the intrinsic torus.

2.3 General results on varieties

In this section we outline our approach to the problem of computing unit groups, via
class groups. We retain the setup from the previous section: let X be a normal very affine
variety over a field k = k, with coordinate ring R, projective closure X ⊆ Pnk , and boundary
∂X = X \X.

Definition 2.9. Define Cl0∂(X) to be the cokernel of the embedding R∗/k∗
φ

↪−−−−→ Div0
∂(X).

By definition, there is a short exact sequence of abelian groups

1 −−−→ R∗/k∗
φ−−−−→ Div0

∂(X) −−−→ Cl0∂(X) −−−→ 0 (2.3.1)

Corollary 2.10. Let r be the number of divisorial components of ∂X. Then rankR∗/k∗ ≤
r − 1, with equality if and only if Cl0∂(X) is torsion.

Proof. The subgroup Div∂(X) of Div(X) (consisting of Weil divisors supported on ∂X) is a
free group of rank r, and the degree 0 condition implies Div0

∂(X) is a free subgroup of rank
r − 1.

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 21

Corollary 2.11. If C is a very affine curve over k with coordinate ring R, with projective
closure C ⊆ Pnk of degree d, then rankR∗/k∗ ≤ (n+ 1)d− 1.

Proof. As C is a curve, the divisorial components of ∂C are just the (closed) points of ∂C.
Since C is very affine, the boundary ∂C consists of the intersections of C with each of the
n+ 1 coordinate hyperplanes in Pnk . Then degC = d implies ∂C consists of at most (n+ 1)d
points, and the result follows from Corollary 2.10.

Theorem 2.5 tells us that the structure of the unit group – as an abstract group – is as
nice as possible. However, we need more information about the other groups in (2.3.1) to
explicitly give generators for R∗/k∗. The following basic, but crucial, point states that all
relations in Cl0∂(X) are “geometric”, in the sense that they come from the class group of X.

Proposition 2.12. Cl0∂(X) is a subgroup of Cl0(X).

Proof. It suffices to show that the following composite map is injective:

Cl0∂(X) ∼= Div0
∂(X)/(R∗/k∗)

α
↪−→ Div0(X)/(R∗/k∗)

β−→ Cl0(X)

i.e. Im(α) ∩ ker(β) = 0. But this follows since ker(β) = Frac(R)∗/(R∗/k∗), and Frac(R)∗ ∩
Div0

∂(X) = R∗/k∗, as a rational function on X supported only on ∂X is a unit on X.

Remark 2.13. Recall that the class group of the ring of integers of a number field is finite.
If a similar result held in our setting, Corollary 2.10 would give an explicit description for
the rank of R∗/k∗. Unfortunately, of course, Cl(X) need not be so well-behaved in general.

In general, our approach to computing R∗/k∗ via (2.3.1) proceeds in three parts:

Question 2.14. What are generators of the image of R∗/k∗ in Div0
∂(X)?

Question 2.15. Given D ∈ Div0
∂(X) that is in the image of R∗/k∗, can we find polynomials

f, g such that f/g ∈ R∗/k∗ is mapped to D (under the inclusion R∗ ⊆ Frac(R)∗)?

Question 2.16. Given an element of R∗/k∗ expressed as a rational function as in Question
2.15, can we find a representative for it in R?

Question 2.14 is precisely computing im
(
R∗/k∗ → Div0

∂(X)
)

= ker
(

Div0
∂(X)→ Cl0∂(X)

)
.

By Proposition 2.12, this also equals ker
(

Div0
∂(X)→ Cl0(X)

)
. Thus to solve Question 2.14,

one needs control over Cl0(X), which is specific to the variety under consideration.
Question 2.15 is the first half of pulling back along (2.2.2), namely lifting Frac(R)∗ →

Div0(X). This is an interpolation problem, and also depends on the variety in question.
Question 2.16 is the second half of pulling back along (2.2.2), namely lifting R∗ →

Frac(R)∗. This can in fact be easily solved with Gröbner bases, which we now show (through-
out the chapter, we always work with a fixed term order refining total degree). Note that

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 22

arguments involving Gröbner bases over polynomial rings can be adapted to Laurent poly-
nomial rings by identifying the rings k[x±1 , . . . , x

±
n] ∼= k[x1, . . . , xn, t]/〈tx1 . . . xn − 1〉 (alter-

natively, one can avoid adjoining an extra variable t and quotienting, by saturating with the
product of the variables).

Algorithm 2.17 (Clearing denominators).
Require: f, g ∈ k[x±1

1 , . . . , x±1
n], I = 〈φ1, . . . , φm〉 ⊆ k[x±1

1 , . . . , x±1
n]

Ensure: h ∈ k[x±1
1 , . . . , x±1

n] with f − gh ∈ I if such an h exists, or false otherwise
1: J ← I + 〈g〉
2: G← GröbnerBasis(J)
3: if f /∈ ideal(G) then
4: return false
5: end if
6: (C0, . . . , Cm)← a vector over k[x±1

1 , . . . , x±1
n] such that f = C0g + C1φ1 + . . .+ Cmφm

7: return C0

Lemma 2.18. For f, g ∈ R = k[x±1
1 , . . . , x±1

n]/I, Algorithm 2.17 correctly determines
whether there exists h ∈ R such that f = gh, and returns such an h if it exists.

Proof. A standard Gröbner basis argument checks whether f ∈ J and, if so, finds such a
vector C = (C0, . . . , Cm) as above. Note that f ∈ J if and only if there exists h such that
f − gh ∈ I, so that f = gh ∈ R.

Algorithm 2.19 (Testing units).
Require: h ∈ k[x±1

1 , . . . , x±1
n], I = 〈φ1, . . . , φm〉 ⊆ k[x±1

1 , . . . , x±1
n]

Ensure: true if h ∈ (k[x±1
1 , . . . , x±1

n]/I)∗, or false otherwise
1: J ← I + 〈h〉
2: G← GröbnerBasis(J)
3: if 1 ∈ ideal(G) then
4: return true
5: end if
6: return false

Lemma 2.20. For h ∈ R = k[x±1
1 , . . . , x±1

n]/I, Algorithm 2.19 correctly tests if h is a unit
in R.

Proof. A standard Gröbner basis argument checks whether 1 ∈ J . Note that 1 ∈ J =
I + 〈h〉 ⊆ k[x±1

1 , . . . , x±1
n] if and only if h ∈ (k[x±1

1 , . . . , x±1
n]/I)∗.

Algorithm 2.21 (Computing preimages of R∗ → Frac(R)∗).
Require: f, g ∈ k[x0, . . . , xn] homogeneous, f/g ∈ Frac(R)∗ and I = 〈φ1, . . . , φm〉 ⊆

k[x±1
1 , . . . , x±1

n]
Ensure: h ∈ k[x±1

1 , . . . , x±1
n] such that h = f/g in Frac(R)∗ (via the inclusion R∗ ⊆

Frac(R)∗) if such an h exists, or false otherwise

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 23

1: f ← f(1, x1, . . . , xn)
2: g ← g(1, x1, . . . , xn)
3: if Algorithm 2.17(f, g, I) = false then
4: return false
5: else
6: h← Algorithm 2.17(f, g, I)
7: if Algorithm 2.19(h, I) = true then
8: return h
9: else

10: return false
11: end if
12: end if

Lemma 2.22. Let X be a very affine variety with coordinate ring R equal to
k[x±1

1 , . . . , x±1
n]/〈φ1, . . . , φm〉. Let f and g be homogeneous polynomials in k[x0, . . . , xn], and

f, g ∈ k[x1, . . . , xn] their dehomogenizations with respect to x0. Given a rational function
f/g ∈ Frac(R)∗, Algorithm 2.21 correctly decides whether f/g ∈ R∗ (via the inclusion
R∗ ⊆ Frac(R)∗), and if so, computes a representative h ∈ k[x±1

1 , . . . , x±n] for f/g.

Proof. If f/g ∈ R∗ then there must exist a Laurent polynomial h ∈ R∗ such that f/g = h
in Frac(R)∗, where h is the homogenization of h with respect to x0. Thus f − gh = 0 in
Frac(R)∗, so f − gh ∈ I. Since h ∈ R∗, Algorithm 2.19 will verify that h is a unit, and
Algorithm 2.21 will return h.

Now assume that f/g /∈ R∗. Then Algorithm 2.21 will return false unless Algorithm 2.17
returns some h ∈ R∗ such that f − gh. Suppose this occurs. By homogenizing, we see that
f = gh in R and f/g = h in Frac(R)∗, which is a contradiction.

2.4 Fermat curves and plane conics

We now consider two families of plane curves: Fermat curves and conics. These serve as
our first two classes of examples for the general problem of computing unit groups.

Fermat curves

We first illustrate an elementary way of constructing units in quotients of Laurent rings:

Lemma 2.23. Let T := k[x±1
1 , . . . , x±1

d] be a Laurent polynomial ring, I ⊆ T an ideal, u ∈ T
a monomial, a ∈ k∗, and f ∈ I. If there exist g, h ∈ T with f + au = gh, then g, h are units
in R := T/I.

Proof. Note that u is a unit in T (being monomial), so au is a unit in R. Since gh = au ∈ R∗,
we have that g and h are also units in R.

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 24

Example 2.24 (Fermat curves). Consider the family of Fermat curves, which are plane
curves in P2 = Proj(k[x, y, z]) defined by equations of the form xd + yd = zd, for d ∈ N.
For a fixed degree d, we have C := V (xd + yd − zd) ⊆ P2 with homogeneous coordinate ring
R := C[x, y, z]/〈xd+yd−zd〉. Dehomogenizing with respect to z and intersecting with the torus
in A2 gives a very affine Fermat curve C with coordinate ring R = C[x±1, y±1]/〈xd+yd−1〉.

We will use (2.3.1) and Lemma 2.23 to show that the unit group R∗/k∗ has 3d − 1
independent elements. By Corollary 2.11, rankR∗/k∗ ≤ (n+ 1)d− 1 = 3d− 1, so this bound
is tight.

Consider the relation

−xd = yd − 1 =
d−1∏
i=0

(y − ζ id)

which holds in R, where ζd is a primitive d-th root of unity. From Lemma 2.23, we conclude
that (y − ζ id) is a unit in R, for all 0 ≤ i ≤ d − 1. Interpreting the above relation as a
dependency among x, y − ζd, . . . , y − ζd−1

d in R∗/k∗, we can write any y − ζ id multiplicatively
in terms of x and y − ζjd for j 6= i. Thus we can choose – for instance – to treat y − ζd−1

d as
redundant, and we obtain new units y − ζ id for 0 ≤ i ≤ d − 2. Note that the relation above
does not give a way to express x in terms of y − ζ id, since x appears with multiplicity d.

In an analogous way, we may also rearrange the defining equation of R to obtain

−yd = xd − 1 =
d−1∏
i=0

(x− ζ id)

which gives new units x− ζ id for 0 ≤ i ≤ d− 2. Finally, the rearrangement

1 = xd + yd =
d−1∏
i=0

(x− ζ2i+1
2d y)

gives new units x− ζ2i+1
2d y for 0 ≤ i ≤ d− 2.

We thus have the units x − ζ id, y − ζ id, x − ζ2i+1
2d where 0 ≤ i ≤ d − 2. In addition to

the two units x, y, this gives a total of 3(d − 1) + 2 = 3d − 1 units. Note that although we
have accounted for obvious redundancies by removing x− ζd−1

d , y − ζd−1
d , and x+ ζ2d−1

2d y, we
have not yet shown that these 3d− 1 units are independent. Algebraically, this would entail
showing that there are no nontrivial multiplicative relations between these 3d − 1 elements,
a fairly nontrivial task. We instead adopt a geometric approach, whose utility will become
evident already in this case.

First, the divisors of these units (viewed as rational functions) are supported on the
boundary ∂C of the Fermat curve, which consists of the following 3d points:

1. Pi := [ζ2i+1
2d : 1 : 0] for 0 ≤ i ≤ d− 1

2. Qi := [ζ id : 0 : 1] for 0 ≤ i ≤ d− 1

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 25

3. Ti := [0 : ζ id : 1] for 0 ≤ i ≤ d− 1

As before, let φ : R∗/k∗ → Div0
∂(X) be the injection in (2.3.1). We have

1. φ(x) =
∑
Ti −

∑
Pi

2. φ(y) =
∑
Qi −

∑
Pi

3. φ(y − ζjd) = dTj −
∑
Pi for 0 ≤ j ≤ d− 2

4. φ(x− ζjd) = dQj −
∑
Pi for 0 ≤ j ≤ d− 2

5. φ(x− ζ2j+1
2d y) = (d− 1)Pj −

∑
i 6=j Pi for 0 ≤ j ≤ d− 2

Under the identification Div∂(C) = Z〈P1, . . . , Pd, Q1, . . . , Qd, T1, . . . , Td〉 ∼= Z3d, we obtain
the 3d×(3d−1) matrix in Figure 2.1 whose columns represent the divisors of our given units.

1d×1 0d×1

0d×1 1d×1

01×d−1

dId−1

0d×d−1

0d+1×d−1

dId−1

02d×d−1

−11×3d−1

−1d−1×2d

−1d−1×d−1

+
dId−1

Figure 2.1: The block matrix whose columns are divisors of the units described in Example
2.24 for the Fermat curve xd + yd = zd. Here am×n is an m × n matrix whose elements are
all a, and In is the n× n identity matrix.

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 26

A straightforward check shows that this matrix has full rank 3d − 1, and therefore our
units have no relations. It is natural at this point to ask whether these units form a basis for
the unit group. It turns out that this need not be the case, as shown in Example 2.28.

Remark 2.25. We observe several things about this computation. First, we did not necessar-
ily compute generators of R∗/k∗. Instead, we found enough mutually independent elements
to confirm a rank statement on R∗/k∗. Next, this technique was only effective for the Fermat
curve because of special features of its defining equation. With more variables or nearly any
perturbation of the defining equation, the method of obtaining units above fails. Finally, the
argument above can only prove lower bounds on the rank of the unit group. We want to
compute generators of the unit group, so in general we will need more tools than Lemma
2.23.

Plane conics

Let C ⊆ P2
k be a smooth projective plane conic defined by a homogeneous quadric

f(x, y, z), and C the corresponding very affine curve (obtained by dehomogenizing with
respect to z and intersecting with the 2-torus T2 := A2 \ V (xy)), with coordinate ring R.
We describe methods for answering Questions 2.14 and 2.15 in this case. Combined with
Lemma 2.22, this gives an algorithm to compute a basis of R∗/k∗. (Note that we can easily
generate rational points on a plane conic.)

Algorithm 2.26 (Computing unit groups of conics).

Require: A homogeneous quadric f(x, y, z) defining a plane conic C ⊆ P2

Ensure: A basis of R∗/k∗

1: P1, . . . , Pn ← boundary points of C
2: P ← any other point of C
3: for all i ∈ {1, . . . , n} do
4: Li ← defining equation of line between Pi and P
5: end for
6: for all i ∈ {1, . . . , n− 1} do
7: Compute fi ∈ k[x±1, y±1] equivalent to Li/Li+1 in R using Algorithm 2.21
8: end for
9: return f1, . . . , fn−1

Theorem 2.27. Algorithm 2.26 computes a basis for R∗/k∗.

Proof. Observe that Cl0(C) = 0 (as C ∼= P1). The exact sequence (2.3.1) then implies that
the injection R∗/k∗ ↪→ Div0

∂(C) is an isomorphism. Then, note that P1 − P2, · · · , Pn−1 − Pn
forms a basis for Div0

∂(C), and Li/Li+1 corresponds to the divisor Pi − Pi+1. Applying
Algorithm 2.21 finishes the proof.

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 27

Note that the choice of basis {Pi − Pi+1} in the above proof was arbitrary; any basis of
Div0

∂(C) would suffice. On the other hand, this basis gives the very simple rational functions
Li/Li+1.

Example 2.28. Consider the degree 2 Fermat curve C defined by x2 + y2 = z2. We show
that the units produced in Example 2.24 are not generators of R∗/k∗. As in Example 2.24,
we have the following boundary points:

1. P0 := [i : 1 : 0]

2. P1 := [−i : 1 : 0]

3. Q0 := [1 : 0 : 1]

4. Q1 := [−1: 0 : 1]

5. T0 := [0 : 1 : 1]

6. T1 := [0 : − 1: 1]

Example 2.24 gives the following units and divisors (with R∗/k∗
φ
↪−→ Div0

∂(C) as in
(2.3.1)):

1. φ(x) = T0 + T1 − P0 − P1

2. φ(y) = Q0 +Q1 − P0 − P1

3. φ(y − 1) = 2T0 − P0 − P1

4. φ(x− 1) = 2Q0 − P0 − P1

5. φ(x− iy) = P0 − P1

The subgroup of Div0
∂(C) generated by these divisors is given by the integer column span

of the matrix, which is exactly Figure 2.1 for d = 2:
−1 −1 −1 −1 1
−1 −1 −1 −1 −1
0 1 0 2 0
0 1 0 0 0
1 0 2 0 0
1 0 0 0 0



CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 28

As noted in the proof of Theorem 2.27, one basis for Div0
∂(C) is {Pi − Pi+1 | 1 ≤ i ≤

n− 1} = P1 − P2, P2 − P3, . . . , Pn−1 − Pn. From this basis we obtain the matrix
1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 −1


The first lattice has index 4 in the second. It follows that the units given in Example 2.24
are not generators in this case.

Example 2.29. Let C be the conic defined by f = (1 + t)x2 + (1 + t)y2 + (1 + t)z2− (2 + 2t+
t2)xy − (2 + 2t + t2)yz − (2 + 2t + t2)xz, where k is the field of Puiseux series in t over C.
Consider the very affine curve C given by intersecting with the canonical torus. Its boundary
points are

1. P1 := [0 : 1 : t+ 1]

2. P2 := [0 : t+ 1 : 1]

3. P3 := [1 : 0 : t+ 1]

4. P4 := [t+ 1 : 0 : 1]

5. P5 := [1 : t+ 1 : 0]

6. P6 := [t+ 1 : 1 : 0]

As described above, we can take a basis of Div0
∂(C) to be differences of these boundary

points, e.g. P3 − P1, P3 − P2, P5 − P3, P5 − P4, and P6 − P1. Algorithm 2.26 gives the
following particularly nice generators of the unit group:

1. P3−P1 gives f1 := (line between P3 and P2)/(line between P1 and P2) = (t+1)2x+y−(t+1)
x

=
(t+ 1)2 + yx−1 − (t+ 1)x−1

2. P3−P2 gives f2 := (line between P1 and P3)/(line between P1 and P2) = (t+1)x+(t+1)y−1
x

=
(t+ 1) + (t+ 1)yx−1 − x−1

3. P5−P3 gives f3 := (line between P5 and P4)/(line between P3 and P4) = (t+1)x−y−(t+1)2

y
=

(t+ 1)xy−1 − 1− (t+ 1)2y−1

4. P5 − P4 gives f4 := (line between P5 and P3)/(line between P3 and P4) = (t+1)x−y−1
y

=

(t+ 1)xy−1 − 1− y−1

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 29

5. P6−P1 gives f5 := (line between P6 and P2)/(line between P1 and P2) = x−(t+1)y+(t+1)2

x
=

1− (t+ 1)yx−1 + (t+ 1)2x−1

So the intrinsic torus has dimension 5, and these generators specify a map into the
intrinsic torus, corresponding to the ring map ϕ : k[x±1

1 , . . . , x±1
5]→ k[x±1, y±1]/〈f〉 sending

xi 7→ fi.
We note that the tropicalization of f is simply the tropical line 0 ⊕ x ⊕ y shown in the

left in Figure 2.2.
We used Singular [20, 49] to compute the tropicalization of f in its intrinsic torus with

basis equal to {x, y, f1, f2, f3}. The intrinsic tropicalization has the following snowflake struc-
ture typical of a generic tropical conic as shown in the right in Figure 2.2.

(0, 0, 0)

(−2,−3,−2)

(−1,−2,−1)

(−1,−1,−1)

(0, 2, 3)

(0, 1, 1)

(0, 1, 2)
(2, 1,−1)

(1, 1,−1)

(1, 0, 0)

(0, 1)

2

2

2
(1, 0)(0, 0)

(−1,−1)

Figure 2.2: The tropicalization and intrinsic tropicalization respectively of the conic in Ex-
ample 2.29, with coordinates and nontrivial multiplicities labeled.

Remark 2.30. Consider the complete graph whose nodes are the elements of ∂C. Choose a
spanning tree of this graph, and pick a direction for each edge. Each edge of this tree gives a
divisor; namely an edge from P to Q gives the divisor P −Q. This gives a basis of Div∂(C).

For instance, in Example 2.28, the basis

P0 −Q0, P1 −Q0, Q1 − P0, T0 − P0, T1 − P0

corresponds to the directed tree on the left in Figure 2.3.
Similarly, the basis

Q0 − P0, Q0 − P1, Q0 −Q1, Q0 − T0, Q0 − T1

corresponds to the tree on the right in Figure 2.3 (rooted at Q0).

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 30

P0 Q0 P1

T0 Q1 T1

P0 Q0 P1

T0 Q1 T1

Figure 2.3: Two directed trees describing two different bases for the intrinsic torus of Example
2.28.

2.5 Rational normal curves

We next consider rational normal curves in parametric form. Recall that for any n, a
rational normal curve C of degree n is the image of P1 under an embedding ν : P1 ↪−→ Pn
given by ν([S : T]) = [f0(S, T) : · · · : fn(S, T)], where f0, . . . , fn are k-linearly independent
homogeneous polynomials of degree n. Let C := C ∩ Tn be the corresponding very affine
curve, with coordinate ring R. Our goal in this section is to give an algorithm for computing
a basis of R∗/k∗.

Remark 2.31. Plane conics are precisely the rational normal curves of degree 2, so the
following discussion generalizes part of Section 2.4. Note though that the presentation of
the curves in question has changed: here we do not begin with the implicit equations of the
rational normal curve in Pn.

The following is a modification of the polynomial subalgebra membership algorithm given
in [19, Proposition 7.3.7].

Algorithm 2.32 (Subalgebra membership).

Require: f0, . . . , fn degree n homogeneous polynomials in k[S, T] defining a rational normal
curve, and a rational function f

g
∈ k(S, T)

Ensure: γ ∈ k[x±1
1 , . . . , x±1

n] such that its homogenization γ ∈ k[x±1
0 , . . . , x±1

n] satisfies
f(S,T)
g(S,T)

= γ
(
f0(S, T), . . . , fn(S, T)

)
if such a γ exists, or false otherwise

1: I ← 〈y0 − f0, . . . , yn − fn, uf0 . . . fn − 1, gs− 1〉 in k[y0, . . . , yn, u, s, S, T]
2: G ← GröbnerBasis(I) in a monomial ordering where any monomial involving s, S, T is

greater than any monomial in k[y0, . . . , yn, u].
3: h← the remainder of dividing fs by G
4: if h ∈ k[y0, . . . , yn, u] then
5: return h(1, x1, . . . , xn, (x1 . . . xn)−1)
6: else
7: return false

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 31

8: end if

Lemma 2.33. Let C be a rational normal curve with parametrization ψ : P1 ↪−→ Pn given by
f0, . . . , fn. Algorithm 2.32 correctly returns γ ∈ k[x±1

1 , . . . , x±1
n] such that its homogenization

γ ∈ k[x±1
0 , . . . , x±1

n] satisfies f(S,T)
g(S,T)

= γ
(
f0(S, T), . . . , fn(S, T)

)
if such a γ exists.

Proof. Note that it suffices to find the pushforward γ of a rational function f(S,T)
g(S,T)

on ψ−1(C)

along the map given by ψ−1(C) ↪−→ C, if such a γ exists and is regular. There exists
γ ∈ k[x±1

0 , . . . , x±1
n] such that

f

g
= γ

(
f0, . . . , fn

)
if and only if there exists χ ∈ k[y0, . . . , yn, u] such that

f

g
= χ

(
f0, . . . , fn, (f0 . . . fn)−1

)
.

Setting u = (f0 . . . fn)−1 and s = g−1, this is equivalent to the statement that fs is in the
k-algebra generated by {f0, . . . , fn, u} in the ring k[u, s, S, T]/〈uf0 . . . fn−1, gs−1〉. By [19,
Proposition 7.3.7(i)], the previous statement is true if and only if h, the remainder upon
dividing fs by the Gröbner basis G, is in the polynomial ring k[y0, . . . , yn, u].

Suppose γ exists, let γ be its homogenization, and fix the notation of the previous para-
graph. The argument above shows that h is a polynomial in y0, . . . , yn, u. By [19, Propo-
sition 7.3.7(ii)], fs = h(f0, . . . , fn, (f0 . . . fn)−1) is an expression of fs as a polynomial in
f0, . . . , fn, (f0 . . . fn)−1, so we can write γ = h(x0, . . . , xn, (x0 . . . xn)−1). Dehomogenizing,
we get γ = h(1, x1, . . . , xn, (x1 . . . xn)−1) as the pushforward of f/g. Because h is a Laurent
polynomial, γ is regular on C.

Algorithm 2.34 (Computing unit groups of rational normal curves).

Require: A rational normal curve C given parametrically by f0(T, S), . . . , fn(T, S) ∈ k[S, T]
and a corresponding very affine curve given by setting f0 = 1

Ensure: A Z-basis of R∗/k∗

1: D ← ∅
2: [a1 : b1], . . . , [am : bm]← preimages of ∂C under the parametrization map P1 ↪−→ Pn.
3: Choose any basis B of Div0

∂(C)
4: for all σ ∈ B do
5: Write

∑
i ci[aki : bki]−

∑
j dj[alj : blj] as the preimage of σ

6: f ←
∏

i(bkiS − akiT)ci

7: g ←
∏

j(bljS − aljT)dj

8: γ ← Algorithm 2.32
(
f0, . . . , fn,

f
g

)
9: γ ← γ(1, x1, . . . , xn)

10: D ← D ∪ {γ}
11: end for

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 32

12: return D

Theorem 2.1. Let C ⊆ Pnk be a rational normal curve over an algebraically closed field k,
given parametrically as the image of a map P1

k ↪→ Pnk . Let C := C ∩Tn be the corresponding
very affine curve, with coordinate ring R. Then Algorithm 2.34 correctly computes a Z-basis
of R∗/k∗.

Proof. Let C be parametrized by f0(S, T), . . . , fn(S, T) ∈ k[S, T]. As C ∼= P1, Cl0∂(C) =
0, so the injection R∗/k∗ ↪→ Div0

∂(C) is an isomorphism. For each basis element σ =∑
i ci[aki : bki] −

∑
j dj[alj : blj], Algorithm 2.32 produces a rational function γ on C which

has zeros of order ci at [f0(aki , bki) : · · · : fn(aki , bki)] and poles of order dj at [f0(alj , blj) :
· · · : fn(alj , blj)]. Dehomogenizing gives the unit in R∗ corresponding to σ.

Example 2.35. Consider the degree 3 rational normal curve C ⊆ P3 given by the parametriza-
tion

[S3 − 4ST 2 : S2T − 9T 3 : (S − 3T)T 2 : (S + 3T)T 2]

We compute the following boundary points (note that e.g. P1, P5, and P6 are obtained by
solving for [S : T] when the first coordinate function S3 − 4ST 2 is equal to zero):

1. P1 = [0: 1]

2. P2 = [1: 0]

3. P3 = [3 : 1]

4. P4 = [−3 : 1]

5. P5 = [2 : 1]

6. P6 = [−2 : 1]

We choose the following basis of Div0
∂(C):

P1 − 2P2 − P4 + P5 + P6, P2 − P3, P3 − P4, P4 − P5, P5 − P6

Choose coordinates x, y, z, w on P3. We run Algorithm 2.32 to obtain preimages under φ
of our basis of Div0

∂(C) in Frac(R)∗. Their corresponding dehomogenizations with respect to
w give a basis of R∗/k∗:

1. x x

2. y y

3. z z

4.
x+ 5y + 45

6
(w − z) + 10(w + z)

x

x+ 5y + 45
6

(1− z) + 10(1 + z)

x

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 33

5.
x− 4y + 6(w − z) + 4(w + z)

x

x− 4y + 6(1− z) + 4(1 + z)

x

Remark 2.36. Although we do not do so here, one could consider various generalizations of
the results presented thus far. For example, one can essentially perform the same procedure
with “pinched” rational curves, i.e. smooth rational curves of degree > n in Pn. However,
once higher-dimensional varieties or curves with singularities are considered, the situation
becomes more complicated; even computing the boundary is no longer a simple task.

2.6 Elliptic curves

Fix k = Q, let E ⊆ P2
k be an elliptic curve with a given base point O, and set E := E∩T2.

Due to (2.3.1), computing the image of R∗/k∗ in Div0
∂(E) is equivalent to computing the

relations between the closed points of ∂E =: {P1, . . . , Pn} in Cl0∂(E). As the group law on the
elliptic curve coincides with the group law in the class group, it suffices to compute relations
between the corresponding points on the elliptic curve, which can be done via canonical
Néron–Tate heights.

The Canonical Néron–Tate Height Pairing

We briefly define canonical Néron–Tate heights, following the exposition from [79]. Speak-
ing broadly, height functions measure the “arithmetic complexity” of points on abelian va-
rieties. For any field F and variety X, let X(F) denote the F -rational points of X.

Theorem 2.37 ([79, p. VIII.9.3]). Let E be an elliptic curve defined over a number field.
There exists a unique function ĥ : E(Q) → R called the canonical Néron–Tate height. It
satisfies the following properties:

1. For all P,Q ∈ E(Q), the parallelogram law holds, i.e.

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P) + 2ĥ(Q).

2. For all P ∈ E(Q) and m ∈ Z,

ĥ(mP) = m2ĥ(P).

3. ĥ is an even function, and the pairing

〈 , 〉 : E(Q)× E(Q)→ R

〈P,Q〉 = ĥ(P +Q)− ĥ(P)− ĥ(Q)

is bilinear. This is equivalent to saying that ĥ is a quadratic form on E(Q). We call
this the canonical Néron–Tate height pairing.

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 34

4. For all P ∈ E(Q), one has ĥ(P) ≥ 0, and ĥ(P) = 0 if and only if P is torsion.

For any number field K, we can obtain a bilinear form on E(K) by restricting the bilinear
form on E(Q) in Theorem 2.37(3). This can be extended to a bilinear form on the finite-
dimensional real vector space E(K)⊗ R.

Proposition 2.38 ([79, p. VIII.9.6]). The Néron–Tate height induces a positive definite
inner product on E(K)⊗ R.

One can compute heights on elliptic curves efficiently with [70, Algorithm 6.1].

Computing Generators of the Unit Group

We now detail algorithms to solve Questions 2.14 and 2.15 for elliptic curves. First we
treat Question 2.14. In addition to the above theory on Néron–Tate heights, we will need
the following theorem and subroutines.

Theorem 2.39 ([65], [88, Theorem 4]). Suppose L is a sublattice in Zn of rank m. Fix
some topological vector space norm on Rn. For all 1 ≤ k ≤ m, let Mk denote the minimum
size ball centered at the origin that contains k linearly independent vectors in L. Then there
exists a basis {x1, . . . , xn} of L such that for all 1 ≤ k ≤ m, |xk| ≤ (3

2
)k−1Mk.

Subroutine 2.40 (Computing the relations among some torsion points of an elliptic curve).

Require: Torsion points T1, . . . , Tr on an elliptic curve and torsion orders m1, . . . ,mn

Ensure: Generators for the lattice of relations among T1, . . . , Tr in Zr
1: D ← ∅
2: for all (n1, . . . , nr) where 0 ≤ ni ≤ mi do
3: if n1T1 + · · ·+ nrTr = 0 then
4: add (n1, . . . , nr) to D
5: end if
6: end for
7: return D

Subroutine 2.40 correctly computes all relations among a set of torsion points, as it simply
manually checks all possible relations.

Subroutine 2.41 (Computing the relations modulo torsion of some torsion points on an
elliptic curve).

Require: A set of nontorsion points Q1, . . . , Qn on an elliptic curve
Ensure: Generators in Zn for the lattice of relations among the Qi in E(Q)/ tors
1: Compute the n×n matrix A such that the Ai,j ← 〈Qi, Qj〉 = ĥ(Qi+Qj)− ĥ(Qi)− ĥ(Qj)

2: return generators of kerA ∩ Zn

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 35

Lemma 2.42. Subroutine 2.41 correctly computes the lattice of relations among the nontor-
sion points Q1, . . . , Qn in E(Q)/ tors.

Proof. Choose some number field K large enough such that {Q1, . . . , Qn} ⊆ E(K). Note
that E(K) modulo torsion embeds into E(K) ⊗ R. By Theorem 2.37 (3), A is the inner
product matrix of a nondegenerate inner product, and thus kerA∩Zn comprises the relations
among the Qi up to torsion.

We are now ready to solve Question 2.14 for elliptic curves.

Algorithm 2.43 (Answering Question 1 for elliptic curves).

Require: An elliptic curve over Q with a nonempty finite set of distinguished points S ⊆
E(Q) and a base point O

Ensure: A minimal generating set of ker(Div0
S(E)→ Cl0(E))

1: Determine torsion points of S by Theorem 2.37(4). Let Q1, . . . , Qn refer to nontor-
sion points of S, and let T1, . . . , Tr refer to torsion points of S with orders m1, . . . ,mr

respectively.
2: D ← ∅ ⊆ Zn+r

3: G← finite subgroup generated by (T1, . . . , Tr) ⊆ E(Q)
4: DT ← relations between T1, . . . , Tr as given by Subroutine 2.40
5: D ← {(0, . . . , 0, n1, . . . , nr) ∈ Zn+r | (n1, . . . , nr) ∈ DT}
6: DQ ← relations modulo torsion between Q1, . . . , Qn as given by Subroutine 2.41
7: `← rank(spanZ(DQ))
8: λ← 0, Sλ ← ∅ ⊂ Zn
9: while rank(spanZ(Sλ)) 6= ` do

10: λ← λ+ 1

11: Sλ ←
{

(m1, . . . ,mn) ∈ spanZ(DQ)
∣∣√∑m2

i ≤ λ and m1Q1 + · · ·+mnQn ∈ G
}

12: end while
13: Λ←

{
(m1, . . . ,mn) ∈ spanZ(DQ)

∣∣√∑m2
i ≤ (3

2
)`−1λ and m1Q1 + · · ·+mnQn ∈ G

}
14: for (m1, . . . ,mn) ∈ Λ do
15: Choose (n1, . . . , nr) such that m1Q1 + · · ·+mnQn + n1T1 + · · ·+ nrTr = 0
16: add (m1, ...,mn, n1, . . . , nr) to D
17: end for
18: Let deg : Zn+r → Z be the map sending (x1, . . . , xn+r) 7→

∑
xi

19: return a minimal set of generators for ker
(
deg |spanZ(D)

)
Lemma 2.44. For a distinguished set S of Q-points on the elliptic curve E, Algorithm 2.43
correctly computes a minimal generating set of the kernel of the map Div0

S(E)→ Cl0(E).

Proof. We first prove that the algorithm terminates. Let ψ denote the map DivS(E) →
ClS(E), and let ψ0 denote the restriction Div0

S(E) → Cl0S(E). Identify

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 36

Div0
S(E) ∼= Z〈Q1, . . . , Qn, T1, . . . , Tr〉 with Zn+r using this ordering of elements in S. For

any subset M ⊆ {1, . . . , n+ r}, let πM denote the projection onto those coordinates.
Note that π{1,...,n}(kerψ) ⊆ spanZ(DQ). In fact π{1,...,n}(kerψ) has the same rank as

spanZ(DQ); if (m1, . . . ,mn) ∈ spanZ(DQ), then m1Q1 + · · ·+mnQn ∈ G and thus is torsion.
It follows that there exists some m ∈ Z such that mm1Q1 + · · · + mmnQn = 0, so that
(mm1, . . . ,mmn) ∈ π{1,...,n}(kerψ). Hence there exists a λ large enough to exit the while
loop, and the algorithm terminates.

We now show the correctness of the algorithm. We claim that π{1,...,n}(kerψ) = spanZ(Λ).
Note by definition that Λ ⊆ π{1,...,n}(kerψ) so spanZ(Λ) ⊆ π{1,...,n}(kerψ). By Theorem 2.39,
as Sλ contains at least ` linearly independent elements, Λ will contain a lattice basis of
π{1,...,n}(kerψ). Thus π{1,...,n}(kerψ) = spanZ(S).

Next we show that spanZ(D) = kerψ. Clearly spanZ(D) ⊆ kerψ by construction. Sup-
pose (m1, . . . ,mn, n1, . . . , nr) ∈ kerψ. Then (m1, . . . ,mn) ∈ π{1,...,n}(kerψ) = spanZ(Λ),
so there exist n′1, . . . , n

′
r such that (m1, . . . ,mn, n

′
1, . . . , n

′
r) ∈ spanZ(D) ⊆ kerψ. Thus,

(0, . . . , 0, n1 − n′1, . . . , nr − n′r) ∈ kerψ. However, (0, . . . , 0, n1 − n′1, . . . , nr − n′r) ∈ spanZ(D)
because of Subroutine 2.40, so

(m1, . . . ,mn, n
′
1, . . . , n

′
r)+(0, . . . , 0, n1−n′1, . . . , nr−n′r) = (m1, . . . ,mn, n1, . . . , nr) ∈ spanZ(D).

To conclude, we note that kerψ0 = kerψ ∩ L = spanZ(D) ∩ L.

We now turn our attention to answering Question 2.15. The following is an explicit
version of Miller’s algorithm, specialized to genus 1 [67]. For the following algorithm, we use
+ and − to denote addition and subtraction in the group of Weil divisors (as formal sums of
points, not divisor classes), and use ⊕ and i to denote addition and inversion in the group
law on the elliptic curve. For a point P and n ∈ Z, the notation nP means P + . . .+P , not
P ⊕ · · · ⊕ P .

Algorithm 2.45 (Answering Question 2 for elliptic curves).

Require: An elliptic curve E with basepoint O and a divisor D =
∑

P nPP ∈ Div0
∂(E)

Ensure: Whether D is in the image of R∗/k∗, and an element of Frac(R)∗ mapping to D
if it is

1: f ← 1
2: while |D| 6= 0 do
3: if ∃P,Q such that nP , nQ > 0 and P 6= −Q then
4: D ← D − (P +Q+ (i(P)⊕Q)− 3O)
5: f ← fL where L is the line through P and Q
6: else if ∃P,Q such that nP , nQ > 0 and P = −Q then
7: D ← D − (P +Q− 2O)
8: f ← fL where L is the line through P and Q
9: else if ∃P,Q such that nP , nQ < 0 and P 6= −Q then

10: D ← D + (P +Q+ (i(P)⊕Q)− 3O)
11: f ← f/L where L is the line through P and Q

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 37

12: else if ∃P,Q such that nP , nQ < 0 and P = −Q then
13: D ← D + (P +Q− 2O)
14: f ← f/L where L is the line through P and Q
15: else if D is of the form mP − nQ+ oO for m,n ≥ 0 then
16: if m ≥ 2 and P has order 3 then
17: D ← D − (3P − 3O)
18: f ← fL where L is the tangent line at P
19: else if m ≥ 2 and P does not have order 2 then
20: D ← D − (2P + i(P ⊕ P)− 3O)
21: f ← fL where L is the tangent line at P
22: else if m ≥ 2 and P has order 2 then
23: D ← D − (2P − 2O)
24: f ← fL where L is the tangent line at P
25: else if n ≥ 2 and Q has order 3 then
26: D ← D + (3Q− 3O)
27: f ← f/L where L is the tangent line at Q
28: else if n ≥ 2 and Q does not have order 2 then
29: D ← D + (2Q+ i(Q⊕Q)− 3O)
30: f ← f/L where L is the tangent line at Q
31: else if n ≥ 2 and Q has order 2 then
32: D ← D − (2Q− 2O)
33: f ← f/L where L is the tangent line at Q
34: else if m = 1 and n = 1 then
35: D ← D + (Q+ i(Q)− 2O)
36: f ← f/L where L is the line through Q and −Q
37: else if (m = 1 and n = 0) or (m = 0 and n = 1) then
38: return this divisor is not in the image of R∗/k∗

39: end if
40: end if
41: end while
42: return f

Lemma 2.46. Algorithm 2.45 correctly determines whether a divisor D is in the image of
R∗/k∗ and computes an element f of Frac(R)∗ mapping to D if so.

Proof. Let φ denote the map R∗/k∗ ↪−→ Div0(E). Note that the quantity D − φ(f) is a
loop invariant. Note additionally that during every execution of the loop, exactly one of the
conditionals is satisfied; if line 3, 6, 9, and 12 are not satisfied, then D must be of the form
mP − nQ+ oO for m,n ≥ 0. If D = mP − nQ+ oO then exactly one of line 16, 19, 22, 25,
28, 31, 34, or 37 must be satisfied. |D| is strictly reduced during each iteration unless line
34 or line 37 are satisfied. Line 37 terminates the program. Line 34 cannot be satisfied in
two consecutive loops. Thus the algorithm will terminate.

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 38

Assume D ∈ φ(R∗/k∗). If at some point in execution |D| = 0, then as D is degree 0,
D = 0 and so D = φ(f). If, during the execution of the algorithm, line 37 is satisfied, then
some point is linearly equivalent to the origin, which is a contradiction. Hence the algorithm
outputs an element f with the desired property.

Now assume D /∈ φ(R∗/k∗). Because D − φ(f) is a loop invariant, we will never have
|D| = 0. Because the algorithm terminates, it must terminate at line 37, as desired.

Algorithm 2.47 (Computing unit groups of elliptic curves).

Require: An elliptic curve over Q with boundary points ∂ and a base point O
Ensure: A basis of R∗/k∗

1: V ← a generating set of the image of R∗/k∗ ↪→ Div0
∂(E) by Algorithm 2.43

2: B ← ∅
3: for all v ∈ V do
4: f/g ← a rational function with divisor v using Algorithm 2.45
5: B ← B ∪ {h}, where h is a Laurent polynomial with the same divisor as f/g by

Algorithm 2.21
6: end for
7: return B

Theorem 2.2. Let k = Q, let E ⊆ P2
k be an elliptic curve, and let E := E ∩ T2 be

the corresponding very affine elliptic curve with coordinate ring R. Then Algorithm 2.47
correctly computes a Z-basis of R∗/k∗.

Proof. The correctness of Algorithm 2.47 follows by Lemmas 2.44, 2.46, and 2.22.

Remark 2.48. Many of the algorithms presented in this section are most easily implemented
(e.g. in Sage [77]) for elliptic curves in Weierstrass form. Given a projective isomorphism
of E to a Weierstrass form W as ϕ : E → W , we can compute relations among the points
in ϕ(∂E) using Algorithm 2.43. These relations can be pulled back by ϕ−1 to all relations
among the points in ∂E, because ϕ induces an isomorphism Div0

∂(E) ∼= Div0
S(W).

Example 2.49. Let E be the very affine elliptic curve E = Spec(Q5[x±1, y±1]/〈y2 − (x −
1)(x+ 1)(x− 4)〉) with basepoint [0 : 1 : 0]. We compute the following six boundary points of
E ⊆ P2

Q5
:

1. Q1 := [0 : 2 : 1]

2. Q2 := [0 : −2 : 1]

3. T1 := [0 : 1 : 0]

4. T2 := [1 : 0 : 1]

5. T3 := [−1 : 0 : 1]

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 39

6. T4 := [4 : 0 : 1]

T1 is the identity on E and has torsion order 1; T2, T3, and T4 have torsion order 2;
and Q1 and Q2 are nontorsion. From (2.3.1), we only need to find relations between the 6
points listed above. Note that E is defined over Q, E(Q) ↪−→ E(Q5), and the points Qi, Ti
are defined over Q. Thus, it is sufficient to compute relations in E(Q), and so our previous
results to compute relations still apply. Algorithm 2.47 yields the following generating set for
the lattice of relations, with corresponding units:

1. [1, 1, 1, 1,−2,−2] −y/x2

2. [0, 2, 0, 0,−1,−1] (x− 1)/x

3. [0, 0, 2, 0,−1,−1] (x+ 1)/x

4. [0, 0, 0, 2,−1,−1] (x− 4)/x

Note that it is easy to find these units by inspection, but to check that these form a basis of
R∗/k∗, we rely on the algorithms given in this section. We can compute the tropicalization
of the elliptic curve E ⊆ T2 defined by the equation y2 = (x − 1)(x + 1)(x − 4) to be three
rays emerging from the origin, as pictured on the left in Figure 2.4.

Using the unit group basis {x, y, x− 1, x+ 1}, we compute the intrinsic tropicalization of
E in T4 with Singular, shown on the right in Figure 2.4:

(0, 1, 0, 1)

(0, 0, 0, 0)

(0, 1, 0, 0)

(0, 1, 0, 2)

(1, 0, 0, 0)

(0, 1, 2, 0)

2

2

(−2,−3,−2,−2)

(0, 0)

(0, 1)

(1, 0)

(−2,−3)

3

2

Figure 2.4: The tropicalization and intrinsic tropicalization respectively of the elliptic curve
in Example 2.49, with coordinates and nontrivial multiplicities labeled.

In particular, the intrinsic tropicalization is larger than the original. On the other hand,
the j-invariant is j(E) = 438976/225, so that its 5-adic valuation is −2. It follows from
Chan and Sturmfels [15] that E can be projectively re-embedded so that its tropicalization

CHAPTER 2. INTRINSIC TROPICALIZATIONS OF CURVES 40

is in honeycomb form. The intrinsic tropicalization of E does not retain this information,
as this projective re-embedding of E does not preserve our dehomogenization procedure. In
particular, intrinsic tropicalizations need not be faithful.

Hyperelliptic curves

The Néron–Tate canonical height can more generally be defined on any abelian variety
defined over any number field. Fix some curve X defined over Q. Choose a number field K
such that ∂X ⊆ X(K). Letting J denote the Jacobian of X, the Néron–Tate canonical height
pairing on J(Q) induces a positive definite inner product on J(K)⊗R. For curves of genus
2, Cassels, Flynn, and Smart provide an algorithm to compute the canonical height in [13]
and [31], which has since been implemented in Magma [8]. For hyperelliptic curves of genus
3, Stoll [81] describes such an algorithm with a corresponding Magma implementation. Ad-
ditionally, Holmes [47] has provided a height algorithm for all hyperelliptic curves. Another
algorithm to compute heights for all hyperelliptic curves has been provided by Müller [69].
However, a hyperelliptic curve of the form y2 = f(x) in P2 with deg f ≥ 4 has a singularity
at infinity, and thus the methods used for elliptic curves do not immediately generalize.

Conclusion

In this chapter, we developed algorithms for computing the unit groups for several classes
of curves. We did so by embedding the unit group into the Weil divisor class group of the
projective closure and analyzing the cokernel of this embedding as a subgroup of the divisor
class group. Extending these methods to other classes of curves or to varieties of higher
dimension will be a challenging topic of future research. Our motivation for calculating
these unit groups was to compute the intrinsic tropicalization of very affine varieties; in
the next section we focus on another algorithmic problem related to the tropicalization of
varieties.

41

Chapter 3

Zero-dimensional tropical varieties via
projections

This chapter is based on the manuscript “Computing zero-dimensional tropical varieties
via projections” [37], which is joint work with Paul Görlach and Yue Ren, and which has
been submitted to Computational Complexity.

3.1 Introduction

Computing tropical varieties of polynomial ideals is a fundamentally important yet algo-
rithmically challenging task, requiring sophisticated techniques from computational algebra
and convex geometry. Currently, Gfan [50] and Singular [20] are the only two programs
capable of computing general tropical varieties. Both programs rely on a traversal of the
Gröbner complex as initially suggested by Bogart, Jensen, Speyer, Sturmfels, and Thomas
[7], and for both programs the initial bottleneck had been the computation of tropical links.
Experiments suggest that this bottleneck was resolved with the recent development of new
algorithms [14, 46]. However the new approaches still rely on computations that are known
to be very hard, [14] on elimination and [46] on root approximation to an unknown precision.

In this chapter, we study the computation of zero-dimensional tropical varieties, which is
the key computational ingredient in [46]. The computation uses triangular decomposition,
which was also used in [46], and skew projections, which is the key conceptual idea behind
[14]. The triangular decomposition splits the ideal into parts on which transformations can
be efficiently applied. We show that the algorithm requires a polynomial number of field
operations if we start with a Gröbner basis. In particular, we argue that in the computa-
tion of general tropical varieties, the calculation of tropical links becomes computationally
insignificant compared to the Gröbner walk required to traverse the tropical variety.

Note that projections are a well-studied approach in polynomial systems solving, see
[23, 82] for an overview on various techniques. Our approach can be regarded as a non-

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 42

Archimedean analogue of that strategy, since tropical varieties can be regarded as zeroth-
order approximation of the solutions in the topology induced by the valuation.

This chapter is organized as follows: In Section 3.3, we introduce a special class of mono-
mial transformations and study how they act on triangular sets. In Section 3.4, we explain
our main algorithm for reconstructing zero-dimensional tropical varieties of triangular sets
from their projections, while Section 3.5 analyzes the complexity of our algorithm. Sec-
tion 3.7 touches upon some technical details of the implementation for the special case when
the ideal is in shape position, and Section 3.8 compares the performance of our algorithm
against a Magma implementation using univariate factorization and backsubstitution.

Implementations of all our algorithms can be found in the Singular library
tropicalProjection.lib. Together with the data for the timings, it is available at
https://mathrepo.mis.mpg.de/tropicalProjections/, and will also be made publicly available
as part of the official Singular distribution.

3.2 Background

Let K be a field with non-trivial valuation ν : K∗ → R and fix a multivariate polynomial
ring K[x] := K[x1, . . . , xn] as well as a multivariate Laurent polynomial ring K[x±] :=
K[x±1 , . . . , x

±
n]. Moreover, given a Laurent polynomial ideal I ⊆ K[x±], we call a finite

subset G ⊆ I a Gröbner basis with respect to a monomial ordering ≺ on K[x] if G consists
of polynomials and forms a Gröbner basis of the polynomial ideal I∩K[x] with respect to≺ in
the conventional sense, see for example [39, §1.6]. Finally, a lexicographical Gröbner basis will
be a Gröbner basis with respect to the lexicographical ordering ≺lex with xn ≺lex · · · ≺lex x1.

For the sake of notation, we briefly recall some basic notions of computational algebra
that are of immediate relevance to us. Our approach for computing zero-dimensional tropical
varieties of multivariate ideals is based on computing sufficiently many projections to the
univariate case.

For our approach, we will require the notion of triangular decomposition, a common
concept for decomposing ideal into easier parts. Given a Gröbner basis, its time complexity
is polynomial in the number of variables and the degree of the ideal [60]. In practice, it is
fast enough to be a standard tool in some polynomial solvers such as in Maple [4].

Definition 3.1. A triangular set T ⊆ K[x] is a finite set of polynomials, say T = {gn, . . . , g1},
where each gi ∈ K[xi, . . . , xn] is of the form gi = xdii − fi for some di ∈ N>0 and fi ∈
K[xi, . . . , xn] with xj-degree less than dj for j ≥ i. Note that this makes any triangular set
a reduced lexicographical Gröbner basis.

Proposition 3.2 ([39, Corollary 4.7.4]). Let J ⊆ K[x] be a zero-dimensional polynomial
ideal. Then there are triangular sets T1, . . . , Tk ⊆ K[x] such that

√
J =

⋂
i∈[k]

√
〈Ti〉 and 〈Ti〉+ 〈Tj〉 = K[x] for i 6= j.

https://mathrepo.mis.mpg.de/tropicalProjections/

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 43

Since each zero-dimensional ideal can be efficiently decomposed into triangular sets, we
will focus on ideals that are generated by triangular sets. Moreover, we will put special
emphasis on ideals in shape position.

Definition 3.3. A zero-dimensional ideal I ⊆ K[x±] is in shape position if it is generated
by a triangular set T = {gn, . . . , g1} with di = 1 for i < n, i.e., gi = xi − fi for a univariate
polynomial fi ∈ K[xn] for i < n.

3.3 Unitriangular transformations on triangular sets

In this section, we consider special transformations on K[x±] which arise from unitrian-
gular transformations on the lattice of Laurent monomials, and describe how they operate on
triangular sets. In Section 3.4, we will use these transformations to project a zero-dimensional
tropical variety onto various lines.

Definition 3.4. For any u = (u2, . . . , un) ∈ Zn−1
≥0 , we define a ring automorphism

ϕu : K[x±]→ K[x±], xi 7→

{
x1 · x−u22 · · ·x−unn if i = 1,

xi if i 6= 1,

and a linear projection

πu : Rn � R, (w1, . . . , wn) 7→ w1 +
n∑
i=2

uiwi.

We call such a ϕu a slim (unitriangular) transformation.

The reason we restrict ourselves to these simple transformations is because they allow us
to compute a wide range of projections while being easy to use.

Lemma 3.5. Let ϕu be a slim transformation. Then

πu(trop(I)) = trop(ϕu(I) ∩K[x±`]).

Proof. We may assume that K is algebraically closed. The ring automorphism ϕu induces a
torus automorphism fu : (K∗)n

∼−→ (K∗)n with f−1
u (V (I)) = V (ϕu(I)), which in turn induces

a linear transformation hu : Rn ∼−→ Rn mapping trop(ϕu(I)) to trop(I):

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 44

K[x±] K[x±]

induces

(K∗)n (K∗)n

Rn Rn

ϕu

fu

hu

ν ν

x1
∏

i>1 x
−ui
i x1

(z1, . . . , zn) (z1 ·
∏

i>1 z
−ui
i , z2, . . . , zn)

(w1, . . . , wn) (w1 −
∑

i>1 uiwi, w2, . . . , wn)

Hence, with p1 : Rn � R denoting the projection onto the first coordinate:

trop(ϕu(I) ∩K[x±1]) = p1(trop(ϕu(I))) = (p1 ◦ h−1
u)(trop(I)) = πu(trop(I)).

Algorithm 3.6 (Unitriangular transformations of triangular sets).

Require: (T, u), where

• T is a triangular generating set of a zero-dimensional ideal I ⊆ K[x±],

• ϕu is a slim transformation.

Ensure: T ′, a triangular set generating ϕu(I).
1: Suppose g1 := xd11 −

∑d1
i=1 pix

d1−i
1 ∈ T with pi ∈ K[x2, . . . , xn].

2: for i = 1, . . . , d1 do
3: p̂i := reduce

(
(xu22 · · ·xunn)ipi, T \ {g1}

)
.

4: end for
5: return T ′ := T \ {g1} ∪ {xd11 −

∑d1
i=1 p̂ix

d1−i
1 }.

Correctness of Algorithm 3.6. Only the last element in the triangular set

T =
{
xdnn − fn, . . . , x

d2
2 − f2, x

d1
1 −

d1∑
i=1

pix
d1−i
1︸ ︷︷ ︸

=g1

}

depends on x1. Therefore, by replacing it with ϕu(g1) = (q−1x1)d1 −
∑d1

i=1 pi(q
−1x1)d1−i,

where q := xu22 . . . xunn ∈ K[x], we get generators of the transformed ideal ϕu(I) ⊆ K[x±].
Note that multiplying this element with the monomial qd1 (which is invertible in K[x±]), we
pass to the polynomial generating set of ϕu(I) given by T \ {g1} ∪ {xd11 −

∑d1
i=1 piq

ixd1−i1 }.
This is a non-reduced Gröbner basis with respect to the lexicographical ordering ≺lex, and
replacing piq

i by p̂i, we reduce it modulo those generators not depending on x1 to obtain the
triangular set T ′.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 45

One special case that we would like to highlight separately is when an ideal I is in shape
position. For ideals in shape position, Algorithm 3.6 simplifies drastically and performs quite
well in practice, visible in the timings in Section 3.8. However, the complexity in Section 3.5
remains unchanged.

Remark 3.7 (Unitriangular transformations of ideals in shape position). If I is in shape
position, it is generated by a triangular set T of the following form for fn, . . . , f1 ∈ K[xn]:

T = {xdn − fn, xn−1 − fn−1, . . . , x2 − f2, x1 − f1}.

This has two main implications:

1. It simplifies Algorithm 3.6. The triangular set generating ϕu(I) will be of the form T ′ =
{xdn − fn, . . . , x2 − f2, x1 − f ′1}, where f ′1 ∈ K[xn] is the univariate polynomial with
deg(f ′1) < d and

f ′1 ≡
(
x−unn ·

n−1∏
i=2

f−uii

)−1

· f1 ≡
(
xunn ·

n−1∏
i=2

fuii

)
· f1 (mod xdn − fn). (3.3.1)

In particular, ϕu(I) will be in shape position.

2. It allows us to use a wider range of transformations beyond those considered in Def-
inition 3.4. To be precise, replacing f1 with f` in Equation (3.3.1) we may use any
transformation of the form

ϕu : K[x±]→ K[x±], xi 7→

{
x−u11 · · ·x1

` · · ·x−unn if i = `,

xi if i 6= `.

with ui ∈ N.

3.4 Computing zero-dimensional tropical varieties via

projections

In this section, we assemble our algorithm for computing trop(I) for a zero-dimensional
ideal I ⊆ K[x±] generated by a triangular set. This is done in two stages, see Figure 3.1:
In the first stage, we project trop(I) onto all coordinate axes of Rn. In the second stage, we
iteratively glue the coordinate projections together by projecting trop(I) onto more lines.

For the sake of simplicity, all algorithms contain some elements of ambiguity to mini-
mize the level of technical detail. To see how these ambiguities are resolved in the actual
implementation, see Section 3.7.

The following algorithm merges several small projections into a single large projection.
For clarity, given a finite subset A ⊆ {1, . . . , n}, we use RA to denote the linear subspace of
Rn spanned by the unit vectors indexed by A and pA to denote the projection Rn � RA. For
w ∈ Rn and I ⊆ K[x±], we denote wA := pA(w) ∈ RA and trop(I)A := pA(trop(I)) ⊆ RA.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 46

R ·e1trop(I){1} ⊆

R ·e2trop(I){2} ⊆ R ·(1, u) ⊇ πu(trop(I))

Figure 3.1: Computing zero-dimensional tropical varieties via projections.

Algorithm 3.8 (gluing projections).

Require: (T, trop(I)A1 , . . . , trop(I)Ak
), where

• T is a triangular generating set of a zero-dimensional ideal I ⊆ K[x±],

• A1, . . . , Ak ⊆ {1, . . . , n} are non-empty sets with 1 ∈ A := A1 ∪ . . . ∪ Ak.

Ensure: trop(I)A ⊆ RA.
1: Construct the candidate set

C :=
{
w ∈ RA

∣∣∣ wAi
∈ trop(I)Ai

for i = 1, . . . , k
}
.

2: Pick a u ∈ Zn−1
≥0 with ui = 0 for i /∈ A such that the following map is injective:

πu|C : C → R, (wi)i∈A 7→ w1 +
∑

i∈A\{1}

uiwi.

3: Using Algorithm 3.6, transform T into a triangular set T ′ generating ϕu(I).
4: Compute the eliminant µ ∈ K[x1], i.e., a generator of 〈T ′〉∩K[x1] and read off trop(µ) ⊆

R from its Newton polygon.
5: return {w ∈ C | πu(w) ∈ trop(µ)}.

Correctness of Algorithm 3.8. First, we show the existence of a slim transformation ϕu re-
quired for Line 2 such that πu is injective on the candidate set C. Extending the definition
of the linear projection πv from v ∈ Nn−1 in Definition 3.4 to arbitrary v ∈ Rn−1, it suffices
to show that the set

Z := {v ∈ Rn−1
≥0 | πv|T is injective} ⊆ Rn−1

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 47

contains an integer point. By the definition of πv, we see that

Z = Rn−1
≥0 \

⋃
w 6=w′∈T

Hw−w′ , where Hw−w′ :=
{
v ∈ Rn−1

∣∣∣ n∑
i=2

(wi − w′i)vi = w′1 − w1

}
.

This describes Z as the complement of an affine hyperplane arrangement in RB inside the
positive orthant. Therefore, Z must contain an integer point.

Next, note that the candidate set C contains trop(I)A by construction, so the injectivity
of πu|T implies trop(I)A = {w ∈ T | πu(w) ∈ πu(trop(I))}. Hence, the correctness of the
output follows from πu(trop(I)) = trop(µ), which holds by Lemma 3.5.

The next algorithm computes trop(I) by projecting it onto all coordinate axes and gluing
the projections together via Algorithm 3.8.

Algorithm 3.9 (tropical variety via projections).

Require: T , a triangular generating set of a zero-dimensional ideal I ⊆ K[x±].
Ensure: trop(I) ⊆ Rn

1: for k ∈ {1, . . . , n} do
2: Compute the eliminant µk ∈ K[xk], i.e., a generator of 〈T 〉 ∩K[xk], and read off the

projection trop(I){k} = trop(µk).
3: end for
4: Initialise a set of computed projections W :={trop(I){1}, . . . , trop(I){n}}.
5: while W 63 trop(I){1,...,n} do
6: Pick projections trop(I)A1 , . . . , trop(I)Ak

∈ W to be merged together such that 1 ∈ A
and trop(I)A /∈ W for A := A1 ∪ · · · ∪ Ak.

7: Using Algorithm 3.8, compute trop(I)A.
8: W := W ∪ {trop(I)A}.
9: end while

10: return trop(I){1,...,n}.

Correctness and Termination of Algorithm 3.9. In every iteration of the while loop, the set
W grows in size. As there are only finitely many sets A ⊆ {1, . . . , n}, we will compute
trop(I) = trop(I){1,...,n} after finitely many iterations.

Example 3.10. Consider K = Q equipped with the 2-adic valuation and the ideal

I = 〈 2x4
3 + x3

3 + x2
3 + x3 + 2︸ ︷︷ ︸

=:g3

, x2 − 2x3︸︷︷︸
=:f2

, x1 − 4x3︸︷︷︸
=:f1

〉 ⊆ K[x±1 , x
±
2 , x

±
3].

This ideal is in shape position by Definition 3.3. From the Newton polygon of g3, see Fig-
ure 3.2 (left), it is not hard to see that (for the sake of clarity, points with multiplicity 2 are

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 48

highlighted in bold):

trop(I){3} = trop(g3) = {−1,0, 1},
trop(I){2} = {λ+ 1 | λ ∈ trop(I){3}} = {0,1, 2},
trop(I){1} = {λ+ 2 | λ ∈ trop(I){3}} = {1,2, 3}.

To merge trop(I){1} and trop(I){2}, we consider the following projection that is injective on
the candidate set C := trop(I){1} × trop(I){2}:

π(3,0) : C −→ R, (w1, w2) 7−→ w1 + 3w2.

The corresponding slim transformation ϕ(3,0) sends x1 to x1x
−3
2 and hence ϕ(3,0)(I) is gener-

ated by {g3, x2 − f2, x1x
−3
2 − 4x3}, which Algorithm 3.6 transforms into the following lexico-

graphical Gröbner basis:

ϕ(3,0)(I) =
〈
g3, x2 − f2, x1 − (−16x3

3 − 16x2
3 − 16x3 − 32︸ ︷︷ ︸

=:f ′1

)
〉
.

The eliminant in K[x1] of ϕ(3,0)(I) can be computed as the resultant

Resx3(g3, x1 − f ′1) = 8x4
1 + 752x3

1 + 32256x2
1 + 770048x1 + 8388608.

Figure 3.2 (middle) shows the Newton polygon of the resultant, from which we see:

trop(Resx3(g3, x1 − f ′1)) = {9,5, 1}.

Thus,
trop(I){1,2} = {(3, 2), (2,1), (1, 0)}.

To merge trop(I){1,2} and trop(I){3}, we consider the following projection that is injective
on the candidate set C := trop(I){1,2} × trop(I){3}:

π(0,3) : C −→ R, (w1, w2, w3) 7−→ w1 + 3w3.

The corresponding slim transformation ϕ(0,3) sends x1 to x1x
−3
3 and hence ϕ(0,3)(I) is gener-

ated by {g3, x2 − f2, x1x
−3
3 − 4x3}, which Algorithm 3.6 transforms into the following lexico-

graphical Gröbner basis:

ϕ(0,3)(I) =
〈
g3, x2 − f2, x1 − (−2x3

3 − 2x2
3 − 2x3 − 4︸ ︷︷ ︸

=:f ′′1

)
〉
.

Another resultant computation yields the eliminant in K[x1] of ϕ(0,3)(I):

Resx3(g3, x1 − f ′′1) = 8x4
1 + 94x3

1 + 504x2
1 + 1504x1 + 2048.

Figure 3.2 (right) shows the Newton polygon of the resultant, from which we see:

trop(Resx3(g3, x1 − f ′′1)) = {6,2,−2},

and thus
trop(I) = trop(I){1,2,3} = {(3, 2, 1), (2,1,0), (1, 0,−1)}.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 49

−1
0 0

1
1

0 0 0

1

g3
−9

−5

−5
−1

23

14

9

4 3

Resx3
(g3, x1 − f ′1)

−6

−2
−2 2

11

5

3

1

3

Resx3
(g3, x1 − f ′′1)

Figure 3.2: Newton polygons of g3 and the resultants in Example 3.10. Below each vertex
is its height, above each edge is its slope.

Remark 3.11 (Eliminants for ideals in shape position). Note that, if an ideal I is in shape
position, say generated by {xdn− fn, . . . , x1− f1} with fi ∈ K[xn], then computing eliminants
such as in Line 4 of Algorithm 3.8 and Line 2 of Algorithm 3.9 becomes much simpler. To
compute the eliminant of I in K[x`], it suffices to consider the two polynomials xdn− fn, x`−
f` ∈ K[x`, xn], making the computation independent of the number of variables n.

3.5 Complexity

In this section, we bound the complexity for computing a zero-dimensional tropical variety
trop(I) ⊆ Rn of an ideal generated by a given triangular generating set using Algorithm 3.9
with the sequential strategy. The sequential strategy sequentially computes the projec-
tions trop(I){1}, trop(I){1,2}, . . . until trop{1,...,n} = trop(I). For more details on strategies,
see Section 3.7. We show that the number of required arithmetic operations is polynomial
in the degree of the ideal and the number of variables.

Combined with the FGLM algorithm [28] and Lazard’s lextriangular decomposition [60],
this shows that the tropical variety of any zero-dimensional ideal can be computed from its
reduced Gröbner basis using polynomially many arithmetic operations, see Corollary 3.20.

Convention 3.12. For the remainder of the section, we assume that ν(K∗) ⊆ Q, so that
trop(I) ⊆ Qn.

For the sake of convenience, we recall some well-known results on the complexity of
arithmetic operations over integral extensions.

Proposition 3.13 ([35, Corollary 4.6 + Section 4.3]). Let R be a ring and let f ∈ R[z] be
a monic univariate polynomial of degree d. Then:

1. Adding and multiplying in R[z]/〈f〉 require at most O(d2) arithmetic operations in R.

2. Computing the qth power in R[z]/〈f〉 requires at most O(d2 log q) arithmetic operations
in R.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 50

Corollary 3.14. Given a triangular generating set T ⊆ K[x1, . . . , xn] of a zero-dimensional
ideal I of degree d:

1. Addition and multiplication in K[x1, . . . , xn]/I require at most O(d2) arithmetic opera-
tions in K.

2. Computing the q-th power in K[x1, . . . , xn]/I requires at most O(d2 log q) arithmetic op-
erations in K.

Proof. Suppose T = {gn, . . . , g1} with gi ∈ K[xi, . . . , xn]. Let Tk := T ∩ K[xk, . . . , xn],
Rk := K[xk, . . . , xn]/〈Tk〉 for k = n, . . . , 1, and Tn+1 := ∅, Rn+1 := K. Note that Tk is a
triangular set in Rk, and that Rk is an integral extension of Rk+1 given by

Rk = Rk+1[xk]/〈gk〉.

For k ≤ n, Proposition 3.13 implies that addition and multiplication in Rk can be carried
out using at most O(d2

k) arithmetic operations in Rk+1 or O(d2
k · · · d2

n) arithmetic operations
in K, and that computing a q-th power in Rk+1 requires at most O(d2

k log q) arithmetic
operations in Rk+1 or O(d2

k · · · d2
n log q) arithmetic operations in K. The claimed bounds

follow from d = d1 · · · dn.

Proposition 3.15. Given a triangular generating set T ⊆ K[x1, . . . , xn] of a zero-dimensional
ideal I of degree d and a slim transformation ϕu, Algorithm 3.6 computes the triangular gen-
erating set of ϕu(I) using at most O

(
d2
∑

ui>0 log(ui)
)

arithmetic operations in K.

Proof. Consider the reductions in Algorithm 3.6 Line 3. Reducing (xu22 . . . xunn)ipi by T \{g1}
is equivalent to expressing it in K[x2, . . . , xn]/〈T \{g1}〉 as a linear combination of the K-basis
B := {xb22 · · ·xbnn | 0 ≤ bi < di}.

By Corollary 3.14 and since i ≤ d1, expressing (xu22 . . . xunn)i in terms of B requires at
most

O
((∑

ui>0

d2
i · · · d2

n log(ui)
)

+ (|{i | ui > 0}| − 1) · d2
2 · · · d2

n + d2
2 · · · d2

n log(d1)
)

≤ O
(

log(d1)d2
2 · · · d2

n

∑
ui>0

log(ui)
)

operations in K. As d2 = d2
1d

2
2 · · · d2

n, repeating the computation for i = 1, . . . , d1 requires
at most O

(
d2
∑

ui>0 log(ui)
)

operations in K. The multiplications by pi for i = 1, . . . , d1 do
not change the complexity.

Lemma 3.16. Given a triangular generating set T ⊆ K[x1, . . . , xn] of a zero-dimensional
ideal I of degree d, the computation of the eliminant µ ∈ K[xk] of I, i.e., a generator of
I ∩K[xk], requires at most O(d3) arithmetic operations in K.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 51

Proof. Note that the eliminant µ ∈ K[xk] is also the minimal polynomial of
xk ∈ K[x1, . . . , xn]/I. Hence it can be computed by finding a linear relation among the pow-
ers 1, xk, x

2
k, . . . , x

d−1
k . By Corollary 3.14, computing all powers requires O(d3) arithmetic

operations in K and, by [10, Chapter 16], computing a linear dependency requires O(dω+ε),
where ω < 3 is the exponent of the complexity of matrix multiplication and ε > 0.

Lemma 3.17. Let X, Y ⊆ Q be finite sets of cardinality ≤ d. Then there exists a non-
negative integer m ≤

(
d2

2

)
such that X × Y → Q, (a, b) 7→ a−mb is injective. The smallest

such m can be found in O(d4) arithmetic operations in Q.

Proof. The map (a, b) 7→ a−mb will fail to be injective if and only if there exists a pair of

points in X × Y lying on an affine line with slope m. Since there are at most
(
d2

2

)
pairs of

points, the statement follows by the pigeonhole principle.
We can determine all integral slopes attained by a line between any two points of X ×Y

with O(
(
d2

2

)
) = O(d4) arithmetic operations in Q. Picking the smallest natural number not

occurring among these slopes gives the desired m.

The following proposition deals with the k-th call of Algorithm 3.8 in Line 7 of Algo-
rithm 3.9 running the sequential strategy. Recall that the strategy sequentially computes
the projections trop(I){1}, trop(I){1,2}, . . . until trop{1,...,n} = trop(I).

Proposition 3.18. Let I be any zero-dimensional ideal in K[x1, . . . , xn] of degree d. Let
k ∈ {2, . . . , n} and suppose Algorithm 3.8 is called with input

• T , a triangular generating set of a zero-dimensional ideal I ⊆ K[x±],

• trop(I){1,...,k−1} and trop(I){k}.

Moreover, assume that the following are known from the previous call of Algorithm 3.8 in
Line 7 of Algorithm 3.9 running the sequential strategy:

• ϕu′, a slim transformation such that πu′ is injective on trop(I){1,...,k−1},

• T ′, the triangular generating set of ϕu′(I).

Then Algorithm 3.8 for gluing the two projections into trop(I){1,...,k} requires at most O(d2(n+
d)) and O(d4) arithmetic operations in K and Q, respectively.

Proof. Applying Lemma 3.17 to X := πu′(trop(I){1,...,k−1}) and Y := trop(I){k}, we can

compute a minimal m ≤
(
d2

2

)
such that (a, b) 7→ a − mb is injective on X × Y in O(d4)

arithmetic operations in Q. Setting u := u′ + mek, this means that πu is injective on
trop(I){1,...,k−1} × trop(I){k}.

Since ϕu(I) = ϕv(ϕu′(I)) for v := mek − e` and the triangular generating set of ϕu′(I)
is already known, we may compute the triangular generating set T ′ of ϕw(I) by applying
Algorithm 3.6 to the input T ′ and ϕv. By Proposition 3.15, this requires O(nd2 logm) =
O(nd2 log d) arithmetic operations in K.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 52

By Lemma 3.16, computing the eliminant µ ∈ K[x1] requires O(d3) arithmetic operations
in K, so the overall number of arithmetic operations in K required for Algorithm 3.8 is
O(d2(n+ d)).

Theorem 3.19. Let I be any zero-dimensional ideal in K[x1, . . . , xn] of degree d. Algo-
rithm 3.9, which computes the zero-dimensional tropical variety trop(I), with the sequential
strategy requires at most O(nd2(n + d)) and O(nd4) arithmetic operations in K and Q, re-
spectively.

Proof. Running Algorithm 3.9 with the sequential strategy consists of the following non-
trivial operations:

• computing eliminants µk ∈ K[xk] for k = 1, . . . , n in Line 2,

• applying Algorithm 3.8 to trop(I){1,...,k−1} and trop(I){k} for k = 2, . . . , n in Line 6.

Combining Lemma 3.16 and Proposition 3.18 then yields the stated bounds.

Corollary 3.20. Let I be any zero-dimensional ideal in K[x1, . . . , xn] of degree d. Given
any Gröbner basis of I, computing trop(I) requires at most polynomially many (in terms of
n and d) arithmetic operations in K and Q respectively.

Proof. Using polynomially many arithmetic operations in K, any Gröbner basis may be
transformed into a lexicographical Gröbner basis by [28], and any lexicographical Gröbner
basis may be decomposed into triangular sets by [60]. The claim then follows from Theo-
rem 3.19.

Remark 3.21 (Comparison with Magma). In the Section 3.8, we compare timings of
Algorithm 3.9 to the Magma script in Section 3.6 in the special case that the ideal is in
shape position, i.e., generated by a set

{xdn − fn, xn−1 − fn−1, . . . , x1 − f1} for some fn, . . . , f1 ∈ K[xn].

Our algorithm was implemented with the practical optimizations outlined in Remark 3.7 and
Remark 3.11. The Magma script uses a p-adic approximation of the roots of the univariate
polynomial xdn − fn and substitution into fn−1, . . . , f1.

It is difficult to compare the two implementations in terms of complexity due to their fun-
damentally different nature. As the Magma script factorizes xdn−fn, its complexity depends
on the valuation of the discriminant fn [33]. Moreover, the root approximations needs to be
of sufficiently high precision to determine the valuation of the substituted polynomials.

In the best case, such as when the generating set is a tropical basis [46, Proposition 2.16],
the Magma script terminates instantaneously:

• the valuations of the roots of xdn− fn are distinct and thus may be read off the slopes of its
Newton polygon,

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 53

• the valuations of fn−1(z), . . . , f1(z), z a root of fn, are uniquely determined by the valuation
of z.

In the worst case, the valuation of the discriminant of xdn − fn is exponential in d and so is
the complexity for its factorization.

3.6 Magma comparison

The comparison of timings in Section 3.8 is based on the following Magma implementation
by Avi Kulkarni for finite precision p-adic fields. The function assumes that the ideal is in
shape position and uses univariate factorization and substitution.

1 function pAdicSolutionsOverSplittingField(I, Qp)
2 R := Generic(I);
3 gs := GroebnerBasis(I); // assumed to be in shape position
4
5 u := UnivariatePolynomial(gs[#gs]);
6 up := ChangeRing(u,Qp);
7 K := SplittingField(up); //main bottleneck of the algorithm
8
9 vars_padic := Variables(ChangeRing(R,K));

10 padic_rts := Roots(ChangeRing(up ,K));
11
12 function backSolve(rt)
13 rt_coords := [rt];
14 for i in [#gs -1 .. 1 by -1] do
15 g := Evaluate(gs[i], vars_padic [1..i] cat rt_coords);
16 rti := Roots(UnivariatePolynomial(g));
17 assert #rti eq 1;
18 Insert (~rt_coords , 1, rti [1][1]);
19 end for;
20 return rt_coords;
21 end function;
22
23 return [backSolve(rt[1]) : rt in padic_rts], K;
24 end function;

3.7 Implementation

In this section, we reflect on some design decisions that were made in the implementation
of the algorithms in the Singular library tropicalProjection.lib. The library contains
an implementations of Algorithms 3.6, 3.8, and 3.9 for the special case that the ideal is
in shape position, as discussed in Remarks 3.7 and 3.11. While the reader who is only
interested in the algorithms and their complexity may skip this section without impeding
their understanding, we thought it important to include this section for the reader who is
interested in the actual implementation.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 54

Picking slim transformations in Algorithm 3.8 Line 2

As πu|T is injective for generic u ∈ Zn−1
≥0 , it seems reasonable to sample random u ∈ Zn−1

≥0

until the corresponding projection is injective on the candidate set. Our implementation
however iterates over all u ∈ Zn−1

≥0 in increasing `1-norm until the smallest one with injective
πu|T is found. This is made in an effort to keep the slim transformation ϕu(I) as simple as
possible, since Lines 3–4 are the main bottlenecks of our algorithm.

Transforming Gröbner bases in Algorithm 3.8 Line 3

As mentioned, Lines 3–4 are the main bottlenecks of our algorithm. Two common reasons
why polynomial computations may scale badly are explosions in degree or in coefficient size.

Note that the degree of the polynomials is unproblematic in our algorithm: By Re-
mark 3.7.(1), using Algorithm 3.6 in Line 3 only incurs basic arithmetic operations in
K[xn]/〈xdn − fn〉 whose elements can be represented by polynomials of degree less than d.
Also, the degree of the eliminant in Line 4 is naturally bounded by d. Coefficient explosion
can be a problem in large examples, which is why we choose u as small as possible for the
transformation.

Computing eliminants in Algorithm 3.8 Line 4 and Algorithm 3.9
Line 2

The computation of eliminants of an ideal in shape position, say generated by {xdn −
fn, xn−1− fn−1, . . . , x1− f1} with fi ∈ K[xn], can be carried out in many different ways. For
example:

Resultants We can compute the resultant of the two polynomials xdn − fn and x` − f` ∈
K[x`, xn] with respect to the variable xn by standard resultant algorithms. The eliminant
µ` ∈ K[x`] lies somewhere between the resultant and its squarefree part. In particular, the
tropical variety of the eliminant is the tropical variety of the resultant.

Minimal polynomial Note that the eliminant µ` ∈ K[x`] is also the minimal polynomial of
f ` ∈ K[xn]/〈xdn−fn〉. Hence it can be computed by standard minimal polynomial algorithms.

Gröbner bases Note that {xdn − fn, x` − f`} ⊆ K[x`, xn] is a Gröbner basis with respect to
the lexicographical ordering with xn ≺ x`. We can transform this to a Gröbner basis with
respect to the lexicographical ordering with x` ≺ xn and read off the eliminant µ from it.

For polynomials with small coefficients, the implementation using Singular’s resultants
seemed the fastest, but Singular’s FGLM [28] seems to be best when dealing with very large
coefficients, though that may be due to implementation.

For K = Q however, we can use a modular approach thanks to the Singular library
modular.lib [80]: It computes the eliminants over Fp for several primes p using any of the

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 55

above methods, then lifts the results to Q. This modular approach avoids problems caused
by very large coefficients and works particularly well using the method based on minimal
polynomials from above. We can check if the lifted µ` is correct by testing whether µ`(f `) = 0
in K[xn]/〈xdn − fn〉.

Picking gluing strategies in Algorithm 3.9 Line 6

Algorithm 3.9 is formulated in a flexible way. Different strategies of realizing the choice
of coordinate sets A1, . . . , Ak in Line 6 can adapt to the needs of a specific tropicalization
problem. The four gluing strategies that are implemented in our Singular library are (see
Figure 3.3 for an illustration in the case n = 5):

oneProjection Only a single iteration of the while loop, in which we pick k = n and
Ai = {i} for i = 1, . . . , n.

sequential n − 1 iterations of the while loop, during which we pick k = 2 and A1 =
{1, . . . , i} and A2 = {i+ 1} in the i-th iteration.

regularTree(k) n − 1 iterations of the while loop, which can be partially run in parallel
in dlogk ne batches. In each batch we merge k of the previous projections. Note that, by
Remark 3.7 (2), the condition that 1 ∈ A1 ∪ . . . Ak is unnecessary if the ideal is in shape
position.

overlap (n − 1)n/2 iterations of the while loop, which can be partially run in parallel in
n− 1 batches. During batch i, we pick k = 2 and A1 = {1, . . . , i}, A2 = {1, . . . , i− 1, j} for
j > i.

oneProjection is the simplest strategy, requiring only a single slim transformation. For
examples of very low degree, it is the best strategy due to its minimal overhead. For examples
of higher degree d, the candidate set C in Algorithm 3.8 can become quite large, at worst
|C| = dn. This generally leads to larger u ∈ Zn−1

≥0 in Line 2 and causes problems due to
coefficient growth.

sequential avoids the problem of a large candidate set C by only gluing two projections
at a time, guaranteeing |C| ≤ d2. This comes at the expense of computing n − 1 slim
transformations, but even for medium-sized instances we observe considerable improvements
compared to oneProjection. In Section 3.5, we have proved that sequential guarantees
good complexity bounds on Algorithm 3.9.

regularTree(k) can achieve a considerable speed-up by parallelization. Whereas every
while-iteration in sequential depends on the output of the previous iteration, the strategy
regularTree(k) allows us to compute all gluings in parallel in dlogk ne batches. The total
number of gluings remains the same.

overlap further reduces the size of the candidate set C compared to sequential, while
exploiting parallel computation like regularTree(k). It glues projections two at a time, but

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 56

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2} {3} {4} {5}

oneProjection sequential

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4} {5}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{1, 3}

{3}

{1, 2, 4}

{1, 4}

{4}

{1, 2, 3, 5}

{1, 2, 5}

{1, 5}

{5}

regularTree(2) overlap

Figure 3.3: Visualisation of different gluing strategies.

only those A1 and A2 which overlap significantly. This can lead to much smaller candidate
sets T , at best |T | = d, which makes a slim transformation obsolete. The strategy overlap

seems particularly successful in practice and is the one used for the timings in Section 3.8.
Our implementation in Singular also allows for custom gluing strategies by means of

specifying a graph as in Figure 3.3.

3.8 Timings

In this section we present timings of our Singular implementation of Algorithm 3.9 for
K = Q and the 2-adic valuation. We compare it to a Magma [8] implementation by Avi
Kulkarni which uses univariate factorization and backsubstitution, see Section 3.6. Note that
Magma operates under finite absolute precision, which was chosen to be 21000 by default
and was increased if needed. While Singular is also capable of the same task, we chose to
compare to Magma instead as it is significantly faster due to its finite precision arithmetic
over p-adic numbers. Our Singular timings use the overlap strategy, a modular approach
and parallelization with up to four threads. The Singular times we report on are total CPU
times across all threads (for reference, the longest example in Singular required 118 seconds
total CPU time, but only 32 seconds real time). All computations were run on a server with
2 Intel Xeon Gold 6144 CPUs, 384GB RAM and Debian GNU/Linux 9.9 OS. All examples
and scripts are available at https://mathrepo.mis.mpg.de/tropicalProjections.

https://mathrepo.mis.mpg.de/tropicalProjections

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 57

Random lexicographical Gröbner bases in shape position

Given d, n ∈ Z>0, we construct random lexicographical Gröbner bases G ⊆ Q[x1, . . . , xn]
of degree d in shape position of the form

G = {xdn − fn, xn−1 − fn−1, xn−2 − fn−2, . . . , x2 − f2, x1 − f1},

where fn, . . . , f1 are univariate polynomials in xn of degree d−1 with coefficients of the form
2λ · (2k + 1) for random λ ∈ {0, . . . , 99} and random k ∈ {0, . . . , 4999}.

Figure 3.4 shows timings for n = 5 and varying d. Each computation was aborted if it
failed to terminate within one hour. We see that Magma is significantly faster for small
examples, while Singular scales better with increasing degree.

For many of the ideals I however, trop(I) has fewer than d distinct points. This puts
our algorithm at an advantage, as it allows for easier projections in Algorithm 3.9 Line 2.
Mathematically, it is not an easy task to generate non-trivial examples with distinct tropical
points. Picking xdn − fn to have d roots with distinct valuation for example would make
all roots live in Q2, in which case Magma terminates instantly. Our next special family of
examples has criteria which guarantee distinct points.

deg(I)

time (s) —Magma

—Singular

| | | | | | |
2 4 8 12 16 20 24

-

-

-

-

-

-

-

-

-

-

-

-

0.01

0.1

1

10

100

1000

-

-

-

-

-
-

-

-

-

-
-

-

- -
- -

-

-

-

- -

-
-

-

deg(I) 2 4 8 12 16 20 24

#Singular finished 100 100 100 100 100 100 100

#Magma finished 100 100 100 93 51 21 9

Singular avg. (s) 1 5 14 19 37 44 63

Magma avg. (s) 0 1 41 >663 >2273 >3095 >3395

Figure 3.4: Timings for the randomly generated ideals in shape position.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 58

Tropical lines on a random honeycomb cubic

Let V (f) ⊆ P3 be a smooth cubic surface. In [72], it is shown that trop(f) ⊆ R3 may
contain infinitely many tropical lines. However, for general f whose coefficient valuations
induce a honeycomb subdivision of its Newton polytope, trop(f) will always contain exactly
27 distinct tropical lines [72, Theorem 27], including tropicalizations of the 27 lines on V (f).

We used Polymake [36] to randomly generate 1000 cubic polynomials with honeycomb
subdivisions whose coefficients are pure powers of 2. For each cubic polynomial f , we con-
structed the one-dimensional homogeneous ideal Lf ⊆ Q[p12, p13, p14, p23, p24, p34] of degree 27
whose solutions are the lines on V (f) in Plücker coordinates. Figure 3.5 shows the timings
for computing trop(Lf), where Lf := Lf + 〈p34− 1〉 is a zero-dimensional ideal of degree 27.
Out of our 1000 random cubics, 8 had to be discarded because Lf was of lower degree, i.e.,
V (f) contained lines with p34 = 0.

Unsurprisingly, the Singular timings are relatively stable, while the Magma timings
heavily depend on the degree of the splitting field of Lf over Q2. While the generic splitting
field degree is 51840 over Q [26], the distinct tropical points of trop(Lf) severely restrict the
Galois group of the splitting field over Q2.

splitting field degree

time (s) —Magma

—Singular

| | | | | | | | | | | |
2 3 4 6 8 12 16 24 48 64 80 96

(304) (26) (279) (88) (145) (35) (19) (74) (14) (2) (4) (1)

-

-

-

-

-

-

-

-

10

100

1000

10000

- -
-

-
-

-
-

-
- -

-

-

-
- -

-

-

-

- -

-

-

-

-

-

-

- -
- -

-

-

-

- - -
- - - - - - - -

- - -
-

splitting deg. 2 3 4 6 8 12 16 24 48 64 80 96

Frequency 304 26 279 88 145 35 19 74 14 2 4 1

Singular avg. 556 281 505 610 651 490 313 580 440 294 261 352

Magma avg. 23 22 37 104 149 403 831 830 2840 4791 1998 5935

Figure 3.5: Timings for the 27 tropical lines on a tropical honeycomb cubic.

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 59

3.9 Discussion

If a zero-dimensional ideal I ⊆ K[x±1 , . . . , x
±
n] is generated by a given triangular set,

we have shown that the tropical variety trop(I) ⊆ Rn can be computed using at most
O(nd2(n+d)) and O(nd4) arithmetic operations in K and Q, respectively. Given a Gröbner
basis of a general zero-dimensional ideal, it is thus possible to compute its tropical variety
using polynomially many arithmetic operations.

For the special case that the ideal is in shape position, we have implemented our algo-
rithms in Singular using parallelization and modular techniques, and we have compared
its timings for K = Qp to a Magma implementation using univariate factorization and
backsubstitution. The timings of our algorithm are relatively constant, while the Magma
timings depend strongly on the degree of the splitting field: For small degrees it severely
outperformed our algorithm, while for large degrees it is significantly slower.

We would like to conclude the chapter with a remark on the complexity of computing
tropical varieties trop(I) for I ⊆ K[x1, . . . , xn] and d := deg(I) > 0. Currently, there are
two distinct methods for computing tropical varieties:

• reconstruction from sufficiently many projections of the tropical variety [44] ,

• traversing the Gröbner complex along the tropical variety [7, 66].

Not much is known about the complexity of either method. In fact not much is known about
the combinatorial complexity of tropical varieties in general [54]. However, both methods
generally involve Gröbner basis computations, though the projections in the first method
may also be computed projection using numerical techniques if K = C{{t}} and the ideal is
generated over C [9].

Currently, gfan and Singular are the only software systems capable of computing
positive-dimensional tropical varieties, and both use the traversal of the Gröbner complex.
The algorithm for the traversal method consists of two main parts:

• a Gröbner walk algorithm to walk from one Gröbner polyhedra to another,

• a tropical link algorithm to direct the Gröbner walk along the tropical variety.

While the computation of tropical links had been a major bottleneck of the original algorithm
and in early implementations, experiments suggest that it has since been resolved by new
approaches [14, 46]. However, the algorithm in [14, §4.2] relies heavily on projections, while
[46, Algorithm 2.10] relies on root approximations to a possibly exponential precision, so
neither approach has good complexity bounds.

Algorithm 3.9 was designed with [46, Algorithm 2.10] in mind. Replacing [46, Algo-
rithm 2.10] in [46, Algorithm 4.6] with our Algorithm 3.9 allows us to compute tropical
links at the cost of 2n Gröbner basis computations of zero-dimensional ideals of degree d,
which is at most single exponential in the number of variables n [58, 59]. The Gröbner walk
however requires Gröbner bases computations of initial ideals with respect to weight vectors

CHAPTER 3. ZERO-DIMENSIONAL TROPICAL VARIETIES VIA PROJECTIONS 60

w ∈ trop(I) with dimCw(I) = dim trop(I)−1, where Cw(I) denotes the Gröbner polyhedron
of I around w. These initial ideals are of the same dimension as I and neither monomial,
as w ∈ trop(J), nor binomial, as dimCw(J) < dim trop(J). Therefore, the Gröbner basis
computations are double exponential in the number of variables n. Thus, the complexity
of computing tropical varieties via a traversal of the Gröbner complex is dominated by the
complexity of the necessary Gröbner walk, and the complexity of computing tropical links
is irrelevant.

Conclusion

In this chapter, we described new algorithms for the calculation of zero-dimensional
tropical varieties. Given an ideal I in triangular form, we described well-chosen unimodular
transformations of the polynomial ring which allow us to easily calculate the projection of
the variety onto one-dimensional lines. We showed that our algorithm requires polynomially
many field operations if given a Gröbner basis and discussed implications for the complexity
of computing general tropical varieties. The next two chapters of this dissertation describe
applications of tropical geometry to other fields, demonstrating the importance of such al-
gorithms for the computation of tropical objects.

61

Chapter 4

Min-convex hulls in the affine building

The original work in this chapter appeared in modified form as “Computing min-convex
hulls in the affine building of SLd”, which will be published in Discrete & Computational
Geometry [91].

4.1 Introduction

Affine buildings are infinite simplicial complexes originally introduced by Bruhat and
Tits to study the structure of simple Lie groups. They have since found use in a variety of
other contexts, such as arithmetic geometry [56] and algebraic geometry [12].

We consider the affine building Bd associated to the group SLd(K) over a discrete valued
field K. There is a natural notion of min-convex hull in Bd, which provides a geometric data
structure for the relations among d× d invertible matrices over K. Originally introduced by
Faltings [27], this data structure underlies Mustafin varieties [12, 40] and can be used to study
the fundamental group of certain 3-manifolds [83]. Joswig, Sturmfels, and Yu [51, Algorithm
2] give a procedure for computing such a min-convex hull in Bd as the standard triangulation
of a tropical convex hull in some tropical projective space. However, their algorithm requires
the enumeration of all lattice points in the min-convex hull under consideration, which can
be difficult to implement and is expensive in practice. We devise an improved algorithm
with time complexity bounded in the dimension of the building and the number of matrices
spanning the min-convex hull, making it feasible for the first time to compute min-convex
hulls in practice.

We briefly describe the structure of this chapter. In Section 4.2 we review the basics of
min-convex lattice theory and tropical geometry that we rely on throughout. We review an
algorithm for computing an apartment containing two vertices and develop its application
to our problem in Section 4.4. We then describe our novel algorithm and prove its correct-
ness in Section 4.5. In Section 4.6 we discuss an improvement on the previous algorithm
when computing the min-convex hull of three lattice classes. Our algorithms have been
implemented over the rational function field as a Polymake extension [36]. Algorithm 4.38

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 62

has also been implemented in Mathematica over the field of rational numbers with a p-adic
valuation. This software and the code for the examples in this chapter can be found at our
supplementary materials webpage:

https://github.com/leonyz/min-convex-hull

4.2 Background

We begin by fixing notation and reviewing the setup of [51]. Let K be a field with discrete
valuation val : K → Z ∪ {∞}, R its valuation ring of elements with nonnegative valuation,
π a uniformizer of valuation 1, and k = R/(π) the residue field. For example, we might have
R = Zp be the p-adic integers for some prime number p. If so, then the p-adic numbers
K = Qp would be its field of fractions, π = p is a uniformizer, and k = Zp/(p) = Fp is the
residue field. Note that for any choice of field K, the vector space Kd is an R-module in a
natural way.

Definition 4.1. A lattice Λ is an R-submodule of Kd generated by d linearly independent
vectors in Kd. We often represent a lattice by an invertible matrix whose columns generate
the lattice.

Let Λ1,Λ2 ⊆ Kd be two lattices. We say that Λ1 and Λ2 are equivalent if there exists
c ∈ K∗ such that Λ1 = cΛ2, and we write [Λ] for the equivalence class of the lattice Λ. We
say that two equivalence classes of lattices are adjacent if there exist representative lattices
Λ1 and Λ2 respectively such that πΛ1 ⊆ Λ2 ⊆ Λ1.

Definition 4.2. Let Bd be the flag simplicial complex whose 0-simplices are equivalence
classes of lattices in Kd and whose 1-simplices correspond to adjacent equivalence classes.
We call Bd the affine building of SLd(K).

Example 4.3. Consider the building B2 for K = Q3 the 3-adic numbers. In this case our
valuation ring R = Z3 is the 3-adic integers and our uniformizer π is 3. The affine building
B2 is the infinite tree with every vertex having degree 4 in Figure 4.1.

Definition 4.4. Let M = (v1, . . . , vn) be a d × n matrix over K with columns v1, . . . , vn
spanning Kd as a K-vector space, where n > d. The membrane [M] of M is the collection
of all lattice classes of the form R{πu1v1, . . . , π

unvn} for ui ∈ Z. If M is an invertible square
d× d matrix, we call the corresponding membrane [M] an apartment.

Lemma 4.5 ([56], Lemma 4.13). Let M be a rank d matrix over K of size d × n with
n > d. Then the membrane [M] is the union of all apartments spanned by d × d invertible
submatrices of M .

Example 4.6. Let K = Q2, and consider the rank-2 building B2 over K. This is an infinite

tree where every vertex has degree 3. Within B2, the matrix

(
1 0 1
0 1 2

)
defines the membrane

https://github.com/leonyz/min-convex-hull

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 63

(
1 0
0 1

)

(
1 0
0 3

)

(
1 0
1 3

) (
1 0
2 3

)

(
3 0
0 1

)

Figure 4.1: Left: the building B2 for K = Q3. Right: the star of the identity in this building.

in Figure 4.2, a simplicial subtree of the building consisting of three infinite paths emanating
from a vertex of degree 3.

4.3 Min-convex hulls

Definition 4.7. If Λ1 and Λ2 are lattices, then their intersection Λ1 ∩ Λ2 is also a lattice.
We say that a collection of lattice classes is min-convex or just convex if it is closed under
taking equivalence classes of finite intersections of representative lattices.

Given lattices Λ1, . . . ,Λs, we call their min-convex hull or convex hull conv(Λ1, . . . ,Λs)
the smallest convex set containing their lattice classes. We can similarly define the convex
hull of an infinite collection of lattices. In addition, given invertible matrices M1, . . . ,Ms,
we write conv(M1, . . . ,Ms) for the convex hull conv(Λ1, . . . ,Λs) where each Λi is the lattice
spanned by the columns of Mi.

Remark 4.8. There is another notion of convexity in [51] called max-convexity, which
arises by considering sums of lattices instead of intersections. The duality functor Λ 7→
Λ∗ = HomR(Λ, R) switches sums and intersections, so via this map the max-convex hull
maxconv(Λ1, . . . ,Λs) is isomorphic to conv(Λ∗1, . . . ,Λ

∗
s). In particular, we may restrict our

attention to convex hulls, and everything that follows can easily be translated to the language
of max-convexity.

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 64

(
1 0
0 2

)

(
1 0
0 1

)
(

2 0
0 1

)(
4 0
0 1

)

(
1 0
0 4

)(
1 0
0 4

)(
1 0
0 4

)(
2 1
0 2

)

(
1 0
0 8

)
(

1 0
0 16

)
(

4 1
0 2

)
(

8 1
0 2

)

Figure 4.2: A membrane, in red, contained in the building B2 over K = Q2.

Lemma 4.9. Let Λ1, . . . ,Λs be lattices. Then

conv(Λ1, . . . ,Λs) =
⋃

Λ′∈conv(Λ2,...,Λs)

conv(Λ1,Λ
′).

Proof. Pick any class V in conv(Λ1, . . . ,Λs) with representative πa1Λ1 ∩ πa2Λ2 ∩ · · · ∩ πasΛs.
Clearly Λ′ = πa2Λ2 ∩ · · · ∩ πasΛs satisfies [Λ′] ∈ conv(Λ2, . . . ,Λs), so V ∈ conv(Λ1,Λ

′).
Conversely, fix a lattice Λ′ = πa

′
2Λ2∩· · ·∩πa

′
sΛs representing a class in conv(Λ2, . . . ,Λs). Any

class V in conv(Λ1,Λ
′) has a representative of the form πa1Λ1 ∩πbΛ′ = πa1Λ1 ∩πa2Λ2 ∩ · · · ∩

πasΛs, where ai = b+a′i for i = 2, . . . , s. In particular, V is certainly in conv(Λ1, . . . ,Λs).

The following result was originally stated in Faltings’s paper on matrix singularities [27].
For completeness we provide an easy proof.

Lemma 4.10. Let Λ1, . . . ,Λs be lattices representing equivalence classes in Bd. Then the
convex hull conv(Λ1, . . . ,Λs) is finite.

Proof. Any class in conv(Λ1,Λ2) has a representative of the form Λ1 ∩ πaΛ2 for some a ∈
Z, so it suffices to consider such intersections for all possible choices of a. When a �

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 65

0 we know that Λ1 ⊇ πaΛ2, so that Λ1 ∩ πaΛ2 = πaΛ2. When a � 0 we know Λ1 ⊆
πaΛ2, so that Λ1 ∩ πaΛ2 = Λ1. Hence the convex hull of two lattices is finite. Lemma
4.9 describes conv(Λ1, . . . ,Λs) as the union of convex hulls of the form conv(Λ1,Λ

′), where
Λ′ ∈ conv(Λ2, . . . ,Λs). In particular, conv(Λ1, . . . ,Λs) is a finite union of finite sets by
induction and hence is itself finite.

Example 4.11. The proof of Lemma 4.10 shows that the convex hull of two lattice classes is
a path between the two points in the building. We illustrate this fact in the following example.
Let K = Q2, and consider the rank-3 building B3 over K. Take the two matrices

M1 =

1 0 0
0 1 0
0 0 1

 and M2 =

1 0 0
0 1

4
0

0 0 8

 ,

which correspond to lattices Λ1 and Λ2 respectively. We see that Λ1 ∩ 2−3Λ2 = Λ1 and
Λ1 ∩ 22Λ2 = 22Λ2. The convex hull conv(Λ1,Λ2) is a path between [Λ1] and [Λ2] as depicted
in Figure 4.3, with a representative lattice labeled above each vertex.

Λ1 Λ1 ∩ 2−2Λ2 Λ1 ∩ 2−1Λ2 Λ1 ∩ Λ2 Λ1 ∩ 21Λ2 22Λ2

Figure 4.3: The convex hull of Λ1 and Λ2 in B3, labeled by representative lattices.

Remark 4.12. As Lemma 4.10 and Example 4.11 show, the convex hull conv(Λ1,Λ2) forms
a path in the building between [Λ1] and [Λ2]. In fact, this path can be easily checked to be a
geodesic under the coweight metric of [55], where distances between points of the building are
vectors in the dominant Weyl chamber of SLd(K). It is well-known that affine buildings such
as Bd have a metric property called being CAT(0), which implies that unique geodesics exist
under a different metric that is locally Euclidean in each apartment. The length of such a
CAT(0)-geodesic is the 2-norm of the coweight distance between [Λ1] and [Λ2] [32, p. 1884],
so it can easily be computed from conv(Λ1,Λ2).

Because convex hulls are finite, it is natural to ask how to compute them. In fact, the
building Bd and membranes have an innate tropical structure which can be exploited for this
purpose.

In effect, membranes are just standard triangulations of tropicalized linear spaces.

Theorem 4.13 ([56], Theorem 4.15). Let M = (v1, . . . , vn) be a d × n matrix of rank d
over K and let L be its associated tropical linear space. Then there is a simplicial complex
isomorphism ΨM between the membrane [M] and the standard triangulation of L,

ΨM(R{π−u1v1, . . . , π
−unvn}) := prL((u1, . . . , un)),

sending a lattice R{π−u1v1, . . . , π
−unvn} to the projection onto L of the point (u1, . . . , un) ∈

TPn−1.

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 66

As a first illustration of this theorem, note that Figures 4.2 and 1.4 are isomorphic as
simplicial complexes, where the tropical linear space in Figure 1.4 inherits the standard
triangulation of TP2 as a tropical lattice polytope. Both are trees comprising three infinite
branches stemming from a single node.

Example 4.14. If our matrix M is square, so that its membrane [M] is actually an apart-
ment in the building, then ΨM describes a simplicial complex isomorphism between the apart-
ment and the tropical projective torus Rn/R1.

Example 4.15. Keep the notation of Theorem 4.13. Rincón [75] describes a local structure
of any tropical linear space L with Plücker vector p, in which a basis σ of the underlying
matroid yields a local tropical linear space defined by

Lσ = {u ∈ L : p(σ)−
∑
i∈σ

ui ≤ p(τ)−
∑
j∈τ

uj ∀ bases τ}.

These local tropical linear spaces Lσ are isomorphic to Euclidean space Rn−1, are contained
in L, and together form a non-disjoint cover of L.

The covering of a membrane by its apartments derives from this local structure of tropical
linear spaces. In particular, let σ describe a basis of the matroid of M , so that the d × d
matrix Mσ with columns indexed by σ is invertible. Then the linearity of the determinant
over column sums implies that the apartment [Mσ] is mapped by ΨM to the local tropical
linear space Lσ.

Given any membrane [M] represented by a d × n matrix M = (f1, . . . , fn), there is a
retraction rM of the entire building Bd onto [M], which restricts to the identity on [M] itself:

rM : Λ 7→ (Λ ∩K{f1}) + · · ·+ (Λ ∩K{fn}).

We may use this map to describe a tropical structure for convex hulls.

Theorem 4.16 ([51], Proposition 22). Let M be a d × n matrix of rank d over K, [M] its
corresponding membrane, and L its corresponding tropical linear space. Also let Λ1, . . . ,Λs

be lattices corresponding to points in Bd. The following two simplicial complexes coincide:

rM(conv(Λ1, . . . ,Λs)) ⊆ [M],

tconv(ΨM(rM(Λ1)), . . . ,ΨM(rM(Λs))) ⊆ L.

In particular, if [M] contains the convex hull of Λ1, . . . ,Λs, then the retraction map
acts as the identity, and the convex hull conv(Λ1, . . . ,Λs) is isomorphic to the standard
triangulation of a tropical polytope. This suggests an approach for computing convex hulls
in Bd as follows:

Algorithm 4.17 (Convex hull computation).

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 67

Require: d× d invertible matrices M1, . . . ,Ms over K whose columns are bases for lattices
Λ1, . . . ,Λs

Ensure: conv(Λ1, . . . ,Λs) ⊆ Bd
1: [M]← a membrane containing conv(Λ1, . . . ,Λs)
2: for all i ∈ {1, . . . , s} do
3: Pi ← ΨM(rM(Λi))
4: end for
5: X ← tconv(P1, . . . , Ps)
6: return X

Note that given a lattice Λi represented by a matrix Mi, we can compute the image
ΨM(rM(Λi)) in TPn−1 simply by taking the tropical row sum of the matrix val(M−1

i M), by
[51, Lemma 21].

Example 4.18. Let K = Q5 and consider the matrices

M1 =

1 0 0
0 1 0
0 0 1

 ,M2 =

1 0 0
0 1

5
0

0 0 1
125

 ,M3 =

5 625 150
0 25 1
0 0 1

5

 ,

whose convex hull is shown in Figure 4.4.
Let M be the matrix

M =

1 0 0 0
0 1 0 5
0 0 1 1

 .

The membrane [M] turns out to contain conv(M1,M2,M3). Running through Algorithm 4.17
with this membrane yields the following tropical matrix, 0 0 0 0

0 1 2 3
−1 −2 1 −1

 ,

whose rows or columns span the tropical convex hull in Figure 4.5. Note that tropical polytopes
are self-dual, i.e. the columns and rows of any tropical matrix span isomorphic tropical
polytopes [22, Theorem 1].

From this tropical polytope we can construct representatives for any of the lattice classes
in Figure 4.4. For example, consider the central lattice point (0, 1,−1) with six neighbors. By
Equation (14) in [22], this lattice point in the column-span of our tropical matrix corresponds
to (−1,−1, 0, 0) in the row-span. In turn, this point corresponds to the class of the lattice

Z5

51 ·

1
0
0

 , 51 ·

0
1
0

 , 50 ·

0
0
1

 , 50 ·

0
5
1

 .

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 68

M1

M3

M2

Figure 4.4: The convex hull of the matrices
M1,M2, and M3 in B3.

Figure 4.5: A tropical polytope iso-
morphic as a simplicial complex to
conv(M1,M2,M3), with coordinates of
spanning vertices labeled.

Of course, Algorithm 4.17 requires an enveloping membrane of Λ1, . . . ,Λs: a membrane
containing the convex hull of Λ1, . . . ,Λs. Without such a membrane the tropical polytope
produced by Algorithm 4.17 need not be isomorphic to our original convex hull. Note that
membranes need not be convex [51, Example 5], so it is not sufficient to simply pick a
membrane containing the spanning lattice classes.

No bounded-time algorithm for computing an arbitrary enveloping membrane has thus
far been described. A procedure for computing such an enveloping membrane is described
in [51], but it is often impractical: it relies on the computation of each individual element
of the convex hull, while expanding a starting membrane to contain each element whenever
necessary. In Section 4.5 we will describe an improved algorithm with bounded complexity
in d and s, allowing us to algorithmically realize any convex hull as a tropical polytope.

Remark 4.19. Our notion of convexity was originally introduced by Faltings [27], who noted
that configurations Γ of vertices in Bd correspond to certain schemes M(Γ) called Mustafin
varieties or Deligne schemes over the spectrum of a DVR. In the arithmetic setting, these
Mustafin varieties function as local models of Shimura varieties [73]. The special fiber of
M(Γ) generally has many singularities, but replacing Γ with its convex hull Γ′ yields a regular
Mustafin variety M(Γ′) with a dominant morphism M(Γ′)→M(Γ), such that the irreducible

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 69

components of the special fiber of M(Γ′) intersect transversally [12, Lemma 2.4 and Theorem
2.10]. In this way, our fully-specified version of Algorithm 4.17, derived in Section 4.5, allows
for the explicit resolution of singularities of Mustafin varieties.

4.4 Simultaneously-adaptable bases

In this section we review a classical result on lattices over valued fields, following [1,
Section 6.9], and describe its relevance to our setting of convex hulls in affine buildings.
Note that in what follows we say monomial matrix to refer to any matrix A supported on
a permutation matrix: i.e., there exists a permutation σ such that Aij 6= 0 if and only if
j = σ(i).

Algorithm 4.20 (Simultaneously adaptable basis for two lattices).

Require: M1,M2 d× d invertible matrices over K whose columns are bases for lattices Λ1

and Λ2 in Bd
Ensure: Invertible matrix A, monomial matrix ∆ such that the columns of A and A∆ are

bases for Λ1 and Λ2, respectively
1: B1 ←M1

2: C1 ←M2

3: for all i ∈ {1, . . . , d− 1} do
4: Ni ← B−1

i Ci
5: ni ← entry of minimal valuation in Ni not equal to n1, . . . , ni−1

6: Li ← the matrix such that LiNi is obtained from Ni by eliminating all other elements
in the column of ni

7: Ri ← the matrix such that LiNiRi is obtained from LiNi by eliminating all other
elements from the row of ni

8: Bi+1 ← BiL
−1
i

9: Ci+1 ← CiRi

10: end for
11: A← Bd

12: ∆← B−1
d Cd

13: return A,∆

Lemma 4.21. Let M1 and M2 be d× d invertible matrices over K for lattices Λ1 and Λ2 in
Bd. Then Algorithm 4.20 correctly returns a basis A for Λ1 and a monomial matrix ∆ such
that A∆ is a basis for Λ2.

Proof. Because ni is chosen to be of minimal valuation in Ni, each Li and Ri will be matrices
in SLd(R). It follows that the new matrices Bi+1 and Ci+1 will be bases for Λ1 and Λ2 if Bi

and Ci are, with base change matrix LiNiRi. In particular, after d− 1 steps of the for-loop,

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 70

the matrix ∆ = Ld−1Nd−1Rd−1 will have d − 1 distinct entries which are uniquely nonzero
in their respective rows and columns. Hence ∆ is a monomial matrix, as desired.

Definition 4.22. We call the output A in Algorithm 4.20 a simultaneously adaptable basis
(SA-basis) for Λ1 and Λ2.

Algorithm 4.20 is a demonstration of the building-theoretic fact that any two lattices lie
in a common apartment. In general, there should be many distinct apartments containing
any two given points. Indeed, the SA-basis A obtained above depends not only on the lattices
Λ1 and Λ2 but on our original choice of bases, which lattice we designate as Λ1, and how we
break ”ties” between elements of minimal valuation when choosing pivots. In what follows,
we break ties between potential pivots by picking the option in the leftmost column, then
topmost row.

Because apartments are convex, we have the following fact:

Corollary 4.23. Pick two lattice classes represented by Λ1 and Λ2 in Bd, and let A be a
SA-basis for the two lattices. Then the apartment [A] contains the convex hull conv(Λ1,Λ2).

Lemma 4.24. Let M1 and M2 be two invertible d× d matrices representing lattices Λ1 and
Λ2, and let Γ be any diagonal matrix with M ′

2 = M2Γ. Let Ni and N ′i be the base-change
matrices at the ith step of Algorithm 4.20 executed with the pairs (M1,M2) and (M1,M

′
2) as

input respectively, ni and n′i the chosen pivots of least valuation at step i, and so on. If k is
a positive integer such that the positions of the pivots ni and n′i agree for all i up to k − 1,
then Lk−1 = L′k−1 and N ′k = NkΓ.

Proof. We prove the result by induction, noting that the base case k = 1 follows trivially.
Suppose that the first k − 1 pivots are the same for the two algorithm executions. Because
the first k− 2 pivots are the same, by the inductive hypothesis we have that N ′k−1 = Nk−1Γ.
In particular, the ratio of any two entries in the same column is the same for Nk−1 and N ′k−1.
Now since the k − 1st pivot position is also the same, the row operations to obtain Nk and
N ′k from Nk−1 and N ′k−1 = Nk−1Γ agree as well, so that Lk−1 = L′k−1. Next the column
operations necessary to clear the rows of two pivots may differ, but in both executions we
eliminate using a column which has no other nonzero entries. It follows that N ′k = NkΓ, as
desired.

Corollary 4.25. Keep the setup of Lemma 4.24 above, and let A be the basis of Λ1 produced
by Algorithm 4.20. If all pivot positions of Algorithm 4.20 are the same for the two inputs
(M1,M2) and (M1,M

′
2), then the lattice class [Λ′2] for M ′

2 is contained in the apartment [A].

Proof. Because all pivots are the same, Lemma 4.24 implies that Li = L′i for all i. This means
the final basis for Λ1 produced by both executions of the algorithm is A = LdLd−1 . . . L1M1.
In particular, we have that [A] contains both [Λ2] and [Λ′2].

In fact, a stronger statement holds: it suffices to assume that corresponding pairs of
pivots share the same pivot columns.

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 71

Corollary 4.26. Retain the setup of Lemma 4.24 above, and let A be the basis of Λ1 produced
by Algorithm 4.20. Suppose that for all i, the ith pivots of Algorithm 4.20 for the two inputs
(M1,M2) and (M1,M

′
2) appear in the same pivot column. Then the lattice class [Λ′2] for M ′

2

is contained in the apartment [A].

Proof. We prove by induction on the ith pivot that all pivots are actually in the same
positions; the result then follows by Corollary 4.25. When i = 1, the two base-change
matrices are N1 = M−1

1 M2 and N ′1 = M−1
1 M2Γ. By assumption, the first pivots of the two

algorithm executions share the same pivot column. We note that scaling a column does not
change the position of the minimal-valuation column element. It follows that the first pivots
are in the same position.

Now suppose that the first i− 1 pivots share the same positions, so that by Lemma 4.24
we have N ′i = NiΓ. Again, by assumption the ith pivots appear in the same column, and
the same argument as the base case implies the ith pivots will be in the same position as
well.

We can apply Corollary 4.26 to cover the convex hull of an apartment and a lattice class.

Lemma 4.27. Let A be an invertible matrix defining an apartment [A] and M a basis for
a lattice Λ whose class is not in [A]. Then conv([Λ], [A]) can be covered with d! different
apartments.

Proof. It suffices to find a collection of apartments covering conv(M,AΓ) for all diagonal
matrices Γ. Fix such a Γ, and let B be the basis for M produced by Algorithm 4.20 applied
to the pair (M,AΓ). Let Γ′ be any other diagonal matrix such that Algorithm 4.20 applied
to (M,AΓ′) uses the same sequence of pivot columns. Then Corollary 4.26 implies that
[B] contains conv(M,AΓ′) as well. In other words, we need only one apartment for each
sequence of pivot columns. Since each pivot must appear in a different column, there are d!
different sequences of pivot columns, and so we need at most d! such apartments to cover
the entirety of conv([Λ], [A]).

Remark 4.28. We note the similarity of Lemma 4.27 with [45, Lemma 6.3], which states
that any apartment A in any building can be covered by the union of Weyl chambers based
at some other fixed point z with equivalence class in ∂A, the spherical apartment at infinity
corresponding to A. We expect that Lemma 4.27 is an explicit analogue of this result in
our specialized setting, where ∂A is isomorphic to the symmetric group Sd on d elements,
in which each Weyl chamber is replaced by a suitable apartment containing it to ensure the
convex hull of z and A is also covered.

4.5 Constructing enveloping membranes

In this section we combine the results of the previous section to solve the problem left open
in Algorithm 4.17. Namely, we present an algorithm to compute an enveloping membrane

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 72

of a finite set of lattices. This allows us to realize convex hulls in the building as tropical
polytopes.

Algorithm 4.29 (List of apartments covering a convex hull).
Require: base matrices B1, . . . , Bs for lattices Λ1, . . . ,Λs

Ensure: A set of apartments covering conv(Λ1, . . . ,Λs)
1: if s = 2 then
2: return SA-basis of Λ1 and Λ2 via Algorithm 4.20
3: end if
4: Ls−1 ← set of apartments covering conv(Λ2, . . . ,Λs) via Algorithm 4.29
5: Ls ← ∅
6: for all [A] ∈ Ls−1 do
7: LA ← set of apartments covering conv(Λ1, [A]) as in Remark 4.31
8: Ls ← Ls ∪ LA
9: end for

10: return Ls

Theorem 4.30. Let M1, . . . ,Ms represent s lattices Λ1, . . . ,Λs in Bd. Then Algorithm 4.29
correctly computes a list of apartments Ls such that each lattice class [Λ] ∈ conv(Λ1, . . . ,Λs)
is contained in [A] for some [A] ∈ Ls. Furthermore, Ls has size at most (d!)s−2.

Of course this theorem and Lemma 4.5 together imply that Algorithm 4.29 can be used
to compute an enveloping membrane for Λ1, . . . ,Λs. We simply concatenate all the matrices
in the output Ls.

Proof. If the algorithm is correct, then Ls−1 contains at most (d!)s−3 apartments by induc-
tion. Since LA has size at most d! by Lemma 4.27, Ls has size at most (d!)s−2.

It remains to prove correctness. By Lemma 4.9, any lattice class [Λ] in conv(Λ1, . . . ,Λs)
is contained in conv(Λ1,Λ

′) for some [Λ′] ∈ conv(Λ2, . . . ,Λs). There exists some [A] ∈ Ls−1

such that [Λ′] ∈ [A], and so [Λ] ∈ conv(Λ1, [A]). In particular, there is some [B] ∈ LA such
that [Λ] ∈ [B].

Remark 4.31. The crucial part of Algorithm 4.29 is computing the set LA of apartments
covering conv(Λ1, [A]). Recall from Lemma 4.27 that this set is indexed by permutations in
Sd. We sketch here how to compute the apartment corresponding to the identity permutation;
all other apartments can be computed very similarly.

Let Γ = diag(πa1 , . . . , πad) be a diagonal matrix with integers a1, . . . , ad ∈ Z. First choose
Γ to be any diagonal matrix such that the first pivot for the first base change matrix M−1

1 AΓ
is in the first column. Next we compute the second base-change matrix; by decreasing both a1

and a2 by a large enough common value, Lemma 4.24 guarantees that the first pivot will still
be in the first column, and that the second pivot will appear in the second column. We next
compute the third base-change matrix by reducing a1, a2, and a3 all by some large enough
value, and so on.

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 73

Remark 4.32. We present in the next section a more efficient algorithm for the s = 3 case,
Algorithm 4.38, needing only 2d apartments to cover the convex hull instead of d!. Because
Algorithm 4.29 is inductive on s, Algorithm 4.38 can be used for the s = 3 case, providing
a slightly better overall bound of 2d · (d!)s−3 apartments needed to cover the convex hull of s
lattices.

Corollary 4.33. Let Λ1, . . . ,Λs be lattices in Kd. Then their convex hull conv(Λ1, . . . ,Λs)
is isomorphic to a tropical polytope in TPN where N ≤ d · 2d · (d!)s−3 − 1.

Proof. Remark 4.32 implies that a matrix M with at most d ·2d · (d!)s−3 columns generates a
membrane [M] containing conv(Λ1, . . . ,Λs). Algorithm 4.17 then realizes the convex hull as
a tropical polytope in a tropical projective space of dimension at most d · 2d · (d!)s−3− 1.

Corollary 4.34. Let Λ1, . . . ,Λs be lattices in Kd. Then their convex hull conv(Λ1, . . . ,Λs)
is isomorphic to a tropical polytope spanned by at most d · 2d · (d!)s−3 points in TPs−1.

Proof. This follows directly from Corollary 4.33 and the self-duality of tropical polytopes.

Corollary 4.35. Let Λ1, . . . ,Λs be lattices in Kd. Let [M] be the enveloping membrane for
conv(Λ1, . . . ,Λs) computed by concatenating the apartments from Algorithm 4.29. Then Λ1

is mapped to the origin by ΨM in Algorithm 4.17.

Proof. There is another representation of the building Bd, which describes the vertices as
certain maps N : Kd → R ∪ {∞} called integral additive norms [51, pp. 189-190]. We
can easily pass between these two descriptions of the building in terms of lattice classes and
integral additive norms. If Λ is a lattice represented by a matrix M , then the corresponding
integral additive norm is defined by

NΛ(v) = max{u ∈ Z : π−uv ∈ Λ}.

Write M = (v1, . . . , vn). By [51, Lemma 21], the image of Λ1 under the map of Theorem
4.16 is (NΛ1(v1), . . . , NΛ1(vn)), where NΛ1 is the integral additive norm corresponding to Λ1.
But clearly NΛ1(vi) = 0 for each i, since each vi is an element for a basis for Λ1.

Viewed in the dual setting of Corollary 4.34, Corollary 4.35 implies that our algorithm
places us in the affine chart of TPs−1 where the first coordinate is zero.

Example 4.36. Another common discrete valued field is K = C((t)), the field of complex
formal Laurent series. In this case, we have R = C[[t]] the ring of complex formal power
series, π = t a uniformizer, and k = C the residue field. Consider the following four 3 × 3
matrices over K:

M1 =

1 1 1
1 t t2

1 t−2 t

 ,M2 =

 1 1 1
t t2 t3

t−2 t t5

 ,M3 =

1 1 1
t2 t3 t4

t t5 t8

 ,M4 =

1 1 1
t3 t4 t5

t5 t8 t12

 .

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 74

These are the contiguous maximal submatrices of

M =

1 1 1 1 1 1
1 t t2 t3 t4 t5

1 t−2 t t5 t8 t12

 ,

so the corresponding lattice classes certainly all lie in the membrane [M]. An optimist could
suppose that [M] were in fact an enveloping membrane for the convex hull of our four ma-
trices. Running through Algorithm 4.17 with the membrane [M] yields the following tropical
matrix: 

0 0 0 0 0 0
−2 0 0 0 0 0
−3 −4 0 0 0 0
−6 −8 −5 0 0 0

 .

The columns of this matrix span the tropical polytope P , visualized using Polymake in Figure
4.6. Its standard triangulation contains 18 vertices, 32 edges, and 15 triangles.

Figure 4.6: The tropical polytope P ob-
tained by using the membrane [M] for the
latticesM1,M2,M3, andM4 with Algorithm
4.17. Points spanning the tropical convex
hull are marked in yellow.

Figure 4.7: The tropical polytope P ′ whose
standard triangulation is isomorphic to the
convex hull of M1,M2,M3, and M4, with
spanning vertices marked in yellow.

However, when we run Algorithm 4.29 in Polymake to compute an enveloping membrane
for the convex hull conv(M1,M2,M3,M4), we obtain a different matrix M ′ with 12 distinct
columns. Executing Algorithm 4.17 using the membrane [M ′] yields that conv(M1,M2,M3,M4)
is isomorphic as a simplicial complex to the tropical polytope P ′ in Figure 4.7 spanned by

0 0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 −2 0 −2 0 0 −2 0 0
−3 −4 0 −1 −2 0 −2 0 −1 −3 −1 0
−6 −8 −5 −5 −7 0 −7 −4 −1 −3 −5 0

 .

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 75

The standard triangulation of this polytope contains 29 lattice points, 67 edges, and 41
triangles. In particular, the convex hull of M1,M2,M3, and M4 is larger than the polytope
P obtained via the membrane [M], even though each lattice spanning the convex hull is
trivially contained in [M]. In turn, this means that [M] does not contain the convex hull
conv(M1,M2,M3,M4), demonstrating the fact that membranes are not convex.

Example 4.37. Again take K = C((t)) the field of complex formal Laurent series. Let M1

be the 4× 4 identity matrix, M2 be diagonal with entries 1, t3, t−2, and t−2 respectively, and

M3 =


t−3 − t2 1− t2 −t−2 + 1 t−2 − t
t2 − t3 −t−3 + t 1− t 0

0 −1 + t t−3 − t3 t−3 − 1
−t+ t2 −t−1 + 1 0 −t−1 + t2

 ,

M4 =


1− t3 t−1 − 1 1− t2 1− t3
t−3 − 1 1− t 1− t2 1− t3
−t−3 + t −t−2 + 1 −t−3 + t−1 −1 + t
t−3 − t−2 −t−1 + 1 −t−1 + 1 t−1 − 1

 .

Concatenating the matrices produced by Algorithm 4.29 applied to M1,M2,M3, and M4

in Polymake gives a matrix M with 84 distinct columns. Using the corresponding membrane
[M] with Algorithm 4.17, we get a 4 × 84 matrix over the tropical numbers. After pruning
duplicate columns, we obtain the following matrix whose tropical row or column span gives
the polytope displayed in Figure 4.8. The triangulation of that polytope has 30 vertices, 95
edges, 102 triangles, and 36 tetrahedra.

0 0 0 0 0 0 0 0 0 0 0 0
−3 −2 −1 −3 −3 0 2 2 0 −1 −1 −3
1 2 3 1 1 3 3 1 1 1 3 3
3 3 3 2 1 1 3 1 1 1 1 1

 .

4.6 Convex triangles

Suppose that s = 3, so that we wish to compute a convex triangle: the convex hull of
three lattice classes. This is relevant e.g. to [12, Section 4.6], which focuses on Mustafin
varieties arising from convex triangles. In this case there exists a more efficient algorithm,
taking advantage of the fact that conv(Λ2,Λ3) is just a path in the building. We now describe
this improvement.

With some extra book-keeping, note that Algorithm 4.20 can output all of the following:

• an SA-basis A which is a basis for Λ1,

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 76

Figure 4.8: The 3-dimensional tropical polytope isomorphic to the convex hull of our matrices
M1,M2,M3,M4, whose standard triangulation has f -vector (30, 95, 102, 36).

• a diagonal matrix ∆ = diag(πc1 , . . . , πcd) such that A∆ is a basis for Λ2, where c1 ≤
· · · ≤ cd are integers in increasing order,

• all of the base change matrices N1, . . . , Nd,

• and the positions p1, . . . , pd of the pivots n1, . . . , nd.

We justify the existence of such an (A,∆) pair. First, note that if a matrix M is a basis for
a lattice Λ and P is any permutation matrix, then MP is also a basis for Λ, since the matrix
multiplication amounts to a reordering of the basis vectors. It follows that the base-change
matrix ∆ produced by Algorithm 4.20 can always be taken to be diagonal, as otherwise
we may multiply it on the right by an appropriate permutation matrix to make it so. We
can therefore write ∆ = diag(πc1 , . . . , πcd). If c1 ≤ · · · ≤ cd does not hold, there exist
permutation matrices P1 and P2 such that P1∆P2 is diagonal and in valuation-sorted order.
Replacing A with AP1 and ∆ with ∆P2 yields a pair with the desired properties.

Algorithm 4.38 (Enveloping membrane for a convex triangle).

Require: three d × d invertible matrices M1,M2,M3 over K whose columns are bases for
lattices Λ1,Λ2,Λ3 in Bd

Ensure: A list L of apartments covering conv(Λ1,Λ2,Λ3).
1: L← ∅

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 77

2: (A,∆ = diag(πc1 , . . . , πcd))← d× d matrices such that A is a basis for Λ2 and A∆ is a
basis for Λ3, with c1 ≤ c2 ≤ . . . ≤ cd

3: for all i ∈ {1, . . . , d− 1} do
4: λ← ci
5: Γλ ← diag(πmax(λ,c1), . . . , πmax(λ,cd))
6: t← 0
7: while λ < ci+1 do
8: λ← λ+ t
9: Aλ ← an SA-basis for (M1, AΓλ)

10: (N1, . . . , Nd) ← the sequence of base-change matrices in the SA-basis computation
for (M1, AΓλ)

11: (p1, . . . , pd)← the pivot position sequence in the SA-basis computation for (M1, AΓλ)

12: L← L ∪ {[Aλ]}
13: t← ci+1 − ci
14: for all j ∈ {1, . . . , d} such that pj is in the first i columns do
15: v1 ← valuation of jth pivot in Nj

16: v2 ← least valuation among all elements of Nj in columns i + 1, i + 2, . . . , d not
in positions p1, . . . , pj

17: t← min(t, v2 − v1 + 1)
18: end for
19: end while
20: end for
21: return L

Theorem 4.39. Let M1,M2, and M3 represent three lattices Λ1,Λ2, and Λ3 in Bd. Then
Algorithm 4.38 correctly computes a list L of apartments covering conv(Λ1,Λ2,Λ3), where L
has size at most 2d.

As before, we can obtain an enveloping membrane for Λ1,Λ2, and Λ3 by concatenating
all matrices in L.

Proof. We retain the setup and variables of Algorithm 4.38. Recall that any class in
conv(Λ2,Λ3) has a representative of the form Λ3 ∩ πλΛ2. Using A as a basis for Λ2 and
A∆ as a basis for Λ3, we see that Λ3 ∩ πλΛ2 has AΓλ as a basis, where the diagonal matrix
Γλ = diag(πmax(λ,c1), . . . , πmax(λ,cd)). Furthermore, if λ < c1 then Λ3 ∩ πλΛ2 = Λ3, and if
λ > cd then Λ3 ∩ πλΛ2 = πλΛ2. Hence we can assume λ is an integer between c1 and cd.

It follows from Lemma 4.9 that

conv(Λ1,Λ2,Λ3) =
⋃

c1≤λ≤cd

conv(M1, AΓλ).

We can therefore cover conv(Λ1,Λ2,Λ3) with the apartments [Aλ] containing conv(M1, AΓλ)
produced by Algorithm 4.20. By Corollary 4.25, furthermore, if we have computed Aλ
already we only need to compute Aλ+1 if some pivot changes position.

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 78

Suppose this occurs, with λ in the range ci ≤ λ < ci+1. Then AΓλ+1 is obtained from
AΓλ by multiplying with the diagonal matrix whose first i diagonal entries are π and last
d− i diagonal entries are 1. Let pj be the earliest pivot which changes positions. By Lemma

4.24, it follows that the jth base-change matrix N
(λ+1)
j for the pair (M,AΓλ+1) factors as

N
(λ+1)
j = N

(λ)
j diag(π, . . . , π, 1, . . . , 1), where N

(λ)
j is the jth base-change matrix for the pair

(M,AΓλ). Since the jth pivot differs for these two matrices, the jth pivot must appear in
the first i columns and there must be an element of equal valuation appearing in the last d−i
columns. Conversely, suppose there exists some jth pivot appearing in the first i columns of
N

(λ)
j with an element of equal valuation in the last d− i columns. Then either some earlier

pivot already changed, or the jth pivot will be different for N
(λ+1)
j .

It follows that, for λ in the range ci ≤ λ < ci+1, we can quickly compute the smallest t
such that (M1, AΓλ+t) will have some jth pivot in a different position than for (M1, AΓλ).

For each jth pivot appearing in the first i columns of N
(λ)
j , we can compare its valuation

v1 to the smallest valuation v2 of all elements in the last d− i columns of N
(λ)
j . If pj is the

first pivot to change, it will change when t = tj := v2 − v1 + 1. So t = min(tj) is our desired
increment. In particular, Algorithm 4.38 recomputes Aλ each time a pivot changes, so it is
indeed correct.

Next we prove that the list L has size at most 2d. Suppose λ is in the range ci ≤ λ < ci+1.
Our claim is that at most

(
d
i

)
apartments are computed in this range, so that

∑
i

(
d
i

)
= 2d

bounds the number of apartments in L. Write an i-sized subset σ of [d] as (σ1, σ2, . . . , σi),
where σ1 < σ2 · · · < σi. We can assign to each λ an i-sized subset σλ of [d], where j ∈ σλ if
and only if the jth pivot appears in the first i columns of Nj when computing an SA-basis
for M1 and AΓλ. We can also define a well-ordering on the set of all i-sized subsets of [d]
lexicographically: σ < τ if and only if the first j with σj 6= τj satisfies σj < τj. The key
insight is that σλ < σλ+1 if the corresponding pivot sequences for λ and λ + 1 differ. Since
there are

(
d
i

)
possible choices for σλ, there can be at most

(
d
i

)
different pivot position changes

for λ in this range.
It remains to show why this key fact holds. Suppose that incrementing λ by one changes

some pivot position, with the jth pivot the first to change. The above analysis shows
that the jth pivot for the pair (M1, AΓλ) must be in the first i columns, and that this
must change for the pair (M1, AΓλ+1). It follows that j must be in σλ, and that j cannot
be in σλ+1. Furthermore, because j is the first pivot to change, for each ` < j we have
` ∈ σλ ⇐⇒ ` ∈ σλ+1. Hence σλ < σλ+1, as desired.

Example 4.40. Fix K = Q3 and the building B5. Let M1 be the 5× 5 identity matrix, and
let each entry of M2 and M3 be sampled uniformly at random from the finite set {3e : e ∈
Z,−20 ≤ e ≤ 20}. The author took 1000 such triangles and computed enveloping membranes
via Algorithm 4.38 in Mathematica. After pruning duplicate columns, the matrices describing
the enveloping membranes always had at least 6 columns, and at most 25. For comparison,
the upper bound implied by our Algorithm 4.38 is 5·32 = 160 columns. A histogram describing
the frequency counts for the size of the membranes is presented in Figure 4.9.

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 79

Figure 4.9: Frequency counts for the number of columns of enveloping membranes produced
by Algorithm 4.38 for random convex triangles.

One example of a convex triangle attaining the maximal number of columns is given by

M2 =


3−15 316 3−7 3−8 3−13

3−13 320 3−12 3−9 3
3−19 319 37 3−15 310

39 3−12 3−12 3−17 3−18

3−17 3−4 3−7 3−3 320

 ,M3 =


3−1 3−8 3−20 3−1 3−20

310 36 30 32 3−20

3−6 38 33 35 3−13

3−15 39 3−9 32 3−7

312 3−3 35 3−16 3−13

 .

After applying Algorithm 4.38 to obtain an appropriate membrane [M], the author computed
the tropical polytope via Algorithm 4.17 presented in Figure 4.10. Note that this convex hull
can be spanned by only five of the given points: (0, 19,−8), (0, 18, 15), (0, 13, 16), (0, 12, 20),
and (0, 7, 20). Let M ′ be the square submatrix of M with columns corresponding to these five
points. Running through Algorithm 4.17 using the apartment [M ′] yields a coarser subdivision
of the same tropical polytope. This implies that the convex hull of our three matrices M1,M2,
and M3 all lie in the single common apartment [M ′], which can also be seen using [51, Lemma
25]. That our algorithms do not notice this fact suggests that they likely can be improved,
which motivates the following open problem.

Problem 4.41. Let E(d, s) denote the smallest integer such that any min-convex hull spanned
by s lattices has an enveloping membrane with representative matrix M of size at most
d× E(d, s). How does E(d, s) vary with d and s?

By Remark 4.32, we have that E(d, s) ≤ d · 2d · (d!)s−3 − 1, but we expect that this bound
is far from tight.

CHAPTER 4. MIN-CONVEX HULLS IN THE AFFINE BUILDING 80

Figure 4.10: The tropical polytope isomorphic to the convex hull of M1,M2,M3, with span-
ning vertices in yellow. Note that the x- and y-axes have been flipped.

Conclusion

In this chapter, we detailed the first time-bounded complexity methods for the compu-
tation of a membrane containing a given min-convex hull in the affine building of SLd. Our
approach was inductive and relied on computing many apartments containing a pair of lat-
tices. As simplicial complexes, the min-convex hull is isomorphic to a tropical polytope and
the enveloping membrane to a tropical linear space; our algorithms thus implied bounds on
the dimension of the tropical projective space in which these objects are contained. In the
following chapter we will see another application of tropical polytopes and linear spaces.

81

Chapter 5

Tropical principal component analysis

The original material in this chapter is largely based on “Tropical principal component
analysis and its application to phylogenetics”, joint work with Ruriko Yoshida and Xu Zhang
and published in the Bulletin of Mathematical Biology [90]. Section 5.3 originally appeared
in the paper “Tropical principal component analysis in the space of phylogenetic trees”, joint
with Ruriko Yoshida and Robert Page and published in Bioinformatics [89].

5.1 Introduction

Principal component analysis (PCA) is a popular and robust method for reducing the
dimension of a high-dimensional data set. Given a positive integer s ∈ N and a collection
of data points in a high-dimensional Euclidean space Re, the procedure projects the data
points onto a plane of fixed dimension s − 1, which is obtained by minimizing the sum of
squared distances between each point in the dataset and its orthogonal projection onto the
plane. This linear plane is a translate of some (s − 1)-dimensional linear subspace; PCA
also constructs an orthonormal basis for that subspace whose vectors are called principal
components. The low-dimensional plane is thus described by an (s× e)-dimensional matrix,
whose first s − 1 rows are the principal components and whose last row is the translation
vector.

In this chapter we propose two analogous approaches to a principal component analysis
in the setting of tropical geometry. Given a positive integer s and a collection of data
points in the tropical projective torus, our tropical principal component analyses seek a
tropically-geometric object, as close as possible to the data points in the tropical metric
dtr. In both cases, furthermore, this tropically-geometric object will be described by an
(s× e)-dimensional matrix.

Classically, a full-rank matrix of shape (s × e) with s < e defines an s-dimensional
linear subspace of Re via the span of its rows. This subspace is also described by the
Plücker coordinates of the matrix. Tropically, on the other hand, these two notions diverge:
the tropical Plücker coordinates of a tropical matrix produce a Stiefel tropical linear space,

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 82

defined in [30], while the row-span of the matrix yields a tropical polytope. These two notions
give rise to our two interpretations of tropical principal component analysis.

Figure 5.1: A tropical matrix A gives rise to both a Stiefel tropical linear space and a tropical
polytope.

We describe our first approach to a tropical principal component analysis in Section
5.2, as the Stiefel tropical linear space closest to the data points under the tropical metric
dtr. We call such a Stiefel tropical linear space the tropical principal linear space. We give
an exact description for a tropical principal hyperplane of e points in terms of the tropical
volume, originally introduced in [21]. In analogy with [84, Algorithm 4], another method
for conducting principal component analysis on the space of phylogenetic trees, we also
describe an heuristic algorithm to approximate a best-fit Stiefel tropical linear space of a
given dimension.

Next, in Section 5.3 and Section 5.4, we discuss a tropical principal component analysis in
terms of best-fit tropical polytopes. We reformulate the problem of finding a best-fit tropical
polytope or tropical principal polytope in terms of a mixed integer programming problem,
then describe an approximative algorithm similar to the above.

We then apply these methods to phylogenetics. The space of rooted equidistant phyloge-
netic trees with m leaves is naturally embedded into a tropical projective torus as a tropical
linear space, so that collections of such trees form a natural tropical dataset. We apply the
approximative algorithms for both methods of tropical PCA on a simulated phylogenetic
dataset in Section 5.5, and on an empirical dataset of genomes of parasitic protists in the
Apicomplex phylum in Section 5.6. In our tropical polytope approach, equidistant trees
remain equidistant after projection, and so we examine the distribution of tree topologies in
that case.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 83

5.2 Tropical principal linear spaces

As noted in the introduction, one can interpret ordinary (s − 1)st principal component
analysis as a method of dimensionality reduction, replacing data points with their projections
onto the translate of some particularly well-fitting linear space of dimension s−1. Classically,
this translation of a well-fitted linear space can be described by a matrix of size s× e, whose
first (s−1) rows are the basis vectors of the linear space, and whose last row is a translation
vector from the origin.

In analogy with the classical case, our approach to an (s− 1)st tropical principal compo-
nent analysis is to replace data points with their tropical projections onto a best-fit Stiefel
tropical linear space of dimension (s− 1), defined by a tropical matrix of size s× e, so that
the sum of the tropical distances between the data points and their projections is as small
as possible. We note that throughout this chapter we seek to minimize the sum of tropical
distances, in contrast to the classical case involving the minimization of the sum of squared
distances. The ordinary Euclidean distance involves a square root, so that squared distances
are often easier to study; since the tropical distance metric is piecewise linear in each coor-
dinate, however, it is natural to simply consider the distances themselves rather than their
squares.

Best-fit tropical hyperplanes

We begin our discussion of tropical principal component analysis by considering a specific
case: reducing by one the dimension of a collection of e datapoints in Re /R1. In other words,
we seek the (e− 1)st order tropical PCA, or a best-fit tropical hyperplane, for a collection of
e data points in Re /R1.

We require the following definition, from [21].

Definition 5.1. Let A be an e × e matrix with entries in R whose rows correspond to e
points in Re /R1. The tropical volume of A is given by the expression

tvolA :=
⊕
σ∈Se

∑
ai,σ(i) −

⊕
τ∈Se−σopt

∑
ai,τ(i), (5.2.1)

where σopt is an optimal permutation attaining the tropical determinant in the first tropical
sum.

This quantity can be computed in O(e3) time [11]. Recall that a square tropical matrix
A is tropically singular if two distinct permutations attain the tropical determinant. The
following, from [74, Lemma 5.1], is one of the earliest results in tropical geometry:

Lemma 5.2. Let A be an e × e tropical matrix whose rows represent e points of Re /R1.
Then A is tropically singular if and only if those e points lie on a tropical hyperplane in
Re /R1. In particular, tvolA = 0 if and only if the e points lie on a common tropical
hyperplane.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 84

Of course, if our collection of e datapoints D(i) lie on a common hyperplane, then this
hyperplane is our (e − 1)st tropical PCA. This fact hints at some relationship between the
tropical volume and the best fit hyperplane. In fact, this relationship is quite strong.

Theorem 5.3. Let D(1), . . . , D(e) be a collection of e points in Re /R1. Then any best-fit
hyperplane attains a distance from the e points equal to their tropical volume, and one such
best-fit hyperplane is spanned by a choice of e− 1 of the points.

To prove this theorem, we first show in the following lemma that the tropical volume is
an upper bound on the minimal distance of a best-fit tropical hyperplane.

Lemma 5.4. Let D(1), . . . , D(e) be a collection of e points in Re /R1, and let A be the matrix

whose i, jth entry is D
(i)
j . Then there exists a hyperplane of distance tvolA from the data

points, spanned by some choice of e− 1 of the points.

Proof. Suppose that all e data points can be spanned by a single hyperplane. Then Lemma
5.2 tells us that this best-fit hyperplane is of distance tvolA = 0 from the data points.

Now suppose that the e data points do not lie on the same hyperplane. Without loss
of generality, we may assume that the data points D(1), . . . , D(e) are ordered so that σopt
in the above definition of the tropical volume is just the identity, and hence the tropical
determinant is attained along the diagonal of A.

Let ρ attain the second maximum in the above definition of the tropical volume. Since
ρ is not the identity, there must exist some j such that ρ(j) 6= j. Let A′ be the matrix
obtained by deleting the jth row from A, and let p and H the tropical Plücker vector and
tropical hyperplane corresponding to A′ as in Example 1.15. The total distance from H to
our data points is just the distance from H to D(j), as all other data points are on H by
construction.

We compute the difference vector between D(j) and its projection onto H using the Red
Rule (Theorem 1.18). The only possible choice for an e-sized subset τ of [e] is just τ = [e],

and we need to compute the maximum and second-maximum values of p([e]− τi) + D
(j)
τi ,

taken over all choices of τi ∈ [e]. For any such τi, we note that p([e]− τi) +D
(j)
τi is equal to⊕

σ∈Sd, σ(j)=τi

∑
i

D
(i)
σ(i).

That is, pτ−τi +D
(j)
τi is the tropical sum of all permutations which map τi to j. In particular,

τi = j must yield the largest choice of pτ−τi + D
(j)
τi , and the second-largest choice must be

attained by τi = ρ−1(j). Hence the Red Rule implies that the distance between D(j) and its
projection is just the tropical volume, as desired.

Remark 5.5. In general, a best-fit Stiefel tropical linear space need not be unique. For
example, in the proof of Lemma 5.4, there clearly must be at least two indices j such that
ρ(j) 6= j.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 85

We next show that the tropical volume is also a lower bound. To do so, we first derive
some intermediate results.

Lemma 5.6. Let D(1), . . . , D(e) be a collection of e points in Re /R1, and let A be the e× e
tropical matrix whose i, jth entry is D

(i)
j . Define the matrix A′ whose i, jth entry equals

p([e] − {i}) + D
(j)
i , for p any tropical Plücker vector corresponding to a hyperplane. Then

A and A′ have the same tropical volume.

Proof. We note that A′ is obtained from A by transposition then adding some multiple of 1
to each row. Both of these operations preserve the tropical volume of a matrix.

Now suppose that H is a tropical hyperplane in Re /R1, and write its corresponding
tropical Plücker vector as p([e] − {i}). We can calculate the distance δj(H) of H from the
jth datapoint D(j) by the Red Rule: the distance is given by

δj(H) = max
i

(p([e]− {i}) +D
(j)
i)− 2ndmaxi(p([e]− {i}) +D

(j)
i),

where 2ndmaxi(p([e] − {i}) + D
(j)
i) = maxi∈[n]−{iopt}(p([e] − {i}) + D

(j)
i), and iopt is some

index that attains the maximum in maxi(p([e]− {i}) +D
(j)
i).

We write the total distance of H from our datapoints as d(H). It is given by

d(H) =
∑

j δj(H)

=
∑

j

(
maxi(p([e]− {i}) +D

(j)
i)− 2ndmaxi(p([e]− {i}) +D

(j)
i)
)
.

We can rewrite the cost function d(H) above by grouping together the summed and

subtracted terms. For fixed j, define αj(H) = maxi(p([e] − {i}) + D
(j)
i) and βj(H) =

2ndmaxi(p([e]− {i}) +D
(j)
i). Then δj(H) = αj(H)− βj(H), and the cost function can also

be written as
d(H) =

∑
j

δj(H) =
∑
j

αj(H)−
∑
j

βj(H).

Definition 5.7. Fix j in the cost function above, and let i1 and i2 be distinct indices such
that αj(H) = p([e] − {i1}) + D

(j)
i1

and βj(H) = p([e] − {i2}) + D
(j)
i2

. If δj(H) = 0, meaning
that αj(H) = βj(H), we say that the two indices i1 and i2 appear in a tie for index j. If

there exists another index i3 such that p([e] − {i3}) + D
(j)
i3

= αj(H) = βj(H), we call this a
multiple tie for index j; if there does not exist such an i3, we call this a two-way tie.

Note that, in the event of a tie, we may choose any two of the indices attaining the tie
to correspond to αj(H) and βj(H).

Lemma 5.8. Let H be an optimal hyperplane in Re /R1, and let p be its corresponding
tropical Plücker vector. Choose an index i such that p([e]− {i}) < βj ≤ αj for all j. Then

we can perturb H to obtain a new best-fit hyperplane H′ so that p([e]− {i}) +D
(j)
i = βj for

some j, and this j corresponds to a multiple tie.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 86

Proof. Because p([e]− {i}) does not appear in the cost function by assumption, by Remark
1.21 we can find a new hyperplane H′ with the same tropical Plücker vector as H except for
a larger value for p([e]− {i}).

If we make p([e]− {i}) large enough, it must appear in the cost function for H′. In fact,
it must appear as part of a multiple tie. If it were a second maximum not equal to the
maximum, then H′ would be a better-fitting hyperplane.

Lemma 5.9. Let A be an e× e matrix with entries in R whose rows correspond to points in
Re /R1, and let A′ be constructed from A as in Lemma 5.6. Then the tropical volume of A
is a lower bound for the cost function. Furthermore, we have that

∑
αj = tdetA′.

Proof. Let H be a best-fit hyperplane in Re /R1 for the rows of A, with corresponding
tropical Plücker vector p. The basic argument is as follows: we can perturb H to obtain a
new best-fit hyperplane whose sum of distances to the data points given by the Red Rule is
the difference of two permutations, with the larger permutation corresponding to the tropical
determinant of A′.

We prove the result by induction on e. For the base case, let e = 1. Then the tropical
volume and the cost function are both trivial.

Suppose we have proved the lemma up to e − 1. We divide the situation into several
possible cases. First, let there be some index k appearing only in ties in the cost function,
with at most one of these appearances being a two-way tie. If k appears in a two-way tie,
let D(jk) denote the corresponding datapoint. Otherwise, let D(jk) denote some datapoint
for which k appears in a multiple tie.

Then we can write total distance as

p([e]− {k}) +D
(jk)
k − p([e]− {k})−D(jk)

k +
∑
j 6=jk

δj(H).

Construct the matrix A′′ by deleting the kth row and jkth column from A′. We also
define the hyperplane H′ ⊆ Re−1 /R1 obtained by “deleting” the index {k} from [e]: the
tropical Plücker vector p′ corresponding to H′ is defined by

p′([e− 1]− {i}) =

{
p([e]− {i}) if i < k

p([e]− {i+ 1}) if i ≥ k
.

Because we assumed that k appears in at most one two-way tie, for any j 6= jk we
can choose the indices corresponding to αj(H) and βj(H) so that k does not appear in
αj(H)−βj(H) = δj(H). By construction, therefore, d(H) =

∑
j 6=jk δj(H) is also the distance

between H′ ⊆ Re−1 /R1 and the rows of the matrix A′′. Furthermore, the optimality of H
implies that H′ must be a best-fit tropical hyperplane for the rows of A′′.

In particular, the inductive hypothesis states that d(H′) =
∑

j 6=jk δj(H) is bounded from
below by the tropical volume of A′′. It also implies that

∑
j 6=j′ αj(H) = tdetA′′. It therefore

follows that d(H) = d(H′) is bounded below by a difference of distinct permutations in A′,
and that

∑
αj(H) equals a sum of terms of A′ corresponding to some permutation of Se.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 87

In fact, since each αj is the largest term in the jth row of A′, we must have that
∑
αj =

tdetA′. Hence we have for some σ ∈ Se,

d(H) ≥ tdetA′ −
∑
i

ai,σ(i) ≥ tvolA′ = tvolA

where the last equality holds by Lemma 5.6.
Now suppose that there exists an index k such that p([e]− {k}) does not appear in any

terms in the cost function. Then by Lemma 5.8, we may replace H with another hyperplane
such that k appears only in a multiple tie for some index j. We are now in the previous case,
and the same argument holds as before.

Finally, suppose that for each index i, either p([e]− {i}) appears in the cost function
as part of a non-tie, or p([e]− {i}) appears in at least two two-way ties. Pick i1 such that

αj(H) = p([e] − {i1}) + D
(j)
i1

for j corresponding to a non-tie. We write this index j as ji1 ,
and we write i0 as the index corresponding to βij1 (H). Suppose that there does not exist

some other index ji2 such that βji2 = p([e]− {i1}) + D
(ji2)

i2
. Then we could perturb H by

slightly lowering p[e]−{i1} to obtain a better-fitting hyperplane, a contradiction. Hence such
a ji2 must exist.

In fact, note that we can pick ji2 to avoid a multiple-way tie at that index. Otherwise,
perturbing p([e]− {i1}) upward would not affect the second and first minimum, and we
could obtain the same contradiction. It follows that the index ji2 must correspond to either
a two-way tie or a non-tie. In either case, therefore, there is a unique other index i2 such

that αji2 = p([e]− {i2}) +D
(ji2)

i2
.

If the cost function term corresponding to ji2 is a non-tie, and i2 appeared in no other cost
function terms as part of the subtracted term, then we can obtain a contradiction in a similar
way as above by perturbing p([e]− {i2}). If the cost function term corresponding to jk2 is a
tie, and i1 and i2 appeared in no other cost function terms as part of the subtracted term,
then we could obtain a contradiction in a similar way as above by perturbing p([e]− {i1})
and p([e]− {i2}) in sync.

Hence in a similar fashion we may obtain indices i3, and a i4, and so on, such that each
ik = αjik (H) for some index jik corresponding to either a two-way tie or a non-tie. Because
there can only be at most e such indices jik , there must exist ` and `′ such that i` = i`′ with
` > `′. If `′ 6= 0, then we may repeat the argument by perturbing p([e] − {i`′−1}) upward,
possibly in tandem with some earlier Plücker coordinates. Hence we must find i` = i0 for
some `.

If ` < e, and if there exists another index i`+1 which appears as a positive term in the
cost function, we repeat the above argument. It therefore follows that if p([e]−{i}) appears
in the cost function as part of a non-tie, it must appear at least twice as part of a non-tie
or a two-way tie. By assumption, therefore, each index appears at least twice as part of a
non-tie or a two-way tie.

In particular, the pigeonhole principle implies that each index i appears exactly twice as
part of a non-tie or a two-way tie. It can thus be assumed that each index appears once as

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 88

part of some αi and once as part of some βi. Now the distance function d(H) is the difference
between two different permutations of Se. As before,

∑
αi

must therefore equal the tropical
determinant of A′, and the distance function d(H) must be bounded below by the tropical
volume as desired.

Together, Lemmas 5.4 and 5.9 imply Theorem 5.3. This result provides a new interpre-
tation for the tropical volume of a collection of e points: it measures the deviation of those
points from lying on a common hyperplane. It also suggests a possible extension of the defi-
nition of a tropical volume to rectangular matrices ([21, Section 5]): the tropical volume of a
“skinny” matrix with more rows than columns could be defined as the sum of the distances
of the row-points from a best-fit tropical hyperplane.

If n > e, an optimist might hope that the best-fit tropical hyperplane of n points in
Re /R1 would again attain a total distance equal to the tropical volume of some subset of
e of those points. In fact, this does not hold even for e = 3:

Example 5.10. Consider the matrix A whose rows correspond to data points in R3 /R1:

A =


0 −2 −2
0 −1 2
0 2 −1
0 2 2

 .

The tropical volume of the first three points in A is 4, so any tropical line must attain a
distance at least 4 to the four points. This is attained by the tropical line with apex at
(0, 2, 2).

(0, -1, 2)

(0, -2, -2)

(0, 2, 2)

(0, 2, -1)

Figure 5.2: A best-fit tropical line for the
data in Example 5.10.

(0, -3, -1)

(0, 3, 1)

(0, 2, -2)

(0, -1, -3)

Figure 5.3: A best-fit tropical line for the
data in Example 5.11.

Example 5.11. Let A be the following matrix whose rows correspond to data points in
R3 /R1:

A =


0 −1 −3
0 2 −2
0 3 1
0 −3 −1

 .

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 89

The largest tropical volume of any choice of three rows is 2, but inspection shows that a
best-fit tropical line attains a total distance of 3.

Best-fit Stiefel tropical linear spaces

In view of Theorem 5.3 and Lemma 5.4, we describe an algorithm to approximate a best-
fit Stiefel tropical linear space of any given dimension. Our method is very similar to [84,
Algorithm 4]; Algorithm 5.24 below also follows the same general approach. For simplicity,
below we state the algorithm for a Stiefel tropical linear space of dimension 2.

Algorithm 5.12 (Stochastic approximation of a second-order tropical principal subspace).

Require: A dataset D(i) of points in the tropical projective torus
Ensure: A Stiefel tropical linear space Lp close to D(i)

1: Fix an ordered set V = (D(1), D(2), D(3)) and compute Lp(V).
2: repeat
3: Sample three datapoints D(j1), D(j2), D(j3) randomly from the set of all datapoints.
4: Let V ′ = {D(j1), D(j2), D(j3)}.
5: Compute d(Lp(V

′)).
6: if d(Lp(V)) > d(Lp(V

′)), set V ← V ′.
7: until convergence.

This algorithm attempts to minimize d(Lp) by randomly varying the three points gener-
ating Lp within the set of all datapoints. Whenever a choice of three points V ′ improves upon
the current configuration V , we replace V with V ′. Convergence is assessed by considering
whether a new choice of V has been found over a fixed number of previous iterations; if no
better V is found over some prespecified number of iterations, then the algorithm terminates.
We note that under the conditions of Theorem 5.3, Algorithm 5.12 is very likely to construct
an exact best-fit Stiefel tropical linear space as described in Lemma 5.4; in this sense the
algorithm attempts to generalize the results of Theorem 5.3.

Estimating the empirical principal components was first considered in [29]. Feragen et. al
estimated the first order principal component by spanning two well-chosen data points in
the BHV space.

Algorithm 5.12 is probabilistic in nature, so we cannot provide deterministic complexity
bounds. Because the Red and Blue Rules for calculating projections onto Lp are relatively
expensive to compute naively, Algorithm 5.12 may be slow to execute.

Remark 5.13. Algorithm 5.12 does not always attain an exact best-fit Stiefel tropical linear
space. This is clear, for example, if we consider a variant of the algorithm for fitting a
0-dimensional Stiefel tropical linear space, i.e., a tropical Fermat-Weber point as in [62]. In
general, the collection of tropical Fermat-Weber points for a given dataset need not contain
a data point.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 90

Because the space of ultrametrics Um is a tropical linear space (Theorem 1.29), which
is tropically convex, the convex hull of points in Um is contained in Um. Unfortunately,
however, the Stiefel tropical linear space defined by these points may not itself be contained
in Um.

Lemma 5.14. Let Lp be a tropical linear space and D(i) ∈ Lp some points in the tropical
linear space. It need not be the case that the Stiefel tropical linear space Lq defined by the
points is contained in Lp.

Proof. For a very simple counterexample, let Lp be the tropical line in R3 /R1 centered at
the origin, and take the two points D(1) = (0,−1, 0) and D(2) = (0,−2, 0). We have the
picture in Figure 5.4.

(0,-2,0)

(0,-1,0)
(0,0,0)

Figure 5.4: Both (0,−2, 0) and (0,−1, 0) are contained in the Stiefel tropical linear space
spanned by (0,−2, 0) and (0, 0, 0), but the Stiefel tropical linear space spanned by the two
points is not.

If our data points D(i) correspond to ultrametrics, by Lemma 5.14 the Stiefel tropical
linear space produced by Algorithm 5.12 may not be contained in the overall space of ultra-
metrics. Hence this approach does not apply directly to the analysis of equidistant trees.

In the proof of Lemma 5.14, however, if our two chosen pointsD(1) andD(2) lie on different
rays of the tropical line Lp, it is easy to see that their corresponding Stiefel tropical linear
space will be contained in Lp as well. In general, given some points D(i) in a tropical linear
space Lp, it would be interesting to study the conditions under which their corresponding
Stiefel tropical linear space Lq satisfies Lq ⊆ Lp. Such a result would enable a natural
extension of these methods to the study of ultrametrics.

The classical principal components have a nested structure, in which the ith principal
subspace is contained in the (i+ 1)st subspace for each i. It is natural to wonder whether a
similar relationship holds in this tropical analogue. Again, the situation is complicated.

Example 5.15. The minimal distance of a zeroth tropical principal component, or a tropical
Fermat-Weber point, is given in [62, Theorem 3].

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 91

Let D(1) = (0,−2,−2), D(2) = (0,−1, 2), and D(3) = (0, 2,−1). Then their tropical
volume equals 4, and a tropical Fermat-Weber point attains a total distance of seven from the
three points. A best-fit hyperplane is given by the line with apex at (0, 1,−2), and inspection
shows that no point on this line is a Fermat-Weber point.

On the other hand, the point (0,−1,−1) can be checked to be a Fermat-Weber point, and
the line with apex at (0, 2,−1) is a best-fit hyperplane containing that Fermat-Weber point.
In other words, a best-fit tropical line need not contain a best-fit tropical point, but we can
find an example in this case for which this containment holds.

(0,-1,-1)

(0,2,-1)

(0,-2,-2)

(0,-1,2)

Figure 5.5: Both tropical lines attain a minimum sum of distances from the points (0,−1, 2),
(0,−2,−2), and (0, 2,−1). But only one contains the Fermat-Weber point (0,−1,−1).

5.3 Tropical principal polytopes

We now discuss a different notion of a tropical principal component analysis, in which
our analogue to a linear plane is a tropical polytope called a tropical principal polytope.
Classically, the row-span of a matrix of dimensions s× e defines a linear space of dimension
at most s. In the tropical setting, by contrast, Section 1.3 tells us that the row-span of a
tropical matrix is a tropical polytope.

A tropical principal component analysis, therefore, outputs the tropical convex hull of s
points in Re /R1 minimizing the sum of distances between each point in the sample to its
projection onto the convex hull.

Definition 5.16. Let P = tconv(D(1), . . . , D(t)) ⊆ Re/R1 be a tropical polytope with vertices
{D(1), . . . , D(t)} ⊂ Re/R1 for 1 ≤ t ≤ (e− 1) and let S = {u1, . . . un} be a sample from the
space of ultrametrics Um. Let ΠP(S) :=

∑n
i=1 dtr(ui, u

′
i), where u′i is the tropical projection

of ui onto the tropical polytope P. Then P is called the (t − 1)st order tropical principal
polytope of S and the vertices D(1), . . . , D(t) of the tropical polytope P are called the (t− 1)st

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 92

order tropical principal components of S if the tropical polytope P minimizes ΠP(S) over all
possible tropical polytopes with t many vertices.

In comparing tropical PCA with classical PCA, we remark that the tropical metric in
tropical projective space is closely related to the L∞ norm (for example, [5, 68]). The tropical
norm of x ∈ Re/R1 can be seen as the L∞-norm of the representative of x with minimal
coordinate 0. Also, it is twice the quotient norm of the L∞ norm [41, Lemma 5.2]. In
this sense, classical PCA is built on L2 minimization while tropical PCA is built on L∞
minimization.

It is important to be able to interpret the tropical principal components of a dataset of
equidistant trees in terms of phylogenetics. To that end, we seek to prove properties about its
interpretation. One nice property of tropical principal polytopes is that each cell comprises
ultrametrics of the same tree topology., as is visible in e.g. Figure 5.10.

Theorem 5.17. Let P = tconv(D(1), . . . , D(t)) ⊆ Re/R1 be a tropical polytope spanned by
ultrametrics. Then any two points x and y in the same cell of P are also ultrametrics with
the same tree topology.

Proof. The space of ultrametrics Um is a tropical linear space, so it is tropically convex, and
P is contained in Um. Hence any points x and y in P must also be ultrametrics.

Let Q be the type of x and y. To check whether x and y have the same tree topology, we
check the three point condition for each trio of leaves. Fix such a trio i, j, and k. Our first
claim is that xij = xik = xjk if and only if yij = yik = yjk. To see why, suppose the former
is true. Because x ∈ P , there exists some index a ∈ Qij, so that

D
(a)
ij − xij = max

`1<`2
D

(a)
`1,`2
− x`1,`2 .

In particular, D
(a)
ij − xij ≥ D

(a)
ik − xik and D

(a)
ij − xij ≥ D

(a)
jk − xjk. By assumption it follows

that D
(a)
ij ≥ D

(a)
ik and D

(a)
ij ≥ D

(a)
ik . Because D(a) is an ultrametric, the maximum among

D
(a)
ij , D

(a)
ik , D

(a)
jk is attained twice, so one of these is actually an equality. Without loss of

generality, let D
(a)
ij = D

(a)
ik . Then D

(a)
ij − xij = D

(a)
ik − xik and a ∈ Qik as well.

Recall that Q is also the type of y. This means

D
(a)
ij − yij = D

(a)
ik − yik = max

`1<`2
D

(a)
`1,`2
− y`1,`2 .

In particular, since D
(a)
ij = D

(a)
ik , we have yij = yik as well. The same argument applied to

Qjk shows that yjk = yij or yjk = yik; it follows that yij = yik = yjk as desired.
Now suppose max(xij, xik, xjk) and max(yij, yik, yjk) are both attained exactly twice. We

claim that the minimum for x and for y is attained for the same pair of leaves. Suppose
without loss of generality that xij = min(xij, xik, xjk) and yik = min(yij, yik, yjk): because

x, y ∈ P , there exists some index a ∈ Sjk. This implies in particular that D
(a)
jk − xjk ≥

D
(a)
ij − xij and D

(a)
jk − yjk ≥ D

(a)
ik − yik.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 93

Rearranging these inequalities produces D
(a)
jk −D

(a)
ij ≥ xjk−xij and D

(a)
jk −D

(a)
ik ≥ yjk−yik.

Since xij < xjk and yik < yjk by assumption, it follows that D
(a)
jk must be the unique

maximum among D
(a)
ij , D

(a)
ik , D

(a)
jk , a contradiction because D(a) is ultrametric.

It is natural to ask when a (t− 1)st order tropical principal polytope contains the origin
0: i.e., when the fully unresolved phylogenetic tree (the star tree) is contained in the (t−1)st
order tropical principal polytope. The origin 0 is also the star tree in the BHV metric. This
question turns out to have a simple answer.

Lemma 5.18. Let P = tconv(D(1), . . . , D(t)) ⊆ Re/R1 be a tropical polytope spanned by
ultrametrics. The origin 0 is contained in P if and only if the path between each pair of
leaves i, j passes through the root of D(k) for some k ∈ [t].

Proof. The vertices D(1), . . . , D(t) can certainly be tropically scaled to have largest coordinate
0. If the claimed condition holds, then the sum of these scaled D(i) will be the origin as
desired.

Suppose 0 is contained in P , so we can write 0 =
⊕

ak �D(k). Consider some pair of
leaves i, j. We know that 0 must appear as the (i, j)-coordinate of some particular al�D(l).
Because 0 =

⊕
ak �D(k), all other coordinates of al �D(l) must be non-positive, meaning

that the (i, j)-coordinate of al �D(l) is maximal as desired.

Definition 5.19 ([62]). Suppose we have a sample {D(1), . . . , D(n)}. A Fermat-Weber point
x∗ of {D(1), . . . , D(n)} is a minimizer of the sum of tropical distances to the data points:

x∗ := argminx

n∑
i=1

dtr(x,D
(i)).

We can naturally view Fermat-Weber points as zero-dimensional tropical principal polytopes.

Lemma 5.20. Suppose n ≥ 3 and {D(1), . . . , D(n)} ⊂ Um. Then there exists a Fermat-Weber
point x∗ of the dataset lying in the tropical polytope tconv(D(1), . . . , D(n)). In particular, this
point x∗ is ultrametric.

Proof. Take x∗ a Fermat-Weber point not lying in the polytope tconv(D(1), . . . , D(n)), and
let Q = (Q1, . . . , Qe) be its vector of types as in Section 1.3. Because x∗ does not lie in
the tropical polytope, some of the types Qj are empty. Consider such a Qj. By definition,

we have that for each i, D
(i)
j − x∗j is not maximal among {D(i)

1 − x∗1, . . . , D
(i)
e − x∗e}. This

also means that we can shift the jth coordinate without changing the distance of x∗ to any
datapoint D(i). We can therefore simply decrease x∗j until there is some i such that D

(i)
j −x∗j

is tied for being maximal among the coordinates of D(i)−x∗. The tropical type Qj of our new
x∗ will be nonempty. By doing so for all coordinates, we obtain a new Fermat-Weber point
which lies in the tropical polytope spanned by ultrametrics and so is itself ultrametric.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 94

The previous lemma states that there always exists a biologically interpretable zero-
dimensional tropical principal polytope for a dataset of ultrametrics. This result points
toward the following conjecture, which is analogous to the classical fact that the (t − 1)st
order principal component subspace is contained in the (t′− 1)st order principal component
subspace if t ≤ t′.

Conjecture 5.21. There exists a tropical Fermat-Weber point x∗ ∈ Um of a sample of
ultrametric tree datapoints D(1), . . . , D(n) which is contained in the (t − 1)st order tropical
principal polytope of the dataset for 1 ≤ t ≤ (e− 1).

5.4 Computing tropical principal polytopes

We now describe a reformulation of the tropical principal polytope as an optimization
problem. For simplicity of exposition, we focus on the second order principal components,
noting that the following discussion could be generalized to arbitrary s.

Proposition 5.22. Solving for the second-order tropical principal polytope can be formulated
as the following optimization problem:

minimize
n∑
i=1

∆i (5.4.1)

subject to: ∆i ≥ di(k)− d′

i(k)− di(l) + d
′

i(l), 1 ≤ k < l ≤ e

∆i ≥ −[di(k)− d′

i(k)− di(l) + d
′

i(l)], 1 ≤ k < l ≤ e

d
′

i(k)− (λip +D(p)(k)) ≥ 0,

d
′

i(k)− (λip +D(p)(k)) ≤ upik × ypik,
3∑
p=1

ypik ≤ 2,

0 ≤ ypik ≤ 1, ypik is an integer,

di(k)− (λip +D(p)(k)) ≥ 0,

di(k)− (λip +D(p)(k)) ≤ vpik × zpik,
e∑

k=1

zpik ≤ e− 1,

0 ≤ zpik ≤ 1, zpik is an integer,

∀p ∈ [3], k ∈ [e], i ∈ [n]

where upik and vkip are large enough constants.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 95

Proof. Our optimization problem can be written more explicitly as

min
D(1),D(2),D(3)∈Re /R1

n∑
i=1

max{|di(k)− d′

i(k)− di(l) + d
′

i(l)| : 1 ≤ k < l ≤ e}

where d
′

i = λi1 �D(1) ⊕ λi2 �D(2) ⊕ λi3 �D(3), with λik = min(di −D(k)) and k = 1, 2, 3.

Define the quantity

∆i = max{|di(k)− d′

i(k)− di(l) + d
′

i(l)| : 1 ≤ k < l ≤ e}, i ∈ [n].

Then the objective function is equivalent to

minimize:
n∑
i=1

∆i

subject to: ∆i ≥ |di(k)− d′

i(k)− di(l) + d
′

i(l)|, 1 ≤ k < l ≤ e.

These constraints can be reformulated as:

subject to: ∆i ≥ di(k)− d′

i(k)− di(l) + d
′

i(l), 1 ≤ k < l ≤ e

∆i ≥ −[di(k)− d′

i(k)− di(l) + d
′

i(l)], 1 ≤ k < l ≤ e.

Recall the definitions

d
′

i(k) = max(λi1 +D(1)(k), λi2 +D(2)(k), λi3 +D(3)(k)),

where λis = min(di −D(s)). These are equivalent to

d
′

i(k) = maximize: λi1 +D(1)(k), λi2 +D(2)(k), λi3 +D(3)(k),

subject to: λi1 ≤ di(t)−D(1)(t), t ∈ [e]

λi2 ≤ di(t)−D(2)(t), t ∈ [e]

λi3 ≤ di(t)−D(3)(t), t ∈ [e].

We can hence divide our original maximization problem into two parts:
for all k = 1, 2, 3, . . . , e,

d
′

i(k) = maximize: λi1 +D(1)(k), λi2 +D(2)(k), λi3 +D(3)(k),

subject to: λi1 ≤ di(t)−D(1)(t), t ∈ [e]

λi2 ≤ di(t)−D(2)(t), t ∈ [e]

λi3 ≤ di(t)−D(3)(t), t ∈ [e].

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 96

and

minimize:
n∑
i=1

∆i

subject to: ∆i ≥ di(k)− d′

i(k)− di(l) + d
′

i(l), 1 ≤ k < l ≤ e

∆i ≥ −[di(k)− d′

i(k)− di(l) + d
′

i(l)], 1 ≤ k < l ≤ e.

We recombine them into one optimization as follows:

minimize:
n∑
i=1

∆i

subject to: ∆i ≥ di(k)− d′

i(k)− di(l) + d
′

i(l), 1 ≤ k < l ≤ e, i ∈ [n]

∆i ≥ −[di(k)− d′

i(k)− di(l) + d
′

i(l)], 1 ≤ k < l ≤ e, i ∈ [n]

d
′

i(k) ≥ λip +D(p)(k), p = 1, 2, 3, k ∈ [e], i ∈ [n]
3∏
p=1

[d
′

i(k)− (λip +D(p)(k))] = 0, k ∈ [e], i ∈ [n]

λip +D(p)(t) ≤ di(t), p = 1, 2, 3, t ∈ [e], i ∈ [n]
e∏
t=1

[di(t)− (λip +D(p)(t))] = 0 p = 1, 2, 3, i ∈ [n].

The result now follows by adding new binary variables ypik and zpik for each p ∈ [3], i ∈ [n],
and k ∈ [e], then applying the Big-M method [48, Chapter 3.10]. For simplification, we do
not explicitly show the constraints on the tropical principal components D(1), D(2), D(3) to
be distinct; this can be proved by applying the Big-M method twice.

Remark 5.23. Projecting onto a tropical polytope is relatively straightforward compared to
projecting onto a tropical linear space. In theory, one could attempt to reformulate the Stiefel
tropical linear space optimization problem from Section 5.2 as in Proposition 5.22; however,
the increased complexity of the linear space projection map makes this impractical.

Due to the large number of variables and constraints involved in Proposition 5.22, we are
able to directly solve only relatively small cases like Example 5.27.

Heuristic approximation

As noted above, the number of variables in the mixed integer linear programming problem
in Proposition 5.22 increases quickly with the number of leaves and data points. Because
solving mixed linear integer programming is NP-hard [61], this problem is difficult to solve
in practice. In analogy with Algorithm 5.12, therefore, we develop a heuristic method for
approximating the optimal solution for the problem in Proposition 5.22.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 97

Algorithm 5.24 (Approximation for the second order PCA as a tropical polytope).
Require: A dataset D(i) of points in the tropical projective torus
Ensure: A tropical polytope P close to D(i)

1: Fix an ordered set V = (D(1), D(2), D(3)) and compute P = tconv(V).
2: repeat
3: Sample three datapoints D(j1), D(j2), D(j3) randomly from the set of all datapoints.
4: Let V ′ = {D(j1), D(j2), D(j3)}.
5: Compute d(P ′) = d(tconv(V ′)).
6: if d(P) > d(P ′), set V ← V ′.
7: until convergence.

As before, convergence can be assessed by considering whether a new choice of V has been
found over a fixed number of previous iterations. If computational time is limited, another
approach might simply be to prespecify a total number t of samples. Of course, when the
computational cost is reasonable one could enumerate through all

(
n
3

)
different choices for

the generating points of P instead of sampling.

Remark 5.25. Three data points D(j1), D(j2), and D(j3) define both a Stiefel tropical linear
space Lp and a tropical polytope P. Because Stiefel tropical linear spaces are tropically convex,
and each of the generating points is contained in Lp, we see that P ⊆ Lp. In particular, given
the same convergence criteria, we should expect Algorithm 5.12 to provide a somewhat better
fit than Algorithm 5.24.

Remark 5.26. Note that Algorithm 5.24 is well-suited for applications to phylogenetics.
Because Um is a tropical linear space (Theorem 1.29) and tropical linear spaces are tropically
convex, the solution set P = tconv(D(1), D(2), D(3)) obtained from Algorithm 5.24 will be
contained in the space of ultrametrics. In particular, projections of ultrametrics are also
ultrametrics.

5.5 Simulations

In this section, we apply the previous results to simulated ultrametric datasets.

Exact methods

We begin by identifying the exact best-fit tropical polytope with three vertices closest to
a small dataset of equidistant trees using Proposition 5.22. We implemented this proposition
using an R interface to the popular optimization software IBM ILOG CPLEX, called cplexAPI.

Example 5.27. We randomly generated 8 equidistant trees by rcoal() function in the R

package ape, with 5 leaves (t1, t2, t3, t4, t5) and computed their vectorized distance matrices
in Table 5.1.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 98

tree1 0.2568 0.2314 0.8480 0.2499 0.2568 0.8480 0.2568 0.8480 0.2499 0.8480
tree2 0.0721 1.5059 2.4214 1.5059 1.5059 2.4214 1.5059 2.4214 0.4248 2.4214
tree3 0.4002 0.1322 7.9888 1.4365 0.4002 7.9888 1.4365 7.9888 1.4365 7.9888
tree4 0.0121 2.2597 0.3387 2.2597 2.2597 0.3387 2.2597 2.2597 1.0985 2.2597
tree5 0.4444 2.3015 1.7791 0.7143 2.3015 1.7791 0.7143 2.3015 2.3015 1.7791
tree6 0.3201 2.0053 2.5919 2.5919 2.0053 2.5919 2.5919 2.5919 2.5919 0.6206
tree7 0.1512 3.0181 3.0181 3.0181 3.0181 3.0181 3.0181 0.4858 0.4858 0.0617
tree8 0.2645 1.6765 1.1412 1.6765 1.6765 1.1412 1.6765 1.6765 0.4770 1.6765

Table 5.1: Vectorized Distance Matrices of the Simulated Trees

D(1) 0.5894 2.0232 2.0232 2.0232 2.0232 2.0232 2.0232 0.9241 0.9241 0.5000

D(2) 0.5000 2.3571 1.5973 0.7698 2.3571 1.5973 0.7698 2.3571 2.3571 1.2237

D(3) 0.7679 0.5000 8.3565 1.8042 0.7679 8.3565 1.8042 8.3565 1.8042 8.3565

Table 5.2: Vectorized Distance Matrices of the 2nd PCs

t1 t2 t3 t4 t5 t3 t4 t5 t1 t2 t4 t5 t2 t1 t3

Figure 5.6: D(1), D(2), D(3) for Example 5.27

Using our optimization problem formulation from Proposition 5.22, we obtain principal
components D(1), D(2), D(3) for this example. These points are ultrametrics, and they are
described in Figure 5.6 and Table 5.2. In this case the best-fit tropical polytope obtains the
sum of distances to be 6.208443. The running time of this exact algorithm was about 50
seconds.

Approximative algorithms

To analyze larger datasets, we turn to the approximative Algorithms 5.12 and 5.24. We
implemented both algorithms in R.1 We then generated a random sample from Mesquite

[64] and applied our algorithms on this dataset. The sample was constructed as follows:

1Our software for all computations can be downloaded at http://polytopes.net/computations/

tropicalPCA/.

http://polytopes.net/computations/tropicalPCA/
http://polytopes.net/computations/tropicalPCA/

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 99

Algorithm 5.28 (Generating the simulation dataset). 1. In Mesquite, generate a taxa
block association between 8 species taxa and 8 gene taxa;

2. Generate a random species tree with the above 8 species taxa via uniform speciation
(Yule) simulated tree, where the tree depth (number of generations) is set to be 100000;

3. Generate 250 equidistant gene trees with the 8 gene taxa in first step contained in the
above species tree by the coalescence model, where the effective population size is set to
be 100000;

4. Compute ultrametric distances from the gene trees by the package ape in R.

After generating trees via Algorithm 5.28, we compute approximate second order tropical
principal components via Algorithms 5.12 and 5.24.

The trees in this simulated dataset are well-dispersed with respect to tree topology. Most
trees have unique tree topologies and it is therefore difficult to summarize the characteristics
of this dataset based on the original trees. We applied both methods of tropical principal
component analysis to this set of random equidistant trees generated by Algorithm 5.28. In
analogy with [84], we define summary statistics to describe the fit of a Stiefel tropical linear
space or a tropical polytope to a given data set. If Lp is a Stiefel tropical linear space, we
define its distance to the datapoints d(Lp) as

d(Lp) =
∑
i

d(D(i), Lp),

and a tropical proportion of variance statistic

r(Lp) =

∑
i dtr(π̄, πLp(D(i)))∑

i dtr(D
(i), πLp(D(i))) +

∑
i dtr(π̄, πLp(D(i)))

where π̄ denotes a Fermat-Weber point of the projections of the datapoints, as in [62].
These statistics are defined analogously for a tropical polytope P . The statistic r(Lp) can
be interpreted as the proportion of variance explained by Lp; in order to remain consistent
with the tropical metric, we sum distances rather than squared distances.

For the polytopal approach, as noted above, the projections will remain ultrametrics. We
therefore analyze the topologies of these projections, and compare them with the topology
of the species tree.

Approximation results

We applied Algorithm 5.12 to find an approximate 2-dimensional best-fit Stiefel tropical
linear space with a convergence threshold of 100 iterations. This execution took about
21 hours to finish, running in parallel on sixteen CPU cores of a server operated by the
Mathematics Department of UC Berkeley. The summary statistics for this run were: d(Lp) =
188.2556 and r(Lp) = 0.376.

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 100

We also applied a variant of Algorithm 5.24 to find an approximate best-fit tropical
polytope with three vertices, in which we enumerated through all

(
250
3

)
different choices. It

was run on macOS with a 2.7 GHz Intel Core i5 dual-core processor, and took about 26
hours to finish. The summary statistics were: d(P) = 220.3286 and r(P) = 0.374. Note
that the best-fit Stiefel tropical linear space attained a somewhat closer fit, though the two
methods explained similar proportions of variance.

For the tropical polytope method, we recall that projections of equidistant trees will
remain ultrametrics. We present common topologies of the projections as well as the species
tree topology in Figure 5.7.2 We observe that these topologies of projected trees are broadly
consistent with the topology of the species tree under which these gene trees were generated:
taxa g, e and b group together, as do taxa c, h and f . We can view our best-fit tropical
polytope as preserving these features of the species tree, meaning that this tropical polytope
retains information after projection.

(72)

a b cde fg h

(27)

ab cde fgh

(21)

ab cde fg h

(19)

a b cde fg h

(17)

a b cde fg h

(16)

a b cde fg h

(15)

abcd ef gh

(14)

a b cde fg h

species

AB CDE FG H

Figure 5.7: Topology frequencies after projections: the parenthesized numbers are frequen-
cies, and the last tree gives the species tree topology.

2In keeping with the format of Mesquite [64], leaves of the species tree are rendered as capital letters. Tree
topologies of all projected points can be found in the supplement at http://polytopes.net/computations/
tropicalPCA/.

http://polytopes.net/computations/tropicalPCA/
http://polytopes.net/computations/tropicalPCA/

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 101

5.6 Apicomplexa genome

We also applied our tropical principal component algorithms to a set of equidistant trees
constructed from 252 orthologous sequences on eight species of protozoa in the Apicom-
plexa phylum by [57]. This dataset was analyzed by Weyenberg et. al; one can find more
details, including the gene sequences, in [87]. Because ordinary PCA is sensitive to out-
liers, we removed 16 outlier gene trees identified by [87] before fitting the tropical principal
components.

To find an approximate best-fit 2-dimensional Stiefel tropical linear space, we applied
Algorithm 5.12 with a convergence threshold of 100 iterations. Due to the stochastic nature
of the algorithm, we executed the algorithm three times. Each execution was run in parallel
on sixteen CPU cores of a server operated by the Mathematics Department of UC Berkeley,
and took about eighteen hours to finish. The summary statistics remained consistent between
these runs. For one representative execution, these statistics were: d(Lp) = 145.38 and
r(Lp) = 0.616.

We also applied a variant of Algorithm 5.24 to find a well-fitted tropical polytope with
three vertices, enumerating through all

(
252
3

)
possibilities. It was run on macOS with a 2.7

GHz Intel Core i5 dual-core processor, and took about 16 hours to finish. The summary
statistics for this run were: d(P) = 147.0568 and r(P) = 0.612. We note that these summary
statistics are relatively consistent with the summary statistics obtained from the Stiefel
tropical linear space algorithm.

The tree topologies are presented in Figure 5.8. In general, the projected topologies were
largely congruent with the generally accepted phylogeny: the two Plasmodium species (Pv
and Pf) group together, as do the four species Ta, Bb, Tg, and Et, and Tt is isolated on a
deep branch.

[22, Theorem 23] tells us the tropical convex hull of the rows and columns of a matrix are
equal. This allows us to visualize our best-fit tropical polytope in the two-dimensional plane
R3/R1 as the tropical convex hull of 28 points. These 28 points divide the polytope into
different cells, as described in [51, Example 9]. We plot this polytope, along with its cells and
the projections of our data points, in Figure 5.9, which functions as a simple two-dimensional
visual summary of the clustering of our data, as an ordinary 2-PCA might provide. We
note that the different topologies divide the tropical polytope PCA into several regions of
positive area, as suggested by Theorem 5.17. Furthermore, the boundaries between these
regions often seem to correspond to single tree rearrangement operations: for example, the
black- and red-labeled topologies differ by a single nearest-neighbor interchange operation.

In [84], Nye et. al applied the locus of weighted Fréchet mean with the the Billera-
Holmes-Vogtman (BHV) [6] metric to apicomplexa data set. The tree topology 1 in Figure
5 of [84] with BHV metric (20 trees) and the tree topology with purple (21 trees) in Fig.
5.8 with the tropical metric have the same tree topology. The tree topology 4 (175 trees)
in Figure 5 of [84] with BHV metric and the tree topology with green (70 trees) in Fig.
5.8 with the tropical metric also have the same tree topology, as do the tree topology 2 (9
trees) in Figure 5 of [84] with BHV metric and our tree topology with blue (27 trees) in

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 102

Figure 5.8: Projected topology frequencies from the Apicomplexa dataset: parenthesized
numbers give the frequencies of each topology, while the color labels are used in Figure 5.10
below.

Fig. 5.8. In addition, the tree topology 6 (45 trees) in Figure 5 of [84] with BHV metric
and the tree topology with black (71 trees) in Fig. 5.8 with the tropical metric have the
same tree topology with a different location of the root. Also note that one of the second
order principal components (PC3) for the Apicomplexa data set in Figure 5.10 has the same
tree topology with the Fréchet mean under the BHV metric for the data set [84], with a
different location of the root. As noted above, the tree topologies in each region of our
tropical projection often seem to differ by a nearest neighbor interchange move. This also
seemed to hold in [84].

The r2 statistic for the BHV metric is 56% in [84]; our similarly-defined r statistic with the
tropical metric is 61.6% with Algorithm 5.12 and 61.2% with Algorithm 5.24. Compared
with the results in [84], projected points from each data point onto our tropical polytope
seem to be more spread out than they are in the locus of weighted Fréchet mean with the the
BHV metric. It is not clear why there are several wide open areas in the locus of weighted
Fréchet mean with the BHV metric, whereas this is not in the case with the tropical metric.

Conclusion

In this chapter we discussed tropical analogues to principal component analysis which
are well-suited for phylogenetic tree datasets. We proved that the tropical principal hyper-
plane to e points in Re /R1 attains a total distance from the points equal to their tropical
volume. We also showed that the cellular decomposition of any tropical polytope spanned

CHAPTER 5. TROPICAL PRINCIPAL COMPONENT ANALYSIS 103

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

D[1,]

D
[2

,]

Figure 5.9: Projected points in the tropical polytope PCA, colored as in Figure 5.8.

(PC1)

Pv
Pf

Tg
Et

Cp

Ta
Bb

Tt

(PC2)

Pv
Pf

Tg
Et

Cp

Ta
Bb

Tt

(PC3)

Pv
Pf

Tg
Et

Cp

Ta
Bb

Tt

Figure 5.10: The second order PC for the Apicomplexa data set.

by ultrametrics refines the decomposition of the polytope into different tree topologies. We
also described heuristic algorithms for calculating these tropical principal components and
applied them to study a real-world dataset. Future work to further develop tropical prin-
cipal component analysis could attempt to demonstrate the existence of tropical principal
polytopes containing a tropical Fermat-Weber point of the data points.

104

Bibliography

[1] P. Abramenko and K. Brown. Buildings: Theory and Applications. Graduate Texts in
Mathematics. New York: Springer-Verlag, 2008.

[2] X. Allamigeon et al. “Log-barrier interior point methods are not strongly polynomial”.
In: SIAM J. Appl. Algebra Geom. 2.1 (2018), pp. 140–178.

[3] E. Baldwin and P. Klemperer. “Understanding preferences: demand types and the
existence of equilibrium with indivisibilities”. In: Econometrica 87.3 (2019), pp. 867–
932.

[4] L. Bernardin et al. Maple Programming Guide. Waterloo ON, Canada: Maplesoft, a
division of Waterloo Maple Inc., 1996-2020.

[5] D. I. Bernstein. “L-infinity optimization to Bergman fans of matroids with an appli-
cation to phylogenetics”. In: SIAM J. Discrete Math. (2020).

[6] L. Billera, S. Holmes, and K. Vogtman. “Geometry of the space of phylogenetic trees”.
In: Advances in Applied Mathematics 27 (2001), pp. 733–767.

[7] T. Bogart et al. “Computing tropical varieties”. In: J. Symbolic Comput. 42.1-2 (2007),
pp. 54–73.

[8] W. Bosma, J. Cannon, and C. Playoust. “The Magma algebra system. I. The user
language”. In: J. Symbolic Comput. 24.3-4 (1997). Computational algebra and number
theory (London, 1993), pp. 235–265.

[9] T. Brysiewicz. “Numerical software to compute Newton polytopes and tropical mem-
bership”. In: Math. Comput. Sci. 14 (2020), pp. 577–589.

[10] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. English.
Vol. 315. Berlin: Springer, 1997, pp. xxiii + 618.

[11] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 2009.

[12] D. Cartwright et al. “Mustafin varieties”. In: Selecta Math. 17 (2011), pp. 757–793.

[13] J. Cassels and E. Flynn. Prolegomena to a Middlebrow Arithmetic of Curves of Genus
2. Vol. 230. London Mathematical Society Lecture Note Series. Cambridge University
Press, 1996.

BIBLIOGRAPHY 105

[14] A. Chan. “Gröbner bases over fields with valuation and tropical curves by coordinate
projections”. PhD thesis. University of Warwick, 2013.

[15] M. Chan and B. Sturmfels. “Elliptic curves in honeycomb form, in Algebraic and
Combinatorial Aspects of Tropical Geometry”. In: Contemp. Math. 589 (2013), pp. 87–
107.

[16] M. Chan, S. Galatius, and S. Payne. “Tropical curves, graph complexes, and top weight
cohomology of Mg”. In: J. Amer. Math. Soc. 34 (2021), pp. 565–594.

[17] J. Chen, S. Vemulapalli, and L. Zhang. “Computing unit groups of curves”. In: J.
Symb. Comput. 104 (2021), pp. 236–255.

[18] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in
Mathematics. Heidelberg: Springer-Verlag, 1993.

[19] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Fourth. Under-
graduate Texts in Mathematics. Switzerland: Springer-Verlag, 2015.

[20] W. Decker et al. Singular 4-1-1 — A computer algebra system for polynomial com-
putations. http://www.singular.uni-kl.de. 2018.

[21] J. Depersin, S. Gaubert, and M. Joswig. “A tropical isoperimetric inequality”. In:
Séminaire Lotharingien de Combinatoire 78B (2017), p. 12.

[22] M. Develin and B. Sturmfels. “Tropical convexity”. In: Doc. Math. 9 (2004), pp. 1–27.

[23] A. Dickenstein and I. Z. Emiris, eds. Solving Polynomial Equations. Vol. 14. Algo-
rithms and Computation in Mathematics. Foundations, algorithms, and applications.
Springer-Verlag, Berlin, 2005, pp. xiv+425.

[24] A. Dress and W. Terhalle. “The tree of life and other affine buildings”. In: Proceedings
of the International Congress of Mathematicians, Vol. III (Berlin, 1998). Extra Vol.
III. 1998, pp. 565–574.

[25] D. Eisenbud. Commutative Algebra with a View Towards Algebraic Geometry. First.
Graduate Texts in Mathematics. New York: Springer-Verlag, 1995.

[26] A.-S. Elsenhans and J. Jahnel. “The discriminant of a cubic surface”. In: Geom. Ded-
icata 159 (2012), pp. 29–40.

[27] G. Faltings. “Toroidal resolutions for some matrix singularities”. In: Moduli of abelian
varieties (Texel Island, 1999). Vol. 195. Progr. Math. Birkhäuser, Basel, 2001, pp. 157–
184.

[28] J. C. Faugère et al. “Efficient computation of zero-dimensional Gröbner bases by change
of ordering”. In: J. Symbolic Comput. 16.4 (1993), pp. 329–344.

[29] A. Feragen et al. “Tree-space statistics and approximations for large-scale analysis of
anatomical trees”. In: IPMI 2013: Information Processing in Medical Imaging (2012).

[30] A. Fink and F. Rincón. “Stiefel tropical linear spaces”. In: J. Combin. Theory A 135
(2015), pp. 291–331.

http://www.singular.uni-kl.de

BIBLIOGRAPHY 106

[31] E. Flynn and N. Smart. “Canonical heights on the Jacobians of curves of genus 2 and
the infinite descent”. In: Acta Arith. 79 (4 June 1997), pp. 333–352.

[32] B. Fontaine, J. Kamnitzer, and G. Kuperberg. “Buildings, spiders, and geometric Sa-
take”. In: Compos. Math. 149.11 (2013), pp. 1871–1912.

[33] D. Ford and O. Veres. “On the complexity of the Montes ideal factorization algorithm”.
In: Algorithmic Number Theory. Ed. by G. Hanrot, F. Morain, and E. Thomé. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 174–185.

[34] L. Fuchs. Abelian Groups. International Series of Monographs on Pure and Applied
Mathematics. New York: Pergamon Press, 1960.

[35] J. von zur Gathen and J. Gerhard. Modern computer algebra. Third. Cambridge Uni-
versity Press, Cambridge, 2013, pp. xiv+795.

[36] E. Gawrilow and M. Joswig. “polymake: a framework for analyzing convex poly-
topes”. In: in Polytopes: combinatorics and computation (2000). DMV Seminar 29,
Birkhäuser, Basel, pp. 43–73.

[37] P. Görlach, Y. Ren, and L. Zhang. “Computing zero-dimensional tropical varieties via
projections”. In: submitted to Comput. Complex. (2021).

[38] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in
algebraic geometry. http://www.math.uiuc.edu/Macaulay2/. 2018.

[39] G.-M. Greuel and G. Pfister. A Singular introduction to commutative algebra. With
contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann. Springer-
Verlag, Berlin, 2002, pp. xviii+588.

[40] M. A. Hahn and B. Li. “Mustafin varieties, moduli spaces and tropical geometry”. In:
Manuscripta Math. (2021).

[41] S. Hampe. “Tropical linear spaces and tropical convexity”. In: Electr. J. Comb. 22
(2015).

[42] M. Hampton and A. Jensen. “Finiteness of spatial central configurations in the five-
body problem”. In: Celestial Mech. Dynam. Astronom. 109.4 (2011), pp. 321–332.

[43] M. Hampton and R. Moeckel. “Finiteness of relative equilibria of the four-body prob-
lem”. In: Invent. Math. 163.2 (2006), pp. 289–312.

[44] K. Hept and T. Theobald. “Tropical bases by regular projections”. In: Proc. Amer.
Math. Soc. 137.7 (2009), pp. 2233–2241.

[45] P. Hitzelberger. “Non-discrete affine buildings and convexity”. In: Adv. Math. 227.1
(2011), pp. 210–244.

[46] T. Hofmann and Y. Ren. “Computing tropical points and tropical links”. In: Discrete
Comput. Geom. 60.3 (2018), pp. 627–645.

[47] D. Holmes. “Computing Néron–Tate heights of points on hyperelliptic Jacobians”. In:
J. Number Theory 132 (6 June 2012), pp. 1295–1305.

http://www.math.uiuc.edu/Macaulay2/

BIBLIOGRAPHY 107

[48] G. Igor, N.G. Stephan, and S. Ariela. Linear and Nonlinear Optimization. 2nd ed.
Society for Industrial Mathematics, 2009.

[49] A. Jensen, Y. Ren, and F. Seelisch. gfan.lib. A Singular 4-1-2 interface to gfanlib
and more. http://www.singular.uni-kl.de. 2017.

[50] A. N. Jensen. Gfan 0.6.2, a software system for Gröbner fans and tropical varieties.
Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html. 2017.

[51] M. Joswig, B. Sturmfels, and J. Yu. “Affine buildings and tropical convexity”. In:
Albanian J. Math. 1 (2007), pp. 187–211.

[52] M. Joswig. Essentials of Tropical Combinatorics. Graduate Studies in Mathematics.
http://page.math.tu- berlin.de/~joswig/etc/ETC- 210408.pdf. American
Mathematical Society, to be published.

[53] M. Joswig and K. Kulas. “Tropical and ordinary convexity combined”. In: Adv. Geom.
10 (2010), pp. 333–352.

[54] M. Joswig and B. Schröter. “The degree of a tropical basis”. In: Proc. Amer. Math.
Soc. 146.3 (2018), pp. 961–970.

[55] M. Kapovich, B. Leeb, and J. J. Millson. “The generalized triangle inequalities in
symmetric spaces and buildings with applications to algebra”. In: Mem. Amer. Math.
Soc. 192.896 (2008), pp. viii+83.

[56] S. Keel and J. Tevelev. “Geometry of Chow quotients of Grassmannians”. In: Duke
Math. J. 134.2 (2006), pp. 259–311.

[57] C. Kuo, J. P. Wares, and J. C. Kissinger. “The Apicomplexan whole-genome phy-
logeny: An analysis of incongruence among gene trees”. In: Mol. Biol. Evol. 25 (2008),
pp. 2689–2698.

[58] Y. N. Lakshman. “A single exponential bound on the complexity of computing Gröbner
bases of zero-dimensional ideals”. In: Effective methods in algebraic geometry (Cas-
tiglioncello, 1990). Vol. 94. Progr. Math. Birkhäuser Boston, Boston, MA, 1991, pp. 227–
234.

[59] Y. N. Lakshman and D. Lazard. “On the complexity of zero-dimensional algebraic
systems”. In: Effective methods in algebraic geometry (Castiglioncello, 1990). Vol. 94.
Progr. Math. Birkhäuser Boston, Boston, MA, 1991, pp. 217–225.

[60] D. Lazard. “Solving zero-dimensional algebraic systems”. In: J. Symbolic Comput. 13.2
(1992), pp. 117–131.

[61] H. W. Lenstra. “Integer Programming with a fixed number of Variables”. In: Mathe-
matics of Operations Research 8 (1983), pp. 538–548.

[62] B. Lin and R. Yoshida. “Tropical Fermat-Weber points”. In: SIAM J. Discrete Math.
32 (2018), pp. 1229–1245.

http://www.singular.uni-kl.de
http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://page.math.tu-berlin.de/~joswig/etc/ETC-210408.pdf

BIBLIOGRAPHY 108

[63] D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry. Vol. 161. Graduate
Studies in Mathematics. Providence, RI: American Mathematical Society, 2015.

[64] W. P. Maddison and D. R. Maddison. Mesquite: a modular system for evolutionary
analysis. Version 3.31 http://mesquiteproject.org. 2017.

[65] K. Mahler. “On Minkowski’s theory of reduction of positive definite quadratic forms”.
In: Q. J. Math. 9 (1 Jan. 1938), pp. 259–262.

[66] T. Markwig and Y. Ren. “Computing tropical varieties over fields with valuation”. In:
Found. Comput. Math. (Aug. 2019).

[67] V. Miller. “Short programs for functions on curves”. In: (May 1986). , https://

crypto.stanford.edu/miller/miller.pdf, unpublished.

[68] A. Monod et al. “Tropical foundations for probability & statistics on phylogenetic tree
space”. In: (ePrint: arXiv:1805.12400, 2018).

[69] J. Müller. “Computing canonical heights using arithmetic intersection theory”. In:
Math. Comp. 83.285 (May 2013), pp. 311–336.

[70] J. Müller and M. Stoll. “Computing canonical heights on elliptic curves in quasi-linear
time”. In: LMS J. Comput. Math. 19 (A Aug. 2016), pp. 391–405.

[71] J. Neukirch. Algebraic Number Theory. Vol. 322. Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, 1999.

[72] M. Panizzut and M. D. Vigeland. Tropical lines on cubic surfaces. arXiv:0708.3847v2.
2019.

[73] G. Pappas, M. Rapoport, and B. Smithling. “Local models of Shimura varieties, I.
Geometry and combinatorics”. In: Handbook of moduli. Vol. III. Vol. 26. Adv. Lect.
Math. (ALM). Int. Press, Somerville, MA, 2013, pp. 135–217.

[74] J. Richter-Gebert, B. Sturmfels, and T. Theobald. “First steps in tropical geometry”.
In: Idempotent Mathematics and Mathematical Physics 377 (2005). Ed. by G. Litvinov
and e. V. Maslov, pp. 289–308.

[75] F. Rincón. “Local tropical linear spaces”. In: Discrete Comput. Geom. 50.3 (2013),
pp. 700–713.

[76] M. Rosenlicht. “Some rationality questions on algebraic groups”. In: Ann. Mat. Pura
Appl. 43 (1957), pp. 25–50.

[77] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.2).
http://www.sagemath.org. 2018.

[78] P. Samuel. “A propos du théoreme des unités”. In: Bull. des Sci. Math. 90 (1966),
pp. 89–96.

[79] J. H. Silverman. The Arithmetic of Elliptic Curves. Second. Graduate Texts in Math-
ematics. New York: Springer-Verlag, 2009.

https://crypto.stanford.edu/miller/miller.pdf
https://crypto.stanford.edu/miller/miller.pdf
https://arxiv.org/abs/1805.12400
https://arxiv.org/abs/0708.3847v2

BIBLIOGRAPHY 109

[80] A. Steenpass. modular.lib. A Singular 4-1-2 library for modular techniques. 2019.

[81] M. Stoll. “An explicit theory of heights for hyperelliptic Jacobians of genus three”.
In: Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory.
Ed. by G. Böckle, W. Decker, and G. Malle. Springer-Verlag, 2017, pp. 665–715.

[82] B. Sturmfels. Solving systems of polynomial equations. Vol. 97. CBMS Regional Con-
ference Series in Mathematics. American Mathematical Society, Providence, RI, 2002.

[83] T. Supasiti. “Serre’s tree for SL2(F)”. Honors thesis. University of Melbourne, 2008.

[84] T. Nye et al. “Principal component analysis and the locus of the Fréchet mean in the
space of phylogenetic trees”. In: Biometrika (2017), pp. 901–922.

[85] J. Tevelev. “Compactifications of subvarieties of tori”. In: Am. J. Math. 129.4 (2007),
pp. 1087–1104.

[86] N. M. Tran and J. Yu. “Product-mix auctions and tropical geometry”. In: Math. Oper.
Res. 44.4 (2019), pp. 1396–1411.

[87] G. Weyenberg, R. Yoshida, and D. Howe. “Normalizing kernels in the Billera-Holmes-
Vogtmann treespace”. In: IEEE/ACM Trans. Comput. Biol. Bioinform. (2016).

[88] H. Weyl. “Theory of reduction for arithmetical equivalence”. In: Trans. Amer. Math.
Soc. 48 (1940), pp. 126–164.

[89] R. Yoshida, R. Page, and L. Zhang. “Tropical principal component analysis on the
space of phylogenetic trees”. In: Bioinform. 36 (2021), pp. 4590–4598.

[90] R. Yoshida, L. Zhang, and X. Zhang. “Tropical principal component analysis and its
application to phylogenetics”. In: Bull. Math. Biol. 81 (2019), pp. 568–597.

[91] L. Zhang. “Computing min-convex hulls in the affine building of SLd”. In: Discrete
Comput. Geom. 65 (2021), pp. 1314–1336.

	Contents
	List of Figures
	List of Tables
	Introduction
	Tropical varieties
	Tropical linear spaces
	Tropical convexity
	Tropical geometry and phylogenetics
	Contributions in this dissertation

	Intrinsic tropicalizations of curves
	Introduction
	Background
	General results on varieties
	Fermat curves and plane conics
	Rational normal curves
	Elliptic curves

	Zero-dimensional tropical varieties via projections
	Introduction
	Background
	Unitriangular transformations on triangular sets
	Computing zero-dimensional tropical varieties via projections
	Complexity
	Magma comparison
	Implementation
	Timings
	Discussion

	Min-convex hulls in the affine building
	Introduction
	Background
	Min-convex hulls
	Simultaneously-adaptable bases
	Constructing enveloping membranes
	Convex triangles

	Tropical principal component analysis
	Introduction
	Tropical principal linear spaces
	Tropical principal polytopes
	Computing tropical principal polytopes
	Simulations
	Apicomplexa genome

	Bibliography

