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Abstract

Data-Driven Decision Making for Last-Mile Delivery and Online Platform Operations

by

Junyu Cao

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun (Max) Shen, Chair

Professor Mariana Olvera-Cravioto, Co-chair

This dissertation focuses on two main areas: 1) data-driven stochastic modeling and applied
probability, with applications to the sharing economy and networks; 2) machine learning,
with a focus on sequential decision making for recommender systems and revenue manage-
ment. Using tools from probability, statistics, and learning theory, this dissertation empha-
sizes fundamental contributions to both theory and methodology.

Chapter 2 focuses on the design of stochastic models and mechanisms to increase e�ciency
of urban transportation and logistics systems. Trends in global urbanization require innova-
tion, especially in the area of urban transportation networks. At the same time, the sharing
economy provides opportunities to enhance e�cient resource utilization. This Chapter ad-
dresses the new operational challenges that arise from emerging technologies within smart
cities, focusing on last-mile delivery and smart mobility. Last-mile delivery may take up to
28% of the total transportation costs, and is arguably one of the biggest challenges in logis-
tics management. We propose a new business model for optimizing the last-mile delivery of
packages, using a strategy that combines the use of ride-sharing platforms (e.g. Uber or Lyft)
with traditional in-house van delivery systems. To make the proposed solution tractable, we
develop new theoretical results by approaching the problem from a probabilistic perspective.
Our approach of determining the optimal reward to private drivers for delivering packages is
computationally e�cient. Using synthetic and real data, we show that our approach reduces
cost by as much as 30% compared with the van-only strategy.

In Chapter 3, motivated by the observation that overexposure to unwanted marketing ac-
tivities can lead to customer dissatisfaction, we consider a setting where a platform o↵ers
a sequence of messages to its users and is penalized when users abandon the platform due
to marketing fatigue. We propose a novel sequential choice model to capture multiple inter-
actions taking place between the platform and its users: upon receiving a message, a user
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decides on whether to accept or reject the message. If she chooses to reject, she would then
decide to either receive the next message in the sequence or abandon the platform. Based
on user feedback, the platform dynamically learns users’ abandonment distribution and the
relevance of the recommended content. With a goal to maximize the cumulative payo↵ over
a time horizon, the platform dynamically adjusts the sequence of messages and the order
in which the messages are shown to a user. We refer to this online learning task as the
sequential choice bandit (SC-Bandit) problem. For the o✏ine combinatorial optimization
problem, we show a polynomial-time algorithm. For the online problem, we consider two
variants, depending on whether contexts are included, and propose algorithms that balance
exploration and exploitation. Lastly, we evaluate the performance of our algorithms with
both synthetic and real-world datasets.

Complex networks appear in essentially all branches of science and engineering, and people
from various fields have used random graphs to model, explain and predict some of the
properties commonly observed in real-world networks. In Chapter 4, we study a family of
directed random graphs whose arcs are sampled independently of each other, and are present
in the graph with a probability that depends on the attributes of the vertices involved.
In particular, this family of models includes as special cases the directed versions of the
Erdös-Rényi model, graphs with given expected degrees, the generalized random graph,
and the Poissonian random graph. We establish the phase transition for the existence of
a giant strongly connected component and provide some other basic properties, including
the limiting joint distribution of the degrees and the mean number of arcs. In particular,
we show that by choosing the joint distribution of the vertex attributes according to a
multivariate regularly varying distribution, one can obtain scale-free graphs with arbitrary
in-degree/outdegree dependence.
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Chapter 1

Last-mile shared delivery: A discrete

sequential packing approach

1.1 Introduction.

Last-mile delivery, the last step of the delivery process from a distribution center to its final
destination, is arguably one of the biggest challenges in logistics management, and it may
take up to 28% of the total transportation costs [97]. Therefore, minimizing the cost of this
last step of the order fulfillment process is of great importance. Historically, the delivery of
items/packages to their final recipients from a centrally located warehouse has been done
by either investing in a fleet of vans or trucks to operate regionally, or by outsourcing it
to third-party logistics companies specializing in such services. However, today’s popular
“sharing economy” has provided a new alternative that can take advantage of ride-sharing
platforms to o↵set some of the last-mile delivery costs. In this paper, we propose a model
for analyzing a delivery process that combines the use of private drivers (e.g., Uber or Lyft
drivers) with a more traditional van delivery system, with the idea of reducing the need to
invest in and maintain a large fleet of delivery vans or trucks.

We study here a problem where a warehouse or distribution center has to deliver a large
number of packages on a given day. Traditionally, this would be done by deploying a fleet
of vans along many di↵erent routes, with the routes being computed e�ciently using some
version of the capacitated vehicle routing problem (CVRP). One of the main features to
focus on regarding this approach is the number of vans that are needed to deliver all the
packages during the allotted time. Instead, we propose a framework to encourage private
drivers to pick up bundles of packages from the warehouse and deliver them during time
interval [0, T ], with any remaining packages at time T being delivered by the warehouse’s
van system. We can think of the time threshold T as the end of the day, after which any
undelivered packages will be loaded into vans for delivery the next day. Alternatively, we
can envision T as representing a time in the early afternoon that can allow vans to deliver
packages during a late afternoon shift (e.g. UPS and Amazon vans deliver packages until
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around 8 pm). The purpose of setting up a time threshold T is to guarantee a promised
delivery time, and its use is common in practice. For example, UPS Next and UPS Ground
packages must be received prior to 4:00 pm1, and any packages arriving after 4:00 pm will be
considered to be part of next day’s packages. In general, we believe the length of the period
[0, T ] is dictated by external circumstances to the warehouse (e.g., a promised delivery time
like the ones UPS and Amazon o↵er, the work schedules of van drivers, or the boundaries
of “peak” and “o↵-peak” hours in a multiperiod implementation). In the latter case, the
fleet of vans would be delivering priority packages, packages with tight schedules, or oversize
items, prior to time T , which would be unsuitable for private drivers anyways. The key
di↵erence between our proposed approach compared to the traditional van-only one, is that
the number of vans needed will be considerably smaller, which translates into important
savings2 for the warehouse.

The main challenges of using a mixed strategy are: 1) the modeling of the behavior of
private drivers, and 2) the design of a payment scheme that will incentivize private drivers
to pick up packages from the warehouse e�ciently. The problem of using shared-mobility
to deliver packages has been studied in [54] and [67], however, the approaches proposed by
the authors do not scale well with the size of the problem (i.e., the number of packages that
need to be delivered). Our framework provides an easily computable approach to determine
whether using shared mobility for delivering packages in addition to traditional van deliveries
is desirable, and if so, to choose the optimal payment scheme to o↵er private drivers for
delivering each package. The main modeling contribution of this paper lies precisely on the
computation of the latter. The key idea is that the number of packages that can be picked
up by private drivers can be modeled in a way that is independent of their destinations,
provided that all packages are equally desirable to the drivers. To achieve this, we design
a payment scheme that makes the profit for delivering packages the same across packages,
and we control this profit through a common “incentive rate”. Once the expected number
of packages that can be picked up during [0, T ] is computed (as a function of the incentive
rate) we find the optimal incentive rate by solving a single-variable continuous optimization
problem. The daily computations are done in two phases: one at the beginning of the day
that ends with the assignment of the payment rewards for each individual package using the
optimal incentive rate, and another one at time T that computes an optimal solution to the
CVRP for the leftover packages. Our proposed approach keeps the computational cost low,
and the framework can be seen as a first step towards an online implementation that can
react in real time to the randomness in the supply of private drivers.

The mathematical contributions of the paper are centered around the computation of the
expected number of packages that can be picked up by private drivers during the time period
[0, T ], which is done both exactly (via a recursive computation) and asymptotically (as the
number of packages grows to infinity). The exact computation is used in the formulation
of the optimization problem that we will solve, while the asymptotic result is needed to
ensure that the computational complexity of the optimization problem remains small for
large numbers of packages. Our methodology is closely related to the analysis of Rényi’s
classical “parking/packing problem” [91], which studies a model where unit-length “cars”
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arrive sequentially to random points of a “sidewalk” of fixed length and park if they can “fit”,
with no parked cars ever leaving. The main question studied in [91] is the distribution of the
unoccupied space once no more cars can fit, i.e., when there are no remaining unoccupied
subintervals of length one. In the context of our package delivery process, we consider a
discrete version of the problem where the cars are replaced by bundles of packages and
parking attempts are replaced by bundle requests from the private drivers. Since we need to
model the randomness in the times at which private drivers’ requests arrive, we incorporate
a time element to our formulation in the spirit of the packing problem considered in [30],
where the cars/packages (requests for bundles of packages in our case) arrive according to
a Poisson process. Our theoretical results are therefore of independent interest within the
literature on Rényi’s parking/packing problem, and include a novel convergence rate theorem
for the expected fraction of packages that can be picked-up by time T that was previously
unknown even for special cases of our model.

To better tie our technical results with the more applied optimization problem we propose
to solve, it is worth mentioning that the scale of the parcel delivery industry is very large.
For example, Holland et al. [52] described the UPS delivery system, which operates about
1,400 package distribution centers in the United States. On a typical day, more than 16
million packages need to be delivered, which indicates an average of 11,429 packages per
distribution center per day. In 2015, UPS delivered 34 million packages on its peak day.
It follows that in our problem formulation, we could be working with over 10,000 packages
per day, which is a large enough number to make the exact computation of the expected
fraction of packages that can be picked up during [0, T ] computationally intensive (since it
is done recursively). It follows, that having an asymptotic expression that can replace the
exact computation without sacrificing accuracy (a consequence of its fast convergence rate)
is extremely valuable to the everyday computation of the optimal payment rate.

The paper is organized as follows. In Section 1.2 we include an overview of the existing
literature on last-mile delivery problems in a shared economy. In Section 1.3.1 we introduce a
discrete sequential packing (DSP) problem that will be used to compute the expected number
of packages that can be picked-up from the warehouse by private drivers during the time
period [0, T ]. In Section 1.3.2 we describe a way to estimate the cost of delivering n packages
with known destinations {x1, . . . ,xn} ✓ R2, using a strategy that combines the use of private
drivers and in-house vans. We also include in that section a comparison between our proposed
strategy and a more traditional van-only strategy. Section 1.4 contains all the proofs of our
theoretical results. Finally, to illustrate our methodology we include, as an online companion
to the paper, a numerical experiments section (Section 1.5) that provides some insights into
the computational e↵ort needed to implement our strategy and its potential cost benefit.

1.2 Literature Review.

The idea of using shared mobility to deliver packages is still in its infancy, but there are
already a few relevant studies worth mentioning. Li et al. [67] proposed a framework to
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use taxis to transport people and deliver parcels at the same time, where the goal is to
determine an optimal pick-up/drop-o↵ sequence. They first consider a static version of
the problem where all the people and parcel locations are known and formulate a mixed
integer linear program (MILP) to find the optimal pick-up/drop-o↵ sequence; then, they
repeatedly solve their static formulation over small periods of time to obtain a more realistic
dynamic scenario over a longer time window. In their dynamic approach, parcel locations
are revealed at the beginning of the day while passenger locations are updated throughout
the day, which means that a full schedule for picking up and delivering parcels cannot be
computed upfront. Moreover, the dynamic version requires that the sequence be recomputed
every time a passenger request appears.

Qi et al. [88] consider the problem of delivering packages from a warehouse to locations
in a given region, and propose to first subdivide the region into a number of sub-regions,
use a van system to distribute the packages among the centers of the sub-regions (referred
to as “terminals”) , and then use shared mobility to do the last-mile delivery within each
sub-region. The goal is to determine the optimal size (number) of the sub-regions, which is
done using a continuous-approximation for the total average cost, and once the sub-regions
are determined, the routes for delivering packages within each sub-region are computed by
solving an open vehicle routing problem (OVRP). Note that the optimization problem to
identify the regions is meant to be solved only once and the OVRP is solved once per day,
unlike the work in [67] where the optimization problem is solved many times every day.

Perhaps the closest to our approach is the work done in Kafle et al. [54], where the authors
consider using cyclists and pedestrians as crowdsources to help an in-house van system to do
the last-leg delivery of parcels originating from a central warehouse. Their model assumes
that parcel destinations are revealed at the beginning of the day, at which point cyclists
and pedestrians are expected to submit bids to deliver them; then, once all bids have been
received, the warehouse solves a mixed integer non-linear program to compute the optimal
assignment, with any unassigned parcels being delivered by the in-house vans. Since solving
exactly the mixed integer non-linear program is computationally very expensive, the authors
propose a tabu search approximate algorithm instead. Compared to our model, we can think
of the approach in [54] as looking at a multi-player game where the cyclists and pedestrians
compete with each other with their bids and the warehouse optimizes over the entire set of
bids, while in our setup there is only one player, the warehouse, that computes the optimal
rewards for each package based on the expected response of the private drivers. In [54] both
parcel destinations and bids need to be known at the beginning of the day while in our
approach only package destinations need to be revealed while private driver requests remain
stochastic. In both [54] and our proposed framework the optimization problem is meant to
be solved once every day.

The theoretical contributions of our work are related to Rényi’s parking/packing prob-
lem [91], which examines the problem of filling up an interval I = [0, n] with subintervals of
length one whose left endpoints are uniformly chosen at random, and computes the asymp-
totic proportion of filled space (as n ! 1). A discretized version of this problem was
introduced by Page [84], by considering n points instead of the interval I and replacing the
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subintervals of unit length with pairs of adjacent points. The main results in [84] include the
mean and other moments of the distribution of the remaining isolated points. Page’s work
was later generalized, both theoretically and numerically, to the case of m adjacent points
in [29, 77, 86]. In our context, the number of adjacent points corresponds to the bundle
sizes, which are allowed to be random from any finite support discrete distribution; hence,
our setting includes as special cases those of the problems studied in [29, 77, 84, 86].

We point out that none of the references mentioned above require the use of a “time”
component for the random selection of subintervals/points, since only the distribution of
unfilled space is of interest. In this regard, our work is more closely related to that of [30],
which assumes that the times at which the subintervals are chosen in Rényi’s parking/packing
problem occur according to a Poisson process, in which case one can focus on the proportion
of filled space by time t. The results in [30] include the asymptotic proportion of filled
space by time t, as n!1, and a corresponding central limit theorem. We emphasize that
the convergence rate result for the proportion of packages that can be delivered in [0, T ]
(alternatively, proportion of occupied space in the parking problem) as n!1 is completely
new, and was unknown even for the case of deterministic m in [29, 77, 84, 86].

It is worth reiterating that the methodology we propose to compute the payment (reward)
o↵ered to private drivers for each individual package is simple and flexible, since it only
requires that we optimize a single-variable cost function at the beginning of the day and it
allows private drivers to pick up bundles of packages, i.e., not only one package at a time.
As our main results show, this is enough to guarantee a lower total expected cost for the
delivery of all packages under very natural cost assumptions. Our modeling approach could
also become a building block for constructing improved online pricing models, where the
rewards o↵ered to private drivers change throughout the day as more packages are delivered
and the allotted time decreases, which would very likely provide even better cost reductions
at the expense of more computational e↵ort.

1.3 Model Description.

In the first part of this section we model our last-mile delivery problem using private drivers
as a discrete sequential packing problem (DSP), and provide both exact and asymptotic
results for the expected number of packages that can be delivered during the time window
[0, T ]. In the second part of this section we describe a payment scheme for the private
drivers based on this expectation and introduce a joint optimization problem to calculate
the optimal incentive rate for minimizing the total expected cost.

1.3.1 The expected number of packages that can be picked.

At the beginning of the day, the destinations of n packages that need to be delivered are
revealed. The requirement that package destinations be known at the beginning of the day is
standard in today’s UPS’s operations, since delivery routes need to be computed the previous
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day and vans need to be packed before drivers can start their routes (see [52]). As mentioned
in the introduction, we consider a time window of length T during which private drivers can
pick up any of the n packages. The packages are assumed to have destinations spread over
a region of a two-dimensional plane. This region is expected to be a population-dense area
where package destinations are close to each other.

During the period [0, T ] the distribution center receives requests from private drivers to
deliver available packages. Any undelivered packages at time T will be delivered by the
distribution center’s vans/trucks. Moreover, the private drivers are allowed to take a bundle
of packages with them, which we assume would have destinations in close proximity to each
other. To model this proximity of the destinations, we first arrange all n packages on a
circle using the solution (exact or approximate) to the traveling salesman problem (TSP).
The idea behind arranging the packages in this way is to reduce the complexity of dealing
with the two-dimensional package destinations by reorganizing them into one dimension,
and will let us to identify bundles of nearby destinations with segments of the optimal TSP
route. Moreover, from a modeling point of view, this simplification allows us to disregard
the package destinations in the computation of the expected number of packages that will
be picked up by private drivers, and we will argue that we can do this since our pricing
mechanism will make the profit rate for delivering each package equal for all packages.

From this point onwards, we can think of the packages as arranged on a circle with n
points, where point i will be referred to as the “location” of package i (see Figure 1.1).
A bundle of size k at location i is the set consisting of the packages at locations {i, i +
1, . . . , i + k � 1}. Each location i is associated to a marked Poisson process with rate �i,
which represents the arriving requests from private drivers to deliver a bundle whose first
package is at location i. The marks of the Poisson process determine the size of the bundle
that the driver would want to deliver, and is assumed to be distributed according to some
distribution F , independent of the Poisson process and of any other marked Poisson processes
at di↵erent locations. The arrival behavior of the drivers can be understood as “launching
an app”, which means the driver need not be physically at the warehouse. These marked
Poisson processes model drivers’ action of opening an app and using it to select the bundle
they wish to pick up, which may occur prior to their actual arrival time to the distribution
center. We assume that each driver has a preconceived idea of which package(s) they want
to pick up, and that if at the time of the request one or more of the desired packages is
no longer available, the driver abandons the idea of picking up packages altogether. Our
assumption that drivers arrive at the distribution center with a “fixed set of packages to
deliver in mind” is consistent with the behavior of Uber and Lyft drivers in the real world,
since they tend to “reject” passengers when they discover where they need to be picked up.
In order for all packages to be equally likely to be requested, we will assume that �i = �
for all 1  i  n. Moreover, we assume that � remains constant during [0, T ], which would
be the case if the pick-up window is chosen to coincide with private drivers’ o↵-peak hours.
Once a bundle request is accepted, the driver is also given the segment of the optimal TSP
route for delivering all the packages in the bundle, in case they want to use it.

A numerical analysis comparing our framework using a TSP optimal path to determine
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i
i+1

i+2
i+3

Figure 1.1: TSP tour. The picture illustrates a case with n = 21 packages, where the first
bundle to be requested is of size four (double circular packages). After the first bundle is
picked up, the remaining packages are arranged on a line.

i-1 i+4i-2 i+5
2nd pick-up:

3rd pick-up:

4th pick-up:

5th pick-up:

Figure 1.2: Depiction of the package pick-up process. Double circular packages correspond
to accepted bundle requests; circular packages are yet to be picked up; circle-with-a-line
packages are already taken.

the possible bundles with a more relaxed setting where bundles consist of nearby packages on
the 2-dimensional plane (i.e., within a predetermined radius of the location where the request
arrives) is given in Section 1.5.4. Our results there show that the di↵erence in cost due to
the restriction imposed by our definition of bundle is very small, and worth the analytical
simplification it provides.

Throughout the time interval [0, t], the packages at the n locations are picked up by
private drivers, and our goal is to analyze the expected number of packages that can be
delivered in this way over the interval [0, t], which we denote by C(t, n,�). Our analysis of
C(t, n,�) is based on the observation that once the first bundle, say of size B, is picked up,
the remaining n� B packages can be arranged on a line (see Figure 1.2). In fact, our main
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results for C(t, n,�) are obtained by analyzing the expected number of packages that can
be picked up during the interval [0, t] when we start with n packages arranged on a line,
which we denote by K(t, n,�). Figures 1.1 and 1.2 show an example of the pick-up process.
We refer to this model as a discrete sequential packing (DSP) problem since it has strong
connections to Rényi’s parking/packing problem [91].

The next subsection includes our main results for the computation of C(t, n,�). We point
out that the DSP formulation is based only on the following two assumptions:

i) The marks of the Poisson process at location i, corresponding to bundle size requests

and denoted {B(i)
j
}j�1, are i.i.d. with common distribution F for all 1  i  n, and

are independent of the Poisson processes at every location.

ii) The arrival rates of the di↵erent Poisson processes, which correspond to the arrival
rates for requests from drivers to pick up bundles at location i, are all equal, i.e.,
�i = � for all 1  i  n.

As mentioned above, the first of these assumptions is justified in our package delivery
context by the TSP route, where the distance between adjacent packages along the route
are typically small, making all bundles of the same size (approximately) equally desirable.
That the distance between adjacent points along an optimal TSP route is small follows from
the work in [94], where it is shown that the shortest path through n points independently
uniformly distributed over [0, 1]2 has the property that the number of edges of length at least
un�1/2 is at most Kn exp(�u2/K) with high probability for some universal constant K. In
other words, the neighboring distance in an optimal TSP route is of order O(n�1/2) with
high probability. The second assumption, which ensures that the arrival rate for requests
at all n locations are the same, will be justified by the pricing mechanism described in
Section 1.3.2, along with the assumption that our business targets a population-dense area
where package destinations are close to each other. In particular, we propose a pricing
scheme that incorporates the distance from the distribution center to each destination and
the neighboring distance between packages along the TSP route, among other parameters,
in such a way that the profit rate for delivering any of the n packages is essentially the same.
Since intuitively the total number of packages that need to be delivered and the supply of
drivers in a given region are both proportional to its size, we can reasonably assume that �
does not depend on n.

For implementation purposes, we also refer the reader to [7, 32, 51, 66] for further details
on the TSP solution and existing algorithmic approaches for its computation [1, 81, 87].

1.3.1.1 Results for the discrete sequential packing problem.

Our main results for C(t, n,�), the expected number of packages that can be delivered during
a time period [0, t], include an exact calculation obtained by solving a di↵erential equation,
and its asymptotic behavior as the number of packages goes to infinity. Throughout this
section, the arrival rate �i at each location is assumed to be the same for all locations,
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say �, and the distribution of the bundle sizes, denoted F , is assumed to have support on
{1, 2, . . . ,m} for some fixed m 2 N+. Define f(i) = F (i) � F (i � 1) to be the probability
mass function of F .

The first result gives a di↵erential equation satisfied by K(t, n,�), which we recall is the
expected number of packages that can be picked up by time t when n packages are arranged
on a line.

Theorem 1 K(t, n,�) satisfies the following recursive di↵erential equation

1

�

@K(t, n,�)

@t
= �

nX

j=1

F (j)K(t, n,�) + 2
n�1X

i=1

F (n� i)K(t, i,�) +
nX

i=1

f(i)i(n+ 1� i)

with boundary condition K(0, n,�) = 0. Moreover, R(t, n,�) := n � K(t, n,�) satisfies the
recursive di↵erential equation:

1

�

@R(t, n,�)

@t
= �

nX

i=1

F (i)R(t, n,�) + 2
n�1X

i=1

F (n� i)R(t, i,�) (1.3.1)

with boundary condition R(0, n,�) = n.

The corresponding solution is given by the following theorem.

Proposition 1.3.1 The solution to equation (1.3.1) is given by

R(t, n,�) =

8
><

>:

nX

i=1

�n,i e
��

Pi
j=1 F (j)t if F (j) > 0

n otherwise,

(1.3.2)

where the constants �n,i can be computed recursively according to

�n,n = n�
n�1X

i=1

�n,i and �n,i = 2 ·
P

n�i

j=1 F (j)�n�j,iP
n

k=i+1 F (k)
, 1  i < n,

with boundary value �i,j = 1 for all i, j such that F (i) = 0 and j  i. Furthermore, C(t, n,�)
is given by

C(t, n,�) = n�
n�1X

i=1

�̃n,ie
��

Pi
j=1 F (j)t � �̃n,ne��nt, for n � m

where

�̃n,i =
n�iX

k=1

f(k)
�n�k,i

1� 1
n

P
i

j=1 F (j)
and �̃n,n = n�

n�1X

i=1

�̃n,i.
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We point out that the exact computation of C(t, n,�) involves solving recursively for
the coe�cients �n,i, which can be time consuming for very large n. Since n will indeed be
large in real-world applications, it is desirable to have a good approximation. In particular,
we propose replacing C(t, n,�)/n by its asymptotic as n ! 1, since we will show, both
theoretically and numerically, that the convergence is very fast. Theorem 2 below provides
an expression for the limit.

Theorem 2 Define

↵(t,�) = lim
n!1

K(t, n,�)

n
to be the asymptotic proportion of delivered packages during the time interval [0, t], with
arrival rate �. Then,

lim
n!1

C(t, n,�)
n

= ↵(t,�)

and

↵(t,�) = 1�
Z 1

e��t

e2('(u)�'(1))q̂(t+ (ln u)/�, u) du� (m� (m� 1)e��t)e2('(e
��t)�'(1))��t(m�'

0(1)),

(1.3.3)

where

'(y) =
m�1X

i=1

F (i)

i
yi,

F (i) = 1� F (i), R(t, n,�) = n�K(t, n,�) and

q̂(s, v) := 2vm�'
0(1)�1(1� v)

m�1X

i=1

R(s, i)� 2(1� v)2
m�1X

i=1

R(s, i)
m�1X

j=m�i

F (j)vi+j�'
0(1)�1.

To compare the computational complexities of Proposition 1.3.1 and Theorem 2, note
that to calculate ↵(t,�), we only need to compute {�i,j : 1  j  i} for i < m, since only the
terms R(t+(ln u)/�, i,�) for 1  i  m�1 appear in the expression for q̂(t+(ln u)/�, u). To
calculate R(t, n,�) using Proposition 1.3.1, we need to calculate each �i,j for i  j and j  n.
Therefore, the complexity using Proposition 1.3.1 is ⇥(n2) while that of using Theorem 2 is
O(1). This is a huge di↵erence in the computational cost.

Moreover, whenever P (B = 1) > 0 we have that limt!1 R(t, i) = 0 for all i � 1, which
yields

lim
t!1

q̂(t+ (ln u)/�, u) = 0

for all u 2 [0, 1), and therefore,
lim
t!1

↵(t,�) = 1,

as expected. Note that Theorem 2 can also be used to compute the limiting proportion of
remaining packages when P (B = 1) = 0, in which case the quantity of interest is the number
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of remaining packages at time t = 1. For the special case P (B = m) = 1 (m > 1) Pinsky
[86] obtained the formula

↵(1,�) = m exp

 
�2

m�1X

j=1

1

j

!Z 1

0

exp

 
2
m�1X

j=1

uj

j

!
du = m

Z 1

0

e2'(u)�'(1)du

which can be derived from Theorem 2 by noting that '0(1) = m� 1 and

lim
t!1

q̂(t+ (ln u)/�, u) = 2(1� u)
m�1X

i=0

i

 
1� (1� u)

m�1X

j=m�i

ui+j�m

!

= 2(1� u)
m�1X

i=0

iui = 2(u'0(u)� (m� 1)um)

= 2'0(u)(mu� (m� 1)u2)� 2(m� 1)u

for all � > 0, and therefore,

lim
t!1

↵(t,�) = 1�
Z 1

0

e2('(u)�'(1)) lim
t!1

q̂(t+ (ln u)/�, u) du

= 1�
Z 1

0

e2('(u)�'(1))2'0(u)(mu� (m� 1)u2)du+ 2(m� 1)

Z 1

0

e2('(u)�'(1))u du

=

Z 1

0

e2('(u)�'(1))(m� 2(m� 1)u) du+ 2(m� 1)

Z 1

0

e2('(u)�'(1))u du

= m

Z 1

0

e2('(u)�'(1))du.

In addition to the expression for ↵(t,�) in Theorem 2, we also provide the corresponding
rate of convergence of C(t, n,�)/n to ↵(t,�). To the best of our knowledge, this is the first
result regarding the rate of convergence for the limiting proportion of packages picked up
by time t. Although we do not include the details of the proof in this paper, a similar
set of arguments as those used in the proof of Theorem 3 also yield the result for t = 1.
Throughout the paper we use f(x) = O(g(x)) as x!1 if lim sup

x!1 |f(x)/g(x)| <1.
As pointed out earlier, we claim that one can safely substitute C(t, n,�)/n with ↵(t,�)

when n is large. Theorem 3 below provides a theoretical justification by stating that the
rate of convergence is of order O(n�1), which will be considerably of smaller order than all
other terms in the objective function we will optimize (see Section 1.3.2). In Section 1.5 we
provide additional numerical evidence that the asymptotic can be used even for moderately
large values of n.

Theorem 3 For any fixed t,
����
C(t, n,�)

n
� ↵(t,�)

���� = O(n�1), as n!1.

We now move on to the pricing part of our model.



CHAPTER 1. LAST-MILE SHARED DELIVERY: A DISCRETE SEQUENTIAL
PACKING APPROACH 12

1.3.2 Computing the reward for each package.

The overall goal of the proposed framework is to provide a pricing strategy for delivering n
di↵erent packages using a combination of private drivers and in-house delivery vans. Section
1.3.1 provided analytical results for the expected number of packages delivered during time
[0, T ] as a function of the arrival rate �, under the assumption that all packages are equally
desirable (� is the same for all n locations). As mentioned earlier, it is through the pricing
mechanism that we will justify the modeling assumption on �, since we would naturally
expect that packages with remote destinations would receive fewer requests. Our payment
scheme is based on the idea that the amount of money that a driver can make per unit of time
should be the same for all packages, and we accomplish this by separating the costs associated
to the destination of each package from those of a common “incentive rate”. The package
specific costs will take into account factors such as the distance between the destination
and the warehouse (long-haul distance) and the distance between neighboring packages with
respect to the TSP route (local distance). Once we have provided an expression for the cost
of delivering packages through the use of private drivers, we will need to estimate the cost
of delivering the remaining packages using in-house vans. The detailed description of our
pricing for the delivery using private drivers is given in Section 1.3.2.1, and the corresponding
vans’ cost is given in Section 1.3.2.2.

1.3.2.1 Rewards for private drivers.

For the delivery process, assume that both private drivers and in-house vans must pick up
the packages they will be delivering from the distribution center. At the beginning of the
day, the destinations of the n packages to be delivered that day are revealed and an optimal
TSP tour is computed. Let {x1, ...,xn} ✓ R2 denote the destinations of the n packages,
where their indexes correspond to their “locations” within the TSP route. The distribution
center is assumed to be at the origin. We denote by B̂(i) the size of the bundle of the first
request at location i to be accepted. Note that the distribution of B̂(i) is not F since the
acceptance depends on the configuration of available packages at the time of the request.

The overall cost for private drivers to deliver packages consists of transportation costs
and opportunity costs, since drivers can also choose to work for Uber-like companies or take
other jobs instead. We use the following quantities in our cost estimation; d(x,y) denotes
the distance on R2:

• ri = d(xi,0) denotes the distance from the depot to the destination of package i (the
long-haul distance).

• di = (d(xi�1,xi) + d(xi,xi+1))/2 is the average distance between the destinations of
packages i� 1 and i, and i and i+ 1, for 2  i  n� 1, d1 = (d(xn,x1) + d(x1,x2))/2,
dn = (d(xn�1,xn) + d(xn,x1))/2 (the local distance).

• ⇣P is the per-mile transportation cost.
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• hP is the opportunity cost per unit of time, i.e., the profit earned while doing other
jobs such as transporting people for Uber or Lyft.

• ⌧P is the end-point delivery time.

• vP is the average speed of private cars.

The decision variable in our pricing model will be an incentive rate z that each driver
will receive in addition to the opportunity cost, i.e., the total payment rate that a driver
receives per unit of time is hP + z. Note that the only quantities in the cost that depend on
the geographic location of the package destinations are the {ri} and the {di}. The {ri} can
be computed as soon as the destinations {xi} are revealed, while the {di} are determined by
the TSP route.

The traveling distance associated with a bundle of packages at locations {i, i+1, . . . , i+
k � 1} is ri +

P
i+k�2
j=i

d(xj,xj+1). Thus, the price set for the bundle should be

price1 = ⇣P

 
ri +

i+k�2X

j=i

d(xj,xj+1)

!
+ (hP + z)

 
ri/vP +

i+k�2X

j=i

d(xj,xj+1)/vP + k⌧P

!
.

(1.3.4)
However, since the number of possible bundles increases geometrically with the number
of total packages, it is computationally expensive to set a price for every possible bundle.
Therefore, we consider instead a pricing scheme for each individual package, regardless of
which bundle it will be included in. To derive this price, suppose that package j is delivered
as part of a bundle of size k, and start by prorating the long-haul cost among all the k
packages, and separate the contribution of package j to the local distance. To incorporate
into the pricing longer neighboring distances between adjacent packages in the TSP tour, we
determine the contribution of package j to the local distance to be the average of the distances
to both the neighbor to the left and the neighbor to the right, i.e., dj = (d(xj�1, xj) +
d(xj,xj+1))/2. We also argue that the long-haul cost of package j is approximately the same
as that of other packages in the same bundle, and therefore if j is part of a bundle accepted
at location i, then rj ⇡ ri. We then propose the payment reward for package j to be:

⇣P
⇣rj
k
+ dj

⌘
+ (hP + z)

✓
rj
kvP

+
dj
vP

+ ⌧P

◆
. (1.3.5)
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Using (1.3.5) we obtain a price for a bundle of size k accepted at location i of the form:

price2 = ⇣P

 
1

k

i+k�1X

j=i

rj +
i+k�1X

j=i

dj

!
+ (hP + z)

 
1

kvP

i+k�1X

j=i

rj +
i+k�1X

j=i

dj/vP + k⌧P

!
(1.3.6)

= price1 +

✓
⇣P +

hP + z

vP

◆ 
1

k

i+k�1X

j=i

rj � ri

!

+
1

2
(d(xi�1,xi) + d(xi+k�2,xi+k�1))

✓
⇣ +

hP + z

vP

◆
.

Note that the di↵erence between (1.3.4) and (1.3.6) is small whenever adjacent packages in
the TSP tour are small, which we expect to be true for large n, as suggested by [94].

To obtain our proposed expression for the cost to deliver each of the n packages we also
need to take into account that package j could be delivered as part of a number of di↵erent
bundles, e.g., it could be delivered in bundle {j, . . . , j+ B̂(j)� 1} or it could be contained in
a bundle of the form {i, . . . , j, . . . , i+ B̂(i)� 1} for some i < j. Since the exact computation
of the distribution of the size of the bundle containing j is too complex, we approximate it
with E[B] to obtain the following price for package j:

pj := ⇣P

✓
rj

E[B]
+ dj

◆
+ (hP + z)

✓
rj

E[B]vP
+

dj
vP

+ ⌧P

◆
. (1.3.7)

Using the same type of arguments, we estimate the time required to deliver package j to be:

tj :=
rj

E[B]vP
+

dj
vP

+ ⌧P .

Note that by deriving our pricing mechanism the way we did we have made the profit
rate for the drivers the same regardless of which package(s) they choose to deliver. This
profit is determined in our pricing scheme by the incentive rate z, which is the same for all
n packages and is linear in the total traveling distance. Moreover, the incentive rate will be
used to control the arrival rate for requests in our calculations from Section 1.3.1 by setting
� = �(z) to be a non-decreasing function. It remains to set up an optimization problem for
determining the best incentive rate to use.

To this end, start by noting that the sum of the prices for all n packages after their
destinations are revealed satisfies:

nX

i=1

pi =

✓
⇣P +

hP + z

vP

◆ 
1

E[B]

nX

i=1

ri + L(TSP(x(n)))

!
+ n(hP + z)⌧P ,

where L(TSP(x(n))) is the length of an optimal TSP route for points with destinations
x
(n) := {x1,x2, ...,xn}. Since the probability that package i will be picked up before time

T given incentive rate z is C(T, n,�(z))/n (recall that packages are arranged on a circle,
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and are therefore undistinguishable), the aggregate expected payment for private drivers
(conditional on x

(n)) is

C(T, n,�(z))
n

✓
⇣P +

hP + z

vP

◆ 
1

E[B]

nX

i=1

ri + L(TSP(x(n)))

!
+ C(T, n,�(z))(hP + z)⌧P .

(1.3.8)
It remains to compute the cost associated to delivering the remaining packages using the

in-house van service, which we do in the following section.

1.3.2.2 Van’s cost to deliver leftover packages.

After time T , all leftover packages will be delivered by vans owned by the distribution center.
The delivery route for a van is designed by an optimal CVRP, which is also NP-hard. For
more detailed information about the algorithms that can be used to solve the CVRP problem,
we refer readers to [43, 45, 111].

The van’s operating cost includes the per-mile cost for vans and time-based wages for
the drivers. The per-mile cost includes the cost of fuel, maintenance, repairs, depreciation,
etc., and is denoted by ⇣V . To compute the time-based wages for the drivers note that the
time they spend delivering packages includes the time driving along an optimal CVRP route
and the time on the end-point delivery. Let hV , vV , ⌧V denote the drivers’ payment rate, the
vans’ average speed, and the end-point delivery time, respectively. Then, the total cost for
delivering k packages using vans is

✓
⇣V +

hV

vV

◆
L(CVRP(y(k))) + khV ⌧V ,

where L(CVRP(y(k))) is the length of capacitated vehicle routing through the points y(k) =
{y1,y2, ..,yk}.

In the context of our problem, the number of packages that will need to be delivered
after time T is random, and so are their destinations, which we will denote by Y

(n)(�) =
{Y1, . . . ,Yn�Ñ(T,n,�)}, where Ñ(T, n,�) is the number of packages that can be delivered
during [0, T ] when we start with n packages arranged on a circle. It follows that the expected
cost to deliver the remaining packages, conditionally on the destinations x(n), is given by

✓
⇣V +

hV

vV

◆
En

⇥
L(CVRP(Y(n)(�)))

⇤
+ En[n� Ñ(T, n,�(z))]hV ⌧V

=

✓
⇣V +

hV

vV

◆
En

⇥
L(CVRP(Y(n)(�)))

⇤
+

✓
1� C(T, n,�(z))

n

◆
nhV ⌧V , (1.3.9)

where En[ · ] = E[ · |x(n)].
Putting together our cost estimations for both the private drivers (1.3.8) and that of

delivering the remaining packages using the in-house vans (1.3.9), we obtain the following
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expected cost function for delivering n packages with destinations x(n) = {x1, . . . ,xn} using
the incentive rate z:

CostP (z;x(n))

n
:=

C(T, n,�(z))
n

✓
⇣P +

hP + z

vP

◆✓
r(n)

E[B]
+

L(TSP(x(n)))

n

◆

+
C(T, n,�(z))

n
(hP + z)⌧P +

✓
1� C(T, n,�(z))

n

◆
hV ⌧V

+

✓
⇣V +

hV

vV

◆
1

n
En

⇥
L(CVRP(Y(n)(�)))

⇤
,

where r(n) = n�1
P

n

i=1 ri. Note that the computation of the length of the TSP route,
L(TSP(x(n))), is done as part of our proposed approach, however, we still need to compute the
expected length of the CVRP route for the leftover packages, i.e., En

⇥
L(CVRP(Y(n)(�)))

⇤
.

Since the exact computation of En

⇥
L(CVRP(Y(n)(�)))

⇤
is intractable, both from the

point of view of the distribution of the leftover packages and also from that of the length of
an optimal CVRP route, we instead estimate it using the continuous approximation given in
[35]. Specifically, for a set of k points {y1, . . . ,yk} distributed uniformly over a region of area
A, and under the assumption that the vehicle capacity V satisfies V ⌧ k, the continuous
approximation given in [35] states that

L(CVRP(y(k))) ⇡ 2k

V
r(k) + �VRP

p
kA, (1.3.10)

where �VRP is estimated to be 0.82 when using the L1 distance (see Appendix A in [34]).
We point out that the assumption of V ⌧ k is realistic, since we expect the number of
remaining packages at the end of the time window [0, T ] to be large. To justify this belief,
we mention that in the study of UPS delivery routes given in [52], each distribution center
needs to deliver around 10,000 packages per day, and each van serves 140-160 customers. Our
simulations suggest that by time T we have about 2156 and 4026 leftover packages when we
start the day with n = 8000 and n = 15, 000, respectively, which implies that V/k ⇡ 0.070
for n = 8000 and V/k ⇡ 0.037 for n = 15, 000. Moreover, approximation (1.3.10) has been
empirically shown in [105] to be accurate even for moderate values of k, e.g., k � 100. For our
packing problem, we know that the expected number of leftover packages is n�C(T, n,�(z))
and the expected sum of their long-haul distances is En

⇥P
n

i=1 ri1(xi 2 Y
(n)(�))

⇤
= (n �

C(T, n,�(z)))r(n), so we use the approximation

1

n
En

⇥
L(CVRP(Y(n)(�)))

⇤
⇡ 2(1� C(T, n,�(z))/n)r(n)

V
+
�VRPp

n

p
(1� C(T, n,�(z))/n)A.

Based on our numerical experiments, this approximation seems to work well, even though
the destinations of the leftover packages are not necessarily uniformly distributed. Adding
the lower order term (�VRP/

p
n)
p

(1� C(T, n,�(z))/n)A seems to improve the overall cost
optimization, especially for moderate values of n. For large values of n, we can go further in
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our simplification of the cost function and replace C(T, n,�(z))/n with ↵(T,�(z)), which in
view of Theorem 3 incurs an error of order O(n�1), which is negligible with respect to any
of the terms in CostP (z,x(n))/n, and significantly reduces its computing time (see Table 1.3
in Section 1.5.3).

We finally arrive at the following approximation for CostP (z,x(n))/n:

Cost0
P
(z;x(n))

n
:= ↵(T,�(z))

✓
⇣P +

hP + z

vP

◆✓
r(n)

E[B]
+

L(TSP(x(n)))

n

◆

+ ↵(T,�(z))(hP + z)⌧P + (1� ↵(T,�(z)))hV ⌧V

+

✓
⇣V +

hV

vV

◆✓
2(1� ↵(T,�(z)))r(n)

V
+
�VRPp

n

p
(1� ↵(T,�(z)))A

◆
.

Our proposed solution to the problem of selecting an optimal incentive rate for the private
drivers is to compute

ẑ = argmin
z

Cost0
P
(z;x(n)), (1.3.11)

as a proxy for the intractable

z⇤ = argmin
z

CostP (z;x
(n)). (1.3.12)

The following lemma provides theoretical justification for our proposed approach when n is
large. We also include in Section 1.5.3 (see Table 1.4) numerical evidence supporting the use
of our approximation even for moderate values of n.

Lemma 1.3.2 Define z⇤ and ẑ according to (1.3.12) and (1.3.11), respectively. Then,

0  CostP (ẑ;x(n))

n
� CostP (z⇤;x(n))

n
= O(n�1/2), n!1.

1.3.2.3 Joint optimization problem.

We will now argue that it su�ces to minimize Cost0
P
(z;x(n)) over a bounded interval. The

arrival rate �(z) can be taken to be any non-negative monotone non-decreasing and di↵er-
entiable almost everywhere function on the real line, e.g., linear or piecewise linear.

Note that the distribution center will be paying private drivers ⇣P +(hP + z)/vP per mile
travelled, plus (hP + z)⌧P per package delivered, while it will pay its van drivers ⇣V +hV /vV
per mile travelled and hV ⌧V per package delivered. Hence, in order for a strategy using
private drivers to even make sense, we would need at least one of the following conditions to
hold:

⇣V +
hV

vV
> ⇣P +

hP + z

vP
or hV ⌧V > (hP + z)⌧P .

In other words, if the optimal ẑ where to violate both conditions, then the optimal strategy
would be to use vans only. This implies that it su�ces to consider values of z such that

z  max

⇢✓
⇣V +

hV

vV
� ⇣P

◆
vP ,

hV ⌧V
⌧P

�
� hP .
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On the other hand, since the payment rate (hp+ z) to private drivers (not including the per-
mile transportation cost ⇣P ) must be nonnegative, we have that hP + z � 0, which implies
that

z � �hP .

In view of the above, we propose to compute the approximately optimal incentive rate ẑ
by solving:

min
�hPzmax

n⇣
⇣V +

hV
vV

�⇣P

⌘
vP ,

hV ⌧V
⌧P

o
�hP

Cost0
P
(z;x(n)). (1.3.13)

The optimization problem is meant to be solved at the beginning of the day, once the
destinations x(n) are revealed. Once ẑ has been found the reward o↵ered to private drivers
for delivering package i is pi, as given by (1.3.7).

We point out that since C(T, n,�(z)) is infinitely di↵erentiable in z 2 R whenever �(z)
is (see Proposition 1.3.1), solving the minimization problem in (1.3.13) can be done very
e�ciently. The problem is to be solved on a daily basis as soon as the destinations x(n) =
{x1, . . . ,xn} are revealed.

We conclude the main results by providing su�cient conditions under which the expected
cost to deliver n packages with destinations x

(n) = {x1, . . . ,xn} using a combination of
private drivers and in-house vans is smaller than that of using only in-house vans. To this
end, note that the expected cost of the van-only strategy is given by:

CostV (x
(n)) :=

✓
⇣V +

hV

vV

◆
L(CVRP(x(n))) + nhV ⌧V .

Hence, a mixed strategy that uses both vans and private drivers can only be better provided
there exists some z for which CostP (z;x(n)) < CostV (x(n)). The following lemma provides
the desired condition.

Lemma 1.3.3 Suppose the destinations x
(n) = {x1, . . . ,xn} are contained in a compact

region R ✓ R2 and are such that the limit r⇤ = limn!1 r(n) exists. Then, for any z 2 R
and � = �(z) we have

lim sup
n!1

1

n

�
CostP (z;x

(n))� CostV (x
(n))

�

 �↵(T,�)
✓✓

⇣V +
hV

vV

◆
2r⇤

V
�
✓
⇣P +

hP

vP

◆
r⇤

E[B]
� (hP ⌧P � hV ⌧V )� z

✓
r⇤

vPE[B]
+ ⌧P

◆◆
a.s.

Moreover, whenever
✓
⇣V +

hV

vV

◆
2r⇤

V
�
✓
⇣P +

hP

vP

◆
r⇤

E[B]
� (hP ⌧P � hV ⌧V ) > 0, (1.3.14)

there exists a z 2 R for which the upper bound for the limit superior is strictly negative, i.e.,
for which the private drivers strategy is better than the van-only strategy.
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We point out that the condition given in (1.3.14) does not depend on z, since the non-
negativity of ↵(T,�) for all � � 0 implies that whenever (1.3.14) is satisfied there will exist
a z for which CostP (z;x(n)) < CostV (x(n)) with high probability. The magnitude of the cost
reduction will of course depend on the specific value of z we choose, and it is maximized
when we choose z = z⇤.

Until now, we provided a framework to deal with the scenario where packages only arrive
once during the day and the optimal incentive rate is set as soon as the package destinations
are revealed. However, our framework can be easily extended to multiple periods, i.e., to
situations where packages arrive twice or more times during the day and/or the supply of
private drivers fluctuates throughout di↵erent time periods. The flexibility to change the
incentive rate may be important, for example, if the distribution center wants to compete
with the Uber or Lyft passenger population during peak hours. If this were the case, the
distribution center would need to update the opportunity cost, the end-point delivery time
and/or the average speed of private drivers in the objective function. Recomputing the
optimal TSP route may be unnecessary if the number of packages is large enough at the
beginning of the day and continue being large even after some packages have been picked
up. Hence, our proposed framework can scale very well to a multi-period setting, without
incurring expensive computational costs.

The remainder of the paper is devoted to the proofs of all the results in the paper.

1.4 Proofs.

In this section, we give all the proofs of the theorems in Section 1.3.1.1 and Section 1.3.2.
The analysis of C(t, n,�) is based on the observation that once the first package is picked
up (which is guaranteed to be accepted whenever n � m), the remaining packages can be
arranged on a line. Therefore, the proofs of all our theoretical results are based on the
analysis of K(t, n,�), the expected number of packages that can be picked up by private
drivers during the interval [0, t], when there are n packages arranged on a line. Moreover,
we point out that if B has distribution F and T ⇤

n
denotes the time of the first request when

we have n packages arranged on a circle, then

C(t, n,�) = E [(B +K(t� T ⇤
n
, n� B)) 1(T ⇤

n
 t)] ,

with T ⇤
n
exponentially distributed with rate �n.

Throughout this section we simplify the notation by omitting � from C(t, n,�), K(t, n,�),
R(t, n,�), etc., and simply write C(t, n), K(t, n), R(t, n); all the proofs in this section are
valid for any fixed � > 0. We also use f(k) = P (B = k) to denote the bundle size probability
mass function. The first proof corresponds to Theorem 1, which gives a di↵erential equation
for K(t, n) and R(t, n) = n�K(t, n).

Proof. Proof of Theorem 1. Define N(t, n) to be the number of packages that can be
delivered over the period [0, t] when packages are arranged on a line, i.e., K(t, n) = E[N(t, n)].
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Looking at the first � units of time after time t, we obtain

N(t+ �, n) = N(t+ �, n)1(no requests arrive in [t, t+ �])

+
mX

w=1

N(t+ �, n)1(bundle of size w arrives in [t, t+ �])

+N(t+ �, n)1(two or more requests arrive in [t, t+ �]). (1.4.1)

By conditioning on the location of the arrival we further get

N(t+ �, n)1(bundle of size w arrives in [t, t+ �])

=
nX

i=1

N(t+ �, n)1(bundle of size w arrives at position i in [t, t+ �])

= 1(n � w)
n�w+1X

i=1

N(t+ �, n)1(bundle of size w arrives at position i in [t, t+ �])

+ 1(n � w)
nX

i=n�w+2

N(t, n)1(bundle of size w arrives at position i in [t, t+ �]), (1.4.2)

+ 1(n < w)
nX

i=1

N(t, n)1(bundle of size w arrives at position i in [t, t+ �]), (1.4.3)

where (1.4.2) and (1.4.3) correspond to the cases where we reject the arrival since either
some packages in the requested bundle are not available or the bundle size is bigger than the
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number of remaining packages. Taking expectation on both sides of (1.4.1), we have

K(t+ �, n)

= E [N(t, n)1(no requests arrive in [t, t+ �])]

+ E [N(t+ �, n)1(two or more requests arrive in [t, t+ �])]

+
mX

w=1

1(n � w)
n�w+1X

i=1

E [N(t+ �, n)1(bundle of size w arrives at position i during [t, t+ �])]

+
mX

w=1

1(n � w)
nX

i=n�w+2

E[N(t, n)1(bundle of size w arrives at position i during [t, t+ �])]

+
mX

w=1

1(n < w)
nX

i=1

E[N(t, n)1(bundle of size w arrives at position i during [t, t+ �])]

= K(t, n)P (no requests arrive in [t, t+ �]) +O(�2n3)

+
mX

w=1

1(n � w)
n�w+1X

i=1

{K(t, i� 1) +K(t, n� i� w + 1) + w}

· P (bundle of size w arrives at position i during [t, t+ �])

+
mX

w=1

1(n � w)
nX

i=n�w+2

K(t, n)P (bundle of size w arrives at position i during [t, t+ �])

+
mX

w=1

1(n < w)
nX

i=1

K(t, n)P (bundle of size w arrives at position i during [t, t+ �])

where we have used the following three observations: first, that

E [N(t+ �, n)1(two or more requests arrive in [t, t+ �])]

 nP (two or more requests arrive in [t, t+ �]) = O(�2n3)

as �! 0; second, that

E[N(t+ �, n)|bundle size w arrives at position i during [t, t+ �]]

= K(t, i� 1) +K(t, n� i� w + 1) + w;

and third, that N(t + �, n) = N(t, n) whenever the bundle request is rejected (i.e., when
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n� w + 2  i  n for n � w or when 1  i  n for n < w). We thus have

K(t+ �, n) = K(t, n)(1� �n�) +O(�2n3)

+
mX

w=1

1(n � w)
n�w+1X

i=1

{K(t, i� 1) +K(t, n� i� w + 1) + w}f(w) · 1
n
· (�n�)

+
mX

w=1

1(n � w)
nX

i=n�w+2

K(t, n)f(w) · 1
n
· (�n�)

+
mX

w=1

1(n < w)
nX

i=1

K(t, n)f(w) · 1
n
· (�n�).

We have thus shown that

K(t+ �, n)�K(t, n) = ��n�K(t, n) +O(�2n3)

+
mX

w=1

1(n � w)
n�w+1X

i=1

{K(t, i� 1) +K(t, n� i� w + 1) + w}f(w)��

+
mX

w=1

nX

i=(n�w+2)_1

K(t, n)f(w)��

= ��n�K(t, n) +
mX

w=1

1(n � w)

(
2
n�wX

i=0

K(t, i) + w(n� w + 1)

)
f(w)��

+
mX

w=1

(n ^ (w � 1))K(t, n)f(w)��,



CHAPTER 1. LAST-MILE SHARED DELIVERY: A DISCRETE SEQUENTIAL
PACKING APPROACH 23

which yields the di↵erential equation:

@

@t
K(t, n) = ��nK(t, n) +

mX

w=1

1(n � w)

(
2
n�wX

i=0

K(t, i) + w(n� w + 1)

)
f(w)�

+
mX

w=1

(n ^ (w � 1))K(t, n)f(w)�

= ��nK(t, n) + 2�
m^nX

w=1

n�wX

i=0

K(t, i)f(w) + �
m^nX

w=1

w(n� w + 1)f(w)

+
mX

w=1

(n ^ (w � 1))K(t, n)f(w)�

= ��nK(t, n) + 2�
nX

w=1

n�wX

i=0

K(t, i)f(w)

+ �
nX

w=1

w(n� w + 1)f(w) + �K(t, n)
mX

w=1

(n ^ (w � 1))f(w),

and in the third equality we used the observation that since f(w) = 0 for w > 0, we can
replace the upper limit in the sum by n.

To further simplify the expression, exchange the order of the sums to obtain that

2�
nX

w=1

n�wX

i=0

K(t, i)f(w) = 2�
n�1X

i=0

K(t, i)
n�iX

w=1

f(w) = 2�
n�1X

i=0

K(t, i)F (n� i).
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Also,

� n+
mX

w=1

(n ^ (w � 1))f(w)

= �n+
n^mX

w=1

(w � 1)f(w) + 1(m > n)
mX

w=n+1

nf(w)

= �n+
n^mX

w=1

(w � 1)(F (w)� F (w � 1)) + 1(m > n)n(1� F (n))

= �n+
n^mX

w=1

wF (w)�
(n^m)�1X

w=0

wF (w)�
n^mX

w=1

F (w) + 1(m > n)n(1� F (n))

= �n+ (n ^m)F (n ^m)�
n^mX

w=1

F (w) + 1(m > n)n(1� F (n))

=

(
�
P

n

w=1 F (w), n < m,

�n+m�
P

m

w=1 F (w), n � m,

= �
nX

w=1

F (w).

We conclude that

1

�

@K(t, n)

@t
= �

nX

i=1

F (i)K(t, n) + 2
n�1X

i=1

F (n� i)K(t, i) +
nX

i=1

i(n� i+ 1)f(i) (1.4.4)

with boundary condition K(0, n) = 0.
Finally, let R(t, n) = n�K(t, n) denote the expected number of undelivered packages at
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time t. Then, writing Equation (1.4.4) in terms of R(t, n), we obtain

1

�

@R(t, n)

@t
= �

nX

i=1

F (i)R(t, n) + 2
n�1X

i=1

F (n� i)R(t, i) + n
nX

i=1

F (i)

� 2
n�1X

i=1

F (n� i)i�
nX

i=1

i(n� i+ 1)f(i)

= �
nX

i=1

F (i)R(t, n) + 2
n�1X

i=1

F (n� i)R(t, i) + n
nX

j=1

f(j)(n� j + 1)

�
n�1X

j=1

f(j)(n� j)(n� j + 1)�
nX

i=1

i(n� i+ 1)f(i)

= �
nX

i=1

F (i)R(t, n) + 2
n�1X

i=1

F (n� i)R(t, i).

The corresponding boundary condition is R(0, n) = n. This completes the proof.

After obtaining the di↵erential equation, we use induction to prove Proposition 1.3.1,
which provides the explicit solution to the ODE from Theorem 1.

Proof. Proof of Proposition 1.3.1. Note that for any n such that F (n) = 0, R(t, n) = n.
Thus the boundary condition for �n,j = 1 satisfies

R(t, n) =
nX

j=1

�n,je
��

Pj
k=1 F (k)t =

nX

j=1

�n,j = n.

It remains to prove the result for n such that F (n) > 0. To start, let

�n(t) = 2�
n�1X

i=1

F (n� i)R(t, i)

and ✓n = �
nX

j=1

F (j)

then the above di↵erential equation becomes

dR(t, n)

dt
+ (�n� ✓n)R(t, n) = �n(t)

with boundary condition R(0, n) = n. We will prove by induction in n that

R(t, n) =
nX

i=1

�n,ie
�(�i�✓i)t, (1.4.5)
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where

�n,n = n�
n�1X

i=1

�n,i and �n,i = 2 ·
P

n�i

j=1 F (j)�n�j,iP
n

k=i+1 F (k)
, 1  i < n, �1,1 = 1.

Suppose now that (1.4.5) holds and consider K(t, n+1). Solving the di↵erential equation
satisfied by R(t, n+ 1) directly (see, e.g., [102]), we obtain that

R(t, n+ 1)

= e�(�(n+1)�✓n+1)t

✓
n+ 1 +

Z
t

0

�n+1(v)e
v(�(n+1)�✓n+1)dv

◆

= e�(�(n+1)�✓n+1)t(n+ 1) + �e�(�(n+1)�✓n+1)t

Z
t

0

2
nX

i=1

F (n+ 1� i)R(v, i)e(�(n+1)�✓n+1)vdv

= e�(�(n+1)�✓n+1)t(n+ 1) + �e�(�(n+1)�✓n+1)t

Z
t

0

2
nX

i=1

F (n+ 1� i)
iX

j=1

�i,je
�(�j�✓j)ve(�(n+1)�✓n+1)vdv

= e�(�(n+1)�✓n+1)t(n+ 1) + e�(�(n+1)�✓n+1)t2�
nX

i=1

F (n+ 1� i)
iX

j=1

�i,j ·
e(�(n+1�j)�✓n+1+✓j)t � 1

�(n+ 1� j)� ✓n+1 + ✓j

= e�(�(n+1)�✓n+1)t(n+ 1) + 2
nX

i=1

F (n+ 1� i)
iX

j=1

�i,j ·
e�(�j�✓j)t � e�(�(n+1)�✓n+1)t

P
n+1
k=j+1 F (k)

.

where in the third equality we used the induction hypothesis (1.4.5).
It remains to analyze the last expression, for which we exchange the summation order to

obtain that

R(t, n+ 1) = e�(�(n+1)�✓n+1)t(n+ 1) + 2
nX

j=1

nX

i=j

F (n+ 1� i)�i,j ·
e�(�j�✓j)t � e�(�(n+1)�✓n+1)t

P
n+1
k=j+1 F (k)

= e�(�(n+1)�✓n+1)t(n+ 1) + 2
nX

j=1

e�(�j�✓j)t � e�(�(n+1)�✓n+1)t

P
n+1
k=j+1 F (k)

n+1�jX

r=1

F (r)�n+1�r,j

= e�(�(n+1)�✓n+1)t(n+ 1) +
nX

j=1

�
e�(�j�✓j)t � e�(�(n+1)�✓n+1)t

�
�n+1,j

= e�(�(n+1)�✓n+1)t(n+ 1) +
nX

i=1

�n+1,ie
�(�i�✓i)t � e�(�(n+1)�✓n+1)t

nX

i=1

�n+1,i.

To complete the proof for R(t, n) note that

nX

i=1

�n+1,i = n+ 1� �n+1,n+1
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gives

R(t, n+ 1) = e�(�(n+1)�✓n+1)t(n+ 1) +
nX

i=1

�n+1,ie
�(�i�✓i)t � e�(�(n+1)�✓n+1)t(n+ 1)

+ e�(�(n+1)�✓n+1)t�n+1,n+1

=
n+1X

i=1

�n+1,ie
�(�i�✓i)t.

We now use the explicit expression for R(t, n) to compute C(t, n). Recall that T ⇤
n
denotes

the time of the first request when we start with n packages arranged on a circle, and B is
the size of the corresponding bundle. Moreover, since T ⇤

n
is exponentially distributed with

rate �n and B has distribution F , we have

C(t, n) = E[(B +K(t� T ⇤
n
, n� B))1(T ⇤

n
< t)]

= E [(n�R(t� T ⇤
n
, n� B)) 1(T ⇤

n
< t)]

= nP (T ⇤
n
< t)�

mX

k=1

f(k)
n�kX

i=1

�n�k,ie
��

Pi
j=1 F (j)tE

h
e�

Pi
j=1 F (j)T ⇤

n1(T ⇤
n
< t)

i

= n(1� e��nt)�
mX

k=1

n�kX

i=1

f(k)�n�k,i

n

n�
P

i

j=1 F (j)

⇣
1� e�(

Pi
j=1 F (j)�n)t

⌘
e��

Pi
j=1 F (j)t

= n(1� e��nt)�
n�1X

i=1

n�iX

k=1

f(k)�n�k,i

n

n�
P

i

j=1 F (j)

⇣
e��

Pi
j=1 F (j)t � e��nt

⌘

= n�
n�1X

i=1

�̃n,ie
��

Pi
j=1 F (j)t � �̃n,ne��nt,

where

�̃n,i =
n�iX

k=1

f(k)
�n�k,i

1� 1
n

P
i

j=1 F (j)
and �̃n,n = n�

n�1X

i=1

�̃n,i.

The following technical result provides a monotonicity property for a function of R(t, n)
that will be needed for the application of a Tauberian theorem in the proof of Theorem 2.
Interestingly, R(t, n) is not generally monotone in n.

Definition 1.4.1 We say that a sequence {an : n � 1} is eventually increasing (decreasing)
if there exists an n0 2 N+ such that an is increasing (decreasing) for all n � n0.

Lemma 1.4.2 For any t � 0,

K(t, n) + n · m+ 1

m� µ+ 1
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is monotonically increasing in n when n � m, where µ = E[B] and m is the maximum
bundle size.

Proof. Proof. Recall that K(t, n) is the expected number of packages that can be picked
up by time t when we start with n packages arranged on a line. For n � m, note that arriving
requests at location i occur according to a Poisson process with rate � when i  n�m+ 1
and with rate �F (n+1� i) when i > n�m+1, the latter since close to the right end-point
bundle sizes need to be smaller than n � i to be accepted. Furthermore, the time Tn at
which the first request is accepted is independent of the location where it occurs, and is
exponentially distributed with rate �(n�m+ 1) + �

P
m�1
i=1 F (i) = �(n� µ+ 1). Thus, the

probability that the first accepted request occurs at location i, denoted as p(n)
i

, is

p(n)
i

=
1

n� µ+ 1
, for 1  i  n�m+ 1,

and

p(n)
i

=
F (n+ 1� i)

n� µ+ 1
, for n�m+ 1 < i  n.

Let Q(t, k) = E[B +N(t, k � B)|B  k], where B is the bundle size (distributed according
to F ) and N(t, k) is the number of packages picked up during [0, t] when k packages are
arranged on a line, and note that Q(t, k) denotes the expected number of packages that will
be picked-up during the interval [0, t] given that a request has been accepted at time zero at
location 1 of a total of k packages. As in previous proofs, we have dropped the � from the
notation. Let Ln denote the location of the first request to be accepted when we start with
n packages. To analyze K(t, n), we condition on Tn and Ln to obtain

K(t, n) = E[E[N(t, n)|Tn]] = E

"
nX

i=1

P (Ln = i|Tn)E[N(t, n)|Tn, Ln = i]

#

= E

"
nX

i=1

p(n)
i

�
E[N((t� Tn)

+, i� 1)|Tn]

+E
⇥
B +N((t� Tn)

+, n� i+ 1� B)|B  n� i+ 1, Tn

⇤�⇤

= E

"
nX

i=1

p(n)
i

�
K((t� Tn)

+, i� 1) +Q((t� Tn)
+, n� i+ 1)

�
#

=
1

n� µ+ 1
E

"
n�m+1X

i=1

�
K((t� Tn)

+, i� 1) +Q((t� Tn)
+, n� i+ 1)

�
#

+
m�1X

j=1

F (m� j)

n� µ+ 1
E
⇥
K((t� Tn)

+, n�m+ j) +Q((t� Tn)
+,m� j)

⇤
.
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Therefore, we get the di↵erence

(n� µ+ 2)K(t, n+ 1)� (n� µ+ 1)K(t, n)

= E

"
n�m+1X

i=1

K((t� Tn+1)
+, i� 1) +

n�m+2X

i=2

Q((t� Tn+1)
+, n� i+ 2)

#

+ E[K((t� Tn+1)
+, n�m+ 1) +Q((t� Tn+1)

+, n+ 1)]

+
m�1X

j=1

F (m� j)E
⇥
K((t� Tn+1)

+, n�m+ j + 1) +Q((t� Tn+1)
+,m� j)

⇤

� E

"
n�m+1X

i=1

�
K((t� Tn)

+, i� 1) +Q((t� Tn)
+, n� i+ 1)

�
#

�
m�1X

j=1

F (m� j)E
⇥
K((t� Tn)

+, n�m+ j) +Q((t� Tn)
+,m� j)

⇤

=
n�m+1X

i=1

⇣
D(t, n, i� 1) + D̂(t, n, n� i+ 1)

⌘
+

m�1X

k=1

F (k)D̂(t, n, k)

+ E[K((t� Tn+1)
+, n�m+ 1) +Q((t� Tn+1)

+, n+ 1)]

+
m�1X

k=1

F (k)E
⇥
K((t� Tn+1)

+, n� k + 1)
⇤
�

m�1X

k=1

F (k)E
⇥
K((t� Tn)

+, n� k)
⇤

=
n�m+1X

i=1

⇣
D(t, n, i� 1) + D̂(t, n, n� i+ 1)

⌘
+

m�1X

k=1

F (k)
⇣
D̂(t, n, k) +D(t, n, n� k)

⌘

+ E[K((t� Tn+1)
+, n�m+ 1) +Q((t� Tn+1)

+, n+ 1)]

+
m�1X

k=0

F (k)E
⇥
K((t� Tn+1)

+, n� k + 1)�K((t� Tn+1)
+, n� k)

⇤
,

where

D(t, n, i) := E
⇥
K((t� Tn+1)

+, i)�K((t� Tn)
+, i)

⇤
and

D̂(t, n, i) := E
⇥
Q((t� Tn+1)

+, i)�Q((t� Tn)
+, i)

⇤
.
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Furthermore, since F (0) = 0 and F (m) = 1 we have that

E[K((t� Tn+1)
+, n�m+ 1)] +

m�1X

k=0

F (k)E
⇥
K((t� Tn+1)

+, n� k + 1)�K((t� Tn+1)
+, n� k)

⇤

=
mX

k=0

F (k)E
⇥
K((t� Tn+1)

+, n� k + 1)�K((t� Tn+1)
+, n� k)

⇤
+ E[K((t� Tn+1)

+, n�m)]

=
mX

k=1

F (k)E
⇥
K((t� Tn+1)

+, n� k + 1)
⇤
�

m+1X

k=1

F (k � 1)E
⇥
K(t� Tn+1)

+, n� k + 1)
⇤

+ E[K((t� Tn+1)
+, n�m)]

=
mX

k=1

f(k)E
⇥
K((t� Tn+1)

+, n� k + 1)
⇤
.

Now use the observation that for any j � m and t � 0 we have

Q(t, j) = E [B +N(t, j � B)|B  j]

= E[B] + E[K(t, j � B)] = µ+
mX

k=1

f(k)K(t, j � k),

to obtain that

E[Q((t� Tn+1)
+, n+ 1)] = µ+

mX

k=1

f(k)K((t� Tn+1)
+, n� k + 1)]

and

D̂(t, n, j) =
mX

k=1

f(k)D(t, n, j � k) for j � m.

We have thus derived that for n � m,

(n� µ+ 2)K(t, n+ 1)� (n� µ+ 1)K(t, n)

=
n�m+1X

i=1

 
D(t, n, i� 1) +

mX

k=1

f(k)D(t, n, n� i+ 1� k)

!
+

m�1X

i=1

F (i)
⇣
D(t, n, n� i) + D̂(t, n, i)

⌘

+ 2
mX

i=1

f(i)E
⇥
K((t� Tn+1)

+, n� i+ 1)
⇤
+ µ. (1.4.6)

Finally, note that Tn+1 s.t. Tn, where (s.t.) denotes the standard stochastic order, which
since both K and Q are non-decreasing in t, implies that D(t, n, i) � 0 and D̂(t, n, j) � 0
for any i, j � 1. Hence, we immediately obtain that

(n� µ+ 2)K(t, n+ 1)� (n� µ+ 1)K(t, n) � 0.
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Dividing by n� µ+ 1 now gives

K(t, n+ 1)�K(t, n) � � 1

n� µ+ 1
· K(t, n+ 1),

and using the observation that K(t, n+ 1)  n+ 1 further gives

K(t, n+ 1)�K(t, n) � � n+ 1

n� µ+ 1
� � m+ 1

m� µ+ 1

for all n � m. This in turn implies that

K(t, n) + n · m+ 1

m� µ+ 1

is monotonically increasing with n � m.

Next we calculate the formula for �(t) = 1 � ↵(t) through the generating function
G(t, x) :=

P1
n=m

R(t, n)xn. The key tool in the analysis is the use of a Tauberian theorem
that allows us to infer the behavior of R(t, n) from that of G(t, x). We write f(x) ⇠ g(x) as
x! a to denote limx!a f(x)/g(x) = 1.

Proof. Proof of Theorem 2. Define '(y) =
P

m�1
i=1 F (i)yi/i and recall that ✓n =

�
P

n

j=1 F (j). Note that when n � m we have ✓n = �'0(1). From Theorem 1 we have

@R(t, n)

@t
= ��

nX

i=1

F (i)R(t, n) + 2�
n�1X

i=1

F (n� i)R(t, i)

= �(�n� ✓n)R(t, n) + 2�
n�1X

i=1

F (n� i)R(t, i).
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Next, multiply both sides by xn and sum over n from m to infinity to obtain

1X

n=m

@R(t, n)

@t
xn = �

1X

n=m

(�n� �'0(1))R(t, n)xn + 2�
1X

n=m

n�1X

i=1

F (n� i)R(t, i)xn

= ��x
1X

n=m

R(t, n)
d

dx
xn + �'0(1)G(t, x) + 2�

m�1X

i=1

1X

n=m

F (n� i)R(t, i)xn

+ 2�
1X

i=m

1X

n=i+1

F (n� i)R(t, i)xn

= ��x @

@x
G(t, x) + �'0(1)G(t, x) + 2�

m�1X

i=1

R(t, i)xi

1X

j=m�i

F (j)xj

+ 2�
1X

i=m

R(t, i)xi

1X

j=1

F (j)xj

= ��x @

@x
G(t, x) + �'0(1)G(t, x) + 2�

m�1X

i=1

R(t, i)xi

 1X

j=m�i

xj �
1X

j=m�i

F (j)xj

!

+ 2�G(t, x)

 1X

j=1

xj � x'0(x)

!

= ��x @

@x
G(t, x) + �

�
'0(1) + 2x(1� x)�1 � 2x'0(x)

�
G(t, x)

+ 2�xm(1� x)�1
m�1X

i=1

R(t, i)� 2�
m�1X

i=1

R(t, i)xi

1X

j=m�i

F (j)xj,

where the exchange of derivative and series in the third equality is justified by Theorem A.5.1
in [37] and we use the convention that

P
b

i=a
xi ⌘ 0 if b < a. Furthermore, Theorem A.5.1 in

[37] also gives that
1X

n=m

@R(t, n)

@t
xn =

@G(t, x)

@t
,

and we obtain that G(t, x) satisfies the di↵erential equation:

@G(t, x)

@t
= ��x @

@x
G(t, x) + �

�
'0(1) + 2x(1� x)�1 � 2x'0(x)

�
G(t, x)

+ 2�xm(1� x)�1
m�1X

i=1

R(t, i)� 2�
m�1X

i=1

R(t, i)xi

1X

j=m�i

F (j)xj.

To solve it, make the change of variables r = ln x � �t and s = t, and define G̃(s, r) =
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G(s, e�s+r) to obtain

@

@t
G(t, x) =

@

@r
G̃(s, r)(��) + @

@s
G̃(s, r), and

@

@x
G(t, x) =

@

@r
G̃(s, r)

1

x
.

Substituting in our expression for @

@t
G(t, x) we obtain

@

@r
G̃(s, r)(��) + @

@s
G̃(s, r)

= �� @
@r

G̃(s, r) + G̃(s, r)�

✓
'0(1) +

2e�s+r

1� e�s+r
� 2e�s+r'0(e�s+r)

◆

+
2�em(�s+r)

1� e�s+r

m�1X

i=1

R(s, i)� 2�
m�1X

i=1

R(s, i)
1X

j=m�i

F (j)e(i+j)(�s+r),

which by cancelling the terms � @

@r
G̃(s, r) on both sides can be written as

d

ds
H(s) +H(s)p(s) = q(s),

with H(s) = G̃(s, r),

p(s) = ��
✓
'0(1) +

2e�s+r

1� e�s+r
� 2e�s+r'0(e�s+r)

◆
,

and

q(s) = �

 
2em(�s+r)

1� e�s+r

m�1X

i=1

R(s, i)� 2
m�1X

i=1

R(s, i)
m�1X

j=m�i

F (j)e(i+j)(�s+r)

!
.

The solution of this ODE (see [102] P.8 equation (1.18)) is

H(s) = e�
R s
0 p(h)dh

✓
C +

Z
s

0

q(v)e
R v
0 p(h)dhdv

◆
,

where C is a constant determined by the boundary conditions. Since H(0) = G̃(0, r) =
G(0, er) =

P1
n=m

nern, we have

H(s) = e�
R s
0 p(h)dh

✓
H(0) +

Z
s

0

q(v)e
R v
0 p(h)dhdv

◆
.
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Substituting the expression for p(s) gives

�
Z

s

0

p(h)dh = �

Z
s

0

✓
'0(1) +

2e�h+r

1� e�h+r
� 2e�h+r'0(e�h+r)

◆
dh

= �'0(1)s+ 2

Z
e
�s+r

er

✓
1

1� y
� '0(y)

◆
dy

= �'0(1)s+ 2
�
ln(1� er)� ln(1� er+�s)

�
� 2

�
'(er+�s)� '(er)

�
.

This in turn implies that if we define h(s, x, y) = (1� y)2e�2('(x)�'(y))+�'
0(1)s, then

e�
R s
0 p(h)dh =

(1� er)2

(1� er+�s)2
e�2('(er+�s)�'(er))+�'

0(1)s =
1

(1� er+�s)2
· h(s, er+�s, er).

Define also

q̃(x, y) := 2ym(1� y)
m�1X

i=1

R(ln(y/x)/�, i)� 2(1� y)2
m�1X

i=1

R(ln(y/x)/�, i)
m�1X

j=m�i

F (j)yi+j.

and note that q(v) = q̃(er, er+�v)/(1� er+�v)2. It follows that

G̃(s, r)(1� er+�s)2 = H(s)(1� er+�s)2

= h(s, er+�s, er)

✓
H(0) +

Z
s

0

�q̃(er, er+�v) · 1

h(v, er+�v, er)
dv

◆

= h(s, er+�s, er)

 1X

n=m

nern +

Z 1

e��s

q̃(er, er+�su)

uh(s+ (ln u)/�, er+�su, er)
du

!
.

Substituting t = s and x = er+�s we obtain:

G(t, x)(1� x)2 = h(t, x, xe��t)

 1X

n=m

n(xe��t)n +

Z 1

e��t

q̃(xe��t, xu)

uh(t+ (ln u)/�, xu, xe��t)
du

!

= e�2('(x)�'(xe��t))+�'
0(1)t(xe��t)m

�
m� (m� 1)xe��t

�

+ e�2'(x)x'
0(1)+1

Z 1

e��t

e2'(xu)q̂(t+ (ln u)/�, xu) du, (1.4.7)

where

q̂(s, v) := 2vm�'
0(1)�1(1� v)

m�1X

i=1

R(s, i)� 2(1� v)2
m�1X

i=1

R(s, i)
m�1X

j=m�i

F (j)vi+j�'
0(1)�1.

Now take the limit as x% 1 to obtain:

�(t) := lim
x!1

G(t, x)(1� x)2 (1.4.8)

= e�2('(1)�'(e��t))+�'
0(1)t(e��t)m

�
m� (m� 1)e��t

�
+ e�2'(1)

Z 1

e��t

e2'(u)q̂(t+ (ln u)/�, u) du.
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Finally, to obtain the first statement of the theorem we use a Tauberian theorem to infer
the asymptotic behavior of R(t, n) from that of G(t, x). To this end, define

S(t, x) :=
1X

n=m

(n�R(t, n) + n) xn = �G(t, x) + c · (1� x)mxm + xm+1

(1� x)2
,

where  = (m+ 1)/(m� µ+ 1), c = + 1 and µ = '0(1)� 1. From (1.4.8) we obtain

S(t, x) ⇠ (c� �(t)) 1

(1� x)2
as x% 1.

Moreover, by Lemma 1.4.2 we have that cn � R(t, n) = K(t, n) + n is monotonically
increasing with n, so Theorem 8.3 in [46] yields

K(t, n) + n(c� 1) = cn�R(t, n) ⇠ n (c� �(t)) as n!1,

which implies that

lim
n!1

K(t, n)

n
= 1� �(t) = ↵(t).

To obtain the asymptotic behavior of C(t, n) recall that T ⇤
n
denotes the time of the first

request when we start with n packages arranged on a circle and B is the corresponding
bundle size. Then, use Lemma 1.4.2 to get

C(t, n) = E[B +K(t� T ⇤
n
, n� B)1(T ⇤

n
< t)]

 µ+ E[K(t, n� B)]

= µ+ E[K(t, n� B) + (n� B)]� (n� µ)

 µ+K(t, n) + n� (n� µ) (by Lemma 1.4.2)

 µ+K(t, n) +m. (1.4.9)

Note that the expected number of packages that can be picked up during time �, when the
total number of packages is n, is �n�m, so

K(t+ �, n)  K(t, n) +m�n�. (1.4.10)

Therefore, using Lemma 1.4.2 again and the observation that E[T ⇤
n
] = 1/(�n) (since T ⇤

n
is

exponentially distributed with rate �n), we have

C(t, n) � E[K((t� T ⇤
n
)+, n� B)]

= E[K((t� T ⇤
n
)+, n� B) + (n� B)]� (n� µ)

� E[K((t� T ⇤
n
)+, n�m) + (n�m)]� (n� µ) (by Lemma 1.4.2)

� E[K(t, n�m)�m�(n�m)T ⇤
n
]� (m� µ) (by (1.4.10))

� K(t, n�m)�m�m. (1.4.11)
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Combining (1.4.9) and (1.4.11) we obtain

lim
n!1

C(t, n)
n

= lim
n!1

K(t, n)

n
= ↵(t).

This completes the proof.

The last result in Section 1.3.1.1 is Theorem 3, which gives the convergence rate of
K(t, n)/n to ↵(t). The proof will be based again on the use of a Tauberian theorem, however,
the monotonicity required is more di�cult to verify. To ease the reading of the proof we first
state a couple of preliminary technical results.

Proposition 1.4.3 Define cn(t) = K(t, n) � n↵(t), where ↵(t) is defined as in Theorem 2.
Then, for any t � 0, we have that cn(t) is either: i) bounded, ii) positive and eventually
increasing, or iii) negative and eventually decreasing in n.

Proof. Proof. Define Tn, D(t, n, i) and D̂(t, n, j) as in the proof of Lemma 1.4.2, and
let  = (m+ 1)/(m� µ+ 1). Recall that D(t, n, i) � 0 and D̂(t, n, j) � 0. Next, note that

E[Tn+1] =
1

(n� µ+ 2)�
,

and use equation (1.4.6) to obtain

(n� µ+ 2)K(t, n+ 1)� (n� µ+ 1)K(t, n)

� 2
mX

i=1

f(i)E
⇥
K((t� Tn+1)

+, n+ 1� i)
⇤

� 2
mX

i=1

f(i)
�
E
⇥
K((t� Tn+1)

+, n+ 1�m)
⇤
� (n+ 1�m)

�
+ 2

mX

i=1

f(i)(n+ 1� i)

= 2E
⇥
K((t� Tn+1)

+, n+ 1�m)
⇤
+ 2m� 2µ

� 2E [K(t, n+ 1�m)�m�(n+ 1�m)Tn+1]

� 2K(t, n+ 1�m)� 2m, (1.4.12)

where in the second inequality we used Lemma 1.4.2, and in the third inequality we used
(1.4.10).

To obtain an upper bound note that (1.4.10) also gives

D(t, n, i) = E
⇥
K((t� Tn + Tn � Tn+1)

+, i)�K((t� Tn)
+, i)

⇤

 E [m�i(Tn � Tn+1)] = m�i

✓
1

�(n� µ+ 1)
� 1

�(n� µ+ 2)

◆

=
mi

(n� µ+ 1)(n� µ+ 2)
,
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where we have used the observation that Tn is exponentially distributed with rate �(n�µ+1).
The same arguments also yield

D̂(t, n, j)  mj

(n� µ+ 1)(n� µ+ 2)
.

Substituting these estimates into (1.4.6) now gives

(n� µ+ 2)K(t, n+ 1)� (n� µ+ 1)K(t, n)


n�m+1X

i=1

 
m(i� 1)

(n� µ+ 1)(n� µ+ 2)
+

mX

k=1

f(k)
m(n� i+ 1� k)

(n� µ+ 1)(n� µ+ 2)

!

+
m�1X

i=1

F (i)

✓
m(n� i)

(n� µ+ 1)(n� µ+ 2)
+

mi

(n� µ+ 1)(n� µ+ 2)

◆

+ 2
mX

i=1

f(i)E
⇥
K((t� Tn+1)

+, n� i+ 1)
⇤
+ µ

=
m

(n� µ+ 1)(n� µ+ 2)
((n�m+ 1)(n� µ) + n(m� µ))

+ 2
mX

i=1

f(i)E
⇥
K((t� Tn+1)

+, n� i+ 1) + (n� i+ 1)
⇤
� 2

mX

i=1

f(i)(n� i+ 1) + µ

 m+
nm(m� µ)

(n� µ+ 1)(n� µ+ 2)
+ 2E

⇥
K((t� Tn+1)

+, n) + n
⇤
� 2(n� µ+ 1) + µ

 2K(t, n) + 3m(+ 1), (1.4.13)

where in the second inequality we used Lemma 1.4.2. Hence, combining (1.4.12) and (1.4.13)
we obtain that

2K(t, n+ 1�m)�K(t, n)� 2m  (n� µ+ 2) (K(t, n+ 1)�K(t, n))  K(t, n) + 3m(+ 1).
(1.4.14)

Dividing by n� µ+ 2, taking the limit as n!1, and using Theorem 2, we obtain

↵(t) = lim
n!1

2K(t, n+ 1�m)�K(t, n)

n� µ+ 2
 lim

n!1
(K(t, n+ 1)�K(t, n))  lim

n!1

K(t, n)

n� µ+ 2
= ↵(t).

This in turn implies that
lim
n!1

cn+1(t)� cn(t) = 0 (1.4.15)

for all t � 0. Furthermore, (1.4.14) can be written as:

2cn+1�m(t)� cn(t)� ↵(t)(2m� µ)� 2m

n� µ+ 2
 cn+1(t)�cn(t) 

cn(t) + ↵(t)(µ� 2) + 3m(+ 1)

n� µ+ 2
,
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which combined with (1.4.15) gives that there exists n0 2 N+ such that

cn�m+1(t) � cn(t)�m/2 for all n � n0.

This in turn implies that

cn(t)� ↵(t)(2m� µ)� 3m

n� µ+ 2
 cn+1(t)� cn(t) 

cn(t) + ↵(t)(µ� 2) + 3m(+ 1)

n� µ+ 2

for all n � n0.
To complete the proof, note that if there exists an n0 � n0 such that cn0(t) + ↵(t)(µ �

2) + 3m(+ 1) < 0, then cn0(t) < 0 and cn0+1(t) < cn0(t), which in turn implies that,

cn0+1(t) + ↵(t)(µ� 2) + 3m(+ 1) < cn0(t) + ↵(t)(µ� 2) + 3m(+ 1) < 0.

Iterating in this way we obtain that

cn0+k(t) < cn0+k�1(t) < · · · < cn0(t) < 0

for all k � 1. This gives condition (iii) of the proposition.
Suppose now that there exists n0 � n0 such that cn0(t)�↵(t)(2m�µ)�3m > 0. Similarly

as above, we obtain that cn0(t) > 0 and cn0+1(t) > cn0(t), which in turn implies that,

cn0+1(t)� ↵(t)(2m� µ)� 3m > cn0(t)� ↵(t)(2m� µ)� 3m > 0.

Iterating as before, we obtain that

cn0+k(t) > cn0+k�1(t) > · · · > cn0(t) > 0

for all k � 1. This gives condition (ii) of the proposition.
Finally, neither of the two previous cases occurs we have that

�↵(t)(µ� 2)� 3m(+ 1)  cn(t)  ↵(t)(2m� µ) + 3m

for all n � n0, and condition (i) follows.

The second preliminary result provides the di↵erentiability of the functions that deter-
mine ↵(t).

Lemma 1.4.4 Define

!t(x) := e�2('(x)�'(xe��t))��t(m�'
0(1))xm

�
m� (m� 1)xe��t

�

+ e�2'(x)x'
0(1)+1

Z 1

e��t

e2'(xu)q̂(t+ (ln u)/�, xu) du,
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where

q̂(s, v) := 2vm�'
0(1)�1(1� v)

m�1X

i=1

R(s, i)� 2(1� v)2
m�1X

i=1

R(s, i)
m�1X

j=m�i

F (j)vi+j�'
0(1)�1.

Then, for any fixed t � 0, !t(x) is infinitely di↵erentiable on [0,1) and

sup
0x1

|!00
t
(x)|  HF

for some constant HF <1 that depends only on the distribution F .

Proof. Proof. Start by defining

p(s, v) := q̂(s, v)v'
0(1)+1�m = 2(1� v)

m�1X

i=1

R(s, i)� 2(1� v)2
m�1X

i=1

R(s, i)
i�1X

k=0

F (k � i+m)vk

= 2(1� v)
m�1X

i=1

R(s, i)� 2(1� v)2
m�2X

k=0

vk
m�1X

i=k+1

R(s, i)F (k � i+m) =:
mX

k=0

ck(s)v
k.

(1.4.16)

Note that p(s, v) is a polynomial of order m in v, and x'
0(1)+1q̂(s, xu) = xmu'

0(1)+1�mp(s, xu),
from where it follows that x'

0(1)+1q̂(s, xu) is infinitely di↵erentiable in x on [0,1). Since
'(y) =

P
m�1
i=1 F (i)yi/i is also infinitely di↵erentiable on the real line, then !t(x) is infinitely

di↵erentiable in x on (0,1). Moreover, by writing

!t(x) = a(t)e2('(xe
��t)�'(x))xm � b(t)e2('(xe

��t)�'(x))xm+1

+

Z 1

e��t

e2('(xu)�'(x))
mX

k=0

ck(t+ (ln u)/�)um�'
0(1)�1+kxm+kdu,

with a(t) := me��t(m�'
0(1)) and b(t) := (m� 1)e��t(m�'

0(1)+1), we obtain that

!00
t
(x) = a(t)

@2

@x2
e2('(xe

��t)�'(x))xm � b(t)
@2

@x2
e2('(xe

��t)�'(x))xm+1

+
mX

k=0

Z 1

e��t

ck(t+ (ln u)/�)um�'
0(1)�1+k

@2

@x2
e2('(xu)�'(x))xm+kdu

= a(t)e2('(xe
��t)�'(x))⌫m(x, e

��t)� b(t)e2('(xe
��t)�'(x))⌫m+1(x, e

��t)

+
mX

k=0

Z 1

e��t

ck(t+ (ln u)/�)um�'
0(1)�1+ke2('(xu)�'(x))⌫m+k(x, u) du,

where

⌫k(x, u) = 4('0(xu)u� '0(x))2xk + 4('0(xu)u� '0(x))kxk�11(k � 1)

+ 2('00(xu)u2 � '00(x))xk + k(k � 1)xk�21(k � 2).
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Noting that '(y),'0(y), and '00(y) are all increasing in y, gives that e2('(xu)�'(x))  1 and

|⌫k(x, u)|  4'0(x)2xk + 4'0(x)kxk�11(k � 1) + 2'00(x)xk + k(k � 1)xk�21(k � 2)

 4'0(1)2 + 4'0(1)k + 2'00(1) + k(k � 1) =: Hk,

for all x, u 2 [0, 1], which in turn implies that for any t � 0,

|!00
t
(x)|  a(t)|⌫m(x, e��t)|+ b(t)|⌫m+1(x, e

��t)|+
mX

k=0

Z 1

e��t

|ck(t+ (ln u)/�)⌫m+i(x, u)| du

 a(t)Hm + b(t)Hm+1 +
mX

k=0

Hm+k

Z 1

e��t

|ck(t+ (ln u)/�)| du.

To complete the proof note that a(t)  m and b(t)  m for all t � 0, and from (1.4.16) it
can be verified that:

|ck(s)|  2
m�1X

i=(k�1)_1

R(s, i)  2
m�1X

i=(k�1)_1

i, 0  k  m,

from where we obtain that

|!00
t
(x)|  mHm +mHm+1 + 2

mX

k=0

Hm+k

m�1X

i=(k�1)_1

i =: HF

for all t � 0 and all x 2 [0, 1].

We can now give the proof of Theorem 3.

Proof. Proof of Theorem 3. Fix t and let ↵(t) = ↵(t,�). Define J(t, x) :=
P1

n=m
(K(t, n)�

n↵(t))xn. Recall from the proof of Theorem 2 that G(t, x) =
P1

n=m
R(t, n)xn, and note that

from (1.4.7) we have that

G(t, x)(1� x)2 = !t(x),

where !t(x) is defined in Lemma 1.4.4. Moreover, by Lemma 1.4.4 we have that !t(x) is
infinitely di↵erentiable on (0,1) and satisfies sup0x1 |!00

t
(x)|  HF , for some constant

HF <1, independent of t. Also, by (1.4.8), we have !t(1) = �(t). Next, write J(t, x) as:

J(t, x) = �G(t, x) + �(t)
1X

n=m

nxn =
�(t)� (1� x)2G(t, x)

(1� x)2
+ �(t)

 1X

n=m

nxn � (1� x)�2

!

=
�(t)� !t(x)

(1� x)2
+ �(t)

(1�m)xm+1 +mxm � 1

(1� x)2
.
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Since

lim
x!1

(1�m)xm+1 +mxm � 1

1� x
= �1,

and
!t(x) = �(t) + !0

t
(1)(x� 1) +O

�
(x� 1)2

�
as x% 1,

we have

lim
x%1

(1� x)J(t, x) = lim
x%1

�(t)� !t(x)

1� x
+ �(t)

(1�m)xm+1 +mxm � 1

1� x

= !0
t
(1)� �(t).

Therefore, we have

G
1X

n=0

(K(t, n)� n↵(t)) xn ⇠ !0
t
(1)� �(t)
1� x

as x " 1.

From Proposition 1.4.3, K(t, n) � n↵(t) is either bounded, or eventually negative and de-
creasing, or eventually positive and increasing. If K(t, n)� n↵(t) is bounded, then

����
K(t, n)

n
� ↵(t)

���� = O(n�1) as n!1

and the proof is complete. If K(t, n) � n↵(t) is eventually negative and decreasing, or
eventually positive and increasing, then from the Tauberian Theorem (Theorem 8.3 in [46]),
we have

K(t, n)� n↵(t) ⇠ !0
t
(1)� �(t)

�(1)
,

where �(1) = 0! is the gamma function. It follows that
����
K(t, n)

n
� ↵(t)

���� = O(n�1) as n!1.

To complete the proof, use inequalities (1.4.9) and (1.4.11) to obtain that

K(t, n�m)�m�m  C(t, n)  µ+K(t, n) +m,

where  = (m+ 1)/(m� µ+ 1). and conclude that
����
C(t, n)

n
� ↵(t)

���� = O(n�1) as n!1.

This completes the proofs of the main theoretical results from Section 1.3.1.1. We now
proceed to prove the two lemmas is Section 1.3.2. We start with the proof of Lemma 1.3.2,
which establishes the approximate optimality of ẑ.
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Proof. Proof of Lemma 1.3.2. We start by defining the auxiliary cost function

Cost00
P
(z;x(n))

n
:=

C(T, n,�(z))
n

✓
⇣P +

hP + z

vP

◆✓
r(n)

E[B]
+

L(TSP(x(n)))

n

◆

+
C(T, n,�(z))

n
(hP + z)⌧P +

✓
1� C(T, n,�(z))

n

◆
hV ⌧V

+

✓
⇣V +

hV

vV

◆✓
2(1� C(T, n,�(z))/n)r(n)

V
+
�VRPp

n

p
(1� C(T, n,�(z))/n)A

◆
.

Note that the only di↵erence between Cost00
P
(z;x(n)) and Cost0

P
(z;x(n)) is that we have

replaced C(T, n,�(z))/n with ↵(T,�(z)). Recall that z⇤ = argmin
z
CostP (z;x(n)) and ẑ =

argmin
z
Cost0

P
(z;x(n)). It follows that

0  CostP (ẑ;x(n))

n
� CostP (z⇤;x(n))

n


����
CostP (ẑ;x(n))

n
� Cost00

P
(ẑ;x(n))

n

����+
����
CostP (z⇤;x(n))

n
� Cost00

P
(z⇤;x(n))

n

����

+
Cost00

P
(ẑ;x(n))

n
� Cost00

P
(z⇤;x(n))

n
.

Now note that for any z we have
����
CostP (z;x(n))

n
� Cost00

P
(z;x(n))

n

���� =
✓
⇣V +

hV

vV

◆

⇥
����
1

n
En

⇥
L(CVRP(Y(n)(�)))

⇤
� 2(1� C(T, n,�(z))/n)r(n)

V
� �VRPp

n

p
(1� C(T, n,�(z))/n)A

���� .

Using the deterministic bound
��L(CVRP(y(k)))� 2kr(k)/V

��  L(TSP(y(k))) + 2r(k) for
any k points {y1, . . . ,yk}, regardless of how they are distributed (see Theorem 8 in the
Appendix), and the asymptotic length of an optimal TSP route (see Theorem 9 in the
Appendix), we obtain that

����
CostP (z;x(n))

n
� Cost00

P
(z;x(n))

n

���� 
1

n
En

⇥
L(TSP(Y(n)(�)))

⇤
+O(n�1) = O(n�1/2)

as n!1, uniformly in z. Now use the optimality of ẑ and Theorem 3 to obtain that

Cost00
P
(ẑ;x(n))

n
� Cost00

P
(z⇤;x(n))

n


����
Cost00

P
(ẑ;x(n))

n
� Cost0

P
(ẑ;x(n))

n

����+
����
Cost00

P
(z⇤;x(n))

n
� Cost0

P
(z⇤;x(n))

n

����

+
Cost0

P
(ẑ;x(n))

n
� Cost0

P
(z⇤;x(n))

n


����
Cost00

P
(ẑ;x(n))

n
� Cost0

P
(ẑ;x(n))

n

����+
����
Cost00

P
(z⇤;x(n))

n
� Cost0

P
(z⇤;x(n))

n

���� = O(n�1)
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as n!1. We conclude that

0  CostP (ẑ;x(n))

n
� CostP (z⇤;x(n))

n
 O(n�1/2)

as n!1.

The last proof in the paper is that of Lemma 1.3.3, which compares the expected cost of
of using a strategy which combines private drivers with in-house vans with the strategy of
using only vans.

Proof. Proof of Lemma 1.3.3. To start, use Theorem 8 to obtain that for any z and
� := �(z) we have

CostP (z;x
(n))� CostV (x

(n))

= C(T, n,�)
✓
⇣P +

hP + z

vP

◆✓
r(n)

E[B]
+

1

n
L(TSP(x(n)))

◆

+ C(T, n,�) ((hP + z)⌧P � hV ⌧V )

+

✓
⇣V +

hV

vV

◆�
En

⇥
L(CVRP(Y(n)(�⇤)))

⇤
� L(CVRP(x(n)))

 

 C(T, n,�)
✓✓

⇣P +
hP + z

vP

◆
r⇤

E[B]
+ (hP + z)⌧P � hV ⌧V

◆

+ C(T, n,�)
✓
⇣P +

hP + z

vP

◆✓
r(n)� r⇤

E[B]
+

1

n
L(TSP(x(n)))

◆

+

✓
⇣V +

hV

vV

◆(
En

"
2

 
n� Ñ(T, n,�)

V
+ 1

!
R(n� Ñ(T, n,�)) + L(TSP(Y(n)(�)))

#

�max

⇢
2nr(n)

V
, L(TSP(x(n)))

��
,

where R(n� Ñ(T, n,�)) = (n� Ñ(T, n,�))�1
P

n�Ñ(T,n,�)
i=1 d(Yi,0). Next, divide by n, take
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Now use Theorem 9 to obtain that

0  lim sup
n!1

En


L(TSP(Y(n)(�)))

n

�
 lim sup

n!1

L(TSP(x(n)))

n
= 0 a.s.

Moreover, since packages are arranged on a circle at the beginning of the day, they are
all equally likely to be undelivered by time T , and their specific location is independent of
Ñ(T, n,�) (note that the {Yi}may not be independent though). Hence, En[d(Yi,0)|Ñ(T, n,�)] =
r(n), which combined with Theorem 3 gives
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where ⇢ := supx2R d(x,0) is the radius of the bounded region R ✓ R2.
We conclude that
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1.5 Numerical Experiments.

This section provides numerical examples illustrating the computational e↵ort of implement-
ing our proposed strategy, the calibration of the parameters, as well as a cost-benefit analysis.
Specifically, we focus on the following:

• Choosing the parameters: in particular, how to estimate the costs needed for the
formulation of the optimization problem in Section 1.3.2, for which we cite empirical
studies in the transportation literature.
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• Numerical case studies: including a full implementation of our proposed strategy under
two di↵erent choices for the distribution of package destinations.

• Cost-benefit analysis: a comparison between the proposed strategy that uses a combi-
nation of private drivers with an in-house van delivery system, and a more traditional
van-only strategy.

• Justification of the mathematical assumptions: in particular, of how using ẑ = argmin
z
Cost0

P
(z;x(n))

as an approximation for z⇤ = argmin
z
CostP (z;x(n)) has no significant impact on the

optimal cost, and how requiring drivers to pick up packages that are adjacent in the
TSP route is not too restrictive.

1.5.1 Parameters.

The parameter estimation mostly follows the sources used in [88].

Parameters related to vans: The parameters that need to be estimated are: ⇣V , the per-
mile transportation cost; hV , the opportunity cost for van drivers; vV , the average speed
of a delivery van; V , the van capacity; and ⌧V , the end-point delivery time for vans. To
compute ⇣V we use the average diesel price in the U.S. for 2017 (taken from the web), and
the estimated maintenance and depreciation costs used in [65] and [10], respectively. In
particular, the average diesel price in the U.S. for 2017 was $2.540 per gallon and the fuel
e�ciency of a UPS van is 10.6 miles per gallon of diesel, which gives a fuel cost for vans of
$0.25 per mile. The maintenance cost for vans was computed in [65] to be $0.152 per mile
in 2009, and the depreciation cost of a van under city driving conditions was computed in
[10] to be $0.081 per mile in 2003. Adjusting for an annual inflation of 2.5%, we compute a
van’s per mile cost to be:

⇣V = 0.25 + 0.152⇥ (1.025)8 + 0.081⇥ (1.025)14 = 0.550.

To estimate hV , we use that a van driver’s wage was approximately $30 per hour [10] in
2003, so the inflation-adjusted wage in 2017 is

hV = 30⇥ (1.025)14 = 42.389.

The average speed of a UPS van was estimated in [65] to be vV = 24.1 miles/hour. We use
an average van capacity of V = 200 packages as in [88], which corresponds to a van capacity
of 2,000 kg and an average package weight of 10 kg. Finally, for the end-point delivery time
we use ⌧V = 97 seconds as estimated in [88].

Parameters related to private cars: The parameters related to private cars that need to
be estimated are: ⇣P , the per-mile transportation cost; vP , the average speed; and hP , the
opportunity cost for private drivers (Uber/Lyft drivers). For the end-point delivery time
for drivers we simply use ⌧P = ⌧V . To estimate ⇣P we use the estimated hourly expenses
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for part-time Uber drivers computed in Table 6 of [49], which after taking the average over
vehicle types gives $3.84 per hour. Also, we use an average speed for cars in U.S. cities of
vP = 29.9 miles per hour (http://infinitemonkeycorps.net/projects/cityspeed/), which yields
a per mile cost of

⇣P =
3.84

29.9
= 0.1284.

To estimate hP note that the average gross income per hour of an Uber driver is given by
hP + ⇣PvP , which in [49] was estimated to be $19.35 per hour in 2015. After adjusting for
inflation we obtain that hP + ⇣PvP = 19.35 ⇥ (1.025)2 = 20.33, and therefore, the per hour
opportunity cost is

hP = 20.33� 0.1284⇥ 29.9 = 16.49.

Remark 1.5.1 Using the parameters for the vans and private drivers discussed above, we
have ⇣P + hP/vP = 0.68, hP = 16.49, ⇣V + hV

vV
= 2.31, hV = 42.389, and ⌧V = ⌧P = 0.0269

(= 97s). Note that all of these were estimated for an average U.S. city, and are therefore
fairly robust to where the strategy is deployed. However, the values of average distance to
the depot, r⇤, and the mean bundle size, E[B], are strongly related to the specific region, and
will significantly impact the amount of possible improvement with the use of the new strategy.
In terms of r⇤ and E[B], the su�cient condition in Lemma 1.3.3 ensuring that our mixed
strategy is better than the van-only strategy becomes:

0.023r⇤ � 0.635
r⇤

E[B]
+ 0.698 > 0.

Arrival rate and bundle size distribution: Since we were unable to find any references
quantifying the relationship between incentives and the supply of private drivers, as well
as for the preferences on the number of packages that private drivers may want to de-
liver, our choices of �(z) and F are somewhat arbitrary. For the first one we assume
a linear relationship of the form �(z) = b + az, and estimate a and b using data for
Uber and Lyft drivers that has been collected for transporting people (not packages). Let
s(w) = b0 + a0w denote the supply of Uber drivers in the San Francisco area (about
50 square miles) when the average revenue per unit of time is w. To fit the values of
(a0, b0) we found at http://www.govtech.com/question-of-the-day/Question-of-the-Day-for-
061917.html that ride-sharing companies make about 170,000 trips on an average weekday
in the San Francisco area (about 50 square miles) and Uber’s market share was about 3 times
that of Lyft in 2017 (https://www.recode.net/2017/8/31/16227670/uber-lyft-market-share-
deleteuber-decline-users), so if we assume that the active operation time is 18 hours, then
Uber’s average number of trips per hour in the San Francisco area is 7083. Using as a base
revenue of w0 = 20.33 dollars per hour, we obtain that s(w0) = 7083. According to the work
done by Hall et al. [50], the supply of Uber drivers doubles when the surge pricing increases
the wage per hour from w0 to 1.8w0, which gives s(1.8w0) = 14166, and we obtain a0 = 435.50
and b0 = �1770.75. Since the wage w and the incentive rate z are linearly related (w = z +
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hP+⇣PvP ), it follows from the linearity of �(z) that the total number of Uber drivers willing to
deliver packages instead of transporting passengers is a linear function of s(w). Furthermore,
we assume that at the base revenue per hour w0, only 10% of the Uber drivers would be in-
terested in delivering packages3, which gives n�(0) = 4000�(0) = 0.1s(w0), while at the surge
pricing rate 1.8w0 we expect almost all Uber drivers to prefer the delivery of packages, which
yields n�(1.8w0 � hP � ⇣PvP ) = n�(16.26) = s(1.8w0). To estimate n, we used the fact that
there are around 356,916 households in San Francisco (https://datausa.io/profile/geo/san-
francisco-ca/#housing), and the average online shopping frequency in 2017 was around
21 times per year (https://www.statista.com/statistics/448659/online-shopping-frequency-
usa/), so we use n = 356916⇥ 21/365 = 20535. Hence, we obtain

�(z) = 0.03 + 0.04z.

For the distribution of bundles, we assume that F is has the following distribution:

P (B = k) =

 
20X

i=1

e�10(10)i/i!

!�1
e�10(10)k

k!
, k = 1, 2, . . . , 20,

which corresponds to a Poisson distribution with mean 10 packages conditioned on taking
values on {1, 2, . . . , 20}.

Table 1.1 lists the parameters we use in both of the numerical experiments in the following
section. We target a region of size 5 miles⇥ 5 miles with a total number of packages n = 2000.

Table 1.1: Parameters.

Parameter Value
Total number of packages n 2000
Bundle size distribution F Poisson(10), conditioned in {1, 2, . . . , 20}
Requests arrival rate � � = 0.03 + 0.04z
Delivery time window [0, T ] 8h
Area of the square region A 25 square miles

1.5.2 Case studies.

To illustrate the impact that the distribution of the package destinations over the service
region may have, we consider two di↵erent cases, one where the destinations are uniformly
distributed throughout a square region, and another one where we can identify three di↵erent
clusters in the same square region. For both cases we use a total of 2000 packages, and we
sample independently their destinations using stochastic simulation. We then solve (1.3.13)
and compute the optimal incentive rate ẑ. To solve the TSP we used Concorde implemented
in R, and for the CVRP we used VRPH 1.0.0. Throughout all our computations we use the
L1 distance.
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Figure 1.3: Objective function (1.3.13) for 2000 packages uniformly distributed over a square
region. Di↵erent colors represent di↵erent realizations of package destinations.

1.5.2.1 Case 1: Packages distributed uniformly over a square region.

Note that the objective function (1.3.13) depends on the specific package destinations x(n) =
{x1, . . . ,xn} only through the length of the TSP route, L(TSP), and the average long-haul
distance r(n). For n = 2000, the di↵erences from one realization to another are very small,
as shown in Figure 1.3.

Next, we used stochastic simulation to generate a single realization of the package des-
tinations x

(n) along with its corresponding package pick-up process. More precisely, we
simulated the n = 2000 independent Poisson processes with rate �(ẑ), where ẑ = 1.11 solves
(1.3.13), during the time window [0, T ], T = 8 hours, so the profit rate is 17.6 per hour.
We then computed an optimal CVRP route on the leftover packages. To compare the new
mixed strategy with the van-only strategy we also computed the length of an optimal CVRP
route on the original 2000 packages. Figure 1.4a shows an optimal TSP route of length
L(TSP)= 207.81 miles, solved using Concorde, while Figure 1.4b shows an optimal CVRP
route of length L(CVRP)= 222.83 miles, solved using VRPH 1.0.0. Both routes are for the
original 2000 packages, with the latter needed for the van-only strategy.

Using the simulated CVRP route from Figure 1.4b we computed the cost of the van-only
strategy to be:

L(CVRP(x(n)))

✓
⇣V +

hV

vV

◆
+ nhV ⌧V = 222.83(2.309) + 2000(42.389)(97/3600) = $2798.81.

For our proposed mixed strategy, we computed an optimal CVRP route for the leftover
packages at time T , which in the simulation run we did had 554 packages and a length
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(a) Optimal TSP route solved using Concorde
in less than 3 seconds. Length = 207.81 miles.
This computation is needed for the mixed strat-
egy.

(b) Optimal CVRP route solved using VRPH
1.0.0 in less than 60 seconds. Length = 222.83
miles. This computation is needed for the van-
only strategy.

Figure 1.4: Optimal TSP and CVRP routes for 2000 packages uniformly distributed on a
5⇥ 5 square miles region.

of 96.07 miles (see Figure 1.5). We then computed the total cost for delivering the 2000
packages, which was computed to be $1888.26. The improvement compared to the van-only
strategy was 32.53%.

Figure 1.5: Optimal CVRP route for 554 leftover packages solved using VRPH 1.0.0. Length
= 96.07 miles.
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To show how our methodology scales with the number of packages, we repeated the
process described above for di↵erent values of the number of packages n. As Table 1.2 shows,
in all cases the improvement of the mixed strategy compared to the van-only strategy was
between 31% and 33%, indicating the consistency and scalability of our proposed strategy.

Table 1.2: Improvements with di↵erent number of packages

Number of packages Optimal incentive rate Improvement
600 1.22 31.93%
1000 1.17 32.01%
1500 1.15 32.15%
2000 1.13 32.40%
3000 1.11 32.70%

1.5.2.2 Case 2: Packages distributed in three clusters over a square region.

For this numerical experiment we consider a more realistic scenario where packages are
clustered within the service region. To simulate the package destinations we generated 2000
data points according to the following method:

• 500 packages uniformly distributed in a 5⇥ 5 square;

• 700 packages uniformly distributed in the ellipse (x�1.5)2

1.22 + (y�4)2

12 = 1;

• 500 packages uniformly distributed in the ellipse (x�3.8)2

0.82 + (y�3.3)2

1.22 = 1;

• 300 packages uniformly distributed in the ellipse (x�2.5)2

1.22 + (y�1.4)2

12 = 1.

Figure 1.6 plots the objective function (1.3.13) for di↵erent realizations of the package
destinations x

(n). Note that since the data is clustered around three centers, the typical
distance between points is smaller, which yields a smaller expected cost for the same number
of packages as in Case 1.

Following the same methodology as in Case 1, we computed optimal TSP and CVRP
routes on the same single realization of package destinations, as depicted by Figures 1.7a and
1.7b, respectively. The total lengths for the routes were L(TSP) = 176.61 miles and L(CVRP)
= 193.23 miles, respectively. The total cost for the van-only strategy was computed to be

L(CVRP(x(n)))

✓
⇣V +

hV

vV

◆
+ nhV ⌧V = 193.23(2.309) + 2000(42.389)(97/3600) = $2730.46.

We also computed the optimal solution ẑ = 1.21 to (1.3.13) and the corresponding rate �(ẑ),
and used it to simulate the package pick up process. A single simulation run yielded a total
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Figure 1.6: Objective function (1.3.13) for 2000 packages distributed in three clusters. Dif-
ferent colors represent di↵erent realizations of package destinations.

of 531 leftover packages, an optimal CVRP route of length 81.36 miles, and a total cost of
$1829.31 (see Figure 1.10). Therefore, the improvement of the mixed strategy compared to
the van-only strategy was 33.00%.

1.5.2.3 Case 3: Empirical data.

Here we study a real dataset from a well-known delivery company in China. Fig 1.9 shows the
distribution of 6312 packages over a 5.30⇥ 5.30 square miles region. The optimal incentive
rate is 1.07. Following the same methodology as in Case 1, we computed optimal TSP and
CVRP routes, as depicted by Figures 1.9a and 1.9b, respectively. The total lengths for the
routes were L(TSP) = 265.92 miles and L(CVRP) = 378.48 miles, respectively. The total
cost for the van-only strategy was computed to be

L(CVRP(x(n)))

✓
⇣V +

hV

vV

◆
+ nhV ⌧V = 378.48(2.309) + 6312(42.389)(97/3600) = $8083.15.

We also computed the optimal solution ẑ = 1.07 to (1.3.13) so the profit rate is $17.56 per
hour, and used it to simulate the package pick up process. A single simulation run yielded a
total of 1744 leftover packages, an optimal CVRP route of length 81.36 miles, and a total cost
of $5592.19 (see Figure 1.10). Therefore, the improvement of the mixed strategy compared
to the van-only strategy was 30.82%.
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(a) Optimal TSP route solved using Concorde
in less than 3 seconds. Length = 176.61 miles.
This computation is needed for the mixed strat-
egy.

(b) Optimal CVRP route solved using
VRPH1.0.0 in less than 60 seconds. Length =
193.23 miles. This computation is needed for
the van-only strategy.

Figure 1.7: Optimal TSP and CVRP routes for 2000 packages distributed in three clusters
over a 5⇥ 5 square miles region.

Figure 1.8: Optimal CVRP route for 531 leftover packages solved using VRPH 1.0.0. Length
= 81.36 miles.
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(a) Optimal TSP route solved using Concorde
in less than 30 seconds. Length = 265.92 miles.
This computation is needed for the mixed strat-
egy.

(b) Optimal CVRP route solved using
VRPH1.0.0 in less than 6 minutes. Length =
378.48 miles. This computation is needed for
the van-only strategy.

Figure 1.9: Optimal TSP and CVRP routes for 6312 packages distributed in three clusters
over a 5.30⇥ 5.30 square miles region.

Figure 1.10: Optimal CVRP route for 1744 leftover packages solved using VRPH 1.0.0.
Length = 169.70 miles.
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Table 1.3: Approximation accuracy and computational cost

Number of packages C(t, n,�)/n |↵(t,�)� C(t, n,�)|/n Computing time (sec)
100 0.7028 0.0257 < 0.1
300 0.7199 0.0086 0.3396
1000 0.7259 0.0026 6.8489
2000 0.7272 0.0013 44.2113
5000 0.7280 0.0005 629.8755
8000 0.7282 0.0003 2.5436e+03
15000 0.7283 0.0002 1.6490e+04

1.5.3 Approximation accuracy and computational cost.

In Table 1.3, we list values of C(t, n,�)/n (with t = 8h, � = 0.0728) and compare them to
the limit ↵(t,�) = 0.7285. The corresponding computational time for di↵erent values of n,
ranging from 100 to 15,000, is also recorded. We notice that computing C(t, n,�)/n using
Proposition 1.3.1 costs more than 4 hours for n = 15, 000. However, it takes less than 0.1s
to compute ↵(t,�) using Theorem 2, and it provides a very good approximation.

As mentioned in Section 1.3.2, we are approximating the optimal incentive rate z⇤ that we
o↵er to private drivers by using ẑ = argmin

z
Cost0

P
(z;x(n)). To illustrate that this approach

not only works asymptotically, but also numerically, we compute here using discrete event
simulation the true cost function CostP (z;x(n)) and compare the cost reductions achieved by
using ẑ vs. z⇤. To do this, we generated a set of destinations {x1, . . . ,x(n)} and computed
the corresponding ẑ. Then, we chose 30 di↵erent values of z in a neighborhood of ẑ (includ-
ing ẑ) and ran 100 simulation runs for each of them to compute CostP (z;x(n)). We then
used these simulated values to determine the minimum cost CostP (z⇤;x(n)) and compared
it to CostP (ẑ;x(n)). Our results are included in Table 1.4. As we can see, the values of
CostP (ẑ;x(n)) and CostP (z⇤;x(n)) are very close to each other.

Table 1.4: Gap between the expected cost of using the approximately optimal incentive rate
ẑ vs. the true optimal incentive rate z⇤.

Number of packages CostP (ẑ;x(n)) CostP (z⇤;x(n))
600 653.05 652.54
1000 1032.07 1030.82
1500 1475.73 1473.23
2000 1905.45 1901.30
3000 2755.78 2750.36



CHAPTER 1. LAST-MILE SHARED DELIVERY: A DISCRETE SEQUENTIAL
PACKING APPROACH 55

1.5.4 Loss due to the TSP assumption.

One of the key features of our framework is that it identifies the package destinations on the
2-dimensional planes with points, first along a circle and then along a line, using an optimal
solution to the TSP. Although it is precisely this approach that allows us to analyze the
expected number of picked-up packages during [0, T ], it is perhaps also the most restrictive
assumption we make from a practical point of view since it constraints bundles to be segments
of the TSP route. Hence, our definition of bundles leaves open the possibility that a driver’s
bundle request is rejected even if there are enough nearby packages that could have been
picked up but that are not adjacent to each other in the TSP route. To address this possibility
we have conducted numerical experiments where we relax our definition of bundle to allow
packages to be near each other but not necessarily adjacent in the TSP route, and we count
how many times during [0, T ] we reject bundle requests because the required segment of the
TSP route is no longer available even though there are enough nearby packages for the driver
to pick up.

Our experiments consist of two sets of simulations, one where we count the proportion of
rejected bundle requests due to our TSP assumption, and one where we relax our definition
of bundle and compute the resulting cost. Recall that a bundle of size k at location i in our
framework consists of the packages {i, i+1, . . . , i+k� i} along the TSP route, and a request
that arrives to find that at least one of the packages in its bundle is no longer available
is “rejected”. Define r to be the radius of acceptable neighborhoods, where acceptable
means that package destinations lying within the circle of radius r centered at location i are
considered to be close to each other. A “loss” in the first simulation occurs when a bundle
request of size k at location i arrives to find that at least one package in {i, i+1, . . . , i+k�1}
is unavailable, say 1  q  k are unavailable, but the acceptable neighborhood centered at
i contains at least q other packages that could have been used to complete the bundle. We
then count the “losses” and compute the “loss rate” defined as:

Loss rate =
Number of “losses” in [0, T ]

Number of “rejections” in [0, T ]
.

In the second simulation we consider the same setup as above, however, if a request
for a bundle of size k at location i arrives and finds that at least one of the packages in
{i, i+1, . . . , i+ k� 1} is unavailable, say 1  q  k are unavailable, we attempt to complete
the bundle with available packages within its acceptable neighborhood. If it is possible to
find q additional packages, we choose the closest ones to location i and allow the driver to
pick up the completed bundle; if not, we reject the request. We continue the simulation until
time T and then compute the cost of delivering all n packages according to our framework,
i.e., using the pricing scheme based on our estimates for the expected number of packages
that can be picked up during [0, T ] using the TSP route.

Our results for both sets of simulations are given in Table 1.5 for various choices of r. We
chose n = 3000 packages and r 2 {0.05, 0.08, 0.09, 0.12, 0.15}, which correspond to the 25%
quantile, median, mean, 75% quantile, and 85% quantile, respectively, of the distribution of
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the neighboring distance along the initial TSP route; for each r we ran the simulation 50
independent times. The second column refers to the first experiment, where we only identify
the “losses” but keep the “rejections” as in our original framework; the third column refers
to the second experiment where we allow the drivers to pick up relaxed bundles; the fourth
gives the di↵erence in cost (%) between the relaxed policy and the original policy, whose total
cost was 2,755.78. As we can see, the di↵erence in the total cost for delivering n packages
between the two approaches is very small, and therefore, our narrow definition of bundles
based on the TSP route has minimal influence in the total cost of our proposed approach.

Table 1.5: Simulated results for di↵erent choices of r.

Loss rate Total cost Di↵erence
r (original) (relaxed) in cost (%)

0.05 0.54% 2754.98 0.03%
0.08 1.20% 2753.29 0.09%
0.09 1.44% 2752.35 0.12%
0.12 2.89% 2751.63 0.15%
0.15 4.46% 2745.19 0.38%
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Chapter 2

Sequential choice bandits: Learning

with marketing fatigue

2.1 Introduction.

Service providers and retailers routinely rely on emails and app notifications to interact with
their users. When done well, these messages act as digital reminders that increase cus-
tomer engagement, raise brand awareness and conversion. However, frequent messaging can
easily backfire. Marketing fatigue, which refers to an overexposure to unwanted marketing
messages, could aggravate users and prompt them to forgo receipt of future messages by
unsubscribing or deleting the app.

Motivated by this dilemma, we consider a setting where a platform needs to dynamically
determine a sequence of messages for its users. The messages are presented to a user se-
quentially. Upon reviewing a message, a user can either accept or reject the message. The
platform earns a reward when a message is accepted. If the user rejects the message, she
then decides to either receive the next message unless the sequence runs out, or abandon
the platform. If a user abandons, the platform incurs a penalty cost from losing that user.
The objective of the platform is to maximize its expected payo↵ which is the reward after
subtracting the penalty cost due to abandonment.

To draw a connection between this problem and the earlier motivating example, messages
can represent digital marketing content such as an email or app notification regarding a
product or service that a marketer wishes to recommend. The marketer earns revenue
whenever a user clicks on the content. It is an indication that the content is of interest to
that user. On the other hand, when the user is not interested in the content, there is a
possibility that she will unsubscribe from the email list or delete the app. In fact, 66% of
responders of a recent survey4 cited frequent and irrelevant messaging as the main reasons
behind unsubscribing from mailing lists. The abandonment cost in our problem can be
viewed as the cost of user acquisition as the marketer replenishes his user base. Based on a
Harvard Business Review article5, the cost of customer acquisition is estimated to be 5 to
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25 times higher than keeping an existing customer. Therefore, fatigue control is a critical
component of digital marketing content dissemination.

In this work, we investigate the platform’s problem in an online learning framework. More
specifically, the platform optimizes its cumulative payo↵ which includes the abandonment
cost over a horizon of length T by o↵ering sequences of messages to its users. By observing
users’ feedback, the platform learns two pieces of information to improve its decisions, i.e.,
messages’ attractiveness and users’ abandonment behavior. The former measures the rele-
vance of a message to a user, while the latter quantifies users’ tolerance towards irrelevant
messages in terms of how likely one will abandon the platform upon receiving unsatisfactory
messages. We refer to the online learning task that the platform faces as the sequential choice
bandit (SC-Bandit) problem. We first analyze the non-contextual SC-Bandit setting, where
the optimal strategy is a static sequence for all users. Next, we move onto the contextual
SC-Bandit setting where, message features and user features are incorporated to enable per-
sonalized recommendation. For both settings, we design a learning algorithm, and evaluate
its performance by analyzing its regret, which measures the di↵erence between the maximum
payo↵ the platform could have obtained had it known all the underlying parameters and the
accumulated reward under the proposed algorithm.

A common assumption used in the academic literature for online learning is that users’
interactions with a platform are instantaneous. Algorithms then apply learning from preced-
ing users to subsequent users as decisions for di↵erent users do not overlap. The resulting
recommendation for an individual user is hence static. In reality, a user may engage with
a platform for some period of time. As new users continue to arrive, there could be mul-
tiple users interacting with the platform at each moment. This is the setting that we are
analyzing in this work, which makes a significant departure from the existing literature. For
each user, our learning algorithm dynamically updates and adjusts her sequence of recom-
mendations, taking into account of what has been previously shown to avoid duplication.
The interwoven events (e.g., arrival of new users and existing users on the platform) along
with the sequential and adaptive nature of decisions significantly complicate the analysis of
the SC-Bandit problem. In addition, incorporating user’s abandonment behavior leads to
incomplete feedback that further increases the complexity of the analysis, as users’ responses
are not guaranteed due to abandonment. The main contribution of our work is summarized
as follows:

1. Novel formulation We propose a novel sequential choice model which extends the pop-
ular cascading model6 to capture a user’s interactions with a platform, and model the
e↵ect of marketing fatigue with a very general abandonment distribution. To the best
of our knowledge, our paper is the first to analyze adaptive algorithms for sequential
recommendation in an online setting.

2. E�cient o✏ine algorithm Even in the o✏ine setting where attraction probabilities of
messages and users’ abandonment behavior are known, the optimization problem to
determine an optimal sequence to recommend is combinatorial in nature without an
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obvious e�cient algorithm. We provide a polynomial-time algorithm that determines
the optimal sequence.

3. Analysis on non-contextual SC-Bandit In the online setting where message attractive-
ness and abandonment behavior are unknown, we propose a learning algorithm which
simultaneously explores and exploits. The algorithm yields a sequence of messages for
every user and is updated at every time step. We show that its regret is bounded
above by O(

p
NMT log T ), where N is the number of available messages and M is the

maximum number of messages that can be sent to a user.

4. Analysis on contextual SC-Bandit We extend the non-contextual SC-Bandit prob-
lem to enable personalized recommendation by incorporating features. As we ob-
serve binary feedback (i.e., click, or abandon), we model message attractiveness and
abandonment behavior as a generalized linear function of the message feature and
user feature respectively. To the best of our knowledge, we are the first to ana-
lyze contextual cascading bandits with generalized linear reward function. We pro-
pose a contextual SC-bandit algorithm and prove that its regret is bounded above by

M
⇣p

dXT log T log(T/dX) +
p

dZT log T log(NT/dZ)
⌘
where dX and dZ refer to the

dimensions of user feature and message feature respectively.

5. Numerical studies In addition to using synthetic data to study the robustness of our
algorithms, we also perform experiments using real-world data from a large e-commerce
website. The dataset reveals di↵erent abandonment behavior across users, highlighting
the benefit of contextual learning. Using the data, we evaluate the performance of our
algorithms for both the contextual and non-contextual settings.

The paper is organized as follows. We review the related literature in Section 2.2. In
Section 2.3, we introduce our model, and derive the optimal solution to the o✏ine problem.
We begin the analysis of the online problem in Section 2.4, where we propose a learning
algorithm to the non-contextual SC-Bandit problem and characterize its regret bound. Con-
textual SC-Bandit problem is analyzed in Section 2.5. We evaluate the performance of our
algorithms with both synthetic and real-world data in Section 2.6. Finally, we conclude the
paper in Section 2.7. For the key technical results in the paper, we include proof sketches in
the main body of the paper. Detailed proofs can be found in the Appendix.

2.2 Literature Review.

Our work is closely related to four streams of academic literature, namely, multi-armed
bandits, learning to rank applications, assortment optimization, and studies on marketing
fatigue.
Multi-armed bandits (MAB) There has been a plethora of work on MAB and its variants
(e.g., [96, 108, 90, 107]). The trade-o↵ between exploration and exploitation is a central



CHAPTER 2. SEQUENTIAL CHOICE BANDITS: LEARNING WITH MARKETING
FATIGUE 60

problem in many di↵erent communities. Our problem can be viewed as a combinatorial
bandit problem where a platform chooses a set of messages to be displayed in a certain
order. A naive approach is to treat each possible combination with a specific order as an arm.
However, the number of arms increases exponentially with the number of messages under this
approach. Other combinatorial bandit work assuming linear reward [9, 99] or independent
rewards [20] cannot be directly applied to our model, as our rewards are dependent on the
order of the actions (i.e., the order in which the messages are being sent).

A popular variant of MAB is the contextual bandit problem, which has been applied in
a deluge of applications such as recommender systems, search engines and dynamic pricing
(e.g., [4, 69, 70, 89]). A common assumption for contextual bandit is that the expected
reward is a linear function of features [24, 2, 83]. In our setup, as the platform only observes
binary feedback (i.e., whether a user accepts a message, and whether a user abandons the
platform), we assume the expected reward follows a logit function of features, as in gener-
alized linear bandit problems [70, 41]. In addition, we also consider sequential interactions
with adaptive recommendation and users’ abandonment behavior.
Learning to rank Our work adds to the large body of literature on learning to rank algo-
rithms, motivated by applications in recommendation systems, web search and information
retrieval. Depending on the choice of the underlying click models which describe users’
feedback through clicks (see [25] for an overview), di↵erent algorithms have been proposed.
Our setting is based on the cascade model, which is arguably one of the most popular click
models [33]. It assumes that users examine the results sequentially and click on the first
relevant recommendation. The probability of a click depends on the relevance of a result,
as well as the irrelevance of all previous results; hence the name. Recently, [61, 62, 31, 72,
23] investigate this model in an online setting, which they refer to as the cascading bandits.
Their task is to learn the attraction probabilities of messages and select m messages, where
m is an exogenous parameter. [72, 116, 71, 22] further study contextual cascading bandits.
Compared to the previous works on cascading bandits, there are three key di↵erences in our
setting: 1) Instead of providing a fixed sequence of messages, our content recommendation
is dynamic and adaptive based on the feedback; 2) Besides learning attraction probabilities
of messages, we also need to learn users’ abandonment behavior. By allowing abandonment,
the order of the messages becomes critical, as a user might leave early before she sees the
message that she would otherwise have clicked. This addresses one key criticism of the
cascade model, where the order of the messages does not matter, since a user views the
recommendations sequentially until she finds something she likes or the list runs out [64,
58]; 3) As abandonment incurs costs, the total length of the sequence m is also a decision
variable in our setting, as opposed to a fixed parameter in the existing cascading bandits.
Compared to the contextual cascading bandits, besides the aforementioned di↵erences, our
reward function is generalized linear function instead of linear relationship, which is a more
general function class.
Assortment optimization Assortment optimization refers to the problem of selecting a
set of products to o↵er to a group of customers so as to maximize the revenue that is realized
when customers make purchases according to their preferences. It is a central topic in the
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operations management literature. We refer the reader to [57] for a comprehensive review.
[109] formulate the assortment planning problem by using a multinomial logit model [112,
73] to describe user behavior.

More recent literature such as [17, 98, 5, 6, 22] combine learning with the assortment
problem, as customer preferences are unknown a priori and need to be learned. Our work
can be viewed as a dynamic assortment problem to determine a set of messages with a
specific order. Existing dynamic assortment problems typically model a single interaction
between the platform and a user, who can either choose an item from the assortment or
leave without a purchase. In contrast, our model captures multiple interactions between a
user and a platform, where the sequential nature of the decision-making plays a crucial role
in the analysis.
Marketing fatigue It is a well-documented phenomenon in marketing that “more” is not
necessarily “better”, as the benefits of a marketing campaign are not in fact purely increas-
ing with the number of messages sent [106]. Some work contributes customer dissatisfaction
to information overload which occurs when individuals receive more information than they
can process, and proposes countermeasure to control the flow of information (e.g., [21]). [16]
and [3] study the relationship between overexposure of marketing content and customer dis-
satisfaction to explain the “Groupon e↵ect”, in which viral marketing via Groupon coupons
leads to lower Yelp ratings.

One of the consequences of marketing fatigue is user abandonment. Some recent work
such as [103] combines both online learning with abandonment behavior. In their setting,
a user has a threshold drawn from an unknown distribution and she abandons if the plat-
form’s action x exceeds that threshold. The platform needs to learn the distribution while
optimizing x to maximize its discounted reward. One of our key di↵erentiators is how we
model abandonment in the presence of sequential behavior. The decision to abandon is an
interplay of the relevance of the messages, the order of these message in a sequence and a
user’s tolerance towards unsatisfactory content. [11] focuses on the recommendation task in
a setting where little is known about incoming customers. They provide empirical evidences
of customer disengagement based on ad campaign data and propose a modified learning algo-
rithm which constrains the search space to avoid over-exploration. In contrast to providing
a single recommendation at every time step in their setting, multiple interactions could take
place for several users in our work. Moreover, while the parameters describing abandonment
behavior are given in [11], they need to be learned in our setting.

2.3 Problem Setup.

In this section, we formally introduce our model. Next, we characterize the optimal strategy
of the platform in the o✏ine setting where all the problem parameters are known.
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2.3.1 Model.

Assume there are N di↵erent messages for the platform to choose from. Define the set of
these N messages as X. We use ui to denote the attractiveness of message i to a user, which
is also known as the attraction probability [61], where 0  ui < 1. It is the probability that
a user finds the content of message i relevant and interesting, reflecting her preferences.

Users arrive at time t = 1, · · · , T . For each user, the platform determines a sequence of
messages S = (S1, S2, · · · , Sm), where Si denotes the message ranked in the ith position and
m denotes the total length of the sequence. We assume that at most M messages will be
sent to a single user, i.e., m M , potentially due to operational or budget constraints. The
maximum value that M can take is N . We use I(·) to denote the index function that maps
the position in a sequence to the message content, i.e., I(i) = k if and only if Si = k.

Messages are displayed sequentially to a user. When a user accepts 7 the first message that
she is satisfied with, no further messages will be shown to her and the platform earns a reward
of 1. Whenever a message is rejected (non-click), we consider its content unsatisfactory or
not attractive, as they are not of su�cient interest to the user. When that happens, the user
can either choose to abandon the platform (e.g. unsubscribe the promotion email), or see
the next message unless the sequence has run out. The platform incurs a penalty cost of c
when a user abandons, which can be viewed as the cost of user acquisition as the marketer
replenishes his user base.
Abandonment behavior under marketing fatigue We model users’ abandonment be-
havior by a random variable W , drawn from a distribution F . W can be viewed as a proxy
for a user’s tolerance towards irrelevant recommendation, which measures the maximum
number of unsatisfactory messages before triggering abandonment. That is, the probability
of abandonment upon receiving the kth unsatisfactory message is P (W = k). Similarly,
the probability that a user has not abandoned after viewing k unsatisfactory messages is
P (W > k).

Given a sequence of messages S = (S1, S2, · · · , Sm), define Pa(S) as the total abandon-
ment probability, which can be calculated as

Pa(S) =
mX

k=1

P (W = k)
kY

j=1

(1� uI(j)).

It sums over the joint probabilities of not finding the first k messages attractive and user’s
tolerance level is k.

We use fi to denote the abandonment probability conditioned on prior rejected messages.
More specifically, fi is the probability that a user abandons the platform upon receiving the
ith unsatisfactory message, conditional on the user’s tolerance is larger than or equal to i,
i.e.,

fi = P (W = i|W � i) =
P (W = i)

P (W � i)
.

Sequential choice model When message i is part of a sequence S = (S1, S2, · · · , Sm), the
probability of that message being clicked, which is denoted as Pi(S), depends on its position
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in the sequence, its own content, as well as the content of other messages shown earlier.
Formally,

Pi(S) =

8
>>>><

>>>>:

ui, if i = S1

P (W � l)
l�1Y

k=1

(1� uI(k))ui, if i = Sl, l � 2

0, if i /2 S.

(2.3.1)

When message i is the first message of the sequence, the probability of accepting i
is simply ui, which is the attraction probability of message i. For the remainder of the
sequence, the probability of accepting i as the lth message is the joint probability that 1) she
has rejected the first l�1 messages,

Q
l�1
k=1(1�uI(k)); 2) the user has not yet abandoned after

receiving l � 1 unsatisfactory messages, P (W > l � 1) = P (W � l); 3) the probability that
she finds message i attractive, ui. The model which we have adopted in this work to describe
users’ browsing behavior (without abandonment) is known as the cascade model [33]. The
model assumes that users examine the results sequentially and click on the first relevant
recommendation. The probability of a click in a cascade model depends on the relevance of
a result, as well as the irrelevance of all previous results; hence the name. In this work, we
extend the cascade model by incorporating user abandonment behavior. The probability of
abandonment also depends on the quality of messages.
Payo↵ optimization problem Let U(S,u, F ) denote the total payo↵ that the platform
receives from a given sequence of messages S when the attraction probabilities are u and
the abandonment behavior follows a general distribution F . For ease of notation, we use
U(S) to denote U(S,u, F ). The expected payo↵ which the platform is trying to optimize is
defined as

E[U(S)] =
X

i2X

Pi(S)� cPa(S),

where c is the cost of losing a customer due to abandonment. In contrast to the traditional
assortment problems which only focus on revenue maximization, the objective in our model
also includes a penalty of losing users.

The platform’s optimization problem is defined as follows,

max
S

E[U(S)] (2.3.2)

s.t. Si 6= Sj, 8i 6= j

|S| M

The constraint specifies that the sequence cannot contain duplicated messages. It is included
to avoid unrealistic solutions where the optimal sequence consisting of identical messages.
The decision variables for the platform contain both the order of messages and the total
length of messages m. We define the optimal sequence of messages, S⇤, as the sequence that
maximizes the expected payo↵, i.e., S⇤ = argmaxS E[U(S)] under the constraint.
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2.3.2 Characterization of the optimal sequence S
⇤
.

In this section, we first investigate properties of the optimal sequence of messages, and
then describe an algorithm to solve the optimal payo↵ optimization problem when attrac-
tion probabilities u and abandonment behavior characterized by F are both known to the
platform.

In Proposition 2.3.2, we show that we can compare the expected payo↵ generated under
di↵erent abandonment distributions if they follow a stochastic order. We state the definition
of stochastic order below for completeness.

Definition 2.3.1 (Stochastic order) Real random variable W1 is stochastically larger than
or equal to W2, denoted as W1 &s.t. W2, if

P (W1 > x) � P (W2 > x) for all x 2 R.

Proposition 2.3.2 Assume S
0 and S

00 are the optimal sequences generated under abandon-
ment distributions W1 and W2 respectively. If W1 &s.t. W2, we have

E[U(S0,u, FW1)] � E[U(S00,u, FW2)],

where U(S,u, FW ) denotes the payo↵ under strategy S when the valuation and abandonment
distribution are u and FW , respectively.

The definition of W1 &s.t. W2 implies that users under FW1 are less likely to abandon the
platform upon receiving the same number of unsatisfactory messages than users under FW2 .
Thus, intuitively, Proposition 2.3.2 states that the expected payo↵ is higher when users are
more tolerant.

We now turn to solve the platform’s optimization problem. It is combinatorial in nature
as it needs to choose a subset with a specific order from all available messages, giving rise
to
P

N

k=1

�
N

k

�
k! possible combinations. The problem closely related to is the project selection

and sequencing problem [47, 63]. To see this, we first expand the platform’s expected payo↵
function, i.e.,

E[U(S)] =
|S|X

i=1

i�1Y

j=1

(1� fj)(1� uI(j))
�
uI(i) � cfi(1� uI(i))

�
.

Let wji denote the reward for completing job i as order j, where wji := ui � cfj(1� ui).
The reward collected after job i will be discounted at rate pti := (1� ft)(1� ui). Thus, the
objective of the platform problem in (2.3.2) can be viewed as to choose a processing order
with an optimal job length that maximizes the expected discounted reward. Fig B.1 in the
appendix shows an example of a processing order. Finally, we can rewrite the platform’s
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optimization problem in (2.3.2) as follows.

max
x

NX

t=1

NX

i=1

xtiwti

t�1Y

j=1

NY

k=1

p
xjk

jk

s.t.
NX

j=1

xjk  1, 8k

NX

k=1

xjk  1, 8j

NX

j=M+1

NX

k=1

xjk = 0

xjk = {0, 1}, 8j, k (2.3.3)

where the decision variable xjk = 1 if message k is placed at the jth position in the sequence.
In the following result, we characterize a key property of the optimal sequence S⇤, which

is critical for determining an e�cient o✏ine algorithm.

Theorem 4 For any pair of messages i, j such that ui � uj, we have
P

k

t=1 xti �
P

k

t=1 xtj

for any k = 1, · · · , N in the optimal solution to the optimization problem (2.3.3).

An important implication of Theorem 4 is that: Assume the index function of the optimal
sequence S

⇤ is I(·), then we have uI(i) � uI(j) for any 1  i < j  |S⇤|. Moreover, ui � uj

for all i 2 S
⇤ and j /2 S

⇤.
Theorem 4 states that the optimal sequence should satisfy the condition that uI(i) �

uI(i+1) for i < |S|. Therefore, the problem is reduced to select m messages where m is also
a decision variable. However, if we naively enumerate m from 1 to N and calculate the
corresponding reward, the complexity is O(N2) since it needs to perform k calculations in
the kth loop. We propose Algorithm 1 to determine the optimal sequence which reduces the
complexity from O(N2) by doing a brute-force search to O(NlogN). As many recommenders
have a huge selection of content to choose from, the reduction by a factor of N indicates a
significant improvement in terms of the e�ciency of the algorithm.

In Algorithm 1, we use U((Sj, · · · , Sm),u, (fj, · · · , fm)) to denote the payo↵ for the se-
quence of messages (Sj, · · · , Sm) with corresponding abandonment probabilities (fj, · · · , fm).
In line 5-7, we evaluate the expected payo↵ of U((Sj, · · · , Sm),u, (fj, · · · , fm)). If it is nega-
tive, then we remove the subsequence (Sj, · · · , Sm) from the current optimal sequence. In the
next iteration, we shorten the sequence and re-evaluate the payo↵. We prove the optimality
of the sequence found by Algorithm 1 in Theorem 5.

Theorem 5 Algorithm 1 finds the optimal sequence.
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Algorithm 1: Determine the optimal sequence S
⇤.

1 Sort messages based on their attraction probabilities in a descending order
2 S 0 = (S1, S2, · · · , SN); m = M ;
3 for j = M : 1 do

4 Calculate E[U((Sj, · · · , Sm),u, (fj, · · · , fm))];
5 if E[U((Sj, · · · , Sm),u, (fj, · · · , fm))] < 0 then

6 m = j � 1;
7 end

8 end

9 S
⇤ = (S1, · · · , Sm)

We prove Theorem 5 by induction. The detailed proof can be found in Appendix B.3.
Intuitively, to avoid incurring the abandonment cost, the platform may prefer sending

shorter sequences before it is confident of how users perceive the content. On the other hand,
when fj = 0 for all j, i.e., there is no risk of user abandonment, the platform can send out
the entire sequence. As long as the sequence contains one attractive message, the user will
eventually select it and the platform earns a reward. Thus, the order of the messages does
not influence the reward, which is significantly di↵erent when we incorporate abandonment
behavior.

2.4 Online Learning.

In the previous section, we assumed that both the attraction probabilities of the messages
u and the user abandonment behavior F are known to the platform. It is natural to ask
what the platform should do in the absence of such knowledge. Beginning from this section,
we start investigating the online setting where these two pieces of information need to be
learned based on users’ feedback. We will start by analyzing the non-contextual SC-Bandit
problem, and defer the discussion on the contextual setting which utilizes message and user
features in the following section.

2.4.1 Setting for non-contextual SC-Bandit.

For each user arriving at time t 2 [1, T ], the recommendation process begins at t, as the
platform determines a list of messages and sends the individual content sequentially at t, t+
D, t+2D, whereD denotes the fixed and pre-determined time interval. The recommendation
process terminates and no further message will be sent when one of the following events
occurs: 1) the user clicks on a message; 2) she abandons the platform; 3) the sequence of the
recommendations has run out. We call a user active at time t if her recommendation process
has not yet terminated, and inactive otherwise. We want to point out that during the time
period when a user is active, her list of messages may change at every time step as the



CHAPTER 2. SEQUENTIAL CHOICE BANDITS: LEARNING WITH MARKETING
FATIGUE 67

platform re-solves the optimization problem using the updated estimates of u and F . Thus,
at every time step, the platform needs to make multiple decisions for both the incoming
user, as well as active users who arrived earlier. The adaptive nature of recommendation
at an individual user level marks the key di↵erence of our setting from the existing work
on cascading bandits (e.g., [61, 62, 31]). We use the following example to illustrate the
interwoven events and decisions in our online setting.

Example 2.4.1 Figure 2.1 shows the behavior of 4 users who arrive at time t = 1, · · · , 4,
and D = 1. Actions are color-coded, i.e., blue (red) action indicates that the user rejects
(clicks) the message, while the cross indicates that the user abandons the platform after
rejecting a message. Take user 1 as an example. When she arrives at t = 1, the initial
sequence of recommendation includes messages M3, M5, M10 and M15. M3 is sent and
User 1 rejects it. At t = 2, the sequence is unchanged and the platform sends the next
message M5. User 1 again rejects this message, but continues to stay on the platform. At
t = 3, the sequence is updated to M15 and M20, and the platform sends M15. User 1 accepts
this message and the recommendation process terminates.

At every time stamp t, the platform needs to update the recommendation for all active
users. For instance, at t = 4, the platform sends messages to both User 3 and 4, as the rec-
ommendation processes for User 1 and 2 have terminated (i.e., User 1 accepted the message
and User 2 abandoned the platform at t = 3).

t=1

1

M3, M5, M10,M15

t=2

2

 M10,M18,M15 M5, M10,M15

t=3  M15, M20

3

 M18,M15 M15, M18,M20,M5

4

t=4 M20, M5 M20, M15,M5,M18

User

Figure 2.1: An illustrative example on users’ interactions with the platform.

We want to point out that the platform is not restricted to sending only one message
per time. The platform can send at most £ messages at the same time where £ is a pre-
determined variable and £ M . Figure 2.1 shows a special example where each single user
only receives one message per time.

2.4.2 Algorithm for non-contextual SC-Bandit.

In this section, we will present an online algorithm that simultaneously explores and exploits
for the SC-Bandit problem to learn the attraction probabilities of message u, as well as
the distribution F which describes users’ abandonment behavior. We want to emphasize
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several challenges in our analysis: 1) We only observe partial feedback as a user may exit the
platform before examining all the messages which are being recommended. 2) Both u and F
which jointly determine the feedback are latent and needed to be learnt. In particular, fi is
not merely a fixed position-based quantity (recall fi is the probability of abandonment upon
receiving the ith unsatisfactory message). Hence, the feedback on abandonment to learn fi
also depends on the content which has been previously recommended to a user. 3) Because
the recommendation process for an individual user is dynamic, the decision at time t for an
active user is constrained by what has been previously o↵ered to her, as well as the feedback
collected from all users up to that time instance.

Our proposed algorithm is optimistic in the face of uncertainty, coming in the form of
the upper confidence bounds. We first need to identify the unbiased estimators ûi(t) and
f̂j(t) for 1  i  N and 1  j  M , respectively. Let Ti(t) denote the total number of
users who observe message i by time t, and Qi(t) denote the total number of users accepting
message i. Note that a user does not necessarily observe message i even if i is included
in the o↵ered sequence S due to abandonment. Let na

j
(t) denote the number of users who

abandon the platform after receiving j unsatisfactory messages by time t. We use ne

j
(t) to

denote the number of users that reject a message without abandonment after receiving j
unsatisfactory messages by time t. In Example 2.4.1 (see Fig 2.1), ne

1(1) = 1, ne

1(2) = 2,
ne

2(2) = 1, ne

1(3) = 3, ne

2(3) = 1, ne

3(3) = 0. na

1(1) = na

1(2) = na

1(3) = na

1(4) = 0, na

2(3) = 1.
Let T̃j(t) = ne

j
(t) + na

j
(t), which denotes the total number of times users that reject j

unsatisfactory messages by time t. Formally,

Ti(t) =
tX

l=1

1(i 2 S
l)1(user l observes message i before time t) and

T̃j(t) =
tX

l=1

1(user l rejects the jth unsatisfactory message before time t),

where S
l is the sequence of messages sent to user l.

Lemma 2.4.2 (Unbiased estimator) ûi(t) = Qi(t)/Ti(t) is an unbiased estimator for ui.
Moreover, f̂j(t) = na

j
(t)/T̃j(t) is an unbiased estimator for fj.

With the unbiased estimators shown in Lemma 2.4.2, we define an optimistic estimator
for the attraction probabilities u and the abandonment probability f as follows,

uOP

i,t
= min

n
ûi(t) +

p
2 log t/Ti(t), 1

o
and (2.4.1)

f̃OP

j,t
= max

⇢
f̂j(t)�

q
2 log t/T̃j(t), 0

�
, fOP

j,t
= max

kj

f̃OP

k,t
. (2.4.2)

We propose Algorithm 2 as an exploration-exploitation algorithm for the SC-Bandit
problem. At a high-level, for a user arriving at time t, we use uOP

i,t�1 and fOP

j,t�1 to calculate
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the current optimal sequence of messages and o↵er the first message in the sequence to her.
For every remaining active user, we use uOP

i,t�1 and fOP

j,t�1 to determine the optimal sequence
from a subset of available messages after excluding content which has been previously shown
to the user, and o↵er the first message in the updated sequence. We update the optimistic
estimator to uOP

i,t
and fOP

j,t
each time when the feedback is received.

Algorithm 2: An online learning algorithm for SC-Bandit under marketing fatigue

1 Initialization: Available messages X; set uOP

i,0 = 1 for all i 2 X and fOP

j,0 = 0 for all
2 1  j  N ; ne

j
(0) = 0; na

j
(0) = 0 ; t = 1;

3 while t < T do

4 for Any active user l with message scheduled to be sent at time t do
5 Compute S = argmaxS⇢X\Ol

U(S,uOP

t�1, (f
OP

|Ol|+1,t�1, · · · , fOP

M,t�1)) according
to

6 Algorithm 1;
7 if |S| > 0 and |Ol| < M then

8 for i = 1 : min(£, |S|,M � |Ol|) do
9 Il(k) = Si where k = |Ol|+ i;

10 end

11 Send message S
0 = (Il(|Ol|+ 1), · · · , Il(min(£, |S|,M � |Ol|))) to user l;

Ol = Ol [ S
0;

12 else

13 Label user l as inactive;
14 end

15 end

16 Compute S
t = argmaxS,m E[U(S,uOP

t�1, F
OP

t�1 )] according to Algorithm 1 ;
17 O↵er St to user t; Ot = S

t;
18 for Any feedback for some message i as the jth message do

19 Update uOP

i,t
and fOP

j,t
according to Equation (2.4.1) and (2.4.2);

20 end

21 for Any user l abandons the platform do

22 Label user l as inactive;
23 end

24 t = t+ 1;
25 end

In Algorithm 2, we define Il(j) as the index of message sent to user l at time t as the jth

message. Ol denotes the set of messages that has been sent to user l. In line 3-11, for any
active user at time t, the platform re-solves the optimization problem using Algorithm 1 and
determines an updated sequence selected from the pool of messages that excludes Ol. If the
updated optimal sequence is empty or if we have extinguished the message budget M , we
terminate the recommendation process, and label this user as inactive. No further message
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will be sent to her. In line 12-13, we calculate the optimal sequence using Algorithm 1 for the
incoming user and send the first message. In line 14-16, we update the optimistic estimators.
Lastly, in line 17-19, if any user abandons the platform, we label user l as inactive.

2.4.3 Regret analysis on Algorithm 2.

In this section, we analyze the performance of Algorithm 2. The regret for a policy ⇡ is
defined as

Regret⇡(T ;u, F ) = E⇡

"
TX

l=1

U(S⇤,u, F )� U(Sl,u, F )

#
,

where S
⇤ is the optimal sequence when u and F are known to the platform, while S

l is the
sequence o↵ered to user l. E⇡ denotes the expectation under the policy ⇡. Without loss of
generality, we assume the optimal sequence is S⇤ = (1, 2, · · · ,m⇤).

For the regret analysis, we make the following assumption on the abandonment distribu-
tion.

Assumption 2.4.3 fj � fj�1 for 1 < j M .

It states that the abandonment probability is non-increasing in i. In other words, as a user
receives more unsatisfactory messages, she is more likely to abandon the platform. One
example that satisfies this assumption is when W follows the geometric distribution with
parameter p. In this case, fi = p for all i, i.e., the abandonment probability is independent
of the number of unsatisfactory messages. We give more examples such as truncated Poisson
distributions in Section 2.6.

To analyze the regret, we need to establish the following results which provide the con-
centration bound on uOP

i,t
and fOP

j,t
.

Define the epoch for user l, denoted as Ml, as timestamps that user l receives messages
from the platform. That is, t 2 Ml if a message is sent to user l at time t. Define t 2 Mj

l
,

if the jth message is sent to user l at time t. Lemma 2.4.4 below states a critical result for
the regret analysis, which quantifies the di↵erence in the expected payo↵ between the jth

message in the o↵ered sequence under our proposed algorithm and the jth message in the
optimal sequence.

Lemma 2.4.4 Define ⇢j
l
as the timestamp of sending the jth message to user l. For t 2Mj

l

with j � 1,

E⇡[(U(j,u, fj)� U(Il(j),u, fj))1(u
OP

t
� u)]  (1 + c)E⇡

⇥�
uOP

Il(j),t
� uIl(j)

�
1(uOP

t
� u)

⇤
,

where Il(j) is the index of the jth message sent to user l at time ⇢j
l
.

In Theorem 6 below, we characterize a regret bound of our online learning algorithm for
the non-contextual SC-Bandit problem. As mentioned earlier, our setting di↵ers from the
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existing work on cascading bandits as the o↵ered sequence for an individual user may change
before the recommendation process terminates. To facilitate the regret analysis, we utilize a
novel approach - we couple the two recommendation processes which o↵er sequences based
on our algorithm and the optimal sequence respectively to quantify the di↵erences in the
expected payo↵. For more information on the coupling technique, we refer the reader to
Section 2.2 in [114].

Theorem 6 (Performance for Algorithm 2) Given message attraction probabilities u

and abandonment distribution F , the regret of the policy during time T is bounded by

Regret⇡(T ;u, F )  C
p

NMT log T

for some constant C, where N is the total number of available messages and M is the
maximum possible number of messages that can be sent to a single user.

A special case to our setting is without the abandonment behavior which we call cascading
bandits. [23] establishes a lower bound for cascading bandits as O(

p
NT/M). Therefore

the regret of our algorithm matches with the lower bound in terms of N and T up to a
multiplicative logarithmic factor.

2.5 Personalization with Contextual SC-Bandit.

Thus far, we have developed a learning algorithm for the non-contextual SC-Bandit prob-
lem, under a setting where the abandonment distribution F is homogeneous across users
and the attraction probability ui is independent of message features. As a result, the op-
timal sequence of recommendations is identical for all users. In this section, we consider
a more realistic setting where the platform needs to o↵er personalized recommendations to
individuals users.

2.5.1 Setting for contextual SC-Bandit.

We assume that the abandonment behavior di↵ers across users and depends on some user
features x 2 BdX , where B ✓ R denotes a compact set in R and dX denotes the dimension
of the user’s feature space. Meanwhile, the attraction probability ui depends on the features
of message i, zi 2 BdZ , where B ✓ R and dZ denotes the dimension of the message feature
space.

In the existing work on cascading bandits (e.g., [72, 83]), linear reward which is a function
of message contexts has been used. However, in our setting, since the feedback we observe
on users’ click and abandonment behavior is binary, we use a logit function to model the
relationship between contexts and feedback. To the best of our knowledge, we are the first
to analyze contextual cascading bandits with generalized linear function. Define the logit
function as µ(y) = exp(y)/(1 + exp(y)), and �j(xl) and h(zi) as

�j(xl) = x
0
l
↵⇤
j

and h(zi) = z
0
i
�⇤.



CHAPTER 2. SEQUENTIAL CHOICE BANDITS: LEARNING WITH MARKETING
FATIGUE 72

The probability that a user with context xl abandons the platform upon receiving the jth

unsatisfactory message is

fj(xl) = P (abandon at the jth unsatisfactory message|xl) = ex
0
l↵

⇤
j /(1 + ex

0
l↵

⇤
j ) = µ(�j(xl)).

(2.5.1)

Similarly, the attraction probability of message i with feature zi is

u(zi) = P (message i is attractive|zi) = ez
0
i�

⇤
/(1 + ez

0
i�

⇤
) = µ(z0

i
�⇤) = µ(h(zi)), (2.5.2)

where ↵⇤
j
and �⇤ are the unknown parameters to be learned for j = 1, · · · ,M .

Remark 2.5.1 Our model can be extended to the setting where the attraction probability ui

depends on both the message and user contexts. Suppose the contexts of user t and message
i are xt and zi respectively. Similar to the approach introduced in [72], we construct a
new feature vector as the outer product of the two contexts, i.e., vt,i = xtz

0
i
, and model the

attraction probability ui as a logit function of vt,i. By doing so, the model is capable of
capturing the interactions between user and message contexts. However, it also increases the
feature space and the number of unknown parameters which need to be learned. To enhance
the clarity of our analysis, we focus on the setting where ui only depends on the message
contexts in this paper.

2.5.2 Algorithm for contextual SC-Bandit.

In this section, we first characterize the maximum likelihood estimator for ↵j and � respec-
tively, then describe the concentration property of the estimator, and propose an optimistic
algorithm inspired by the generalized linear bandit problem studied in [68]. In addition to
our novel setting with abandonment behavior and adaptive user-level recommendation, to
the best of our knowledge, we are the first to analyze the contextual learning-to-rank prob-
lems with a generalized linear reward function. The techniques we develop here have the
potential to be lent to other learning-to-rank applications due to the prevalence of binary
feedback (e.g., click, like, download).

Suppose Yl,i is the feedback of user l when message Il(i) is shown. Yl,i = 1 indicates that
user l accepts message Il(i) upon examining the ith message, and Yl,i = 0 otherwise. Then
Yl,i is a Bernoulli random variable with mean µ(z0

Il(i)
�⇤), i.e., P (Yl,i = 1) = µ(z0

Il(i)
�⇤) and

P (Yl,i = 0) = 1� µ(z0
Il(i)

�⇤). Equivalently, Yl,i = µ(z0
Il(i)

�⇤) + ✏l,i. Since we have a bounded
reward, then the noise ✏l,i is bounded and hence ✏l,i is sub-gaussian with parameter � (in our
case, � = 1 where we give detailed proof in Lemma B.5.1).

The log-likelihood function of � at time t can be written as follows,

logLt(�) =
tX

l=1

|Sl|X

i=1

log

 
e
z0Il(i)

�

1 + e
z0Il(i)

�
1(Yl,i = 1) +

1

1 + e
z0Il(i)

�
1(Yl,i = 0)

!
1(user l examines message Il(i)),
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where 1(·) is the indicator function, which indicates that only users who view messages
provide information on the estimation of parameter �. The maximum likelihood estimator
for � at time t is defined as �̂t = argmax

�
logLt(�), which can be re-written as,

�̂t = argmax
�

tX

l=1

|Sl|X

i=1

⇣
Yl,iz

0
Il(i)

� � log
⇣
1 + e

z0Il(i)
�
⌘⌘

1(user l examines message Il(i)).

Similarly, define ↵̂j,t as the maximum likelihood estimator for ↵j at time t. Only users who
face the choice to abandon the platform when receiving the jth unsatisfactory message provide
information on this estimator. In our model, the user faces the choice of abandonment each
time when she finds the message unattractive. Define Ŷl,j as the decision on abandonment
made by user l who rejects the jth message, i.e., Ŷl,j = 0 indicates that user l does not abandon
the platform after finding jth message unattractive, while Ŷl,j = 1 means the user abandons.
Then Ŷl,j is a Bernoulli random variable with mean µ(x0

l
↵⇤
j
), i.e., P (Ŷl,j = 1) = µ(x0

l
↵⇤
j
) and

P (Ŷl,j = 0) = 1� µ(x0
l
↵⇤
j
).

Therefore, the maximum likelihood estimator at time t, ↵̂j,t, can be obtained as

↵̂j,t = argmax
↵

tX

l=1

⇣
Ŷl,jx

0
l
↵� log(1 + ex

0
l↵)
⌘
1(user l rejects the jth message before t).

We define the positive semidefinite matrix Mj,t and Vt as follows, where

Mj,t =
tX

l=1

xlx
0
l
1(user l rejects the jth message before t) and (2.5.3)

Vt =
tX

l=1

|Sl|X

i=1

zIl(i)z
0
Il(i)

1(user l examines message Il(i) before t). (2.5.4)

The “exploration bonus” term for the estimator of µ(z0
i
�) is defined as !i,t := ⇢Z,tkzikV �1

t

and that for the estimator of µ(↵0
j
xl) is !̃j,t(xl) := ⇢X,tkxlkM�1

j,t
, respectively, where kxkA

denotes the matrix norm and it equals
p
x0Ax for any matrix A. ⇢Z and ⇢X are two constants.

Finally, define the optimistic estimator for �j(x) as �OP

j,t
(x), and that for h(z) as hOP

i,t
(zi),

where

�OP

j,t
(x) = x

0↵̂j,t � ⇢X,tkxkM�1
j,t

and hOP

i,t
(zi) = z

0
i
�̂t + ⇢Z,tkzikV �1

t
, (2.5.5)

and ⇢X,t =
3�
⌘X

q
1
2 log t, ⇢Z,t =

3�
⌘Z

q
1
2 log(Nt).

We propose Algorithm 3 for the contextual SC-Bandit problem. In line 5-7, the platform
explores to gather information for �. In the main loop between line 3-32, the algorithm seeks
the optimal message for active user l. Inside of the loop, at stage s, we set the confidence
interval at stage s to be 2�s. The “exploration bonus” term for the estimator of µ(z0

i
�)
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at stage s is defined as !(s)
i,t

:= ⇢Z,tkzikV �1
s,t

where Vs,t =
P

t2 s(T )

P
N

i=1 1(i 2 At)zi,tz0i,t and

At is the index of messages sent out at time t. If the width !(s)
i,t

is larger than 2�s for
some i 2 X\Ol, we need to do more exploration on zi. Therefore, we send message i to
user. Otherwise messages are filtered in line 27, and only those messages whose attraction
probabilities are close enough to the highest attraction probability are passed to the next
stage. If we have already obtained accurate estimate of all z

0
i
� up to the 1/

p
T level,

exploration is not required and we calculate the optimal message sequence based on the
current optimistic estimators in line 15. If the updated sequence obtained after solving the
constrained optimization which excludes previously shown messages is not empty, we send
its first message to user l. Otherwise, we label user l as inactive and the recommendation
process for this user terminates. Lastly, in line 33-36, the optimistic estimators are updated
when user’s feedback is received.

2.5.3 Regret analysis on Algorithm 3.

In this section, we analyze the performance of Algorithm 3 in terms of its regret. We first
make the following assumptions which are fairly standard in the contextual bandit literature
(see [68]).

Assumption 2.5.2 There exist 0 < ⌘X < 1 and 0 < ⌘Z < 1 such that

⌘X  µ(x0↵⇤
j
)  1�⌘X , for all x 2 BdX and ⌘Z  µ(z0�⇤)  1�⌘Z , for all z 2 BdZ , and

inf
x2BdX ,k↵j�↵⇤

jk21
µ̇(x0↵j) > ⌘X and inf

z2BdZ ,k���⇤k21
µ̇(z0�) > ⌘Z ,

for 1  j M , where µ̇(·) is the first derivative.

Assumption 2.5.3 Define W (x) as the random variable of the user’s tolerance with context
x. The following inequalities hold

0 < �0  �min(E[xx01(W (x) � j)])  �max(E[xx01(W (x) � j)])  R, and

0 < �0  �min(E[zz0])  �max(E[zz0])  R,

for any 1  j  M where �min is the minimum eigenvalue and �max is the maximum
eigenvalue.

Assumption 2.5.4 The feature space is restricted within a unit ball, i.e.,

kxk22  1, for all x 2 BdX and kzk22  1, for all z 2 BdZ .

Lemma 2.5.5 is a property of the logit function, which can be easily verified.

Lemma 2.5.5 µ is twice di↵erentiable. Its first and second order derivatives are upper-
bounded by Lµ = 1/4 and Mµ = 1/4, respectively.
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Algorithm 3: An online learning algorithm for contextual SC-Bandit under mar-
keting fatigue

1 Initialization: tuning parameter ⇠Z , ⇠X ; t = 1; ⌫ = log T ;

2 Set  0 =  1 = · · · =  ⌫ = ;, and  ̃j

⌫
= ; for j = 1, · · · ,M ;

3 while t < T do

4 for Any active user l with message scheduled to be sent at time t and |Ol| < M
do

5 if l  ⇠Z then6 Randomly choose message i 2 X\Ol for user l; Ol = Ol [ {i};
7 else

8 A1 = X\Ol; s = 1;
9 while no message is selected for user l yet and user l is active do

10 Calculate !(s)
i,t
(zi) for all i 2 (X\Ol) \ As;

11 if !(s)
i,t
(zi) > 2�s for some i then

12 Send message i to user l;  s =  s [ {i};
13 else

14 if !(s)
i,t
(zi)  1/

p
T for all i 2 X\Ol then

15 Compute
S = argmaxS⇢X\Ol

E[U(S,uOP

t�1, (f
OP

|Ol|+1,t�1, · · · , fOP

M,t�1))]

16 according to Algorithm 1;  0 =  0 [ {t};
17 if |S| > 0 and |Ol| < M then

18 for i = 1 : min(£, |S|,M � |Ol|) do
19 Il(k) = Si where k = |Ol|+ i;
20 end

21 Send message
S
0 = (Il(|Ol|+ 1), · · · , Il(min(£, |S|,M � |Ol|))) to

22 user l; Ol = Ol [ S
0;

23 else

24 Label user l as inactive;
25 end

26 else

27 As+1 = {i 2 As, µ(z0i,t�̂t) > maxk2As µ(z
0
k,t
�̂t)� 2�s+1};

s = s+ 1;
28 end

29 end

30 end

31 end

32 end

33 for Any feedback for some message i as the jth message do

34 Update hOP

i,t
and �OP

j,t
according to Equation (2.5.5);

35 Update fOP

j,t
= µ(�OP

j,t
) and uOP

i,t
= µ(hOP

i,t
);

36 end

37 t = t+ 1;
38 end
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The next result, Lemma 2.5.6, is a critical step for the analysis of the regret bound,
where we prove that the estimated quantities on the attraction probability and abandonment
distribution are close enough to their true values with high probability. In addition, we also
show that the minimum eigenvalue of the empirical covariance matrix is large enough for
precise estimation with high probability.

Lemma 2.5.6 Set ⇠X =
p
dXT , ⇠Z =

p
dZT , ⇢X,t =

3�
⌘X

q
1
2 log t and ⇢Z,t =

3�
⌘Z

q
1
2 log(Nt)

where � is the sub-gaussian parameter of the noise. Suppose t satisfies condition that t � T0

where

T0 = min
s

⇢
s :

1

2
�0
p

dXs0 �
512M2

µ
�2

⌘4
X

✓
d2
X
+

1

2
log s0

◆

and
1

2
�0
p

dZs0 �
512M2

µ
�2

⌘4
Z

✓
d2
Z
+

1

2
log s0

◆
, 8s0 � s

�
.

Define the following events:

EZ,t := {|z0
i
�̂t � z

0
i
�⇤|  !i,t(z), 8i 2 [N ]}, 8t 2 [⇠Z + 1, T ], and

E j

X,t
:= {|x0↵̂j,t � x

0↵⇤
j
|  !̃j,t(x)}, 8x 2 BdX , 8t s.t. T̃j(t) � ⇠X + 1;

PZ,t =

⇢
�min(Vt) >

1

2
�0⇠Z

�
, 8t 2 [⇠Z + 1, T ], and

Pj

X,t
=

⇢
�min(Mj,t) >

1

2
�0⇠X

�
, 8t s.t. T̃j(t) � ⇠X + 1.

Then, event EZ,t holds with probability at least 1�3/
p
t�dZ

�
e

2

���0
p
dZT/(2R)

, event EX,t holds

with probability at least 1�3/
p
t�dX

�
e

2

���0
p
dXT/(2R)

, event PZ,t holds with probability at least

1� dZ
�
e

2

���0
p
dZT/(2R)

, and event Pj

X,t
holds with probability at least 1� dX

�
e

2

���0
p
dXT/(2R)

.

The complete proof can be found in Appendix B.5.
The following lemma provides an upper bound for the exploration terms. This result

is in a similar vein to Lemma 2 in [68]. However, we are dealing with a more general
setting where we allow the platform to make multiple actions at the same time (i.e., update
recommendations for both the incoming and existing active users).

Lemma 2.5.7 Let {Xi,t}1t=1 be a sequence in Rd satisfying kXi,tk  1. Define X0 = 0 and
Vt =

P
t�1
s=1

P
i2As

Xi,sX 0
i,s
. Suppose there is an integer r such that �min(Vr) � 1, then for all

n > 0,
r+nX

t=r+1

X

i2At

kXi,tkV �1
t


s

2nM2d log

✓
(n+ r)M

d

◆
,

where |At| M for any t.



CHAPTER 2. SEQUENTIAL CHOICE BANDITS: LEARNING WITH MARKETING
FATIGUE 77

We now present the regret bound for the contextual SC-Bandit problem in the following
theorem.

Theorem 7 (Performance for Algorithm 3) Under Assumptions 1-4, the regret of our
policy during time T is bounded by

Regret⇡(T ;u, F )  CM
⇣p

log(T/dX)
p

dXT log T +
p
log(T/dZ)

p
dZT log(NT )

⌘
,

for some constant C.

Compared to the non-contextual SC-Bandit problem, the contextual setting o↵ers sig-
nificantly more flexibility. For instance, the pool of available messages may change with
time. With each new message, the platform only needs to use the current estimator and the
contexts of the new message to estimate its attraction probability. Meanwhile, the platform
is also capable of recommending personalized content which takes into account of a user’s
abandonment behavior estimated from her features.

When the model does not incorporate user’s abandonment behavior, the problem is
reduced to contextual cascading bandits. In the existing literature studying the contextual
cascading bandits [72, 116, 71, 23], a common assumption is that the click probability is a
linear function of message feature. However, this assumption is not very appropriate because
the click probability ranges from 0 to 1 while linear model cannot guarantee that. We relax
this assumption that the click probability is a generalized linear function of message feature.
The following table shows the regret comparison between di↵erent works. Note that the
regret dependence on d in our work is

p
d.

Reference Model Bound
[72] linear O(d

p
TM log(T )) [↵-regret]

[116] linear O(Md
p

T log(MT ))
[71] linear O(d

p
TM log(T ))

[23] linear O(min{
p
d,
p
logN}Md

p
T (log T )3/2)

this work generalized linear O(M
p
dT log(NT ) log(T/d))

2.6 Computational Studies.

In this section, we perform several numerical studies to evaluate our proposed algorithms.
We first use synthetic data to study the robustness of our algorithms. Next, we investigate
a real-world dataset which reveals di↵erent abandonment behavior among users. We then
perform several experiments with this data as the ground truth in both the non-contextual
and contextual settings, and compare the performance with benchmarks. Due to the space
limit, we move the robustness study and numerical experiments on non-contextual SC-Bandit
(real data) to Appendix B.7.
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2.6.1 Sequential update versus batch update.

One novelty of our learning problem is that it can dynamically adjust the recommendation
for a single user when more feedback is obtained. Meanwhile, in the existing learning-to-
rank literature, recommendations are static for an individual user and are only updated
across users. We will use the following experiment to compare our proposed sequential
update strategy with the batch update method (in the sense that the latter only updates its
strategy after the entire “batch” or sequence of a user’s feedback is received).

We consider a setting with N = 50 and the cost of abandonment c = 0.5. The attraction
probability u is uniformly generated from [0,0.2]. The abandonment distribution is drawn
from the truncated Poisson distribution with � = 10. In contrast to Algorithm 2 which
updates the sequence for all active users whenever a feedback is received, a batch update
algorithm determines the message sequence for a new user arriving at time t and will not
make further changes to the list.

Figure 2.2 shows the comparison between two algorithms. The average regret from 50
simulations in the first T = 50000 rounds is 418.13 for the sequential update strategy (Al-
gorithm 2) and 500.30 for the batch update algorithm. It shows that the regret achieved by
the sequential update strategy is about 20% lower than that of the batch update approach,
demonstrating the benefits of frequent update on the estimators.
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Figure 2.2: Comparison between sequential update and batch update.

2.6.2 Experiments with real data.

2.6.2.1 Data overview.

For this experiment, we utilize a dataset from Taobao8, one of the world’s biggest e-commerce
websites owned by Alibaba. The dataset consists of multiple files, one of which contains 26
million ad display and click logs from 1,140,000 randomly sampled users from the website of
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User ID Time stamp Ad ID Click
449818 1494638778 3 0
914836 1494650879 4 1

Table 2.1: Sample of user behavior log data. The time stamp “1494137644” represents
“2017-05-07 02:14:04”.

Taobao for 8 days (5/6/2017-5/13/2017) . The raw behavior log data includes time stamped
record of ads shown to a user and the user’s response in terms of clicks (see Table 2.1 for
some examples).

In addition, the dataset contains a file on user features, which includes gender, age group
and shopping level. The summary statistics of the user features are shown in Table 2.2.

Feature Summary statistics
Gender Male (35.6%), Female (64.4%)
Age level 0 (0.05%),1 (6.17%),2 (17.86%),3 (28.95%),4 (24.65%),5 (20.20%),6 (2.12%)

Shopping level Shallow (7.03%), Moderate (14.26%), Deep (78.71%)

Table 2.2: User features overview.

The dataset also includes information on ads in terms of its category and the price of
the product (in Chinese Yuan, U) being advertised. For our experiments, we focus on one of
the categories with the highest number of products, i.e., category 1665 which includes over
15,000 products. We use price as the item feature. Figure B.5a (refer to Appendix B.7)
shows the distribution of prices for products in this category, where the mean is U274 and
more than 95% products are priced below U700.

2.6.2.2 Measure abandonment.

We use inactivity from the last interaction with the website as a proxy for abandonment.
Data reveals that users interacted frequently with the website, i.e., the 50th and 95th per-
centile of the time interval between two consecutive visits to the website are 4 hours 24
minutes and 2 days 13 hours and 8 minutes respectively. We believe that such a phe-
nomenon is driven by the fact that 78.8% of users in the dataset are “deep shoppers”, i.e.,
frequent shoppers at Taobao whose purchase frequency and total expenditure have reached
the highest status. Thus, for our experiment, we set the threshold on inactivity for aban-
donment as 3 days. That is, we consider a user “abandoned” the website if it has been more
than 3 days of inactivity since her last visit.
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To fit the data into our framework, for each user, we construct the entire ad response
as a sequence. Depending on when the last interaction takes place, we label whether a user
abandoned the website. For instance, a sequence “001100A” indicates 6 interactions a user
had with the website, where she clicked on the 3rd and 4th ads and abandoned eventually.
To handle the situation that a user can select multiple items as the example shown earlier, we
separate that response into multiple sequences once a user clicked on an ad, i.e., “001100A”
is broken into “001”, “1”, “00A”9.

The abandonment rate is defined as the total number number of abandonments divided by
the total number of ads that are not being clicked. We found that the average abandonment
rate is 0.64% in this dataset. Figure 2.3 depicts how the abandonment rate varies across
di↵erent sub-populations characterized by the user features. Interestingly, it shows that
male users are less tolerant with ads compared to female users, i.e., the abandonment rate
for male is 14.87% higher than female. Figure 2.3 also reveals that the abandonment rate
decreases when a user shops more. The conjecture is that for a frequent shopper, the website
has acquired a better understanding of the user’s preferences and is able to recommend
more relevant ads which then lead to a lower abandonment rate. The abandonment rate
distribution for age follows a U-shape, indicating that on average the youngest and the
oldest users are more likely to abandon the website, while the middle-aged users are least
likely to do so.
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Figure 2.3: Abandonment rate versus user features.

2.6.2.3 Model calibration.

Estimate ↵: For simplicity, we use the geometric distribution to approximate user’s toler-
ance. We include Gender, Age level and Shopping level as user features x to estimate ↵, and
the abandonment behavior parameter µ(�(x)) is defined according to Equation (2.5.1). As
the user features are categorical (see Table 2.2), we first convert them into dummy variables.
The regression results are shown in Table B.1 in Appendix B.7. Note that most estimated
coe�cients are statistically significant, and their signs agree with the behavior observed in
Figure 2.3.
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Estimate �: The relationship between users’ product valuation ui(zi) and � is defined in
Equation (2.5.2). We use Price as the product feature, zi. The regression output and the
fitted attraction probability can be found in Appendix B.7 as Table B.2 and Figure B.5b
respectively.

2.6.2.4 Experiments on contextual SC-Bandit.

Experiment setup We use the same 100 products from category 1665 and compute the
corresponding h(z) as the ground truth as in the previous experiments. Unlike the previous
experiments where we use the aggregate abandonment rate as the ground truth, we compute
µ(�(x)) using the estimated ↵ for user with feature x. Each user’s feature is sampled
according to the uniform distribution in the feature space. We set c = 6 in two experiments.
Experiment result Figure 2.4 shows the regrets for Algorithm 3, compared with a bench-
mark algorithm which separates the exploration and exploitation periods. The average regret
is 76.16 for Algorithm 3 and 102.69 for the benchmark algorithm. The learned parameters
↵̂ and �̂ are very close to the true parameters ↵ and � by the first 1000 iterations based on
Algorithm 3.
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Figure 2.4: Comparison of Algorithm 3 with the benchmark.

2.7 Conclusion.

In this work, we proposed a novel model to capture sequential interactions between users and
a platform. The platform earns a reward when a user clicks on the recommended content
and incurs a cost when a user abandons due to marketing fatigue. As a user browses the
recommended content sequentially, her list of recommendation is dynamic and adaptive to
her feedback as well as learning acquired from other users.

For the o✏ine optimization problem which is combinatorial in nature, we showed a
polynomial-time algorithm to determine an optimal sequence of messages. For the online
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learning task which we refer to as the SC-Bandit problem, we first studied the non-contextual
version. An exploration-exploitation algorithm was proposed and the regret was shown to be
O(
p
NMT log T ). Next we studied the contextual SC-bandit problem, where a user’s aban-

donment probability with respect to prior rejected messages depends on her features and
attractiveness of a message depends on its content features. This setting allows significantly
more flexibility as the pool of available messages may change with time. In addition, the plat-
form is capable of providing personalized recommendations. An optimistic algorithm that
simultaneously explores and exploits for the contextual SC-bandit problem was proposed. We

showed that the regret wasO
⇣
M

⇣p
log(T/dX)

p
dXT log T +

p
log(T/dZ)

p
dZT log(NT )

⌘⌘
.

Lastly, we evaluated the algorithms’ performance with both synthetic and real-world datasets.
In particular, we found empirical evidences that the abandonment behavior varies across dif-
ferent population groups. We investigated the robustness of our proposed algorithms and
also performed benchmark comparison.

There are several future directions of this work. Firstly, as users’ preferences may vary
over time, it is interesting to incorporate the temporal dimension into the setting. Secondly,
di↵erent user actions could reveal di↵erent levels of interest (e.g., the amount of time a user
spent on a message, a user clicked on a message but did not complete a purchase etc.).
One question is how to construct and analyze a more accurate user behavior model by
utilizing such fine-grained behavior data. Thirdly, Thompson Sampling would be another
natural algorithm to solve the problem we have proposed, especially for the personalized
recommendation version. However, analyzing this setting and providing theoretical results
remain a challenging problem.
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Chapter 3

Connectivity of a general class of

inhomogeneous random digraphs

3.1 Introduction.

Complex networks appear in essentially all branches of science and engineering, and since
the pioneering work of Erdős and Rényi in the early 1960s [39, 38], people from various fields
have used random graphs to model, explain and predict some of the properties commonly
observed in real-world networks. Until the last decade or so, most of the work had been
mainly focused on the study of undirected graphs, however, some important networks, such
as the World Wide Web, Twitter, and ResearchGate, to name a few, are directed. The
present paper describes a framework for analyzing a large class of directed random graphs,
which includes as special cases the directed versions of some of the most popular undirected
random graph models.

Specifically, we study directed random graphs where the presence or absence of an arc
is independent of all other arcs. This independence among arcs is the basis of the classical
Erdős-Rényi model [39, 38], where the presence of an edge is determined by the flip of
coin, with all possible edges having the same probability of being present. However, it is
well-known that the Erdős-Rényi model tends to produce very homogeneous graphs, that
is, where all the vertices have close to the same number of neighbors, a property that is
almost never observed in real-world networks. In the undirected setting, a number of models
have been proposed to address this problem while preserving the independence among edges.
Some of the best known models include the Chung-Lu model [27, 26, 28, 78], the generalized
random graph [15, 14, 42], and the Norros-Reittu model or Poissonian random graph [82,
114, 14]. In the undirected case, all of these models were simultaneously studied in [14] under
a broader class of graphs, which we will refer to as kernel-based models. In all of these models
the inhomogeneity of the degrees is accomplished by assigning to each vertex a type, which
is used to make the edge probabilities di↵erent for each pair of vertices. From a modeling
perspective, the types correspond to vertex attributes that influence how likely a vertex is to
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have neighbors, and inhomogeneity among the types translates into inhomogeneous degrees.
Our proposed family of directed random graphs, which we will refer to as inhomogeneous

random digraphs, provides a uniform treatment of essentially any model where arcs are
present independently of each other, in the same spirit as the work in [14] written for the
undirected case. The main results in this paper establish some of the basic properties studied
on random graphs, including the expected number of arcs, the joint distribution of the in-
degree and out-degree, and the phase transition for the size of the largest strongly connected
component. We pay special attention to the so-called scale-free property, which states that
the tail degree distribution(s) decay according to a power law. Since many real-world directed
complex networks exhibit the scale-free property in either their in-degrees, their out-degrees,
or both, we provide a theorem stating how the family of random directed graphs studied here
can be used to model such networks. Our main result on the connectivity properties of the
graphs produced by our model shows that there exists a phase transition, determined by the
types, after which the largest strongly connected component contains (with high probability)
a positive fraction of all the vertices in the graph, i.e., the graph contains a “giant” strongly
connected component.

That the undirected models mentioned above satisfy these basic properties (e.g., scale-
free degree distribution, existence of a giant connected component, etc.) constitutes a series
of classical results within the random graph literature. Closely related to the results pre-
sented here for directed graphs, are the existence of a giant strongly connected component
and giant weak-component in the directed configuration model [Cooper2004size, 59, 60],
the existence of a giant strongly-connected component in the deterministic directed kernel
model with a finite number of types [12], the scale-free property on a directed preferential
attachment model [100, 93], and the limiting degree distributions in the directed configura-
tion model [19]10. From a computational point of view, the work in [110] provides numerical
algorithms to identify secondary structures on directed graphs. Our present work includes as
a special case the main theorem in [12] and extends it to a larger family of directed random
graphs, and it also compiles several results for the number of arcs and the joint distribution
of the degrees. It is also worth pointing out that the directed nature of our framework in-
troduces some non-trivial challenges that are not present in the undirected setting, which is
the reason we chose to provide a di↵erent approach from the one used in [14] for establishing
some of our main results. We refer the reader to Section 3.3.3 for more details on these
challenges and what they imply.

The paper is organized as follows. In Section 3.2 we specify a class of directed random
graphs via their arc probabilities, and explain how the models mentioned above fit into this
framework. In Section 3.3 we provide our main results on the basic properties of the graphs
produced by our model, and in Section 3.4 we give all the proofs.
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3.2 The Model.

As mentioned in the introduction, we study directed random graphs with independent arcs.
Since we are particularly interested in graphs with inhomogeneous degrees, each vertex in
the graph will be assigned a type, which will determine how large its in-degree and out-degree
are likely to be. In applications, the type of a vertex can also be used to model other vertex
attributes not directly related to its degrees. We will assume that the types take values in a
separable metric space S, which we will refer to as the “type space”.

In order to describe our family of directed random graphs, we start by defining the type
sequence {x(n)

1 , . . . ,x(n)
n }, where x

(n)
i

denotes the type of vertex i in a graph on the vertex

set [n]. Note that, depending on how we construct the type sequence, it is possible for x(n)
i

to be di↵erent from x
(m)
i

for n 6= m. Define Gn((1 +'n)) to be the graph on the vertex set
[n] whose arc probabilities are given by

p(n)
ij

=

 
(x(n)

i
,x(n)

j
)

n
(1 + 'n(x

(n)
i

,x(n)
j

))

!
^ 1, 1  i 6= j  n, (3.2.1)

where  is a nonnegative function on S ⇥ S,

'n(x,y) = '
⇣
n, {x(n)

k
: 1  k  n},x,y

⌘
> �1 for all x,y 2 S,

and x ^ y = min{x, y} (x _ y = max{x, y}). In other words, p(n)
ij

denotes the probability
that there is an arc from vertex i to vertex j in Gn((1 + 'n)). The presence or absence
of arc (i, j) is assumed to be independent of all other arcs. Note that the function 'n(x,y)
may depend on n, on the types of the two vertices involved, or on the entire type sequence;
however, to simplify the notation, we emphasize only the arguments (x,y) of the two types
involved. Following the terminology used in [14] and [12], we will refer to  as the kernel
of the graph. Note that we have decoupled the dependence on n and on the type sequence
by including it in the term 'n(x,y), which implies that with respect to the notation used in
[14], n(x,y) there corresponds to (x,y)(1 + 'n(x,y)) here.

Throughout the paper, we will refer to any directed random graph generated through
our model as an inhomogeneous random digraph (IRD).

We end this section by explaining how the directed versions of the Erdős-Rényi graph
[38, 39, 40, 13], the Chung-Lu (or “given expected degrees”) model [27, 26, 28, 78], the
generalized random graph [15, 14, 42], and the Norros-Reittu model (or “Poissonian random
graph”) [82, 114, 14], as well as the directed deterministic kernel model in [12], fit into our
framework. The first four examples fall into the category of so-called rank-1 kernels, where
the graph kernel is of the form (x,y) = +(x)�(y) for some nonnegative continuous
functions � and + on S.

Example 3.2.1 Directed versions of some well-known inhomogeneous random graph models.
All of them, with the exception of the last one, are defined on the space S = R� for a
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type of the form x = (x�, x+), and correspond to rank-1 kernels with �(x) = x�/
p
✓ and

+(x) = x+/
p
✓, with ✓ > 0 a constant. For convenience, we have dropped the superscript

(n) from the type sequence, i.e., {x1, . . . ,xn} = {x(n)
1 , . . . ,x(n)

n }.

1. Directed Erdős-Rényi Model: the arc probabilities are given by

p(n)
ij

= �/n

where � is a given constant and n is the total number of vertices; 'n(xi,xj) = 0.

2. Directed Given Expected Degree Model (Chung-Lu): the arc probabilities are given by

p(n)
ij

=
x+
i
x�
j

ln
^ 1,

where ln =
P

n

i=1(x
�
i
+ x+

i
). In terms of (3.2.1), it satisfies 'n(xi,xj) =

✓n�ln
ln

, where
✓ = limn!1 ln/n.

3. Generalized Directed Random Graph: the arc probabilities are given by

p(n)
ij

=
x+
i
x�
j

ln + x+
i
x�
j

,

which implies that 'n(xi,xj) =
✓n�ln�x

+
i x

�
j

ln+x
+
i x

�
j

, with ln and ✓ defined as above.

4. Directed Poissonian Random Graph (Norros-Reittu): the arc probabilities are given by

p(n)
ij

= 1� e�x
+
i x

�
j /ln ,

which implies that 'n(xi,xj) =
⇣
n✓(1� e�x

+
i x

�
j /ln)� x+

i
x�
j

⌘
/(x+

i
x�
j
), with ln and ✓

defined as above.

5. Deterministic Kernel Model: the arc probabilities are given by

p(n)
ij

=
(xi,xj)

n
^ 1,

for a finite type space S = {s1, . . . , sM}, and a strictly positive function  on S ⇥ S;
in terms of (3.2.1), 'n(xi,xj) = 0. This model is also known as the stochastic block
model.
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3.3 Main Results.

We now present our main results for the family of inhomogeneous random digraphs defined
through (3.2.1). As mentioned in the introduction, we focus on establishing some of the
basic properties of this family, including the distribution of the degrees, the mean number of
arcs, and the size of the largest strongly connected component. When analyzing the degree
distributions, we specifically explain how to obtain the scale-free property under degree-
degree correlations.

As mentioned in the previous section, we assume throughout the paper that the nth
graph in the sequence is constructed using the types {X1, . . . ,Xn} = {X(n)

1 , . . . ,X(n)
n }, where

we will often drop the superscript (n) to simplify the notation. From now on we will use
upper case letters to emphasize the possibility that the {Xi} may themselves be generated
through a random process. To distinguish between these two levels of randomness, let P be a
probability measure on a space large enough to construct all the type sequences {{X(n)

i
, 1 

i  n} : n � 1}, as well as the random graphs Gn((1 + 'n)), simultaneously. Define

F = �(X(n)
i

, 1  i  n) and the corresponding conditional probability and expectation
P(·) = P (·|F ) and E[·] = E[·|F ], respectively.

Our first assumption will be to ensure that the {X(n)
i

} converge in distribution under the
unconditional probability P . As is to be expected from the work in [14] for the undirected
case, we will also need to impose some regularity conditions on the kernel , as well as on
the function 'n. Our main assumptions are summarized below.

Assumption 3.3.1 1. There exists a Borel probability measure µ on S such that for any
µ-continuity set A ✓ S,

µn(A) :=
1

n

nX

i=1

1(X(n)
i
2 A)

P�! µ(A) n!1,

where
P�! denotes convergence in probability. Note that µn is a random probability

measure, whereas µ is not random.

2.  is nonnegative and continuous a.e. on S ⇥ S.

3. For any sequences {xn}, {yn} ✓ S such that xn ! x and yn ! y as n!1, we have

'n(xn,yn)
P! 0 as n!1.

4. The following limits hold :

lim
n!1

1

n2
E

"
nX

i=1

nX

j=1

(X(n)
i

,X(n)
j

)

#
= lim

n!1

1

n
E

"
nX

i=1

X

j 6=i

p(n)
ij

#
=

ZZ

S2

(x,y)µ(dx)µ(dy) <1.

Remark 3.3.2 The pair (S, µ), where S is a separable metric space and µ is a Borel prob-
ability measure, is referred to in [14] as a generalized ground space. For convenience, we
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will adopt the same terminology throughout the paper. Throughout the paper, we use “a.e.”
to mean “almost everywhere with respect to the (non-random) measure µ”.

3.3.1 Number of arcs.

Our assumption that the types {Xi} converge in distribution as the size of the graph grows
implies that the graphs produced by our model are sparse, in the sense that the mean number
of arcs is of the same order as the number of vertices. Our first result provides an expression
for the exact ratio between the number of arcs and the number of vertices.

Proposition 3.3.3 Define e(Gn((1 + 'n))) to be the number of arcs in Gn((1 + 'n)).
Then, under Assumption 3.3.1(a)-(d) we have

1

n
e(Gn((1 + 'n))) �!

ZZ

S2

(x,y)µ(dx)µ(dy) in L1(P )

as n!1.

3.3.2 Distribution of vertex degrees.

We now move on to describing the vertex degree distribution, which is best accomplished
by looking at the properties of a typical vertex, i.e., one chosen uniformly at random. In
particular, if D�

n,i
and D+

n,i
denote the in-degree and out-degree, respectively, of vertex i 2

[n] , {1, · · · , n}, and we let ⇠ be a uniform random variable in {1, 2, . . . , n}, then we study
the distribution of (D�

n,⇠
, D+

n,⇠
). We point out that the distribution of (D�

n,⇠
, D+

n,⇠
) also allows

us to compute the proportion of vertices in the graph having in-degree k and out-degree l
for any k, l � 0. In the sequel, ) denotes weak convergence with respect to P .

Theorem 3.3.4 Under Assumption 3.3.1 we have
�
D�

n,⇠
, D+

n,⇠

�
) (Z�, Z+), E[D±

n,⇠
]! E[Z±], as n!1,

where Z� and Z+ are conditionally independent (given X) mixed Poisson random variables
with mixing distributions

��(X) :=

Z

S
(y,X)µ(dy) and �+(X) :=

Z

S
(X,y)µ(dy),

respectively, and X is distributed according to µ.

As mentioned earlier, we are particularly interested in models capable of creating scale-
free graphs, perhaps with a significant correlation between the in-degree and out-degree of
the same vertex. To see that our family of inhomogeneous random digraphs can accomplish
this, we first introduce the notion of non-standard regular variation (see [93, 100]), which
extends the notion of regular variation in the real line to multiple dimensions, with each
dimension having potentially di↵erent tail indexes. In our setting we only need to consider
two dimensions, so we only give the bivariate version of the definition.
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Definition 3.3.5 A nonnegative random vector (X, Y ) 2 R2 has a distribution that is non-
standard regularly varying if there exist scaling functions a(t) " 1 and b(t) " 1 and a
non-zero limit measure ⌫(·), called the limit or tail measure, such that

tP ((X/a(t), Y/b(t)) 2 ·) v�! ⌫(·), t!1,

where
v�! denotes vague convergence of measures in M�([0,1]2\{0}), the space of Radon

measures on [0,1]2 \ {0}.

In particular, if the scaling functions a(t) and b(t) are regularly varying at infinity with
indexes 1/↵ and 1/�, respectively, that is a(t) = t1/↵La(t) and b(t) = t1/�Lb(t) for some
↵, � > 0 and slowly varying functions La and Lb, then the marginal distributions P (X >
t) and P (Y > t) are regularly varying with tail indexes �↵ and ��, respectively (see
Theorem 6.5 in [92]). Throughout the paper we use the notation R↵ to denote the family of
regularly varying functions with index ↵.

To see how our family of IRDs can be used to model complex networks where both the
in-degrees and the out-degrees possess the scale-free property, perhaps with di↵erent tail
indexes, we give a theorem stating that the non-standard regular variation of the limiting
degrees (Z�, Z+) follows from that of the vector (��(X),�+(X)). Moreover, for the models
(a)-(d) in Example 3.2.1, we have

(��(X),�+(X)) =

✓
�(X)

Z

S
+(y)µ(dy), +(X)

Z

S
�(y)µ(dy)

◆
=
�
cX�, (1� c)X+

�
,

where c = E[X+]/✓ and ✓ = E[X�+X+], so the non-standard regular variation of (Z�, Z+)
can be easily obtained by choosing a non-standard regularly varying type distribution µ.

Theorem 3.3.6 Let X denote a random vector in the type space S distributed according
to µ. Suppose that µ is such that (��(X),�+(X)) is non-standard regularly varying with
scaling functions a(t) 2 R1/↵ and b(t) 2 R1/� and limiting measure ⌫(·). Then, (Z�, Z+)
is non-standard regularly varying with scaling functions a(t) and b(t) and limiting measure
⌫(·) as well.

To illustrate our result, we give below an example that illustrates how our family of
random digraphs along with Theorem 3.3.6 can be used to model real-world networks.

Example 3.3.7 As discussed in [115], many real-world networks exhibit both heavy-tailed
in-degrees and heavy-tailed out-degrees. In many of those cases there also appears to be
a relationship between the vertices with very high in-degrees and those with very high out-
degrees, as is shown in [115] for portions of the Web graph and the English Wikipedia graph
(this dependence was computed using the angular measure in [115]). Suppose we want to
model such graphs using an inhomogeneous random digraph. Interesting levels of dependence
ranging from the case where the in-degree and out-degree are independent to where they are
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essentially the same can be obtained by choosing X = (X�, X+), P (X� > x) ⇠ k�x�↵

as x ! 1 and X+ = r(X�)� + (1 � r)Y , where Y is independent of X� and satisfies
P (Y > y) ⇠ k0y��, ↵, �, k�, k0 > 0, r 2 [0, 1] and 0  �  ↵/�. This choice leads to
P (X+ > x) ⇠ k+x�� for some other constant k0

+ > 0, and covers the independent case when
r = 0, and the perfectly dependent case when r = 1 and � = ↵/�. Now choose (x,y) = x+y�

and note that (��(X),�+(X)) = (cX�, (1 � c)X+), where c = E[X+]/E[X� + X+]. It
follows from Theorems 3.3.4 and 3.3.6 that (D�

n,⇠
, D+

n,⇠
) ) (Z�, Z+) as n ! 1, where

(Z+, Z�) is non-standard regularly varying. In particular, P (Z� > z) ⇠ k�c↵z�↵ and
P (Z+ > x) ⇠ k+(1 � c)�z�� as z ! 1, and the angular measure between Z� and Z+ will
mimic that of X� and X+.

3.3.3 Phase transition for the largest strongly connected

component.

Our last result in the paper establishes a phase transition for the existence of a giant strongly
connected component in Gn((1 + 'n)). That is, we provide a critical threshold for a func-
tional of the kernel  and the type distribution µ, such that above this threshold the graph
will have a giant strongly connected component with high probability, and below it will not.
Before stating the corresponding theorem, we give a brief overview of some basic definitions.

For any two vertices i, j in the graph, we say that there is a directed path from i to j if the
graph contains a set of arcs {(i, k1), (k1, k2), . . . , (kt, j)} for some t � 0. A set of vertices V ✓
[n] is strongly connected, if for any two vertices i, j 2 V we have that there exists a directed
path from i to j and one from j to i. Moreover, we say that a giant strongly connected
component exists for our family of random digraphs if lim infn!1 |C1(Gn((1+'n)))|/n > ✏
for some ✏ > 0, where C1(Gn((1 + 'n)) is the largest strongly connected component of
Gn((1 + 'n)) and |A| denotes the cardinality of set A.

For undirected graphs, the phase transition for the Erdős-Rényi model (p(n)
ij

= �/n for
some � > 0) dates back to the classical work of Erdős and Rényi in [38], where the threshold
for the existence of a giant connected component is � = 1. The critical case, i.e., � = 1, was
studied in [76] using edge probabilities of the form p(n)

ij
= (1 + cn�1/3)/n for some c > 0,

in which case the size of the largest connected component was shown to be of order n2/3.
Somewhat unrelated, the corresponding phase transition was established for the (undirected)
configuration model in [80], where the threshold was shown to be E[D(D � 1)]/E[D] = 1,
with D distributed according to the limiting degree distribution (as the number of vertices
grows to infinity). Back to the (undirected) inhomogeneous random graph setting, i.e.,

p(n)
ij

= (xi,xj)(1+'n(xi,xj))/n with  symmetric, the phase transition was first proven for
various forms of rank-1 kernels. In particular, Chung and Lu established in [26] the phase
transition for the existence of a giant connected component in the so-called “given expected
degree” model. The same authors also give in [27] a phase transition for the average distance
between vertices when the type distribution µ follows a power-law. Norros and Reittu proved
the phase transition for the existence of a giant connected component for the Poissonian
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random graph in [82], along with a characterization of the distance between two randomly
chosen vertices, and Riordan proved it in [95] for the c/

p
ij model, which is equivalent to the

rank-1 kernel (x,y) =  (x) (y) with  (x) =
p
cx and µ the distribution of a Pareto(2,1).

More generally, the work in [14] gives the phase transition for the giant connected component
for the general kernel case, along with some other properties (e.g., second largest connected
component, distances between vertices, and stability). The threshold for the existence of a
giant connected component is kTkop = 1, with k · kop the operator norm11, where T is a
linear operator induced by , which in the rank-1 case becomes kTk2op = E[ (X)2] = 1,
with X distributed according to µ.

For the directed case, the phase transition for the existence of a giant strongly connected
component was proven for the directed Erdős-Rényi model (p(n)

ij
= �/n for some � > 0) in [56]

and for the “given number of arcs” version of the Erdős-Rényi model (number of arcs = �n for
some � > 0) in [74], with the threshold being � = 1. The work in [75] studies a related model
where each vertex i can have three types of arcs: up arcs for j > i, down arcs for j < i,
and bidirectional arcs, and proved the corresponding phase transition for the appearance
of a giant strongly connected component. For the directed configuration model the phase
transition for the existence of a giant strongly connected component was given in [42] under
the assumption that the limiting degrees have finite variance and satisfy some additional
conditions on the growth of the maximum degree, and can also be indirectly obtained from
the results in [53] under only finite covariance between the in-degree and out-degree. The
threshold for the directed configuration model is E[D�D+]/E[D�+D+] = 1, where (D�, D+)
are the limiting in-degree and out-degree. A hybrid model where the out-degree has a
general distribution with finite mean and the destinations of the arcs are selected uniformly
at random among the vertices (which gives Poisson in-degrees) was studied in [85] and was
shown to have a phase transition at E[D+] = 1. Finally, for general inhomogeneous random
digraphs such as those studied here, the main theorem in [12] establishes the phase transition
for the deterministic kernel in Example 3.2.1(d) with finite type space S = {1, 2, . . . ,M},
without characterizing the strict positivity of the survival probability. The authors in [12]
also suggest that the general case can be obtained using the same techniques used in [14] to
go from a finite type space to the general one, however, the proof in [14] requires a critical
step that does not hold for directed graphs; see Section 3.4.3 for more details.

Our Theorem 3.3.10 provides the full equivalent of the main theorem in [14] (Theorem 3.1)
for the directed case, and its proof is based on a coupling argument between the exploration
of both the inbound and outbound components of a randomly chosen vertex and a double
multi-type branching process with a finite number of types. Our approach di↵ers from that
of [14], done for undirected graphs, in the order in which the couplings are done, and it
leverages on the main theorem in [12] to obtain a lower bound for the size of the strongly
connected component. We give more details on how our proof technique compares to that
used in [14] in Section 3.4.3.

As in the undirected case, the size of the largest strongly connected component is related
to the survival probability of a suitably constructed double multi-type branching process. To
define it, let T �

µ
() and T +

µ
() denote two conditionally independent (given their common
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root) multi-type branching processes defined on the type space S whose roots are chosen
according to µ and such that the number of o↵spring having types in a subset A ✓ S that
an individual of type x 2 S can have, is Poisson distributed with means

Z

A

(y,x)µ(dy) for T �
µ
() and

Z

A

(x,y)µ(dy) for T +
µ
(), (3.3.1)

respectively. Next, let ⇢�(;x) and ⇢+(;x) denote the survival probabilities of T �
µ
(;x)

and T +
µ
(;x), respectively, where T �

µ
(;x) and T +

µ
(;x) denote the trees whose root has

type x. We recall that a branching process is said to survive if its total population is infinite.
We refer the reader to [79, 8] for more details on multi-type branching processes, including
those with uncountable type spaces as the ones defined above.

In order to state our result for the phase transition in IRDs we first need to introduce
the following definitions.

Definition 3.3.8 A kernel  defined on a separable metric space S with respect to a Borel
probability measure µ is said to be irreducible if for any subset A ✓ S satisfying  = 0
a.e. on A⇥Ac, we have either µ(A) = 0 or µ(Ac) = 0. We say that  is quasi-irreducible if
there is a µ-continuity set S 0 ✓ S with µ(S 0) > 0 such that the restriction of  to S 0 ⇥ S 0 is
irreducible, and (x,y) = 0 if x /2 S 0 or y /2 S 0.

Definition 3.3.9 A kernel  on a separable metric space S with respect to a Borel probability
measure µ is regular finitary if S has a finite partition into sets J1, ...,Jr such that  is
constant on each Ji ⇥ Jj, and each Ji is a µ-continuity set, i.e., it is measurable and has
µ(@Ji) = 0.

To give the condition under which a giant strongly connected component exists we also
need to define the operators induced by kernel , i.e.,

T+

f(x) =

Z

S
(x,y)f(y)µ(dy) and T�


f(x) =

Z

S
(y,x)f(y)µ(dy).

Note that T+


and T�


are integral linear operators on (S, µ) equipped with the norm

��T±


��
op

= sup{
��T±


f
��
2
: f � 0, kfk2  1}  1,

which makes them (potentially) unbounded operators in L2(S, µ). We also define their
corresponding spectral radii r(T+


) and r(T�


), where the spectral radius of operator T in

L2(S, µ) is defined as
r(T ) = sup{|�| : � 2 �(T )},

where �(T ) = {� 2 C : T � �I is not boundedly invertible} is the spectrum of T and I is
the operator that maps f onto itself.12

The phase transition result for the largest strongly connected component is given below.
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Theorem 3.3.10 Suppose Assumption 3.3.1 is satisfied and  is irreducible. Let C1(Gn((1+
'n))) denote the largest strongly connected component of Gn((1 + 'n)). Then,

|C1(Gn((1 + 'n)))|
n

P�! ⇢() n!1,

where

⇢() =

Z

S
⇢�(;x)⇢+(;x)µ(dx).

Furthermore, if ⇢() > 0 then r(T�

) > 1 and r(T+


) > 1, and if there exists a regular finitary

quasi-irreducible kernel ̃ such that ̃   a.e. and r(T�
̃
) > 1 (equivalently, r(T+

̃
) > 1),

then ⇢() > 0.

Moreover, when ⇢() > 0 we can characterize the “bow-tie” structure defined by the
giant strongly connected component, C1(Gn((1+'n))), the set of vertices that can reach it
(its fan-in), and the set of vertices that can be reached from it (its fan-out). The following
result makes this precise.

Theorem 3.3.11 Suppose Assumption 3.3.1 is satisfied and  is irreducible. For each vertex
v 2 [n] define its in-component and out-component as:

R�(v) = {i 2 [n] : v is reachable from i by a directed path (i, v) in Gn((1 + 'n))}
R+(v) = {i 2 [n] : i is reachable from v by a directed path (v, i) in Gn((1 + 'n))}.

Define L�
n
= {v 2 [n] : |R�(v)| � (log n)/n} and L+

n
= {v 2 [n] : |R+(v)| � (log n)/n}.

Then, if ⇢() > 0,
lim
n!1

P
�
C1(Gn((1 + 'n))) = L+

n
\ L�

n

�
= 1,

and
|L+

n
|

n
P�!
Z

S
⇢+(;x)µ(dx) and

|L�
n
|

n
P�!
Z

S
⇢�(;x)µ(dx)

as n!1.

Remark 3.3.12 We point out that we do not have a full if and only if condition for the
strict positivity of ⇢(), since our operators T�


and T+


may be unbounded, in which case

the continuity of the spectral radius is not guaranteed. However, when  satisfies
Z

S

Z

S
(x, y)2µ(dx)µ(dy) <1,

then the operators T�


and T+


are compact (see Lemma 5.15 in [14]), and Theorem 2.1(a)
in [36] gives the continuity of the spectral radius for a sequence of quasi-irreducible kernels
m %  as m ! 1, ensuring the existence of ̃ in Theorem 3.3.10. Interestingly, for the
rank-1 case we can indeed provide a full characterization even when the operators T�


and

T+


are unbounded, as Proposition 3.3.13 shows.
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We end the expository part of the paper with a compilation of all our results for the
rank-1 case, which includes the first four models in Example 3.2.1.

Proposition 3.3.13 (IRDs with rank-1 kernel) Suppose that Assumption 3.3.1 is sat-
isfied with  irreducible and of the form (x,y) = +(x)�(y). Let X denote a random
variable distributed according to µ. Then, the following properties hold:

1. Number of arcs: let e(Gn((1 + 'n))) denote the number of arcs in Gn((1 + 'n)),
then

e(Gn((1 + 'n)))

n
! E[�(X)]E[+(X)] in L1(P ) as n!1.

2. Distribution of vertex degrees: let (D�
n,⇠

, D+
n,⇠

) denote the in-degree and out-degree
of a randomly chosen vertex in Gn((1 + 'n)). Set �+(x) = +(x)E[�(X)] and
��(x) = �(x)E[+(X)]. Then,

(D�
n,⇠

, D+
n,⇠

)) (Z�, Z+), E[D±
n,⇠

]! E[Z±],

as n!1, where Z� and Z+ are conditionally independent (given X) mixed Poisson
random variables with mixing distributions ��(X) and �+(X).

3. Scale-free degrees: suppose that (�(X),+(X)) is non-standard regularly varying
with scaling functions a(t) 2 RV(1/↵) and b(t) 2 RV(1/�) and limiting measure ⌫̃(·).
Then, (Z�, Z+) is non-standard regularly varying with scaling functions a(t) and b(t)
and limiting measure ⌫(·) satisfying

⌫((x,1]⇥ (y,1]) = ⌫̃

✓✓
x

E[�(X)]
,1

�
⇥
✓

y

E[+(X)]
,1

�◆
.

4. Phase transition for the largest strongly connected component: suppose  is
irreducible and let C1(Gn((1 + 'n))) denote the largest strongly connected component
of Gn((1 + 'n)). Then,

|C1(Gn((1 + 'n)))|
n

P�! ⇢(), n!1,

with ⇢() > 0 if and only if E[+(X)�(X)] > 1.

The remainder of the paper is devoted to the proofs of all the results mentioned above.
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3.4 Proofs.

This section contains all the proofs of the theorems in Section 3.3. They are organized
according to the same order in which their corresponding statements appear. Throughout
this section we use the notation

q(n)
ij

=
(Xi,Xj)

n
1  i, j  n,

to denote the asymptotic limit of the arc probabilities in the graph, and to avoid having
to explicitly exclude possible self-loops, we define p(n)

ii
= 0 for all 1  i  n. We also use

f(x) = O(g(x)) as x!1 to mean that lim sup
x!1 |f(x)/g(x)| <1.

3.4.1 Number of arcs.

The first result we prove corresponds to Proposition 3.3.3, which gives the asymptotic number
of edges in Gn((1 + 'n)). Before we do so, we state and prove two preliminary technical
lemmas that will be used several times throughout the paper.

Lemma 3.4.1 Assume Assumption 3.3.1 holds and define for any 0 < ✏ < 1/2 the events

Bij =
n
(1� ✏)q(n)

ij
 p(n)

ij
 (1 + ✏)q(n)

ij
, q(n)

ij
 ✏

o
. (3.4.1)

Then,

lim
n!1

E

"
1

n

nX

i=1

nX

j=1

⇣
p(n)
ij

+ q(n)
ij

⌘
1(Bc

ij
)

#
= 0.

Proof. We start by defining Aij = {q(n)
ij
 ✏} and noting that the expression inside the

expectation is bounded from above by

2

n

nX

i=1

nX

j=1

q(n)
ij

1
⇣
p(n)
ij

< (1� ✏)q(n)
ij

, Aij

⌘
+

2

n

nX

i=1

nX

j=1

p(n)
ij

1
⇣
p(n)
ij

> (1 + ✏)q(n)
ij

, Aij

⌘
(3.4.2)

+
1

n

nX

i=1

nX

j=1

(1 + q(n)
ij

)1(Ac

ij
). (3.4.3)

To show that (3.4.3) converges to zero, let X(n) = XI and Y
(n) = YJ where I and J are mu-

tually independent and uniformly distributed in {1, · · · , n}, and independent of everything
else. Note that

1

n
E

"
nX

i=1

nX

j=1

(1 + q(n)
ij

)1(Ac

ij
)

#
 1

n
E

"
nX

i=1

nX

j=1

(✏�1 + 1)q(n)
ij

1(Ac

ij
)

#

= (✏�1 + 1)E
⇥
(X(n),Y(n))1((X(n),Y(n)) > ✏n)

⇤
.
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Note that Assumption 3.3.1(a)-(b) imply that (X(n),Y(n))) (X,Y) as n!1, where X
andY are i.i.d. with distribution µ. Moreover, Assumption 3.3.1(d) gives E[(X(n),Y(n))]!
E[(X,Y)] as n ! 1. Hence, we can construct ({X(n),Y(n)}n�1,X,Y) on a common
probability space such that (X(n),Y(n)) ! (X,Y) P -a.s. and (X(n),Y(n)) ! (X,Y) P -
a.s. Fatou’s lemma then gives

lim sup
n!1

E
⇥
(X(n),Y(n))1((X(n),Y(n)) > ✏n)

⇤

= lim
n!1

E
⇥
(X(n),Y(n))

⇤
� lim inf

n!1
E
⇥
(X(n),Y(n))1((X(n),Y(n))  ✏n)

⇤

 E [(X,Y)]� E [(X,Y)] = 0.

To analyze the expectation of the first sum in (3.4.2), note that

1

n
E

"
nX

i=1

nX

j=1

q(n)
ij

1
⇣
p(n)
ij

< (1� ✏)q(n)
ij

, Aij

⌘#

=
1

n
E

"
nX

i=1

nX

j=1

q(n)
ij

1
⇣
q(n)
ij

(1 + 'n(Xi,Xj)) < (1� ✏)q(n)
ij
 ✏(1� ✏)

⌘#

 1

n2
E

"
nX

i=1

nX

j=1

(Xi,Xj)1 ('n(Xi,Xj) < �✏)
#

= E
⇥
(X(n),Y(n))

⇤
� E

⇥
(X(n),Y(n))1('n(X

(n),Y(n)) � �✏)
⇤
. (3.4.4)

Similarly, the expectation of the second sum in (3.4.2) can be bounded as follows

1

n
E

"
nX

i=1

nX

j=1

p(n)
ij

1
⇣
p(n)
ij

> (1 + ✏)q(n)
ij

, Aij

⌘#

=
1

n
E

"
nX

i=1

nX

j=1

p(n)
ij

1
⇣
q(n)
ij

(1 + 'n(Xi,Xj)) > (1 + ✏)q(n)
ij

, q(n)
ij
 ✏

⌘#

 1

n

nX

i=1

nX

j=1

p(n)
ij

1('n(Xi,Xj) > ✏)

=
1

n
E

"
nX

i=1

nX

j=1

p(n)
ij

#
� E

⇥��
(X(n),Y(n))(1 + 'n(X

(n),Y(n)))
 
^ n

�
1('n(X

(n),Y(n))  ✏)
⇤
.

(3.4.5)

Using Fatou’s lemma again and Assumption 3.3.1(c) (which implies that 'n(X(n),Y(n))
P�! 0

as n!1), we have that

lim inf
n!1

E
⇥
(X(n),Y(n))1('n(X

(n),Y(n)) � �✏)
⇤
� E [(X,Y)]
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and

lim inf
n!1

E
⇥��

(X(n),Y(n))(1 + 'n(X
(n),Y(n)))

 
^ n

�
1('n(X

(n),Y(n))  ✏)
⇤
� E [(X,Y)] .

It follows then from Assumption 3.3.1(d) that both (3.4.4) and (3.4.5) converge to zero. This
completes the proof.

The next result establishes the convergence in probability of the expected number of
edges in the graph.

Lemma 3.4.2 Under Assumption 3.3.1 we have

1

n2

nX

i=1

nX

j=1

(Xi,Xj)!
ZZ

S2

((x,y)µ(dx)µ(dy) and
1

n

nX

i=1

X

j 6=i

p(n)
ij
!

ZZ

S2

((x,y)µ(dx)µ(dy)

in L1(P ) as n!1 .

Proof. As in the proof of Lemma 3.4.1, note that

1

n2

nX

i=1

nX

j=1

(Xi,Xj) = E
⇥
(X(n),Y(n))

⇤
,

where X(n) and Y
(n) are conditionally i.i.d. given F with distribution µn (constructed as in

Lemma 3.4.1). Let X and Y be i.i.d. with distribution µ and note that

ZZ

S2

((x,y)µ(dx)µ(dy) = E[(X,Y)].

Next, note that for any fixed M > 0 we have that (x,y) ^M is bounded and continuous,
so by Lemma A.2 in [14] we have that

E[(X(n),Y(n)) ^M ]
P�! E[(X,Y) ^M ]

as n!1. Next, fix ✏ > 0 and choose M > 0 such that E[((X,Y)�M)+]  ✏/2. Then,

P
���E

⇥
(X(n),Y(n))

⇤
� E[(X,Y)]

�� > ✏
�

= P
���E

⇥
(X(n),Y(n)) ^M + ((X(n),Y(n))�M)+

⇤
� E[(X,Y) ^M + ((X,Y)�M)+]

�� > ✏
�

 P
���E

⇥
(X(n),Y(n)) ^M

⇤
� E[(X,Y) ^M ]

��+ E
⇥
((X(n),Y(n))�M)+

⇤
> ✏/2

�

 P
���E

⇥
(X(n),Y(n)) ^M

⇤
� E[(X,Y) ^M ]

�� > ✏/4
�
+ P

�
E
⇥
((X(n),Y(n))�M)+

⇤
> ✏/4

�

 P
���E

⇥
(X(n),Y(n)) ^M

⇤
� E[(X,Y) ^M ]

�� > ✏/4
�
+

4

✏
E
⇥
((X(n),Y(n))�M)+

⇤
.
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Furthermore, the same arguments used in the proof of Lemma 3.4.1 give that

lim sup
n!1

E
⇥
((X(n),Y(n))�M)+

⇤
= E [(X,Y)]� lim inf

n!1
E
⇥
(X(n),Y(n)) ^M

⇤

 E
⇥
((X,Y)�M)+

⇤
.

Therefore,

lim sup
n!1

P
���E

⇥
(X(n),Y(n))

⇤
� E[(X,Y)]

�� > ✏
�
 4

✏
E
⇥
((X,Y)�M)+

⇤
,

and taking M ! 1 gives E
⇥
(X(n),Y(n))

⇤
P�! E[(X,Y)] as n ! 1. Since by Assump-

tion 3.3.1(d) we have E
⇥
(X(n),Y(n))

⇤
! E[(X,Y)], then

E
⇥
(X(n),Y(n))

⇤
! E[(X,Y)] in L1(P ) n!1. (3.4.6)

For the second result recall that p(n)
ii

= 0 and q(n)
ij

= (Xi,Xj)/n, so it su�ces to show that

1

n

nX

i=1

nX

j=1

⇣
p(n)
ij
� q(n)

ij

⌘
! 0 in L1(P ) n!1. (3.4.7)

To see that this is the case fix 0 < ✏ < 1/2 and define Bij according to Lemma 3.4.1. Next,
note that by (3.4.6) and Lemma 3.4.1 we have

E

"�����
1

n

nX

i=1

nX

j=1

⇣
p(n)
ij
� q(n)

ij

⌘�����

#
 1

n
E

"
nX

i=1

nX

j=1

✏q(n)
ij

#
+

1

n
E

"
nX

i=1

nX

j=1

⇣
p(n)
ij

+ q(n)
ij

⌘
1(Bc

ij
)

#

= ✏E
⇥
(X(n),Y(n))

⇤
+

1

n
E

"
nX

i=1

nX

j=1

⇣
p(n)
ij

+ q(n)
ij

⌘
1(Bc

ij
)

#

! ✏E[(X,Y)]

as n!1. Taking ✏! 0 establishes (3.4.7), which completes the proof.
We are now ready to prove Proposition 3.3.3.
Proof of Proposition 3.3.3. We start by defining Wn to be the average number of

arcs in the graph Gn((1 + 'n)) given the types, that is, Wn := E[e(Gn((1 + 'n)))]/n =
1
n

P
n

i=1

P
n

j=1 p
(n)
ij

. Note that by Lemma 3.4.2 we have that Wn ! E [(X,Y)] <1 in L1(P )
as n ! 1, where X and Y are i.i.d. with common distribution µ. Therefore, it su�ces to
show that e(Gn((1 + 'n)))/n�Wn ! 0 in L1(P ) as n!1.

To do this, let Yij denote the indicator of whether arc (i, j) is present in Gn((1 + 'n))
and note that

e(Gn((1 + 'n))) =
nX

i=1

X

j 6=i

Yij,
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where the {Yij} are Bernoulli random variables with means {p(n)
ij

}, conditionally independent
given F . It follows that

Var(e(Gn((1 + 'n)))|F ) =
nX

i=1

nX

j=1

Var(Yij|F ) 
nX

i=1

nX

j=1

E[Yij] =
nX

i=1

nX

j=1

p(n)
ij

= nWn.

Therefore,

E
⇥
(e(Gn((1 + 'n)))/n�Wn)

2
⇤
= E

⇥
E
⇥
(e(Gn((1 + 'n)))/n�Wn)

2
⇤⇤

= E
⇥
n�2Var(e(Gn((1 + 'n)))|F )

⇤

 n�2E [nWn]
P�! 0,

as n!1. Hence, e(Gn((1 + 'n)))/n�Wn ! 0 in L2(P ), which completes the proof.

3.4.2 Distribution of vertex degrees.

We now move on to the proof for Theorem 3.3.6. The proof of Theorem 3.3.4 is given in
Section 3.4.3, since it can be obtained as a corollary to Theorem 3.4.6. We will show that
(Z�, Z+) has a non-standard regularly varying distribution whenever their conditional means
(��(X),�+(X)) have a non-standard regularly varying distribution. Throughout the proof
we use the notation [a, b] = {x 2 R2 : a  x  b} to denote the rectangles in R2.

Proof of Theorem 3.3.6. To simplify the notation, letW = (W�,W+) = (��(X),�+(X)),
and recall that we need to show that ⌫̃t(·) = tP ((Z�/a(t) 2 du, Z+/b(t)) 2 ·) converges
vaguely to ⌫(·) in M�([0,1]2 \ {0}) as t ! 1. Note that by Lemma 6.1 in [92], it su�ces
to show that ⌫̃t([0,x]c) ! ⌫([0,x]c) as t ! 1 for any continuity point x 2 [0,1) \ {0} of
⌫([0, ·]c).

To start, fix (p, q) 2 [0,1) \ {0} to be a continuity point of ⌫([0, ·]c) and note that

⌫̃t((p,1]⇥ (q,1]) =

Z 1

p

Z 1

q

tP

✓
Z�

a(t)
2 du,

Z+

b(t)
2 dv

◆

= tP

✓
Z�

a(t)
> p,

Z+

b(t)
> q

◆

= tE


P

✓
Z�

a(t)
> p,

Z+

b(t)
> q

����W
◆�

= tE
⇥
P
�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
�⇤

.

It follows that we need to show that

lim
t!1

tE
⇥
P
�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
�⇤

= ⌫((p,1]⇥ (q,1]).
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To this end, define e(t) =
p
�a(t) log a(t) and d(t) =

p
⌘b(t) log b(t) with � > 2q�,

⌘ > 2p↵, and use them to define the events

At = {W� > pa(t)� e(t)} and Bt = {W+ > qb(t)� d(t)}.

Now note that

tE
⇥
P
�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
�⇤

= tE
⇥
P
�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
�
1(At \Bt)

⇤
(3.4.8)

+ tE
⇥
P
�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
�
1(Ac

t
[Bc

t
)
⇤
. (3.4.9)

To see that (3.4.9) vanishes in the limit, use the bound P (Poi(�) � p)  e��(e�/p)p for
p > �, where Poi(�) is Poisson random variable with mean �, to obtain that

tE
⇥
P
�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
�
1(Ac

t
)
⇤

 tE
⇥
P
�
Z� > pa(t)

��W
�
1(Ac

t
)
⇤

 tE
⇥
exp

�
�W� + pa(t)

�
1 + log(W�)� log(pa(t))

� 
1(Ac

t
)
⇤

 t exp{�(pa(t)� e(t)) + pa(t)(1 + log(pa(t)� e(t))� log(pa(t)))}

= t exp

⇢
e(t) + pa(t) log

✓
1� e(t)

pa(t)

◆�

= t exp

✓
� e(t)2

2pa(t)
+O

✓
e(t)3

(pa(t))2

◆◆
= ta(t)�

�
2p

✓
1 +O

✓
(log a(t))3/2

a(t)1/2

◆◆
,

where in the third inequality we used the observation that g(u) = �u+pa(t) log u is concave
with a unique maximizer at u⇤ = pa(t). Similarly,

tE
⇥
P
�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
�
1(Bc

t
)
⇤

 tb(t)�
⌘
2q

✓
1 +O

✓
(log b(t))3/2

b(t)1/2

◆◆
.

Our choice of �, ⌘ guarantees that both terms converge to zero as t ! 1, hence showing
that (3.4.9) does so as well.

It remains to show that (3.4.8) converges to ⌫((p,1]⇥ (q,1]) as t!1. To do this, we
first note that (3.4.8) is equal to

tP (At \ Bt)� tE
⇥�
1� P

�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
��

1(At \ Bt)
⇤
,

where

tE
⇥�
1� P

�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
��

1(At \ Bt)
⇤

 tE
⇥
P
�
Z�  pa(t)

��W
�
1(At \Bt)

⇤
+ tE

⇥
P
�
Z+  qb(t)

��W
�
1(At \ Bt)

⇤

 tE
h
P
�
Z�  pa(t)

��W
�
1(Ãt \Bt)

i
+ tE

h
P
�
Z+  qb(t)

��W
�
1(At \ B̃t)

i

+ tP (Ãc

t
\ At \ Bt) + tP (At \Bt \ B̃c

t
)
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with

Ãt = {W� > pa(t) + e(t)} ✓ At and B̃t = {W+ > qb(t) + d(t)} ✓ Bt.

Now note that the inequality P (Poi(�)  p)  e��(e�/p)p for 0  p < � gives that

tE
h
P
�
Z�  pa(t)

��W
�
1(Ãt \Bt)

i

 tE
h
exp

�
�W� + pa(t)

�
1 + log(W�)� log(pa(t))

� 
1(Ãt)

i

 t exp {�(pa(t) + e(t)) + pa(t) (1 + log(pa(t) + e(t))� log(pa(t)))}

= t exp

⇢
�e(t) + pa(t) log

✓
1 +

e(t)

pa(t)

◆�

= t exp

✓
� e(t)2

2pa(t)
+O

✓
e(t)3

(pa(t))2

◆◆
= ta(t)�

�
2p

✓
1 +O

✓
(log a(t))3/2

a(t)1/2

◆◆
,

where we used again the concavity of g(u) = �u+ pa(t) log u. Similarly,

tE
h
P
�
Z+  qb(t)

��W
�
1(At \ B̃t)

i
 tb(t)�

⌘
2q

✓
1 +O

✓
(log b(t))3/2

b(t)1/2

◆◆
,

and our choice of �, ⌘ give again that

lim
t!1

n
tE

h
P
�
Z�  pa(t)

��W
�
1(Ãt \ Bt)

i
+ tE

h
P
�
Z+  qb(t)

��W
�
1(At \ B̃t)

io
= 0.

(3.4.10)
Next, let ⌫t(du, dv) = tP (W�/a(t) 2 du, W+/b(t) 2 dv) and note that for any 0 < ✏ <

p ^ q, we have that

lim sup
t!1

n
tP (Ãc

t
\ At \Bt) + tP (At \Bt \ B̃c

t
)
o

= lim sup
t!1

{⌫t ((p� e(t)/a(t), p+ e(t)/a(t)]⇥ (q � d(t)/b(t),1])

+⌫t ((p� e(t)/a(t),1]⇥ (q � d(t)/b(t), q + d(t)/b(t)])}
 lim sup

t!1
{⌫t ((p� ✏, p+ ✏]⇥ (q � ✏,1]) + ⌫t ((p� ✏,1]⇥ (q � ✏, q + ✏])}

= ⌫ ((p� ✏, p+ ✏]⇥ (q � ✏,1]) + ⌫ ((p� ✏,1]⇥ (q � ✏, q + ✏]) .

Moreover, since (p, q) is a continuity point of ⌫, then

lim
✏#0

{⌫ ((p� ✏, p+ ✏]⇥ (q � ✏,1]) + ⌫ ((p� ✏,1]⇥ (q � ✏, q + ✏])} = 0.

It follows that
lim
t!1

n
tP (Ãc

t
\ At \Bt) + tP (At \ Bt \ B̃c

t
)
o
= 0,
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which combined with (3.4.10) gives that

lim
t!1

tE
⇥�
1� P

�
Z� > pa(t)

��W
�
P
�
Z+ > qb(t)

��W
��

1(At \Bt)
⇤
= 0.

Finally, the continuity of ⌫ at (p, q) also yields that

lim
t!1

tP (At \ Bt) = lim
t!1

⌫t ((p� e(t)/a(t),1]⇥ (q � d(t)/b(t),1]) = ⌫ ((p,1]⇥ (q,1]) .

3.4.3 Phase transition for the largest strongly connected

component.

The last part of the paper considers the connectivity properties of the graph, in particular,
the size of the largest strongly connected component. As mentioned in Section 3.3.3, our
Theorem 3.3.10 provides the directed version of Theorem 3.1 in [14]. However, our proof
approach di↵ers from the one used in [14] in the order in which we construct the di↵erent
couplings involved. Specifically, in [14] the authors first couple the graph Gn((1 + 'n))
with another graph Gn(m), where m is a piecewise constant kernel taking at most a finite
number of di↵erent values and such that m %  as m!1. Then, they provide a coupling
between the exploration of the component of a randomly chosen vertex in Gn(m) and that
of a multi-type branching process, Tµ(m), whose o↵spring distribution is determined by m.
The phase transition result is then obtained by relating the survival probability of Tµ(m)
with the survival probability of its limiting tree Tµ(). Our proof leverages on the work done
in [12], which applies to a related graph Gn0(m), to establish a lower bound for the size
of the largest strongly connected component. For the upper bound, we give a new direct
coupling between the exploration of the in-component and out-component of a randomly
chosen vertex in Gn((1 + 'n)) and a double tree (T �

µ
(m), T +

µ
(m)), where m %  as

m!1. We then relate the survival probabilities of (T �
µ
(m), T +

µ
(m)) with those of their

limiting trees (T �
µ
(), T +

µ
()) as m!1.

Interestingly, trying to adapt the approach used in [14] to the directed case leads to a
phenomenon that does not occur when analyzing undirected graphs. Namely, if we consider
two coupled undirected graphs Gn((1 + 'n)) and Gn(0(1 + '0

n
)) such that every edge in

the first graph is also present in the second one but not the other way around (e.g., when
(x,y)(1 + 'n(x,y))  0(x,y)(1 + '0

n
(x,y)) for all x,y 2 S), then, the di↵erence in the

sizes of the components of a vertex present in both graphs can be bounded by the di↵erence
in their number of edges (see Lemma 9.4 in [14]). However, in the directed case, this is
no longer true, as Figure 3.1 illustrates. In other words, the existence of a (giant) strongly
connected component can be determined by a single arc. For this reason, a coupling of the
graphs Gn((1 + 'n)) and Gn(m), such as the one used in [14], does not provide an upper
bound for the size of the strongly connected component in the directed case. This may be a
notable observation considering the folklore that exists around the equivalence of undirected
and directed networks.



CHAPTER 3. CONNECTIVITY OF A GENERAL CLASS OF INHOMOGENEOUS
RANDOM DIGRAPHS 103

2

1

3

4

n-1

n

5

2

1

3

4

n-1

n

5

a) b)

Figure 3.1: Directed graph with n vertices. a) There is no strongly connected component. b)
The same graph with one additional arc; the largest strongly connected component is giant
of size n.

With respect to how this section is organized, we have subdivided it into two subsec-
tions. In the first one we provide our coupling theorem between the exploration of the
in-component and out-component of a randomly chosen vertex in Gn((1 + 'n)) and the
double tree (T �

µ
(m), T +

µ
(m)). The second subsection gives the proof of Theorem 3.3.10,

which establishes the phase transition for the size of the largest strongly connected compo-
nent.

3.4.3.1 Coupling with a double multi-type branching process.

Starting with a randomly chosen vertex in Gn((1 + 'n)), say vertex i, we will perform a
double exploration process that we will couple with a double multi-type branching process
{Ẑ(n)

t : t � 0} having “types” {1, . . . , n}. Note that these “types” are actually the identities
of the vertices in [n], so to avoid confusion with the actual types of each of the vertices, i.e.,
{X1, . . . ,Xn}, we will say that a vertex in the double tree has an identity, not a “type”.

The double tree is started at Ẑ(n)
0 = (Ẑ1,0, Ẑ2,0, . . . , Ẑn,0), and is such that for t � 1, Ẑ(n)

t =
(Ẑ�

1,t, Ẑ
�
2,t, . . . , Ẑ

�
n,t, Ẑ

+
1,t, Ẑ

+
2,t, . . . , Ẑ

+
n,t) 2 N2n, where Ẑ�

j,t
denotes the number of individuals of

identity j in the tth inbound generation of the double tree and Ẑ+
j,t

denotes the number of
individuals of identity j in the tth outbound generation of the double tree. Moreover, the
number of o↵spring that each node in the double tree has is independent of all other nodes
in the double tree, conditionally on the identity of the node. The initial vector Ẑ(n)

0 is set to
equal ei, where ei is the unit vector that has a one in position i and zeros elsewhere; note
also that it does not have a +/� superscript since it is at the center of the double tree.

In order to define the o↵spring distribution of nodes in the double tree, we fix a regular
finitary kernel m on S ⇥ S (see Definition 3.3.9) satisfying

0  m(x,y)  (x,y) for all x,y 2 S,
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and such that

m(x,y) =
MmX

i=1

MmX

j=1

c(m)
ij

1(x 2 J (m)
i

,y 2 J (m)
j

),

for some partition {J (m)
i

: 1  i  Mm} of S and some nonnegative constants {c(m)
ij

: 1 
i, j  Mm}, Mm <1. Now let the number of o↵spring of identity j that a node of identity
i in the inbound tree, respectively outbound tree, has, be Poisson distributed with mean
r(m,n)
ji

, resp. r̃(m,n)
ij

, where:

r(m,n)
ji

=
m(Xj,Xi)µ(J (m)

✓(j) )

nµn(J (m)
✓(j) )

and r̃(m,n)
ij

=
m(Xi,Xj)µ(J (m)

✓(j) )

nµn(J (m)
✓(j) )

,

and ✓(i) = j if and only if Xi 2 J (m)
j

. We denote T �
µ
(m;Xi) and T +

µ
(m;Xi) the inbound

and outbound trees, respectively, whose root is vertex i. Note that the trees T �
µ
(m;Xi) and

T +
µ
(m;Xi) are conditionally independent (given F ) by construction.
Note: We point out that in the double tree identities can appear multiple times, unlike

in the graph where they appear only once. In either case, identities take values in the set
[n] = {1, 2, . . . , n}.

Remark 3.4.3 An important observation that will be used later is that the double tree Ẑ(n)
t =

(Ẑ�
1,t, . . . , Ẑ

�
n,t, Ẑ

+
1,t, . . . , Ẑ

+
n,t) 2 N2n defined above, conditional on Ẑ0 = i 2 [n], has the same

law as the double tree Z̃
(m)
t = (Z̃�

1,t, . . . , Z̃
�
Mm,t

, Z̃+
1,t, . . . , Z̃

+
Mm,t

) 2 N2Mm, whose o↵spring
distributions are Poisson with means

m�
ij
:= c(m)

ji
µ(J (m)

j
) and m+

ij
:= c(m)

ij
µ(J (m)

j
), 1  i, j Mm.

Moreover, the latter is the same as (T �
µ
(m;x), T +

µ
(m;x)) for any x 2 J (m)

i
.

Recall that Yij = 1(arc (i, j) is present in Gn((1 + 'n))) is a Bernoulli random variable
with success probability

p(n)
ij

=
(Xi,Xj)(1 + 'n(Xi,Xj))

n
^ 1, 1  i 6= j  n, p(n)

ii
= 0.

We will couple Yij with a Poisson random variable Zij having mean r(m,n)
ij

on the inbound

side, and with a Poisson random variable Z̃ij having mean r̃(m,n)
ij

on the outbound side, using
a sequence {Uij : 1  i, j  n} of i.i.d. Uniform(0, 1) random variables.

The exploration of the graph and the construction of the double tree are done by choosing
a vertex uniformly at random among those which have not been explored. Starting with
vertex i, we fix the number of vertices to explore in the in-component of i, say kin, and the
number of vertices to explore in the out-component of i, say kout. A step in the exploration
of the in-component (out-component) corresponds to identifying the inbound (outbound)
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neighbors of the vertex being explored. The exploration of the in-component continues until
we have explored kin vertices or until there are no more vertices to reveal, after which we
proceed to explore the out-component for kout steps or until there are no more vertices to
reveal. Moreover, we allow kin and kout to be stopping times with respect to the history of
the exploration process.

Vertices in the graph can have one of two labels: {inactive, active}, or they may be
unlabelled. Active vertices are those that have been identified to be in the in-component,
respectively out-component, of vertex i but whose inbound, respectively outbound, neighbors
have not been revealed. Inactive vertices are all other vertices that have been revealed
through the exploration process but that are not active; again, there is an inbound inactive
set and an outbound inactive set. Inactive vertices on the inbound side have revealed all
its inbound neighbors, but not necessarily all their outbound ones; symmetrically, inactive
nodes on the outbound side have revealed all their outbound neighbors but not necessarily
all their inbound ones.

11

75

9

21

32

17

19

37

22

30

54

26

19

35

4

2

33

41

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(1,1)

(2,1)

(2,2)

(2,2,1)

(2,2,2)

(2,2,3)

(4,1)

(2,2)

(2,1)

(1,2)

(1,1)

0

Figure 3.2: Exploration of the graph and coupled tree. We explore vertex 7 in the graph,
which means the root of the double tree has identity T; = 7. Node identities in the double
tree are depicted inside the circles, whereas tree labels are right on top, e.g., node (2, 2, 3)
on the outbound tree has identity T(2,2,3) = 41, whereas node (3) on the inbound tree has
identity T(3) = 22.

In the double tree we will say that a node is “active” if we have not yet sampled its
o↵spring, and “inactive” if we have.
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Notation: For r = 0, 1, 2, . . . , and assuming the chosen vertex is i, let

A�
r
(A+

r
) = set of inbound (outbound) “active” vertices after having explored the first r

vertices in the in-component (out-component) of vertex i.

I�
r
(I+

r
) = set of inbound (outbound) “inactive” vertices after having explored the first r

vertices in the in-component (out-component) of vertex i.

T�
r
(T+

r
) = identity of the vertex being explored in step r, r � 1, of the exploration of the

in-component (out-component) of vertex i.

Â�
r
(Â+

r
) = set of “active” nodes in T �

µ
(m;Xi) (T +

n
(m;Xi)) after having sampled the o↵spring

of the first r nodes in T �
µ
(m;Xi) (T +

µ
(m;Xi)).

Î�
r
(Î+

r
) = set of identities belonging to “inactive” nodes in T �

µ
(m;Xi) (T +

µ
(m;Xi)) after

having sampled the o↵spring of the first r nodes in T �
µ
(m;Xi) (T +

µ
(m;Xi)).

T̂�
r
(T̂+

r
) = identity of the node in T �

µ
(m;Xi) (T +

µ
(m;Xi)) whose o↵spring are being sampled

in step r; r � 1.

Exploration of the components of vertex i in the graph:
Fix kin and kout.

1) For the exploration of the in-component:

Step 0: Label vertex i as “active” on the inbound side and set A�
0 = {i}, I�0 = ?.

Step r, 1  r  kin:

Choose, uniformly at random, a vertex in A�
r�1; let T

�
r

= i denote its identity.

a) For j = 1, 2, . . . , n, j 6= i:

i. Realize Yji = 1(Uji > 1� p(n)
ji

). If Yji = 0 go to 1(a).

ii. If Yji = 1 and vertex j 2 I�
r�1 [ A�

r�1, do nothing. Go to 1(a).

iii. If Yji = 1 and vertex j had no label, label it “active” on the inbound side.
Go to 1(a).

b) Once all the new inbound neighbors of vertex i have been identified and labeled
“active”, label vertex i as “inactive” on the inbound side.

c) Define the sets A�
r
= A�

r�1 [ {new “active” vertices created in 1(a)(iii)} \ {i} and
I�
r
= I�

r�1 [ {i}. This completes Step r on the inbound side.

2) For the exploration of the out-component:

Step 0: Label vertex i as “active” on the outbound side and set A+
0 = {i}, I+0 = ?.

Step r, 1  r  kout:

Choose, uniformly at random, a vertex in A+
r�1; let T

+
r

= i denote its identity.
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a) For j = 1, 2, . . . , n, j 6= i, j /2 I�
kin
[ A�

kin
:

i. Realize Yij = 1(Uij > 1� p(n)
ij

). If Yij = 0 go to 2(a).

ii. If Yij = 1 and vertex j 2 I+
r�1 [ A+

r�1, do nothing. Go to 2(a).

iii. If Yij = 1 and vertex j had no label, label it “active” on the outbound side.
Go to 2(a).

b) Once all the new outbound neighbors of vertex i have been identified and labeled
“active”, label vertex i as “inactive” on the outbound side.

c) Define the sets A+
r
= A+

r�1 [ {new “active” vertices created in 2(a)(iii)} \ {i} and
I+
r
= I+

r�1 [ {i}. This completes Step r on the outbound side.

Note that by setting kin = inf{r � 1 : A�
r
= ?} and kout = inf{r � 1 : A+

r
= ?} we

can fully explore the in-component and out-component of vertex i. We now explain how the
coupled double tree is constructed.

Coupled construction of the double multi-type branching process:
Let g�1(u) denote the pseudo inverse of function g, i.e., g�1(u) = inf{x : u  g(x)}. Let

Gji and G̃ij be the distribution functions of Poisson random variables having means r(m,n)
ji

and r̃(m,n)
ij

, respectively. On the double tree we use the index notation i = (i1, . . . , ir) to
identify nodes in the rth generation (inbound/outbound) of the double tree. Let Ti denote
the identity of node i; see Figure 3.2.

1) Construction of the inbound tree:

Step 0: Set Ẑ(n)
0 = ei. Let Â

�
0 = {;}, T; = i, Î�0 = ?.

Step r, 1  r  kout:

Choose a node in i 2 Â�
r�1, uniformly at random; set T̂�

r
= Ti.

I. If this is the first time identity Ti appears in the inbound tree, do as follows:

a) For j = 1, 2, . . . , n, j /2 {Ti}:
i. Realize Zj,Ti

= G�1
j,Ti

(Uj,Ti
). If Zj,Ti

= 0 go to 1(I)(a).

ii. If Zj,Ti
� 1 label each of the newly created nodes as “active” on the

inbound side. Go to 1(I)(a).

b) For j = Ti:

i. Sample Z⇤
j,Ti

to be a Poisson random variable with mean r(m,n)
j,Ti

, indepen-
dently of everything else. If Z⇤

j,Ti
= 0 go to 1(I)(c).

ii. If Z⇤
j,Ti
� 1 label each of the newly created nodes as “active” on the

inbound side. Go to 1(I)(c).

c) Once all the inbound o↵spring of node i have been identified, label identity
Ti as “inactive” on the inbound side.
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d) Define the sets Â�
r
= Â�

r�1[{new “active” nodes created in 1(I)(a)(ii) and 1(I)(b)(ii)}\
{i} and Î�

r
= Î�

r�1 [ {Ti}. This completes Step r on the inbound side.

II. Else:

a) For j = 1, 2, . . . , n:

i. Sample Z⇤
j,Ti

to be a Poisson random variable with mean r(m,n)
j,Ti

, indepen-
dently of everything else. If Z⇤

j,Ti
= 0 go to 1(II)(a).

ii. If Z⇤
j,Ti
� 1 label each of the newly created nodes as “active” on the

inbound side. Go to 1(II)(a).

b) Once all the inbound o↵spring of node i have been identified, label identity
Ti as “inactive” on the inbound side.

c) Define the sets Â�
r
= Â�

r�1[{new “active” nodes created in 1(II)(a)(ii)}\{i}
and Î�

r
= Î�

r�1 [ {Ti}. This completes Step r on the inbound side.

2) Construction of the outbound tree:

Step 0: Set Â+
0 = {;}, T; = i,Î+0 = ?.

Choose a node i 2 Â+
r�1, uniformly at random; set T̂+

r
= Ti.

I. If this is the first time identity Ti appears in the outbound tree, do as follows:

a) For j = 1, 2, . . . , n, j /2 {Ti} [ {Tj : Tj 2 Î�
kin

or j 2 Â�
kin

}:
i. Realize Z̃Ti,j

= G̃�1
Ti,j

(UTi,j
). If Z̃Ti,j

= 0 go to 2(I)(a).

ii. If Z̃Ti,j
� 1 label each of the newly created nodes as “active” on the

outbound side. Go to 2(I)(a).

b) For j 2 {Ti} [ {Tj : Tj 2 Î�
kin

or j 2 Â�
kin

}:
i. Sample Z̃⇤

Ti,j
to be a Poisson random variable with mean r̃(m,n)

Ti,j
, indepen-

dently of everything else. If Z̃⇤
Ti,j

= 0 go to 2(I)(b).

ii. If Z̃⇤
Ti,j
� 1 label each of the newly created nodes as “active” on the

outbound side. Go to 2(I)(b).

c) Once all the outbound o↵spring of node i have been identified, label identity
Ti as “inactive” on the outbound side.

d) Define the sets Â+
r
= Â+

r�1[{new “active” nodes created in 2(I)(a)(ii) and 2(I)(b)(ii)}\
{i} and Î�

r
= Î�

r�1 [ {Ti}. This completes Step r on the outbound side.

II. Else:

a) For j = 1, 2, . . . , n:

i. Sample Z̃⇤
Ti,j

to be a Poisson random variable with mean r̃(m,n)
Ti,j

, independently

of everything else. If Z̃⇤
Ti,j

= 0 go to 2(II)(a).



CHAPTER 3. CONNECTIVITY OF A GENERAL CLASS OF INHOMOGENEOUS
RANDOM DIGRAPHS 109

ii. If Z̃⇤
j,Ti
� 1 label each of the newly created nodes as “active” on the outbound

side. Go to 2(II)(a).

b) Once all the outbound o↵spring of node i have been identified, label identity Ti

as “inactive” on the outbound side.

c) Define the sets Â+
r
= Â+

r�1[{new “active” nodes created in 2(II)(a)(ii)}\{i} and

Î�
r
= Î�

r�1 [ {Ti}. This completes Step r on the outbound side.

Note: As long as the active sets in the graph and the double tree are the same, the
chosen nodes in steps (1)(I) and (2)(I) are the same as the vertices chosen in steps (1) and
(2) of the graph exploration process.

Definition 3.4.4 We say that the coupling of the graph and the double multi-type branching
process holds up to Step r on the inbound side if

A�
t
= {Tj : j 2 Â�

t
} and |A�

t
| = |Â�

t
| for all 0  t  r,

and up to Step r on the outbound side if

A+
t
= {Tj : j 2 Â+

t
} and |A+

t
| = |Â+

t
| for all 0  t  r.

Let T; denote the identity of the vertex whose in and out-components we want to explore.
Define the stopping time ⌧� to be the step in the graph exploration process of vertex T; during
which the coupling breaks on the inbound side and ⌧+ to be the step during which it breaks
on the outbound side.

Remark 3.4.5 Note that ⌧� = r if and only if either:

a. For any j = 1, 2, . . . , n, j /2 {T�
r
} [ A�

r�1 [ I�
r�1, we have Z

j,T
�
r
6= Y

j,T
�
r

in step
(1)(I)(a)(i),

b. For any j 2 A�
r�1 [ I�

r�1 we have Z
j,T

�
r
� 1 in step (1)(I)(a)(i),

c. Z⇤
T

�
r ,T

�
r
� 1 in step (1)(I)(b)(i),

and ⌧+ = r if and only if either:

d. For any j = 1, 2, . . . , n, j /2 {T+
r
}[ I�

kin
[A�

kin
[A+

r�1 [ I+r�1, we have Z̃
T

+
r ,j
6= Y

T
+
r ,j

in
step (2)(I)(a)(i),

e. For any j 2 A+
r�1 [ I+

r�1 we have Z̃
T

+
r ,j
� 1 in step (2)(I)(a)(i),

f. For any j 2 {T+
r
} [ I�

kin
[ A�

kin
, we have Z̃⇤

T
+
r ,j
� 1 in step (2)(I)(b)(i).
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We are now ready to state our main coupling result, which provides an explicit upper
bound for the probability that the coupling breaks before we can determine whether both the
in-component and the out-component of the vertex being explored have at least k vertices
each or are fully explored.

Throughout the remainder of the paper, we use the notation Pi(·) = E[1(·)|A0 = {i}]
and Ei[·] = E[·|A0 = {i}]; also, kxk1 =

P
i
|xi| for any x 2 Rn. Similarly to the definition of

��(x) and �+(x), define

�(m)
� (x) =

Z

S
m(y,x)µ(dy) and �(m)

+ (x) =

Z

S
m(x,y)µ(dy),

��
m,n

(x) =

Z

S
m(y,x)µn(dy) and �+

m,n
(x) =

Z

S
m(x,y)µn(dy),

and

��
n
(x) =

Z

S
(y,x)µn(dy) and �+

n
(x) =

Z

S
(x,y)µn(dy).

Theorem 3.4.6 Consider the exploration process described above along with its coupled dou-
ble tree construction. Define for any fixed k 2 N� the stopping times ��

k
= inf{t � 1 :

|A�
t | + |I�t | � k or A�

t = ?} and �+
k

= {t � 1 : |A+
t | + |I+t | � k or A+

t = ?}. For any
0 < ✏ < 1/2 and any n,m 2 N�,

1

n

nX

i=1

Pi

�
{⌧�  ��

k
} [ {⌧+  �+

k
}
�
 H(n,m, k, ✏),

where

H(n,m, k, ✏) = 1(⌦c

m,n
) + 4✏k2 + 2✏k2

✓
1 + sup

x2S
�(m)
� (x)

◆
+ 1(⌦m,n)

kX

r=1

r�1X

s=0

✓
r � 1

s

◆
2r�1�s

·
⇢Z

S
(�(m,n)

� )sg�
m,n,✏

(x)µn(dx) +

Z

S
(�(m,n)

+ )sg+
m,n,✏

(x)µn(dx)

�
,

the linear integral operators �(m,n)
� and �(m,n)

+ are defined in Lemma 3.4.9, the functions g�
m,n,✏

and g+
m,n,✏

are defined according to

g�
m,n,✏

(Xi) = min

(
1, (1 + 5✏)��

n
(Xi)� ��m,n

(Xi) + (1 + ✏)
nX

j=1

(p(n)
ji

+ q(n)
ji

)1(Bc

ji
)

)
,

g+
m,n,✏

(Xi) = min

(
1, (1 + 5✏)�+

n
(Xi)� �+m,n

(Xi) + (1 + ✏)
nX

j=1

(p(n)
ij

+ q(n)
ij

)1(Bc

ij
)

)
,

⌦m,n =
Mm\

t=1

(�����
µ(J (m)

t )

µn(J (m)
t )

� 1

����� 1(µn(J (m)
t ) > 0) < ✏

)
,

Bij =
n
(1� ✏)q(n)

ij
 p(n)

ij
 (1 + ✏)q(n)

ij
, q(n)

ij
 ✏

o
.
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Moreover, H(n,m, k, ✏)
P�! Ĥ(m, k, ✏) (defined in Lemma 3.4.10) as n!1 with

lim
m%1

lim
✏#0

Ĥ(m, k, ✏) = 0

for any fixed k � 1.

Before proving the theorem, we will state and prove several preliminary results. The first
one below gives an upper bound for the number of o↵spring sampled in each side of the
double-tree (T �

µ
(m), T +

µ
(m)) up to step �̂�

k
and step �̂+

k
, respectively.

Lemma 3.4.7 Let �̂�
k

= inf{t � 1 : |Â�
t | + |Î�t | � k or Â�

t = ?} and �̂+
k

= inf{t � 1 :
|Â+

t |+ |Î+t | � k or Â+
t = ?}. Then,

1

n

nX

i=1

Ei

h���Î�
�̂
�
k

���+
���Â�

�̂
�
k

���
i
 k+k sup

x2S
�(m)
� (x) and

1

n

nX

i=1

Ei

h���Î+
�̂
+
k

���+
���Â+

�̂
+
k

���
i
 k+k sup

x2S
�(m)
+ (x).

Proof. Define G�
r

to be the sigma-algebra containing all the information of the explo-
ration process of the in-component of vertex i up to the end of Step r and including the
identity of T�

r+1. Note that

Ei

h���Î�
�̂
�
k

���+
���Â�

�̂
�
k

���
i

= Ei

"���Î�
�̂
�
k �1

���+
���Â�

�̂
�
k �1

���+
nX

j=1

Z
j,T̂

�
�̂�
k

#

 k � 1 +
kX

r=1

Ei

"
1(�̂�

k
= r)

nX

j=1

Z
j,T̂

�
r

#

= k � 1 +
kX

r=1

Ei

"
1(�̂�

k
> r � 1)E

"
1

 
nX

j=1

Z
j,T̂

�
r
� k �

���Â�
r�1

����
���Î�r�1

���

!
nX

j=1

Z
j,T̂

�
r

�����G
�
r�1

##
.

Note that in the last equality the term that would correspond to {Â�
r
= ?} in the description

of the event {�̂�
k
= r} vanishes since

P
n

j=1 Zj,T̂
�
r
= 0 in that case. Now use the observation

that
P

n

j=1 Zji is a Poisson random variable with mean
P

n

j=1 r
(m,n)
ji

= �(m)
� (Xi), and the

identity E[X1(X � j)]  E[X] = � when X is Poisson(�), to obtain that

kX

r=1

Ei

"
1(�̂�

k
> r � 1)E

"
1

 
nX

j=1

Z
j,T̂

�
r
� k �

���Â�
r�1

����
���Î�r�1

���

!
nX

j=1

Z
j,T̂

�
r

�����G
�
r�1

##


kX

r=1

Ei

h
1(�̂�

k
> r � 1)�(m)

� (X
T̂

�
r
)
i

 k sup
x2S

�(m)
� (x).
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The proof for the outbound tree is essentially the same and is therefore omitted.
The next result is a technical lemma giving an explicit upper bound for the ratio of

independent Poisson random variables.

Lemma 3.4.8 Let X, Y be independent Poisson random variables with means � and µ,
respectively. Let a, b � 0. Then,

E


a+X

b+X + Y
· 1(b+X + Y � 1)

�
 2a

b+ 1
+

�

�+ µ
(1� e���µ).

Proof. Recall that X given X + Y = n is a Binomial(n,�/(�+ µ)). Hence,

E


a+X

b+X + Y
· 1(b+X + Y � 1)

�

= E
ha
b
· 1(X + Y = 0, b � 1)

i
+ E


a+X

b+X + Y
· 1(X + Y � 1)

�

=
a

b
1(b � 1)P (X + Y = 0) +

1X

n=1

E[a+X|X + Y = n]

b+ n
P (X + Y = n).

Now use the observation that X given X+Y = n is a binomial with parameters (n,�/(µ+�))
to obtain that

1X

n=1

E[a+X|X + Y = n]

b+ n
P (X + Y = n)

=
1X

n=1

a+ n�/(µ+ �)

b+ n
P (X + Y = n)

= a
1X

n=1

1

b+ n
P (X + Y = n) +

�

µ+ �

1X

n=1

n

b+ n
P (X + Y = n)

 a

b+ 1
P (X + Y � 1) +

�

µ+ �
P (X + Y � 1)

=

✓
a

b+ 1
+

�

�+ µ

◆
P (X + Y � 1).

Using the observation that (a/b)1(b � 1)  2a/(b+ 1) gives that

E


a+X

b+X + Y
· 1(b+X + Y � 1)

�
 2a

b+ 1
+

�

�+ µ
P (X + Y � 1),

which completes the proof.
The following result constitutes a key step of the proof of Theorem 3.4.6 by providing an

upper estimate for the distribution of the identities of the active nodes T̂�
r

and T̂+
r
.
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Lemma 3.4.9 Let h be a nonnegative function in S, then

Ei

h
1(Â�

r�1 6= ?)h(X
T̂

�
r
)
i


r�1X

s=0

✓
r � 1

s

◆
2r�1�s(�(m,n)

� )sh(Xi)

and

Ei

h
1(Â+

r�1 6= ?)h(X
T̂

+
r
)
i


r�1X

s=0

✓
r � 1

s

◆
2r�1�s(�(m,n)

+ )sh(Xi),

where �(m,n)
� and �(m,n)

+ are the following linear integral operators:

�(m,n)
� h(x) =

Z

S

µ(J (m)
#(y))

µn(J (m)
#(y))

· (1� e��
(m)
� (x))

�(m)
� (x)

· m(y,x)h(y)µn(dy)

and

�(m,n)
+ h(x) =

Z

S

µ(J (m)
#(y))

µn(J (m)
#(y))

· (1� e��
(m)
+ (x))

�(m)
+ (x)

· m(x,y)h(y)µn(dy),

with #(x) = t if and only if x 2 J (m)
t .

Proof. Let W�
t = (W�

t,1, . . . ,W
�
t,n) denote the process that keeps track of the identities

of the vertices in the active set Â�
t for t � 0; that is, W�

t,j
denotes the number of tree nodes

with identity j in Â�
t . Then,

Pi(Â
�
r�1 6= ?, T̂�

r
= l) = Ei

h
1
�
kW�

r�1k1 � 1
�
P(T̂�

r
= l|W�

r�1)
i

= Ei

"
W�

r�1,l

kW�
r�1k1

· 1
�
kW�

r�1k1 � 1
�
#

= Ei

"
E
"

W�
r�1,l

kW�
r�1k1

· 1
�
kW�

r�1k1 � 1
�
�����W

�
r�2

#
1(kW�

r�2k1 � 1)

#
,

where k(x1, . . . , xn)k1 = |x1| + · · · + |xn|. Now let (h1, . . . , hn) = (h(X1), . . . , h(Xn)) and
note that

Ei

h
1(Â�

r�1 6= ?)h(X
T̂

�
r
)
i
=

nX

l=1

hlPi(Â
�
r�1 6= ?, T̂�

r
= l)

= Ei

"
nX

l=1

hlE
"

W�
r�1,l

kW�
r�1k1

· 1
�
kW�

r�1k1 � 1
�
�����W

�
r�2

#
1(kW�

r�2k1 � 1)

#
.
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Moreover, provided kW�
r�2k1 � 1, we have

E
"

W�
r�1,l

kW�
r�1k1

· 1
�
kW�

r�1k1 � 1
�
�����W

�
r�2

#

=
nX

s=1

P(T̂�
r�1 = s|W�

r�2)E
"

W�
r�1,l

kW�
r�1k1

· 1
�
kW�

r�1k1 � 1
�
�����W

�
r�2, {T̂�

r�1 = s}
#

=
X

1sn

W�
r�2,s

kW�
r�2k1

E
"

W�
r�2,l + Zls � 1(s = l)

P
n

j=1(W
�
r�2,j + Zjs)� 1

· 1
 

nX

j=1

(W�
r�2,j + Zjs) � 2

!�����W
�
r�2

#


nX

s=1

W�
r�2,s

kW�
r�2k1

E
"

W�
r�2,l + ZlsP

n

j=1(W
�
r�2,j + Zjs)� 1

· 1
 

nX

j=1

(W�
r�2,j + Zjs) � 2

!�����W
�
r�2

#
.

Now use Lemma 3.4.8 with a = W�
r�2,l, b =

P
n

j=1 W
�
r�2,j � 1, X = Zls and Y =

P
j 6=l

Zjs to
obtain that

nX

s=1

W�
r�2,s

kW�
r�2k1

E
"

W�
r�2,l + ZlsP

n

j=1(W
�
r�2,j + Zjs)� 1

· 1
 

nX

j=1

(W�
r�2,j + Zjs) � 2

!�����W
�
r�2

#


nX

s=1

W�
r�2,s

kW�
r�2k1

 
2W�

r�2,l

kW�
r�2k1

+
r(m,n)
lsP

n

j=1 r
(m,n)
js

⇣
1� e�

Pn
j=1 r

(m,n)
js

⌘!

=:
2W�

r�2,l

kW�
r�2k1

+
nX

s=1

W�
r�2,s

kW�
r�2k1

· �(m,n)
ls

,

where

�(m,n)
ls

=
r(m,n)
lsP

n

j=1 r
(m,n)
js

⇣
1� e�

Pn
j=1 r

(m,n)
js

⌘
= r(m,n)

ls

(1� e��
(m)
� (Xs))

�(m)
� (Xs))

,

and we use the convention that (1� e�0)/0 ⌘ 1. It follows that

Ei

h
1(Â�

r�1 6= ?)h(X
T̂

�
r
)
i

 Ei

"
nX

l=1

hl

(
2W�

r�2,l

kW�
r�2k1

+
nX

s=1

W�
r�2,s

kW�
r�2k1

· �(m,n)
ls

)
1(kW�

r�2k1 � 1)

#

= 2Ei

h
1(Â�

r�2 6= ?)h
T̂

�
r�1

i
+ Ei

"
nX

s=1

W�
r�2,s

kW�
r�2k1

1(kW�
r�2k1 � 1)

nX

l=1

hl · �(m,n)
ls

#

= 2Ei

h
1(Â�

r�2 6= ?)h(X
T̂

�
r�1

)
i
+ Ei

h
1(Âr�2 6= ?)�(m,n)

� h(X
T̂

�
r�1

)
i
.
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Letting ar,s = Ei

h
1(Â�

r�1 6= ?)(�(m,n)
� )sh(X

T̂
�
r
)
i
, and iterating r � 2 times we obtain that

ar,0  2ar�1,0 + ar�1,1 
r�1X

s=0

✓
r � 1

s

◆
2r�1�sa1,s,

which yields

Ei

h
1(Â�

r�1 6= ?)h(X
T̂

�
r
)
i


r�1X

s=0

✓
r � 1

s

◆
2r�1�s(�(m,n)

� )sh(Xi).

The proof for Ei

h
1(Â+

r�1 6= ?)h(X
T̂

+
r
)
i
is essentially the same and is therefore omitted.

Lemma 3.4.10 Let H(n,m, k, ✏) be defined as in Theorem 3.4.6, then

H(n,m, k, ✏)
P�! Ĥ(m, k, ✏) n!1,

where

Ĥ(m, k, ✏) = 4✏k2 + 2✏k2

✓
1 + sup

x2S
�(m)
� (x)

◆
+

kX

r=1

r�1X

s=0

✓
r � 1

s

◆
2r�1�s

·
⇢Z

S
(�(m)

� )sg�
m,✏

(x)µ(dx) +

Z

S
(�(m)

+ )sg+
m,✏

(x)µ(dx)

�
,

where

g�
m,✏

(x) = min
n
1, (1 + 5✏)��(x)� �(m)

� (x)
o
,

g+
m,✏

(x) = min
n
1, (1 + 5✏)�+(x)� �(m)

+ (x)
o
,

and the linear integral operators �(m)
� and �(m)

+ are given by

�(m)
� h(x) =

Z

S

(1� e��
(m)
� (x))

�(m)
� (x)

· m(y,x)h(y)µ(dy),

�(m)
+ h(x) =

Z

S

(1� e��
(m)
+ (x))

�(m)
+ (x)

· m(x,y)h(y)µ(dy).

Furthermore, for any fixed k � 1,

lim
m%1

lim
✏#0

Ĥ(m, k, ✏) = 0.
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Proof. Start by noting that Assumption 3.3.1(a) implies that 1(⌦m,n)
P�! 1 as n ! 1,

so the convergence of H(n,m, k, ✏) will follow once we show that
Z

S
(�(m,n)

� )sg�
m,n,✏

(x)µn(dx)
P�!
Z

S
(�(m)

� )sg�
m,✏

(x)µ(dx) (3.4.11)

and Z

S
(�(m,n)

+ )sg+
m,n,✏

(x)µn(dx)
P�!
Z

S
(�(m)

+ )sg+
m,✏

(x)µ(dx) (3.4.12)

as n!1 for any fixed s 2 N. Let

w�
m
(y,x) =

(1� e��
(m)
� (x))

�(m)
� (x)

· m(y,x) and rn(y) =
µ(J (m)

#(y))

µn(J (m)
#(y))

,

and note that for any function h and x 2 J (m)
j

, we have

�(m,n)
� h(x) =

Z

S
rn(y)w

�
m
(y,x)h(y)µn(dy) =:

MmX

i=1

I(m,n)
i

(h)d(m,n)
i,j

,

where

d(m,n)
i,j

= rn(y)w
�
m
(y,x) for all y 2 J (m)

i
,x 2 J (m)

j
,

I(m,n)
i

(h) =

Z

J (m)
i

h(y)µn(dy).

In general, for s � 1, we have that

(�(m,n)
� )sh(x) =

MmX

i=1

I(m,n)
i

(h)((D(m,n))s)i,j for x 2 J (m)
j

and Z

S
(�(m,n)

� )sh(x)µn(dx) =
MmX

j=1

MmX

i=1

I(m,n)
i

(h)((D(m,n))s)i,jµn(J (m)
j

),

where D
(m,n) is the Mm ⇥Mm matrix whose (i, j)th component is d(m,n)

i,j
. Define D

(m) to be

the matrix whose (i, j)th component is d(m)
i,j

= w�
m
(y,x) for all y 2 J (m)

i
,x 2 J (m)

j
. Since

by Assumption 3.3.1(a) we have that µn(J (m)
j

)
P�! µ(J (m)

j
) and d(m,n)

i,j

P�! d(m)
i,j

as n!1 for
all 1  i, j Mm, it follows that

lim
n!1

Z

S
(�(m,n)

� )sg�
m,n,✏

(x)µn(dx) =
MmX

j=1

MmX

i=1

⇣
lim
n!1

I(m,n)
i

(g�
m,n,✏

)
⌘
((D(m))s)i,jµ(J (m)

j
),
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assuming the last limit exists for each 1  i  Mm. To see that it does let
ĝ�
m,n,✏

(x) = min
�
1, (1 + 5✏)��

n
(x)� ��

m,n
(x)

 
and note that by Lemma 3.4.2,

���I(m,n)
i

(g�
m,n,✏

)� I(m,n)
i

(ĝ�
m,n,✏

)
���  (1 + ✏)

1

n

X

l2J (m)
i

nX

j=1

(p(n)
jl

+ q(n)
jl

)1(Bc

jl
)

P�! 0

as n ! 1. Now let X
(n) and Y

(n) be conditionally i.i.d. random variables (given F )
having distribution µn (as constructed in Lemma 3.4.1). Assumption 3.3.1 implies that
(X(n),Y(n)) ) (X,Y) as n ! 1, where X and Y are i.i.d. with distribution µ, and

Lemma 3.4.2 gives E
⇥
(X(n),Y(n))

⇤
P�! E[(X,Y)]. Therefore, by bounded convergence,

I(m,n)
i

(ĝ�
m,n,✏

) = E
h
1(X(n) 2 J (m)

i
)min

�
1, (1 + 5✏)E

⇥
(X(n),Y(n))� m(X(n),Y(n))

��X(n)
⇤ i

P�! E
h
1(X 2 J (m)

i
)min {1, (1 + 5✏)E [(X,Y)� m(X,Y)|X]}

i

=: I(m)
i

(g�
m,✏

),

as n!1. We conclude that

I(m,n)
i

(g�
m,n,✏

)
P�! I(m)

i
(g�

m,✏
)

as n!1, and noting that

MmX

j=1

MmX

i=1

I(m)
i

(g�
m,✏

)((D(m))s)i,jµ(J (m)
j

) =

Z

S
(�(m)

� )sg�
m,✏

(x)µ(dx)

completes the proof of (3.4.11). The proof for (3.4.12) is essentially the same and is therefore

omitted. This concludes the proof that H(n,m, k, ✏)
P�! Ĥ(m, k, ✏) as n ! 1. To compute

the limit of Ĥ(m, k, ✏) note that by monotone convergence,

lim
✏#0

Ĥ(m, k, ✏) =
kX

k=1

r�1X

s=0

✓
r � 1

s

◆
2r�1�s

⇢Z

S
(�(m)

� )sg�
m
(x)µ(dx) +

Z

S
(�(m)

+ )sg+
m
(x)µ(dx)

�
,

where g±
m
(x) = min

n
1,�±(x)� �(m)

± (x)
o
. Now let �� and �+ be the linear integral operators

defined by

��h(x) =

Z

S

1� e���(x)

��(x)
·(y,x)h(y)µ(dy) and �+h(x) =

Z

S

1� e��+(x)

�+(x)
·(x,y)h(y)µ(dy)

and note that by monotone convergence,

lim
m%1

�(m)
± h(x) = �±h(x)
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for any nonnegative function h. Moreover, for any h : S ! [0, 1], we have that �(m)
± h(x),�±h(x) 2

[0, 1], and therefore, the bounded convergence theorem gives

lim
m%1

Z

S
(�(m)

± )sg±
m
(x)µ(dx) =

Z

S
(�±)

s

✓
lim

m%1
g±
m

◆
(x)µ(dx) = 0.

This completes the proof.

We are now ready to give the proof of Theorem 3.4.6.
Proof of Theorem 3.4.6. To start, note that

Pi

�
{⌧�  ��

k
} [ {⌧+  �+

k
}
�


�
Pi

�
⌧�  ��

k

�
+ Pi

�
{⌧� > ��

k
} \ {⌧+  �+

k
}
� 

1(⌦m,n) + 1(⌦c

m,n
),

where the event ⌦m,n is defined in the statement of the theorem. To analyze the two proba-
bilities, define G�

m
to be the sigma-algebra containing all the information of the exploration

process of the in-component of vertex i up to the end of Step m and including the identity
of T�

m+1, and let G+
m

be the sigma-algebra containing all the information of the exploration
process of the in-component of vertex i up to Step ��

k
, and of its out-component up to the

end of Step m, including the identity of T+
m+1; note that G�

m
✓ G+

r
for all 0  m  ��

k
and

any r � 0. Next, for any r � 1 define the events

E�
r
= {|I�

r
|+ |A�

r
| < k},

E+
r
= {|I+

r
|+ |A+

r
| < k},

C�
i
(r) =

(
max

j2[n],j /2{i}[A�
r�1[I

�
r�1

|Zji � Yji|+ max
j2A�

r�1[I
�
r�1

Zji + Z⇤
ii
= 0

)
,

C+
i
(r) =

8
<

: max
j2[n],j /2{i}[I�

��
k

[A�
��
k

[A+
r�1[I

+
r�1

|Z̃ij � Yij|+ max
j2A+

r�1[I
+
r�1

Z̃ij + max
j2{i}[I�

��
k

[A�
��
k

Z̃⇤
ji
= 0

9
=

; .
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Now, use Remark 3.4.5 to obtain that on the event ⌦m,n,

Pi

�
⌧�  ��

k

�
+ Pi

�
{⌧� > ��

k
} \ {⌧+  �+

k
}
�

=
kX

r=1

�
Pi

�
r = ⌧�  ��

k

�
+ Pi

�
{⌧� > ��

k
} \ {r = ⌧+  �+

k
}
� 


kX

r=1

Pi

⇣
⌧� > r � 1, A�

r�1 6= ?, E�
r�1, (C

�
T

�
r
(r))c

⌘

+
kX

r=1

Pi

⇣
⌧� > ��

k
, ⌧+ > r � 1, A+

r�1 6= ?, E+
r�1, (C

+
T

+
r
(r))c

⌘

=
kX

r=1

Ei

h
1(⌧� > r � 1, A�

r�1 6= ?, Er�1)P
⇣
(C�

T
�
r
(r))c

���G�
r�1

⌘i

+
kX

r=1

Ei

h
1(⌧� > ��

k
, ⌧+ > r � 1, A+

r�1 6= ?, Er�1)P
⇣
(C+

T
+
r
(r))c

���G+
r�1

⌘i
.

To analyze the two conditional probabilities in the last expressions, note that the union
bound and the independence of the {Uij : 1  i, j  n} from everything else give

P
⇣
(C�

T
�
r
(r))c

���G�
r�1

⌘


X

j2[n],j /2{T�
r }[A�

r�1[I
�
r�1

P(|Z
j,T

�
r
� Y

j,T
�
r
| > 0|T�

r
) (3.4.13)

+
X

j2{T�
r }[A�

r�1[I
�
r�1

P(Z
j,T

�
r
> 0|T�

r
), (3.4.14)

and

P
⇣
(C+

T
+
r
(r))c

���G+
r�1

⌘


X

j2[n],j /2{T+
r }[I�

��
k

[A�
��
k

[A+
r�1[I

+
r�1

P(|Z̃
T

+
r ,j
� Y

T
+
r ,j

| > 0|T+
r
) (3.4.15)

+
X

j2{T+
r }[I�

��
k

[A�
��
k

[A+
r�1[I

+
r�1

P(Z̃
T

+
r ,j

> 0|T+
r
). (3.4.16)

To analyze (3.4.13) note that on the event Bji we have that (1 � ✏)q(n)
ji
 p(n)

ji
< (1 +
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✏)q(n)
ji
 (1 + ✏)✏ < 1, which implies that on the event Bji we have

P(|Yji � Zji| > 0) = (p(n)
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ji
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 (p(n)
ji
� r(m,n)

ji
)1(p(n)

ji
> r(m,n)

ji
) + (p(n)

ji
� r(m,n)

ji
)1(1� e�r

(m,n)
ji < p(n)

ji
 r(m,n)

ji
)

+ (r(m,n)
ji

� p(n)
ji

)1(p(n)
ji

< 1� e�r
(m,n)
ji ) + (r(m,n)

ji
)2

= |p(n)
ji
� r(m,n)

ji
|+ (r(m,n)

ji
)2,

where we have used the inequalities e�x� 1  �x+x2/2, 1� e�x  x, and 1� e�x� e�xx 
x2/2 for x � 0. It follows that if we let q(m,n)

ji
= m(Xj,Xi)/n, then, on the event ⌦m,n,

where we have (1� ✏)q(m,n)
ji

 r(m,n)
ji

 (1 + ✏)q(m,n)
ji

, we have

P(|Yji � Zji| > 0)1(Bji)


⇣
|p(n)

ji
� r(m,n)

ji
|+ (r(m,n)

ji
)2
⌘
1(Bji)


⇣
|p(n)

ji
� q(n)

ji
|+ q(n)

ji
� q(m,n)

ji
+ |q(m,n)

ji
� r(m,n)

ji
|+ (1 + ✏)2(q(m,n)

ji
)2
⌘
1(Bji)

 ✏q(n)
ji

+ q(n)
ji
� q(m,n)

ji
+ ✏q(m,n)

ji
+ (1 + ✏)2✏q(m,n)

ji

 (1 + 5✏)q(n)
ji
� q(m,n)

ji
.

On the other hand, note that on the event ⌦m,n we have

P(|Yji � Zji| > 0)1(Bc

ji
)  P(Yji + Zji > 0)1(Bc

ji
)

 min
n
1, p(n)

ji
+ r(m,n)

ji

o
1(Bc

ji
)

 (1 + ✏)(p(n)
ji

+ q(n)
ji

)1(Bc

ji
) =: Bn(Xj,Xi).

Hence, on the event ⌦m,n, (3.4.13) is bounded from above by

X

j2[n]

n
(1 + 5✏)q(n)

j,T
�
r
� q(m,n)

j,T
�
r

o
+

X

j2[n],j /2{T�
r }[A�

r�1[I
�
r�1

Bn(Xj,XT
�
r
)

 (1 + 5✏)��
n
(X

T
�
r
)� ��

m,n
(X

T
�
r
) +

X

j2[n],j /2{T�
r }[A�

r�1[I
�
r�1

Bn(Xj,XT
�
r
),

where we have used the observation that
P

n

j=1 q
(n)
ji

= ��
n
(Xi) and

P
n

j=1 q
(m,n)
ji

=
R
S m(y,Xi)µn(dy) =

��
m,n

(Xi).
To analyze (3.4.14), note that on the event ⌦m,n,

P(Zji � 1) = 1� e�r
(m,n)
ji  r(m,n)

ji
 (1 + ✏)q(m,n)

ji
1(Bji) + (1 + ✏)q(m,n)

ji
1(Bc

ji
)  2✏+ Bn(Xj,Xi).
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We have thus obtained that, on the event ⌦m,n,

P
⇣
(C�

T
�
r
)c
���G�

r�1

⌘
 (1 + 5✏)��

n
(X

T
�
r
)� ��

m,n
(X

T
�
r
) +

X

j2[n],j /2{T�
r }[A�

r�1[I
�
r�1

Bn(Xj,XT
�
r
)

+
X

j2{T�
r }[A�

r�1[I
�
r�1

�
2✏+ Bn(Xj,XT

�
r
)
�

 (1 + 5✏)��
n
(X

T
�
r
)� ��

m,n
(X

T
�
r
) + 2✏

��{T�
r
} [ A�

r�1 [ I�
r�1

��+
X

j2[n]

Bn(Xj,XT
�
r
).

The same arguments yield that, on the event ⌦m,n, (3.4.15) is bounded by

(1 + 5✏)�+
n
(X

T
+
r
)� �+

m,n
(X

T
+
r
) +

X

j2[n],j /2{T+
r }[I�

��
k

[A�
��
k

[A+
r�1[I

+
r�1

Bn(XT
+
r
,Xj),

and (3.4.16) is bounded by

X

j2{T+
r }[I�

��
k

[A�
��
k

[A+
r�1[I

+
r�1

�
2✏+ Bn(XT

+
r
,Xj)

�
.

Hence, on the event ⌦m,n,

P
⇣
(C+

T
+
r
)c
���G+

r�1

⌘
 (1 + 5✏)�+

n
(X

T
+
r
)� �+

m,n
(X

T
+
r
) + 2✏

���{T+
r
} [ I�

�
�
k

[ A�
�
�
k

[ A+
r�1 [ I+

r�1

���

+
X

j2[n]

Bn(XT
+
r
,Xj).

To simplify the notation, define the functions:

g�
m,n,✏

(Xl) = min

8
<

:1, (1 + 5✏)��
n
(Xl)� ��m,n

(Xl) +
X

j2[n]

Bn(Xj,Xl)

9
=

; and

g�
m,n,✏

(Xl) = min

8
<

:1, (1 + 5✏)�+
n
(Xl)� �+m,n

(Xl) +
X

j2[n]

Bn(Xl,Xj)

9
=

; ,

and note that by using the inequality min{1, x+ y}  x+min{1, y}, we obtain

P
⇣
(C�

T
�
r
)c
���G�

r�1

⌘
 g�

m,n,✏
(X

T
�
r
) + 2✏

��{T�
r
} [ A�

r�1 [ I�
r�1

�� and

P
⇣
(C+

T
+
r
)c
���G+

r�1

⌘
 g+

m,n,✏
(X

T
+
r
) + 2✏

���{T+
r
} [ I�

�
�
k

[ A�
�
�
k

[ A+
r�1 [ I+

r�1

��� .
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It follows that on the event ⌦m,n we have

Pi

�
⌧�  ��

k

�
+ Pi

�
{⌧� > ��

k
} \ {⌧+  �+

k
}
�


kX

r=1

Ei

⇥
1(⌧� > r � 1, A�

r�1 6= ?, Er�1)
�
g�
m,n,✏

(X
T

�
r
) + 2✏

��{T�
r
} [ A�

r�1 [ I�
r�1

���⇤

+
kX
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Ei

⇥
1(⌧� > ��

k
, ⌧+ > r � 1, A+

r�1 6= ?, Er�1)

·
⇣
g+
m,n,✏

(X
T

+
r
) + 2✏

���{T+
r
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�
�
k

[ A�
�
�
k

[ A+
r�1 [ I+

r�1

���
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
kX
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Ei

h
1(Â�

r�1 6= ?)
�
g�
m,n,✏

(X
T̂

�
r
) + 2✏k

�i

+
kX

r=1

Ei

h
1(Â+

r�1 6= ?)
⇣
g+
m,n,✏

(X
T̂

+
r
) + 2✏

⇣
k +

���Î�
�
�
k

[
n
Ti : i 2 Â�

�̂
�
k

o���
⌘⌘i

 4✏k2 + 2✏kEi

h���Î�
�̂
�
k

���+
���Â�

�̂
�
k

���
i

+
kX

r=1

Ei

h
1(Â�

r�1 6= ?)g�
m,n,✏

(X
T̂

�
r
)
i
+

kX

r=1

Ei

h
1(Â+

r�1 6= ?)g+
m,n,✏

(X
T̂

+
r
)
i
,

where T̂�
r

and T̂+
r

are the identities of the rth “active” nodes to be explored in the inbound
and outbound multi-type branching processes, respectively, and �̂±

k
= inf{t � 1 : |Â±

t | +
|Î±t | � k or Â±

t = ?}.
Next, use Lemma 3.4.9 to obtain that for r � 1,

Ei

h
1(Â�

r�1 6= ?)g�
m,n,✏

(X
T̂

�
r
)
i


r�1X

s=0

✓
r � 1

s

◆
2r�1�s(�(m,n)

� )sg�
m,n,✏

(Xi)

and

Ei

h
1(Â�

r�1 6= ?)g+
m,n,✏

(X
T̂

+
r
)
i


r�1X

s=0

✓
r � 1

s

◆
2r�1�s(�(m,n)

+ )sg+
m,n,✏

(Xi),

where �(m,n)
� and �(m,n)

+ are the linear integral operators defined in Lemma 3.4.9.

Averaging over all 1  i  n and using Lemma 3.4.7 to bound n�1
P

n

i=1 Ei

h���Î�
�̂
�
k

���+
���Â�

�̂
�
k

���
i
,
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we obtain

1

n

nX

i=1

�
Pi

�
⌧�  ��

k

�
+ Pi

�
{⌧� > ��

k
} \ {⌧+  �+

k
}
��

1(⌦m,n)

 4✏k2 + 2✏k2

✓
1 + sup

x2S
�(m)
� (x)

◆

+ 1(⌦m,n)
kX

r=1

r�1X

s=0

✓
r � 1

s

◆
2r�1�s

⇢Z

S
(�(m,n)

� )sg�
m,n,✏

(x)µn(dx) +

Z

S
(�(m,n)

+ )sg+
m,n,✏

(x)µn(dx)

�

=: H(n,m, k, ✏)� 1(⌦c

m,n
).

The upper bound for the limit of H(n,m, k, ✏) as n!1 is given in Lemma 3.4.10. This
completes the proof.

As a last proof in this section, we use Theorem 3.4.6 to prove Theorem 3.3.4, the result
establishing the limiting distribution of the degrees in Gn((1 + 'n)). The latter can also
be proven directly using similar arguments as those used in the proof of Theorem 3.4.6, but
we choose to do it this way to avoid repetition.

Proof of Theorem 3.3.4. Let

D�
n,i

=
X

j 6=i

Yji and D+
n,i

=
X

j 6=i

Yij

and define

Z�
n,i

=
nX

j=1

Zji and Z+
n,i

=
nX

j=1

Z̃ij,

where Zji is Poisson with mean r(m,n)
ji

and Z̃ij is Poisson with mean r̃(m,n)
ij

. Then,

�
D�

n,⇠
, D+
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�
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, Z+
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�
,

where since
P

n

j=1 r
(m,n)
ji

= �(m)
� (Xi) and

P
n

j=1 r̃
(m,n)
ij

= �(m)
+ (Xi), we obtain that

P
�
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n,⇠
= l

�
=

1

n

nX

i=1

e��
(m)
� (Xi)(�(m)

� (Xi))k

k!
· e

��
(m)
+ (Xi)(�(m)

+ (Xi))l

l!
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e��
(m)
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� (x))k

k!
· e

��
(m)
+ (x)(�(m)

+ (x))l
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µ(dx)

for any k, l � 0, as n ! 1 (by the bounded convergence theorem). Moreover, by Theo-
rem 3.4.6,

P
�
|D�

n,⇠
� Z�

n,⇠
|+ |D+

n,⇠
� Z+

n,⇠
| > 0

�
=

1

n

nX

i=1

Pi

�
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1 } [ {⌧+  �+
1 }
�
 H(n,m, 1, ✏)
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for any 0 < ✏ < 1/2. Therefore, for (Z�
(m), Z

+
(m)) constructed on the same probability space

as
�
Z�

n,⇠
, Z+

n,⇠

�
, with Z�

(m) and Z+
(m) conditionally independent (given X) Poisson random

variables with parameters �(m)
� (X) and �(m)

+ (X), and X distributed according to µ, we obtain
that

lim sup
n!1

P
⇣
|D�

n,⇠
� Z�

(m)|+ |D+
n,⇠
� Z+

(m)| > 0
⌘
 lim sup

n!1
E [H(n,m, 1, ✏) ^ 1] = Ĥ(m, 1, ✏),

where limm%1 lim✏#0 Ĥ(m, 1, ✏) = 0 by Lemma 3.4.10. Taking the limit as ✏ # 0 followed
by m%1 and noting that (Z�

(m), Z
+
(m))! (Z�, Z+) a.s., where (Z�, Z+) are conditionally

independent (given X) Poisson random variables with parameters ��(X) and �+(X), gives
the weak convergence statement of the theorem.

To obtain the convergence of the expectations note that

E[D�
n,⇠

] = E[D+
n,⇠

] =
1

n
E

"
nX

i=1

nX

j=1

p(n)
ji

#
!

ZZ

S2

(x,y)µ(dx)µ(dy)

as n!1 by Assumption 3.3.1(d). Now note that
ZZ

S2

(x,y)µ(dx)µ(dy) = E[��(X)] = E[�+(X)] = E[Z�] = E[Z+].

This completes the proof.

3.4.3.2 Size of the largest strongly connected component

This last section of the paper contains the proof of Theorem 3.3.10, the phase transition for
the existence of a giant strongly connected component. As mentioned earlier, the idea is
to use Theorem 3.4.6 to couple the exploration of the graph Gn((1 + 'n)) starting from a
given vertex with a double tree (T �

µ
(m), T +

µ
(m)) for a kernel m that takes at most a finite

number of di↵erent values.
Recall from Section 3.3.3 that (T �

µ
(;x), T +

µ
(;x)) denotes the double multi-type Galton-

Watson process having root of type x 2 S, and whose o↵spring distributions are given by
(3.3.1). Let ⇢�k

� (;x) (respectively, ⇢�k

+ (;x)) be the probability that the total population of
T �
µ
(;x) (respectively, T +

µ
(;x)) is at least k. Define also ⇢�(;x) (respectively, ⇢+(;x))

to be its survival probability, i.e., the probability that its total population is infinite. The
averaged joint survival probability is defined as

⇢() =

Z

S
⇢+(;x)⇢�(;x)µ(dx).

Similarly, for any k 2 N�, we define ⇢�k() =
R
S ⇢

�k

+ (;x)⇢�k

� (;x)µ(dx).
In addition, we will require from here on that the kernel m be regular finitary (see

Definition 3.3.9) and quasi-irreducible (see Definition 3.3.8). The following lemma is taken
from [14] and it provides the existence of a sequence of partitions {Jm}m�1 of S over which
we can define a sequence of regular finitary kernels.
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Lemma 3.4.11 (Lemma 7.1 in [14]) there exists a sequence of partitions {Jm : m � 1}
of S, with Jm = {J (m)

1 , . . . ,J (m)
Mm

}, such that

i) each J (m)
i

is measurable and µ(@J (m)
i

) = 0,

ii) for each m, Jm+1 refines Jm, i.e., each J (m)
i

=
S

j2I(m)
i

J (m+1)
j

for some index set

I(m)
i

,

iii) for a.e. x 2 S, diam(J (m)
#(x))! 0 as m!1, where #(x) = j if and only if x 2 J (m)

j
.

Before we construct the sequence of quasi-irreducible regular finitary kernels that we
need, we define for notational convenience the following relation.

Definition 3.4.12 Let ̃ be a kernel on S⇥S and let J = {J1, . . . ,JM} be a finite partition
of S. Then, we say that set A ✓ S is inbound-accessible (respectively, outbound-accessible)
from x 2 S with respect to (̃,J ), denoted x ! A (respectively, x  A), if there exists
{u1, . . . , uk} ✓ {1, . . . ,M} such that:

i) ̃(x,y) > 0 for all y 2 Ju1,

ii) ̃ > 0 on Jui ⇥ Jui+1 (respectively, ̃ > 0 on Jui+1 ⇥ Jui) for all 1  i < k,

iii) µ(Jui) > 0 for all 1  i  k, and

iv) Juk
✓ A.

Remark 3.4.13 Note that if we take Jm = {J (m)
1 , . . . ,J (m)

Mm
} as constructed in Lemma 3.4.11,

and we let ̃m satisfy ̃m  ̃m+1 a.e., then if x ! A (x  A) with respect to (̃m0 ,Jm0)
for some m0 � 1, then x ! A (x  A) with respect to (̃m,Jm) for any m � m0, since

each J (m)
ui in part (iii) of Definition 3.4.12 must contain at least one subset J (m+1)

t ✓ J (m)
ui

with µ(J (m+1)
t ) > 0.

We now give a result that states that we can always find a sequence of quasi-irreducible
regular finitary kernels which converges monotonically to  and can be used to approximate
from below (1 +'n). Its proof follows that of Lemma 7.3 in [14], with some variations due
to the directed nature of our kernels.

Lemma 3.4.14 For any continuous kernel  and any 'n satisfying Assumption 3.3.1, there
exists a sequence {̃m}m�1 of regular finitary kernels on S ⇥ S, measurable with respect to
F , with the following properties.

1. ̃m(x,y)% (x,y) in probability as m!1 for a.e. (x,y) 2 S ⇥ S

2. ̃m(x,y)  infn�m (x,y)(1 + 'n(x,y)) for every (x,y) 2 S ⇥ S.
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3. If  is quasi-irreducible, then so is m for all large m.

Proof. We may assume that  > 0 on a set of positive measure, as otherwise we may
take m ⌘ 0 for every m and there is nothing to prove. We will construct the sequence
{m : m � 1} in two stages. First, we construct a sequence {̃m : m � 1} where each ̃m
is regular finitary and satisfies conditions (a) and (b); then we use this sequence to obtain
{m : m � 1} satisfying (c).

To this end, construct the sequence of partitions {Jm}m�1 according to Lemma 3.4.11
and define

̃m(x,y) := inf

⇢
(x0,y0) ^ inf

n�m

(x0,y0)(1 + 'n(x
0,y0)) : x0 2 J (m)

#(x), y
0 2 J (m)

#(y)

�
.

Note that the properties of {Jm : m � 1}, and the assumption on 'n imply that

̃m(x,y)% (x,y) in probability as m!1, for a.e. (x,y) 2 S ⇥ S.

Moreover, for n � m we have that

̃m(x,y)  (x,y)(1 + 'n(x,y)) for all (x,y) 2 S ⇥ S.

Hence, m = ̃m satisfies conditions (a) and (b) in the statement of the lemma.
To prove (c) assume from now on that  is quasi-irreducible. In fact, without loss of

generality we may assume that  is irreducible, since it su�ces to construct m to be quasi-
irreducible on the restriction S 0⇥S 0 where  is irreducible and then set it to be zero outside
of S 0 ⇥ S 0.

The first step of the proof ensures the existence of a directed cycle C ✓ S for some
m1 � 1. The second step uses C to construct a set on which ̃m is irreducible. To establish
the existence of C, note that if ̃m = 0 a.e. for all m � 1, it would imply that  = 0 a.e.,
which would contradict the irreducibility of . Therefore, there must exist some m0 � 1 and
indexes 1  r, s, t  Mm0 such that ̃m0 > 0 on (J (m0)

t ⇥ J (m0)
r ) and on (J (m0)

r ⇥ J (m0)
s ),

with µ(J (m0)
t )µ(J (m0)

r )µ(J (m0)
s ) > 0.

Claim: for any set A ✓ S for which there exists a set D ✓ S such that µ(D) > 0 and
̃m > 0 on D ⇥ A (respectively, A ⇥ D), the sequence of sets {Bm(A)}m�1 (respectively,
{B̃m(A)}m�1) defined according to Bm(A) = {x 2 S : x ! A w.r.t. (̃m,Jm)} (respec-
tively, B̃m(A) = {x 2 S : x  A w.r.t. (̃m,Jm)}) satisfy: 1) Bm(A) ✓ Bm+1(A) (respec-

tively, B̃m(A) ✓ B̃m+1(A)), and 2) µ (
S1

m=1 Bm(A)) = 1
⇣
respectively, µ

⇣S1
m=1 B̃m(A)

⌘
= 1

⌘
.

To prove the claim note that Remark 3.4.13 implies (1). To see that (2) holds, let
B(A) =

S1
m=1 Bm(A) and note that from the definition of B(A) we have  = 0 a.e. on

B(A)c⇥B(A), and the irreducibility of  implies that either µ(B(A)c) = 0 or µ(B(A)) = 0;
since µ(B(A)) � µ(D) > 0, it must be that µ(B(A)c) = 0, which implies that µ(B(A)) = 1.
The symmetric arguments yield the claim for {B̃m(A)}.
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Now apply the inbound part of the claim to A = J (m0)
r and D = J (m0)

t to obtain that
there exists m1 � m0 such that µ(Bm1(J

(m0)
r ) \ J (m0)

s ) > 0, which in turn implies there

exists a set J (m1)
s0 ✓ J (m0)

s such that µ(J (m1)
s0 ) > 0 and x ! J (m0)

r for all x 2 J (m1)
s0 . In

other words, there exist sets {J (m1)
u0 , . . . ,J (m1)

uk } satisfying µ(J (m1)
ui ) > 0 for all 0  i  k,

J (m1)
u0 = J (m1)

s0 , J (m1)
uk ✓ J (m0)

r , and ̃m1 > 0 on J (m1)
ui ⇥ J (m1)

ui+1 for all 0  i < k. Since

0 < ̃m0  ̃m1 on J (m1)
uk ⇥ J (m1)

u0 by construction, we have that the set C =
S

k

i=0 J
(m1)
ui

defines a directed cycle.
Next, construct the sequences {Bm(C)}m�1 and {B̃m(C)}m�1 according to the claim, and

define
m(x,y) = ̃m(x,y)1(x 2 (Bm(C) \ B̃m(C)), y 2 (Bm(C) \ B̃m(C))).

Note that m %  in probability as m!1 since ̃m %  in probability and

µ

 1[

m=1

(Bm(C) \ B̃m(C))
!
� 1� µ

 1\

m=1

Bm(C)c
!
� µ

 1\

m=1

B̃m(C)c
!

= 1.

It remains to show that m restricted to (Bm(C)\B̃m(C))⇥(Bm(C)\B̃m(C)) is irreducible.
To see this, let A ✓ (Bm(C) \ B̃m(C)) and suppose m = 0 on A ⇥ (Ac \ Bm(C) \ B̃m(C)).
Note that since ̃m1 > 0 on each J (m1)

ui ⇥J (m1)
ui+1 , then it must be that either C ✓ A or C ✓ Ac.

Suppose that it is the former, and note that for any x 2 Ac \ Bm(C) \ B̃m(C) there exist
indexes {v1, . . . , vl} and {w1, . . . , wj} such that

̃m1 > 0 on J (m1)
vi
⇥ J (m1)

vi+1
, 0  i  l, µ(J (m1)

vi
) > 0, 1  i  l, J (m1)

vl
✓ C,

and
̃m1 > 0 on J (m1)

wi+1
⇥ J (m1)

wi
, 0  i  j, µ(J (m1)

wi
) > 0, 1  i  j, J (m1)

wj
✓ C,

where J (m1)
v0 = J (m1)

w0 = J (m1)
#(x) . Moreover, µ(J (m1)

#(x) ) > 0 would imply that J (m1)
vi ✓ Bm(C) \

B̃m(C) for all 1  i  l and J (m1)
wh ✓ Bm(C) \ B̃m(C) for all 1  h  j, since they

would all lie on a directed cycle of positive measure, but this contradicts our assumption
that ̃m1 = 0 on A ⇥ Ac \ Bm(C) \ B̃m(C). Hence, it must be that µ(J (m1)

#(x) ) = 0 for all

x 2 Ac \ Bm(C) \ B̃m(C), and therefore, µ(Ac \ Bm(C) \ B̃m(C)) = 0. The same argument
gives that if C ✓ Ac \ Bm(C) \ B̃m(C) then µ(A) = 0. We conclude that m restricted to
(Bm(C) \ B̃m(C))⇥ (Bm(C) \ B̃m(C)) is irreducible. This completes the proof.

The following lemma establishes the relationships between ⇢(m), ⇢�k(m), ⇢�k(), and
⇢().

Lemma 3.4.15 Let {m}m�1 be a sequence of kernels on (S, µ) increasing a.e. to . Then,
the following limits hold:

1. ⇢�k(;x)& ⇢(;x) a.e. x and ⇢�k()& ⇢() as k !1.

2. For every k � 1, ⇢�k(m;x)% ⇢�k(;x) for a.e. x and ⇢�k(m)% ⇢�k() as m!1.
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3. ⇢(m;x)% ⇢(;x) for a.e. x and ⇢(m)% ⇢() as m!1.

Proof. By Lemma 9.5 in [14], we have that ⇢�k

+ (;x) & ⇢+(;x) and ⇢�k

� (;x) &
⇢�(;x) as k !1 for a.e. x. Then, by the monotone convergence theorem, we have

lim
k!1

⇢�k() = lim
k!1

Z

S
⇢�k

+ (; s)⇢�k

� (; s)µ(ds)

=

Z

S
lim
k!1

⇢�k

+ (; s)⇢�k

� (; s)µ(ds)

=

Z

S
⇢+(; s)⇢�(; s)µ(ds) = ⇢(),

which establishes (a).
By Theorem 6.5(i) in [14] we have that for any fixed k � 1, ⇢�k

+ (m;x)% ⇢�k

+ (;x) and
⇢�k

� (m;x)% ⇢�k

� (;x) as m!1 for a.e. x, which together with monotone convergence as
above implies (b).

Part (c) follows from part (a) applied to the kernel m, followed by part (b), to obtain
that

lim
m!1

⇢(m;x) = lim
m!1

lim
k!1

⇢�k(m;x) = lim
k!1

lim
m!1

⇢�k(m;x) = lim
k!1

⇢�k(;x) = ⇢(;x)

for a.e. x. Then use monotone convergence as above.

Recall the definition of the operators T�


and T+


given in Section 3.3.3, as well as of their
spectral radii r(T�


) and r(T+


). The strict positivity of ⇢(), which ensures the existence of

a giant strongly connected component, is characterized below. As a preliminary result, we
establish the phase transition for regular finitary, quasi-irreducible kernels first.

Proposition 3.4.16 Suppose that ̃ is a regular finitary, quasi-irreducible, kernel on the
type-space S with respect to measure µ. Then, r(T�

̃
) = r(T+

̃
) and we have that ⇢(̃) > 0

if and only if r(T�
̃
) > 1. Moreover, there exist nonnegative, non-zero eigenfunctions f�

and f+, such that T�
̃
f� = r(T�

̃
)f� and T+

̃
f+ = r(T+

̃
)f+, and they are the only (up to

multiplicative constants and sets of measure zero) nonnegative, non-zero eigenfunctions of
T�
̃

and T+
̃
, respectively.

Proof. Since ̃ is quasi-irreducible, there exists S⇤ ✓ S such that ̃ restricted to S⇤ is
irreducible and µ(S⇤) > 0. Also, since ̃ is regular finitary, there exists a finite partition
{Ji : 1  i M} such that ̃ is constant on Ji ⇥ Jj. Next, define

S 0 =
M[

i=1

{Ji \ S⇤ : µ(Ji \ S⇤) > 0},

and define the kernel 0(x,y) = µ(S 0)̃(x,y) for x,y 2 S 0. Note that 0 is regular finitary
and irreducible on S 0 and µ(S 0) = µ(S⇤). Moreover, if we let µ0(A) = µ(A)/µ(S 0) for A ✓ S 0,
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and let {J 0
i
: 1  i  M 0} denote the partition of S 0 such that 0 is constant on J 0

i
⇥ J 0

j
,

then µ0(J 0
i
) > 0 for all 1  i M 0.

Next, consider the double tree (T �
µ0 (0), T +

µ0 (0)) on the type-space S 0 with respect to
measure µ0. Note that each of these trees can be thought of as a multi-type branching
process with M 0 types (one associated to each of the J 0

i
) each having positive probability.

We will show that:

1. the survival probability ⇢(̃) = µ(S 0)⇢0(0), where

⇢0(0) =

Z

S0
⇢0�(

0;x)⇢0+(
0;x)µ0(dx),

and ⇢0�(
0;x), ⇢0+(

0;x) are the survival probabilities of the trees T �
µ0 (0;x) and T +

µ0 (0;x),
respectively; and

2. the spectral radii of the operators T±
̃

on S and T±
0 on S 0 are the same.

To prove (a), note that since types x 2 (S⇤)c are isolated (since ̃(x,y) = 0 for x 2 (S 0)c

or y 2 (S 0)c) and S⇤ \ (S 0)c has measure zero, then they do not contribute to the survival
probabilities of T �

µ
(̃) and T +

µ
(̃), which implies that

⇢(̃) =

Z

S
⇢+(̃;x)⇢�(̃;x)µ(dx) = µ(S 0)

Z

S0
⇢+(̃;x)⇢�(̃;x)µ

0(dx).

Now note that the trees T ±
µ
(̃) and T ±

µ0 (0) have the same law when their roots belong to S 0

since the number of o↵spring of type y 2 S 0 that an individual of type x 2 S 0 on the tree
T �
µ0 (0) has, is Poisson distributed with mean

Z

S0
0(y,x)µ0(dx) =

Z

S0
µ(S 0)̃(y,x)µ(dx)/µ(S 0) =

Z

S
̃(y,x)µ(dx),

which is equal to the corresponding distribution in Tµ(̃). The same argument yields the
result for T +

µ
(̃) and T +

µ0 (0). Hence, we have that ⇢±(̃;x) = ⇢±(0;x) for x 2 S 0, and
therefore,

⇢(̃) = µ(S 0)⇢0(0).

To establish (b), note that if f 0
± is the nonnegative eigenfunction associated to r(T±

0 ) on
S 0, then f±(x) = f 0

±(x)1(x 2 S 0) satisfies

(T�
̃
f�)(x) =

Z

S
̃(y,x)f�(y)µ(dy) =

Z

S0
0(y,x)f 0

�(y)µ
0(dy) = r(T�

0 )f 0
�(x) = r(T�

0 )f�(x)

for x 2 S 0, while for x 2 (S 0)c we have (T�
̃
f�)(x) = 0 since ̃(y,x) = 0 for all y 2 S.

Therefore, r(T�
0 ) is an eigenvalue of T�

̃
, which implies that r(T�

0 )  r(T�
̃
); similarly, r(T+

0 )
is an eigenvalue of T+

̃
and r(T+

0 )  r(T+
̃
). For the opposite inequality, suppose f± is a
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nonnegative eigenvector associated to r(T±
̃
) and set f 0

± to be its restriction to S 0. Then note
that for x 2 S 0,

(T�
0f 0

�)(x) =

Z

S0
0(y,x)f 0

�(y)µ
0(dy) =

Z

S
̃(y,x)f�(y)µ(dy) = r(T�

̃
)f�(x) = r(T�

̃
)f 0

�(x),

and therefore, r(T�
̃
) is an eigenvalue of T�

0 and therefore r(T�
̃
)  r(T�

0 ). Similarly, r(T+
̃
) 

r(T+
0 ). We conclude that

r(T±
̃
) = r(T±

0 ).

To see that r(T�
0 ) = r(T+

0 ) we first point out that T �
µ0 (0) and T +

µ0 (0) can be thought
of as irreducible multi-type Galton-Watson processes with a finite number of types and
mean progeny matrices M� = (m�

ij
) and M

+ = (m+
ij
), respectively, where m�

ij
= cjiµ0(J 0

j
),

m+
ij
= cijµ0(J 0

j
), and 0(x,y) =

P
M

0

i=1

P
M

0

j=1 cij1(x 2 J 0
i
,y 2 J 0

j
). Moreover, the operators

T�
0 and T+

0 satisfy

T±
0f = M

±
v for v = (v1, . . . , vM 0)T 2 RM

0
and f(x) = vi1(x 2 J 0

i
), x 2 S 0.

That M� and M
+ have the same spectral radius follows from noting that M� = CD and

M
+ = C

T
D = (DC)T for D = diag(µ0(J 0

1), . . . , µ
0(J 0

M 0)) and C = (cij), which implies that
the eigenvalues of M+ are the complex conjugates of those of DC, which in turn are the
same as those of CD.

The if and only if statement for the survival probabilities now follows from Theorem 8
in [8] (see also Theorems 2.1 and 2.2 in Chapter 2 of [79]), which states that

⇢0±(
0;x) > 0 for all x 2 S 0 if and only if r(M±) > 1,

where r(M±) = r(T±
0 ) is the spectral radius of M±.

The existence of the eigenfunctions f� and f+ on S follows from the Perron-Frobenius
theorem (see Theorem 1.5 in [104]), which guarantees the existence of strictly positive eigen-
functions f 0

� and f 0
+ on S 0 such that T±

0f 0
± = r(T±

0 )f 0
±, by setting f±(x) = f 0

±(x)1(x 2 S 0).
Moreover, f 0

� and f 0
+ are the only (up to multiplicative constants) nonnegative, non-zero

eigenfunctions of the operators T�
0 and T+

0 , respectively. To see that the nonnegative eigen-
functions f� and f+ are also unique (up to multiplicative constants and sets of measure zero)
note that any other nonnegative eigenfunction g� of T�

̃
associated to a positive eigenvalue

� would have to satisfy

(T�
̃
g�)(x) =

Z

S
̃(y,x)g�(y)µ(dy) = 0 for x 2 (S⇤)c,

since ̃(x,y) = 0 for x 2 (S⇤)c, and

(T�
̃
g�)(x) =

Z

S0
0(y,x)g�(y)µ

0(dy) = �g�(x) for x 2 S 0
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which would imply � is a positive eigenvalue of T�
0 with a nonnegative, non-zero, eigenfunc-

tion. The uniqueness of f 0
� then gives that g�(x) = ↵f 0

�(x) for x 2 S 0 for some constant
↵ > 0. Finally, since µ(S⇤ \ (S 0)c) = 0, we conclude that g�(x) = ↵f�(x) a.e. The same
arguments give that any other nonnegative eigenfunction g+ of T+

̃
would have to satisfy

g+(x) = �f+(x) a.e. This completes the proof.
We now use the regular finitary and quasi-irreducible case to establish the result for

general irreducible kernels. As pointed out in Remark 3.3.12, the result does not provide a
full if and only if condition for the strict positivity of ⇢(), since when the operators T�


and

T+


are unbounded we cannot guarantee the continuity of the spectral radii of the sequence
of operators T�

m
and T+

m
.

Lemma 3.4.17 Suppose that  is irreducible on the type-space S with respect to measure
µ. Then, if ⇢() > 0 we have r(T�


) > 1 and r(T+


) > 1. Moreover, if there exists a

regular finitary quasi-irreducible kernel ̃ such that ̃   a.e. and r(T�
̃
) > 1 (equivalently,

r(T+
̃
) > 1), then ⇢() > 0.

Proof. Suppose first that ⇢() > 0. Now use Lemma 3.4.14 and Lemma 3.4.15 to
obtain that ⇢(m) > 0 for some quasi-irreducible, regular finitary, kernel m such that
m(x,y)  (x,y) for all x,y 2 S. By Proposition 3.4.16 we have that the spectral radii
of the operators T�

m
and T+

m
satisfy r(T�

m
) = r(T+

m
) > 1. By monotonicity of the spectral

radius, we conclude that r(T�

) � r(T�

m
) > 1 and r(T+


) � r(T+

m
) > 1.

For the converse, note that if ̃   a.e. and r(T�
̃
) > 1, then by Proposition 3.4.16 we

have that ⇢(̃) > 0. Since ⇢(̃)  ⇢(), the result follows.
The last preliminary result before proving Theorem 3.3.10 provides the key estimates

obtained through Theorem 3.4.6, since it relates the indicator random variables for each
vertex i to have in-component and out-component of size at least k with the corresponding
probabilities in the double-tree (T �

µ
(m;Xi), T +

µ
(m;Xi)).

Proposition 3.4.18 For any k � 1 and i 2 [n], define ��k

n,i
to be the indicator function of

the event that vertex i has in-component and out-component both of size at least k in the
graph Gn((1 + 'n)). Then, for any 0 < ✏ < 1/2, we have

�����
1

n

nX

i=1

E
h
��k

n,i

i
� 1

n

nX

i=1

⇢�k

� (m;Xi)⇢
�k

+ (m;Xi)

�����  H(n,m, k, ✏),

1

n2

nX

i=1

X

j 6=i

E
h⇣
��k

n,i
� E

h
��k

n,i

i⌘⇣
��k

n,j
� E

h
��k

n,j

i⌘i
 K(n,m, k) + 3H(n,m, k, ✏),

where

K(n,m, k) :=
4(k + 1) log n

n
sup
x,y2S

m(x,y) +
k

log n

✓
2 + sup

x2S
�(m)
� (x) + sup

x2S
�(m)
+ (x)

◆
,

and H(n,m, k, ✏) is defined in Theorem 3.4.6.
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Proof. To derive the first bound construct a coupling between the graph exploration pro-
cesses of the in-component and out-component of vertex i and the double tree (T �

µ
(m;Xi), T +

µ
(m;Xi)),

as described in Section 3.4.3.1. Define ⌧� and ⌧+ to be the steps in the construction when
the coupling breaks on the inbound, respectively outbound, sides, and let ��

k
= inf{t �

1 : |A�
t | + |I�t | � k or A�

t = ?} and �+
k

= inf{t � 1 : |A+
t | + |I+t | � k or A+

t = ?}.
Note that at time ��

k
_ �+

k
it is possible to determine whether both the in-component and

out-component of vertex i have at least k vertices or not. To simplify the notation, let
⇢�k(m;x) = ⇢�k

� (m;x)⇢
�k

+ (m;x).

1

n

nX

i=1

E
h
��k

n,i

i
=

1

n

nX

i=1

P
⇣
��k

n,i
= 1

⌘

 1

n

nX

i=1

Pi

⇣
��k

n,i
= 1, ⌧� � ��

k
, ⌧+ � �+

k

⌘
+

1

n

nX

i=1

Pi

�
{⌧� < ��

k
} [ {⌧+ < �+

k
}
�

 1

n

nX

i=1

P
�
both T �

µ
(m;Xi) and T +

µ
(m;Xi) have at least k nodes

�
+H(n,m, k, ✏)

=
1

n

nX

i=1

⇢�k(m;Xi) +H(n,m, k, ✏),

where we used Theorem 3.4.6 to obtain that n�1
P

n

i=1 Pi

�
{⌧� < ��

k
} [ {⌧+ < �+

k
}
�
 H(n,m, k, ✏).

The other direction follows because

1

n

nX

i=1

E
h
��k

n,i

i
� 1

n

nX

i=1

Pi

⇣
��k

n,i
= 1, ⌧� � ��

k
, ⌧+ � �+

k

⌘

� 1

n

nX

i=1

P
�
both T �

µ
(m;Xi) and T +

µ
(m;Xi) have at least k nodes

�

� 1

n

nX

i=1

Pi

�
{⌧� < ��

k
} [ {⌧+ < �+

k
}
�

� 1

n

nX

i=1

⇢�k(m;Xi)�H(n,m, k, ✏).

For the second inequality, first note that

1

n2

nX

i=1

X

j 6=i

E
h⇣
��k

n,i
� E

h
��k

n,i

i⌘⇣
��k

n,j
� E

h
��k

n,j

i⌘i

=
1

n2

nX

i=1

X

j 6=i

E
h
��k

n,i
��k

n,j

i
� 1

n2

nX

i=1

X

j 6=i

E
h
��k

n,i

i
E
h
��k

n,j

i
.



CHAPTER 3. CONNECTIVITY OF A GENERAL CLASS OF INHOMOGENEOUS
RANDOM DIGRAPHS 133

To estimate E
h
��k

n,i
��k

n,j

i
we will assume that we first explore the inbound and outbound

neighborhood of vertex i up to the time both its in-component and out-component have
at least k vertices or there are no more vertices to explore, i.e., we will explore the in-
component of vertex i up to time ��

k,i
and its out-component up to time �+

k,i
. Note that

we have added the subscript i, relative to the notation introduced in Section 3.4.3.1, to
emphasize that the exploration starts at vertex i. Next, define Fk,i to be the sigma-algebra
generated by the exploration of the in-component and out-component of vertex i, as described
in Section 3.4.3.1, up to Step ��

k,i
on the inbound side and up to Step �+

k,i
on the outbound

side. Define N (k)
i

= I+
�
+
k,i

[ I�
�
�
k,i

[A�
�
�
k,i

[A+
�
+
k,i

to be the set of vertices discovered during that

exploration. Now explore the in-component and out-component of vertex j, as described in
Section 3.4.3.1, up to Step ��

k,j
on the inbound side and up to Step �+

k,j
on the outbound

side; let N (k)
j

be the corresponding set of vertices discovered during the exploration of vertex
j.

Define Cij =
n
N (k)

i
\N (k)

j
= ?

o
and note that,

E
h
��k

n,i
��k

n,j

i
 E

h
��k

n,i
��k

n,j
1(Cij)

i
+ E

⇥
1(Cc

ij
)
⇤
= E

h
��k

n,i
E
h
��k

n,j
1(Cij)

���Fk,i

ii
+ P(Cc

ij
).

To analyze the conditional expectation, observe that

E
h
��k

n,j
1(Cij)

���Fk,i

i
= E

h
��k

n,j

���Fk,i, Cij

i
P(Cij|Fk,i),

where, due to the independence among the arcs, we have that conditionally on Fk,i and Cij,
the random variable ��k

n,j
has the same distribution as the indicator function of the event that

vertex j has in-component and out-component both of size at least k on the graph Gn(n,i),
with

n,i(Xs,Xt) = (Xs,Xt)(1 + 'n(Xs,Xt))1(s /2 N (k)
i

, t /2 N (k)
i

).

Now note that since n,i  (1 + 'n) for any realization of N (k)
i
✓ [n], we have

E
h
��k

n,j

���Fk,i, Cij

i
 E

h
��k

n,j

i
,

from where it follows that

1

n2

nX

i=1

X

j 6=i

E
h
��k

n,i
��k

n,j

i
 1

n2

nX

i=1

X

j 6=i

⇣
E
h
��k

n,i

i
E
h
��k

n,j

i
+ P(Cc

ij
)
⌘
,

which in turn implies that

1

n2

nX

i=1

X

j 6=i

E
h⇣
��k

n,i
� E

h
��k

n,i

i⌘⇣
��k

n,j
� E

h
��k

n,j

i⌘i
 1

n2

nX

i=1

X

j 6=i

P(Cc

ij
).
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Similarly to what was done on the graph, define N̂ (k)
i

= Î+
�̂
+
k,i

[ Î�
�̂
�
k,i

[
⇢
Ti : i 2 Â�

�̂
�
k,i

�
[

⇢
Ti : i 2 Â+

�̂
+
k,i

�
to be the set of identities that appear during the construction of the double

tree
(T �

µ
(m;Xi), T +

µ
(m;Xi)) up to Step �̂�

k,i
on the inbound side, and up to Step �̂+

k,i
on the

outbound side. Let Ĉij =
n
N̂ (k)

i
\ N̂ (k)

j
= ?

o
. We then have

P(Cc

ij
)  P(Cc

ij
, ⌧�

i
> ��

k,i
, ⌧+

i
> �+

k,i
, ⌧�

j
> ��

k,j
, ⌧+

j
> �+

k,j
)1(⌦m,n) + 1(⌦c

m,n
)

+ P({⌧�
i
 ��

k,i
} [ {⌧+

i
 �+

k,i
}) + P({⌧�

j
 ��

k,j
} [ {⌧+

j
 �+

k,j
})

 1(⌦c

m,n
) + P(Ĉc

ij
, |N̂ (k)

i
|  log n)1(⌦m,n) + P(|N̂ (k)

i
| > log n)

+ Pi({⌧�  ��
k
} [ {⌧+  �+

k
}) + Pj({⌧�  ��

k
} [ {⌧+  �+

k
}),

where the event ⌦m,n is defined in Theorem 3.4.6.
To bound the first probability on the right-hand side, define F̂k,i to be the sigma-algebra

generated by the construction of the double tree whose root has identity i, up to Step �̂�
k,i

on the inbound side and up to Step �̂+
k,i

on the outbound side. Now note that

Ĉij = {j /2 N̂ (k)
i

} \

0

B@
�̂
+
k,j\

r=1

\

t2N̂ (k)
i

{Z̃
T̂

+
r,j ,t

= 0}

1

CA \

0

B@
�̂
�
k,j\

r=1

\

t2N̂ (k)
i

{Z
t,T̂

�
r,j

= 0}

1

CA

where T̂�
r,j

and T̂+
r,j

are the rth active identities to have their o↵spring sampled in the double

tree whose root is j. Moreover, if we define Bs =
T

t2N̂ (k)
i

{Zts = 0} and B̃s =
T

t2N̂ (k)
i

{Z̃st =

0}, then

{j /2 N̂ (k)
i

} = Bj \ B̃j and Ĉij = Bj \ B̃j \

0

@
�̂
+
k,j\

r=1

B̃
T̂

+
r,j

1

A \

0

@
�̂
�
k,j\

r=1

B
T̂

�
r,j

1

A ,
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and therefore, since �̂�
k,j
, �̂�

k,j
 k, the union bound gives

P(Ĉc

ij
|F̂ (k)

i
)  P

0

@Bc

j
[

0

@
�̂
�
k,j[

r=1

Bc

T̂
�
r,j

1

A

������
F̂ (k)

i

1

A+ P

0

@B̃c

j
[

0

@
�̂
+
k,j[

r=1

B̃c

T̂
+
r,j

1

A

������
F̂ (k)

i

1

A

 E

2

41(Bc

j
) +

�̂
�
k,jX

r=1

1

 
Bj \

r�1\

s=1

B
T̂

�
s,j
\Bc

T̂
�
r,j

!������
F̂ (k)

i

3

5

+ E

2

41(B̃c

j
) +

�̂
+
k,jX

r=1

1

 
B̃j \

r�1\

s=1

B̃
T̂

+
s,j
\ B̃c

T̂
+
r,j

!������
F̂ (k)

i

3

5

 E
"
1(Bc

j
) +

kX

r=1

1

 
Â�

r�1,j 6= ?,
r\

s=1

{T̂�
s,j

/2 N̂ (k)
i

}, Bc

T̂
�
r,j

!����� F̂
(k)
i

#
(3.4.17)

+ E
"
1(B̃c

j
) +

kX

r=1

1

 
Â+

r�1,j 6= ?,
r\

s=1

{T̂+
s,j

/2 N̂ (k)
i

}, B̃c

T̂
+
r,j

!����� F̂
(k)
i

#
, (3.4.18)

where Â�
r,j

and Â+
r,j

are the rth inbound and outbound active sets in the construction of the

double tree started at j. Now note that the event
T

r

s=1{T̂
�
s,j

/2 N̂ (k)
i

} implies that none of
the {U

s,T̂
�
r,j

: 1  s  n} have been used in the construction of the double tree started at i,

hence

P
 
Â�

r�1,j 6= ?,
r\

s=1

{T̂�
s,j

/2 N̂ (k)
i

}, Bc

T̂
�
r,j

����� F̂
(k)
i

!
 E

h
1(Â�

r�1,j 6= ?)Q(N̂ (k)
i

, T̂�
r,j
)
i
,

where for any set V ✓ [n] and any s 2 [n] we define

Q(V, s) = P
 
[

t2V

{Zts � 1}
!

X

t2V

P (Zts � 1) =
X

t2V

(1� e�r
(m,n)
ts )


X

t2V

r(m,n)
ts  Rn

n

X

t2V

m(Xt,Xs) 
Rn

n
|V | sup

x,y2S
m(x,y),

and Rn = max1tMm 1(µn(J (m)
t ) > 0)µ(J (m)

t )/µn(J (m)
t ). Since P(Bc

j
|F̂ (k)

i
)  Q(N̂ (k)

i
, j),

we obtain that (3.4.17) is bounded from above by

Q(N̂ (k)
i

, j) +
kX

r=1

E
h
1(Â�

r�1,j 6= ?)Q(N̂ (k)
i

, T̂�
r,j
)
��� F̂ (k)

i

i
 Rn(k + 1)

n
|N̂ (k)

i
| sup
x,y2S

m(x,y).

Similarly, (3.4.18) is bounded from above by

Rn(k + 1)

n
|N̂ (k)

i
| sup
x,y2S

m(x,y).
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It follows that

P(Ĉc

ij
|F̂ (k)

i
)  2Rn(k + 1)

n
|N̂ (k)

i
| sup
x,y2S

m(x,y),

which in turn implies that for any i, j 2 [n],

P(Ĉc

ij
, |N̂ (k)

i
| < log n)1(⌦m,n) = E

h
P(Ĉc

ij
|F̂ (k)

i
)1(|N̂ (k)

i
| < log n)

i
1(⌦m,n)

 4(k + 1) log n

n
sup
x,y2S

m(x,y),

and we have used the observation that on ⌦m,n we have Rn  1 + ✏  2.
Using this estimate we obtain that

1

n2

nX

i=1

X

j 6=i

P(Cc

ij
)  1

n2

nX

i=1

X

j 6=i

n
1(⌦c

m,n
) + P(Ĉc

ij
, |N̂ (k)

i
|  log n)1(⌦m,n) + P(|N̂ (k)

i
| > log n)

o

+
2

n

nX

i=1

Pi({⌧�  ��
k
} [ {⌧+  �+

k
})

 1(⌦c

m,n
) +

4(k + 1) log n

n
sup
x,y2S

m(x,y) +
1

n

nX

i=1

P(|N̂ (k)
i

| > log n)

+
2

n

nX

i=1

Pi({⌧�  ��
k
} [ {⌧+  �+

k
}).

To complete the proof, apply Theorem 3.4.6 to obtain

1(⌦c

m,n
) +

2

n

nX

i=1

Pi({⌧�  ��
k
} [ {⌧+  �+

k
})  3H(n,m, k, ✏),

and Markov’s inequality followed by Lemma 3.4.7 to get

1

n

nX

i=1

P(|N̂ (k)
i

| > log n)  1

n log n

nX

i=1

E
h
|N̂ (k)

i
|
i
 k

log n

✓
2 + sup

x2S
�(m)
� (x) + sup

x2S
�(m)
+ (x)

◆
.

We now use Proposition 3.4.18 to show that the number of vertices with in-component
and out-component both of size at least k converges in probability.

Proposition 3.4.19 Define the in-component and out-component of vertex v 2 [n], R�(v)
and R+(v), respectively, as in Theorem 3.3.11. Let N�k

n
= {v 2 [n] : |R�(v)| � k and |R+(v)| �

k}. Then,
|N�k

n
|

n
P�! ⇢�k(), n!1.
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Proof. Define {��k

n,i
}i2[n] as in Proposition 3.4.18. We start by noting that for any m � 1

we have

����
|N�k

n
|

n
� ⇢�k()

���� 

�����
|N�k

n
|

n
� 1

n

nX

i=1

E
h
��k

n,i

i�����

+

�����
1

n

nX

i=1

E
h
��k

n,i

i
� 1

n

nX

i=1

⇢�k

� (m;Xi)⇢
�k

+ (m;Xi)

����� (3.4.19)

+

�����
1

n

nX

i=1

⇢�k

� (m;Xi)⇢
�k

+ (m;Xi)� ⇢�k(m)

�����+
��⇢�k(m)� ⇢�k()

��

Moreover, by Proposition 3.4.18 we have that for any 0 < ✏ < 1/2, (3.4.19) is bounded by

H(n,m, k, ✏), where H(n,m, k, ✏) is defined in Theorem 3.4.6 and satisfies H(n,m, k, ✏)
P�!

Ĥ(m, k, ✏) for some other function Ĥ(m, k, ✏) (defined in Lemma 3.4.10) as n ! 1, where
for any fixed k � 1 we have

lim
m%1

lim
✏#0

Ĥ(m, k, ✏) = 0.

Also, by the bounded convergence theorem we have that for any m, k 2 N�,

1

n

nX

i=1

⇢�k

� (m;Xi)⇢
�k

+ (m;Xi) =

Z

S
⇢�k

� (m;x)⇢
�k

+ (m;x)µn(dx)
P�! ⇢�k(m) n!1,

and by Lemma 3.4.15 we have that

lim
m%1

⇢�k(m) = ⇢�k()

in probability, since m %  in probability. Therefore, for any m � 1 and 0 < ✏ < 1/2 we
have

lim sup
n!1

����
|N�k

n
|

n
� ⇢�k()

����  lim sup
n!1

�����
|N�k

n
|

n
� 1

n

nX

i=1

E
h
��k

n,i

i�����+ Ĥ(m, k, ✏) +
��⇢�k(m)� ⇢�k()

�� .

and by taking ✏ # 0 followed bym%1 we obtain that the following limit holds in probability

lim sup
n!1

����
|N�k

n
|

n
� ⇢�k()

����  lim sup
n!1

�����
|N�k

n
|

n
� 1

n

nX

i=1

E
h
��k

n,i

i����� .

It remains to show that this last limit is zero. To do this, start by using Proposition 3.4.18
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again to obtain that for any m � 1 and 0 < ✏ < 1/2, we have that on the event ⌦m,n,

E

2

4
 
N�k

n

n
� 1

n

nX

i=1

E
h
��k

n,i

i!2
3

5

=
1

n2

(
nX

i=1

E
⇣
��k

n,i
� E

h
��k

n,i

i⌘2
�
+

nX

i=1

X

j 6=i

E
h⇣
��k

n,i
� E

h
��k

n,i

i⌘⇣
��k

n,j
� E

h
��k

n,j

i⌘i)

 1

n2

nX

i=1

E
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��k

n,i
� E

h
��k

n,i

i⌘2
�
+K(n,m, k) + 3H(n,m, k, ✏)

 1

n
+K(n,m, k) + 3H(n,m, k, ✏),

where K(n,m, k) is defined in Proposition 3.4.18 and satisfies K(n,m, k)
P�! 0 as n ! 1

for any fixed m, ✏. The bounded convergence theorem now gives

lim
n!1

E

2

4
 
N�k

n

n
� 1

n

nX

i=1

E
h
��k

n,i

i!2
3

5 = E

2

4 lim
n!1

E

2

4
 
N�k

n

n
� 1

n

nX

i=1

E
h
��k

n,i

i!2
3

5

3

5 = 3Ĥ(m, k, ✏),

and taking the limit as ✏ # 0 followed by m%1 completes the proof.
We are now ready to prove Theorem 3.3.10, the phase transition for the existence of a

giant strongly connected component in Gn((1 + 'n)).
Proof of Theorem 3.3.10. By Lemma 3.4.14, there exists a sequence of kernels

{m : m � 1} defined on S ⇥ S, measurable with respect to F , such that m is quasi-
irreducible, regular finitary, and such that for any n � m, we have

m(x,y)  (x,y)(1 + 'n(x,y)) for all x,y 2 S.

Proof of the lower bound: We will start by proving a lower bound for the largest strongly
connected component of Gn(,'n). To this end, note that we can construct a coupling
between Gn((1 + 'n)) and Gn(m) such that every arc in Gn(m) is also in Gn((1 + 'n))
P -a.s. It follows that

C1(Gn((1 + 'n))) ◆ C1(Gn(m)) P -a.s.

The idea is now to apply Theorem 1 in [12] to Gn(m), however, that theorem requires that
the kernel m be irreducible, whereas m is only quasi-irreducible. To address this issue, we
construct a third graph as follows. Let S⇤ be the restriction of S where m is irreducible
and set

S 0 =
Mm[

i=1

n
J (m)

i
\ S⇤ : µ(J (m)

i
) > 0

o
.

To avoid trivial cases, assume from now on that µ(S 0) > 0.
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Now let Vn0 = {1  i  n : Xi 2 S 0} denote the set of vertices in Gn(m) that have types
in S 0 and let n0 denote its cardinality. Note that n0 is random, but measurable with respect
to F . Next, fix 0 < � < 1 and define the kernel 0(x,y) = (1 � �)µ(S 0)m(x,y) and the
graph Gn0(0) whose arc probabilities are given by

p(n
0)

ij
=

(1� �)µ(S 0)m(Xi,Xj)

n0 ^ 1, i, j 2 [n0], i 6= j.

Note that Gn0(0) is a graph on the type space S 0 whose types are distributed according to
measure µ0

n
(A) := µn(A)/µn(S 0) for any A ✓ S 0. Moreover, 0 is irreducible on S 0 with each

of its induced types, i.e., the sets J (m)
i
\S 0, having strictly positive measure. Now note that

since nµn(S 0) = n0 and µn(S 0)
P�! µ(S 0) as n!1, then

p(n
0)

ij
=

(1� �)µ(S 0)m(Xi,Xj)

nµn(S 0)
^ 1  m(Xi,Xj)

n
^ 1, i, j 2 [n0], i 6= j,

for all su�ciently large n. Therefore, there exists a coupling such that every arc in Gn0(0)
is also in Gn(m), and therefore, for all su�ciently large n,

C1(Gn(m)) ◆ C1(Gn0(0)) P -a.s.

Now use Theorem 1 in [12] to obtain that for every ✏ > 0

P

✓����
|C1(Gn0(0))|

n0 � ⇢0(0)
���� > ✏

◆
! 0 n!1,

where

⇢0(0) =

Z

S0
⇢0�(

0;x)⇢0+(
0;x)µ0(dx),

and ⇢0�(
0;x), ⇢0+(

0;x) are the survival probabilities of the trees T �
µ0 (0) and T +

µ0 (0), respec-
tively, defined on the type space S 0 with respect to the measure µ0(A) = µ(A)/µ(S 0) for
A ✓ S 0.

By the arguments in the proof of Proposition 3.4.16, we have that ⇢((1 � �)m) =
µ(S 0)⇢0(0), where

⇢((1� �)) =
Z

S
⇢�((1� �)m;x)⇢+((1� �);x)µ(dx),

and ⇢�((1��)m;x), ⇢+((1��)m;x) are the survival probabilities of the trees T �
µ
((1��)m)

and T +
µ
((1� �)m), defined on the type space S.

Hence,

|C1(Gn((1 + 'n)))|
n

� |C1(Gn((1� �)m))|
n

� |C1(Gn0(0))|
n0 · n

0

n
P�! ⇢0(0)µ(S 0) = ⇢((1� �)m),
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as n!1. Now use Lemma 3.4.15 to obtain that the following limits hold in probability

lim
m%1

lim
�#0

⇢((1� �)m) = lim
�#0

lim
m%1

⇢((1� �)m) = ⇢(),

from where we conclude that for any ✏ > 0,

P

✓
|C1(Gn(,'n))|

n
� ⇢() < �✏

◆
! 0 n!1.

Proof of the upper bound: For any k,m � 1 let ⇢�k

� (m;x) (⇢�k

+ (m;x)) denote the
probability that the tree T �

µ
(m;x) (T +

µ
(m;x)) has a population of at least k nodes.

Define for k � 1 the set N�k

n
as in Proposition 3.4.19; N�k

n
is the set of vertices in

Gn((1 + 'n)) with both large in-component and large out-component. Now note that
provided lim infn!1 |C1(Gn((1 + 'n)))| =1, we have that for any fixed k � 1,

|C1(Gn((1 + 'n)))|  |N�k

n
| for all su�ciently large n.

It follows that

|C1(Gn((1 + 'n)))|
n

� ⇢()  |N�k

n
|

n
� ⇢�k() + ⇢�k()� ⇢().

Now use Proposition 3.4.19 to obtain that |N�k

n
|/n P�! ⇢�k() as n!1 for any fixed k � 1.

Now use Lemma 3.4.15 to obtain that ⇢�k()% ⇢() as k %1, which completes the proof
of the upper bound.

Proof of the phase transition: It follows from Lemma 3.4.17.

We now proof Theorem 3.3.11, which provides a more detailed description of the giant
strongly connected component and of the bow-tie structure it determines.

Proof of Theorem 3.3.11. In view of Theorem 3.3.10, we know that C1(Gn((1+'n)))
contains asymptotically n⇢() vertices, and therefore, C1(Gn((1 + 'n))) ✓ L+

n
\ L�

n
with

high probability. To show the reverse subset relation fix 0 < � < 1 and m � 1 and construct
the kernel 0(x,y) = (1 � �)µ(S 0)m(x,y) on the type space S 0 ✓ S just as in the proof of
Theorem 3.3.10, so that 0 is regular finitary and irreducible on S 0. Now construct the graph
Gn0(0) using a coupling ensuring that

C1(Gn0(0)) ✓ C1(Gn((1 + 'n))) P -a.s.,

as was done in the proof of Theorem 3.3.10. Now define the sets L�
m,�,n

= {v 2 [n0] :
|R�(v)| � (log n)/n} and L+

m,�,n
= {v 2 [n0] : |R+(v)| � (log n)/n} relative to graph Gn0(0).

A close inspection of the proof of Theorem 1 in [12] shows that L+
m,�,n

\ L�
m,�,n

(denoted
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B0(!1) in [12]) is strongly connected with high probability (specifically, see the proof of (22)
in [12]). It follows that

lim
n!1

P
�
L+
m,�,n

\ L�
m,�,n

✓ C1(Gn0(0)) ✓ C1(Gn((1 + 'n))) ✓ L+
n
\ L�

n

�
= 1.

Now note that L+
m,�,n

% L+
n
and L�

m,�,n
% L�

n
as m!1 and � ! 0, which implies that

lim
n!1

P
�
C1(Gn((1 + 'n))) = L+

n
\ L�

n

�
= 1.

To establish the limits for |L+
n
| and |L�

n
|, let L�k

�,n = {v 2 [n] : |R�(v)| � k} and

L�k

+,n = {v 2 [n] : |R+(v)| � k} and note that |L±
n
|  |L�k

±,n| for any 1  k  (log n)/n and

|L�k

±,n|  |L±
n
| for any k � (log n)/n. A straightforward adaptation of Proposition 3.4.19 can

be used to obtain

|L�k

�,n|
n

P�!
Z

S
⇢�k

� (;x)µ(dx) and
|L�k

+,n|
n

P�!
Z

S
⇢�k

+ (;x)µ(dx)

as n ! 1. Monotone convergence gives
R
S ⇢

�k

± (;x)µ(dx) &
R
S ⇢±(;x)µ(dx) as k % 1,

which yields the result.
We end the paper with the proof of Proposition 3.3.13, which states the main results for

the rank-1 kernel case.
Proof of Proposition 3.3.13. The first two statements follow immediately from noting

that E[+(X)]E[�(X)] =
RR

S2 (x,y)µ(dx)µ(dy). The third one follows from noting that
��(X) = �(X)E[+(X)] and �+(X) = +(X)E[�(X)].

To establish (d) assume first that ⇢() > 0. Now use Lemma 3.4.14 (applied to (x,y) =
�(y) and (x,y) = +(x) separately) to obtain that there exists a sequence of kernels
{+

m
(x) : m � 1} and {̃�

m
(x) : m � 1} such that: 1) 0  ±

m
(x)  ±(x) for all x 2 S, 2)

each is piecewise constant taking only a finite number of values, and 3) ±
m
(x) % ±(x) in

probability for a.e. x 2 S as m ! 1. Now set Bm = {x 2 S : �
m
(x) > 0,+

m
(x) > 0} and

define
m(x,y) = +

m
(x)�

m
(y)1(x 2 Bm,y 2 Bm).

Note that m is regular finitary and is strictly positive on Bm ⇥ Bm. Hence, the only set
A ✓ Bm satisfying m = 0 on A ⇥ (Ac \ Bm) is A = ? or Ac \ Bm = ?, implying the
irreducibility of m on Bm ⇥ Bm. Moreover, since � > 0 and + > 0 a.e. in order for  to
be irreducible, we have that m %  in probability as m!1.

Next, use Lemma 3.4.15 to obtain that ⇢() = limm!1 ⇢(m), and therefore, ⇢(m) > 0
for some m su�ciently large. By Proposition 3.4.16 this implies that the spectral radii
of the operators T�

m
and T+

m
are strictly larger than one. Now note that the functions

f�
m
(x) = �

m
(x) and f+

m
(x) = +

m
(x) are nonnegative and satisfy

T�
m

f�
m
(x) =

Z

S
+
m
(y)�

m
(x)f�

m
(y)µ(dx) = �

m
(x)

Z

S
+
m
(y)f�

m
(y)µ(dy)

= f�
m
(x)

Z

S
+
m
(y)�

m
(y)µ(dy),



CHAPTER 3. CONNECTIVITY OF A GENERAL CLASS OF INHOMOGENEOUS
RANDOM DIGRAPHS 142

and therefore, rm :=
R
S 

+
m
(y)�

m
(y)µ(dy) is an eigenvalue of T�

m
. Similarly, rm is an

eigenvalue of T+
m

associated to the nonnegative eigenfunction f+
m
. Since we may assume

that �
m
(x) and +

m
(x) are di↵erent from zero for su�ciently large m, then Proposition 3.4.16

gives that rm = r(T±
m

) > 1. Taking the limit as m!1 gives that

E[+(X)�(X)] = lim
m!1

rm > 1.

For the converse, note that E[+(X)�(X)] > 1 and the monotone convergence theorem
imply that rm > 1 for some m su�ciently large. For this m, Proposition 3.4.16 gives that
rm is the spectral radius of T�

m
and T+

m
, and also that ⇢(m) > 0. Lemma 3.4.15 now gives

that 1 < ⇢(m)% ⇢() in probabiity as m!1.
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Appendix A

CVRP and TSP related results

The following result taken from [48] (see also [34]) provides upper and lower bounds for
the length of an optimal CVRP route to deliver n packages with arbitrary destinations
x
(n) = {x1, . . . ,xn} ✓ R2.

Theorem 8 For any set x(n) of demand points serviced by a fleet of vehicles with capacity
V that originate from a single depot, we have

max

⇢
2nr̄(n)

V
, L(TSP(x(n)))

�
 L(CVRP(x(n)))  2

⇣ n

V
+ 1

⌘
r̄(n) + L(TSP(x(n))),

where r̄(n) is the empirical average distance, i.e., r̄(n) = 1
n

P
n

i=1 ri.

The following result taken from [55] (see also [44]) gives an asymptotic upper bound for
the length of an optimal TSP route through the points x(n).

Theorem 9 For any sequence of points x
(n) contained in a compact region R ✓ R2, and

any of the Lp distances on R2, there exists a constant ↵TSP (p) satisfying

lim sup
n!1

L(TSP (X(n)))p
nA

 ↵TSP (p),

where A is the area of R.

Note that the statement appearing in [44, 55] is stated only for p = 2, however, the general
case can be obtained from ↵TSP(2) by noting that dq(x,y)  d2(x,y)  21/2�1/pdp(x,y) for
1  p  2  q.
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Appendix B

Proofs in Section 2

B.1 Notation.

• N : the total number of messages

• X: the set of N messages

• M : the maximum possible number of messages sent to a single user

• £: the maximum possible number of messages sent to a single user per time

• W : user’s tolerance towards irrelevant content in terms of the number of rejected
messages

• fj: the probability of abandonment after rejecting the jth messages, conditional on a
user’s tolerance is at least j

• F : the cumulative density function of W

• S
l: a sequence of messages sent to user l

• S
⇤: the optimal sequence

• ui: the attraction probability of message i

• U(S,u, F ): the payo↵ from a sequence of messages S with the underlying parameters
as u and F

• Il(j): the index of the jth message sent to user l

• Ol: the set of messages which has been examined by user l

• Ti(t): the total number of users who have examined message i by time t
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• T̃j(t): the total number of users who have rejected the jth unsatisfactory messages by
time t

• Qi(t): the total number of users who accepted message i by time t

• na

j
(t): the number of users who have abandoned the platform upon receiving the jth

unsatisfactory message by time t

• ne

j
(t):the number of users who did not abandon after rejecting j messages by time t

• ml: the number of messages examined by user l

• Ml: the timestamps that user l receives messages from the platform

• ⇢j
l
: the timestamp of sending the jth message to user l

• �i,t: the total number of times that message i is sent to users at time t

• ⌦j: the set of timestamps when the user faces the choice of abandonment after rejecting
j messages

• g(t, j): the index of user who rejects the jth message at time t

• At: the indices of the messages sent at time t

B.2 Model.

Example B.2.1 (An illustrative example to explain the optimization problem) Let’s
say the job processing order is 3! 2! 5! 1. After processing job 3 at time 1, it generates
reward w13 and all the reward collected after job 3 will be discounted at rate p13, and so on.
It corresponds to placing message 3, 2, 5, 1 as the first, second, third and forth message in
s sequence.

B.3 Proofs in Section 2.3.

Proof. Proof of Theorem 4
We prove the result by contradiction. Assume the optimal sequence is S⇤ = (S1, · · · , Sm).

Recall that I is the index function, where I(i) = k if and only if Si = {k}. If the optimal
sequence is not ordered by their attraction probabilities, then there exists a neighboring pair
I(i) and I(i + 1) such that uI(i) < uI(i+1). For ease of notation, let x1 = uI(i), x2 = uI(i+1),
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Figure B.1: An illustrative example on message selection.

m = |S⇤|. We first have

E[U((Si, Si+1, · · · , Sm),u, (fi, · · · , fm))]
= x1 � c(1� x1)fi + (1� x1)(1� fi)E[U((Si+2, · · · , Sm),u, (fi+1, · · · , fm))]
= x1 � c(1� x1)fi + (1� x1)(1� fi) (x2 � c(1� x2)fi+1

+ (1� x2)(1� fi+1)E[U((Si+3, · · · , Sm),u, (fi+3, · · · , fm))]) ,

and

E[U((Si+1, Si, · · · , Sm),u, (fi, fi+1, · · · , fm))]
= x2 � c(1� x2)fi + (1� x2)(1� fi)E[U((Si+2, · · · , Sm),u, (fi+1, · · · , fm))]
= x2 � c(1� x2)fi + (1� x2)(1� fi) (x1 � c(1� x1)fi+1

+ (1� x1)(1� fi+1)E[U((Si+3, · · · , Sm),u, (fi+3, · · · , fm))]) ,

which implies that

E[U((Si, Si+1, · · · , Sm),u, (fi, · · · , fm))]� E[U((Si+1, Si, · · · , Sm),u, (fi, fi+1, · · · , fm))]
= (1 + cfi)(x1 � x2) + (1� x1)(1� fi)x2 � (1� x2)(1� fi)x1

= fi(1 + c)(x1 � x2) < 0.

The last statement shows that swapping message I(i) and I(i + 1) will increase the profit,
which is a contradiction to the fact that S⇤ is an optimal sequence. We can similarly prove
that if there exists a pair of messages i and j such that i 2 S

⇤, j /2 S
⇤, but ui < uj,

substituting i with j can improve the expected payo↵. Therefore, the optimal order is to
rank messages according to their attraction probabilities.
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Proof. Proof of Theorem 5 We prove the following statement by induction: Until step j,
Algorithm 1 finds the optimal sequence under the constraint for the sequence length larger
than or equal to j � 1. We first verify the first step. If E[U(SN ,u, fN)] < 0, then we
have E[U((S1, · · · , SN),u, (f1, · · · , fN))] < E[U((S1, · · · , SN�1),u, (f1, · · · , fN�1))], which
implies that (S1, · · · , SN�1) is the optimal sequence with length larger than or equal to j�1.
Now assuming (S1, · · · , Sl) is the optimal sequence with length larger than or equal to k
where l � k, we prove for k� 1. We claim that if E[U((Sk, · · · , Sl),u, (fk, · · · , fl))] < 0, the
optimal sequence is (S1, · · · , Sk�1) among all sequences with length larger than or equal to
k � 1. Otherwise, if the optimal sequence is (S1, · · · , Sm0) where m0 � k, we can conclude
that m0 = l, otherwise it is a contradiction to the fact that (S1, · · · , Sm) is optimal with
length larger than or equal to k. However, since E[U(Sk, · · · , Sl),u, (fk, · · · , fl)] < 0, we can
conclude that E[U((S1, · · · , Sk�1),u, (f1, · · · , fk�1))] < E[U((S1, · · · , Sl),u, (f1, · · · , fl))]. It
is a contradiction. Therefore, (S1, · · · , Sk�1) is the optimal sequence among all sequences
with length larger than or equal to k � 1. We can similarly prove for the scenario where
E[U(Sk, · · · , Sl),u, (fk, · · · , fl)] � 0. Following the induction step, we have proved that
Algorithm 1 finds the optimal sequence.

Proof. Proof of Proposition 2.3.2 By definition, W1 &s.t. W2 means that

P (W1 > x) � P (W2 > x) for all x 2 R.

For any sequence S and a given abandonment distribution W , the probability of choosing
message i as the lth message from S is given by

Pi(S;W ) =
l�1Y

k=1

(1� uI(k))uiP (W � l).

Thus, we have Pi(S;W1) � Pi(S;W2) for any i 2 S when W1 &s.t. W2.
Define P0 as the probability that a user who finishes viewing an entire sequence does not

select any message or abandon the platform, where

P0(S;W ) =
|S|Y

k=1

(1� uI(k))P (W � |S|).

Clearly, P0(S;W1) � P0(S;W2) when W1 &s.t. W2. Since the probability of abandonment
Pa(S;W ) = 1�

P
i2X Pi(S;W )� P0(S;W ), we have Pa(S;W1)  Pa(S;W2).

Denote S0 and S
00 are the optimal sequences given the abandonment distribution W1 and

W2 respectively. Because

E[U(S,u, FW )] =
X

i2X

Pi(S;W )� cPa(S;W ),

we have
E[U(S0,u, FW1)] � E[U(S00,u, FW1)] � E[U(S00,u, FW2)].
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B.4 Proofs in Section 2.4

Proof. Proof of Lemma 2.4.2 Lemma 2.4.2 follows immediately from the fact that each
sample collected for estimating ui is i.i.d. and follows Bernoulli distribution with mean ui.
The similar argument holds for f̂j(t).

Lemma B.4.1 (Concentration bound) For any Ti(t) and T̃j(t), we have

P

 
uOP

i,t
�

s

8
log t

Ti(t)
< ui < uOP

i,t

!
� 1� 2

t4
and P

 
fOP

j,t
< fj < fOP

j,t
+

s
8
log t

T̃j(t)

!
� 1� 2

t4
.

Proof. Proof of Lemma B.4.1 The upper confidence bounds for attraction probabilities
u and abandonment probabilities are defined as follows,

uOP

i,t
= min{ûi(t) +

p
2 log t/Ti(t), 1}

and

f̃OP

j,t
= max

⇢
f̂j(t)�

q
2 log t/T̃j(t), 0

�
, fOP

j,t
= max

kj

f̃OP

k,t
.

Using Hoe↵ding’s inequality, we have

P
�
uOP

i,t
< ui

�
+ P

⇣
uOP

i,t
> ui + 2

p
2 log t/Ti(t)

⌘

= P
⇣
ûi(t) +

p
2 log t/Ti(t) < ui

⌘
+ P

⇣
ûi(t) > ui +

p
2 log t/Ti(t)

⌘

= P
⇣
|ûi(t)� ui| >

p
2 log t/Ti(t)

⌘
 2 exp(�4 log t) = 2

t4
,

which implies that

P

 
uOP

i,t
�

s
8 log t

Ti(t)
< ui < uOP

i,t

!
� 1� 2

t4
.

Define k = argmax
k0 f̃

OP

k0,t , then we have

P
�
fOP

j,t
> fj

�
+ P

✓
fOP

j,t
< fj � 2

q
2 log t/T̃j(t)

◆

 P
⇣
f̃OP

k,t
> fk

⌘
+ P

✓
f̃OP

j,t
< fj � 2

q
2 log t/T̃j(t)

◆

= P

✓
f̂k(t)�

q
2 log t/T̃k(t) > fk

◆
+ P

✓
f̂j(t) < fj �

q
2 log t/T̃j(t)

◆

 2 exp(�4 log t) = 2

t4
,
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which implies that

P

 
fOP

j,t
< fj < fOP

j,t
+

s
8 log t

T̃j(t)

!
� 1� 2

t4
.

Proof. Proof of Lemma 2.4.4 Without loss of generality, assume u1 � u2 � · · · � uN

and S
⇤ = (1, · · · ,m⇤). If Il(j)  j, the inequality holds because uIl(j) � uj, which implies

that E[U(Il(j),u, fj)] � E[U(j,u, fj)]. Otherwise, if Il(j) > j, then uIl(j)  uj. Note
that uOP

Il(j),t
is at least the jth largest among u

OP

t
, otherwise Il(j) will not be chosen. With

u
OP

t
� u, we have uj  uOP

Il(j),t
because the jth largest value in sequence uOP

t
is larger than or

equal to the jth largest value in u. Therefore, we have uIl(j)  uj  uOP

Il(j),t
. It implies that

uj � uIl(j)  uOP

Il(j),t
� uIl(j). Thus, we have reached the desired result.

Proof. Proof of Theorem 6 Define the optimal length of message as m⇤. Assume the
sequence o↵ered to user l (entering at time l) is Sl with total message number ml. We want
to quantify the di↵erence between the expected payo↵ generated by S

l and S
⇤. Without loss

of generality, we assume S
⇤ = (1, 2, · · · ,m⇤), i.e., u1 � u2 � · · · � uN . Define events

Bi,t = {uOP

i,t
�
p

8 log t/Ti(t) < ui < uOP

i,t
} and Ej,t =

⇢
fOP

j,t
< fj < fOP

j,t
+
q

8 log t/T̃j(t)

�
.

Define Jt =
T

i2X Bi,t

T
1jM

Ej,t. First we note that on event
T

ml
j=1 J⇢jl�1, the length of Sl

is longer than that of S⇤ based on the optimality of Algorithm 1. Therefore,

E⇡

"
�
U(S⇤,u, F )� U(Sl,u, F )

� mlY

j=1

1(J
⇢
j
l�1)

#

= E⇡

"
(U(S⇤,u, F )� U((Sl

1, · · · , Sl

m⇤),u, F ))
mlY

j=1

1(J
⇢
j
l�1)

#

� E⇡

"
U((Sl

m⇤+1, · · · , Sl

ml
),u, (fm⇤+1, · · · , fml

))
mlY

j=1

1(J
⇢
j
l�1)

#
. (B.4.1)

Note that Sl is the sequence proposed by our algorithm. To bound the di↵erence in the
expected payo↵ achieved under S⇤ and S

l, we will utilize the coupling method. We couple
the recommending process of S⇤ (call this process 1) and S

l (call this process 2) with the
total number of messages ml. For the jth recommending message at time t (for t = ⇢j

l
) to

user l, set a1 = min{uj, uIl(j)} and a2 = max{uj, uIl(j)}. Generate two independent uniform
random variables w1 ⇠ unif [0, 1] and w2 ⇠ unif [0, 1]. The event w1 < a1 denotes that both
processes lead to a success when recommending the jth message. If w1 � a2, both fail when
recommending the jth message. When uIl(j) < uj, the event a1  w1 < a2 means that the jth

message is accepted in process 1 but gets rejected in process 2, and vice versa. If w2  fj,
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then both abandon the platform after rejecting the current message. Otherwise, they will
both get the next message unless the whole sequence has run out. Define the stopping time
⌧̃l as the time that the coupling breaks when the recommendation in S

⇤ with parameters u
and F is a success (user clicks) but that in S

l with parameters u and F is a failure (user
rejects). When the coupling breaks, the di↵erence of reward between two processes is at
most 1 + c. Then we have

E⇡

"
(U(S⇤,u, F )� U((Sl

1, · · · , Sl

m⇤),u, F ))
mlY

j=1

1(J
⇢
j
l�1)

#
 (1 + c)E⇡

"
m

⇤X

j=1

1(⌧̃l = j)
mlY

j=1

1(J
⇢
j
l�1)

#
.

Now we consider another recommending process S
l with attraction probabilities uOP

Il(j),t�1

where t = ⇢j
l
for j = 1, · · · ,ml. Use the same process to couple S

l with parameter uOP

Il(j),t�1

and S
l with parameter u for the first m⇤ messages. Define ⌧ 0

l
as the stopping time when the

recommendation in S
l with u

OP

t�1 is a success but with parameter u is a failure. According
to Lemma 2.4.4, on the event that uOP

⇢
j
l�1
� u for j = 1, · · · ,m⇤, we have

E⇡[E[(U(j,u, fj)� U(Il(j),u, fj))1(u
OP

⇢
j
l�1
� u)|F

⇢
j
l�1]]

 (1 + c)E⇡

h
E
h⇣

uOP

Il(j),⇢
j
l�1
� uIl(j)

⌘
1(uOP

⇢
j
l�1
� u)

���F
⇢
j
l�1

ii
,

which implies that

E⇡

"
m

⇤X

k=1

1(⌧̃l = k)
mlY

j=1

1(J
⇢
j
l�1)

#
 E⇡

"
m

⇤X

k=1

1(⌧ 0
l
= k)

mlY

j=1

1(J
⇢
j
l�1)

#

 E⇡

"
m

⇤X

j=1

 
NX

i=1

1(i 2 Sl

j
)
⇣
uOP

i,⇢
j
l�1
� ui

⌘!
1(J

⇢
j
l�1)

#
.

To prove the bound for the second part of sequence, we first note that for j  ml, we have

uOP

Il(j),t�1 � c
�
1� uOP

Il(j),t�1

�
fOP

j,t�1 � 0 (B.4.2)

for t = ⇢j
l
. Otherwise, if the above inequality does not hold, since fOP

j,t�1 is increasing
monotonically with j and the optimal sequence is sorted by u

OP

t�1, we have

uOP

Itl (k),t�1 � c
⇣
1� uOP

Itl (k),t�1

⌘
fOP

k,t�1 < 0

for any k > j, where I t
l
(k) is the index of the kth message scheduled to sent to user l at time

t. We want to emphasize the di↵erence between two notation Il(j) and I t
l
(k) here: Il(j)

is the jth message sent to the user l while I t
l
(k) is the kth message planned to sent to the

user at time t. Note that this sequence may be updated at a later time. Therefore with
attractiveness uOP

t�1 and abandonment distribution FOP

t�1 , we have

E[U((SItl (j)
, · · · , SItl (ml)),u

OP

t�1, (f
OP

j,t�1, · · · , fOP

ml,t�1)))] < 0,
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In the proof for Theorem 5, we have proved that if E[U((Sk, · · · , Sm),u, (fk, · · · , fm))] < 0,
messages Sk, Sk+1, · · · , Sm will not be included in the optimal sequence. Thus, the recom-
mendation process terminates at the jth message, which is a contradiction, so we reach the
conclusion of inequality (B.4.2). Therefore, for the jth message where j > m⇤, we have

E⇡

h
E
h
(�U(Il(j),u, fj))1(J⇢jl�1)|F⇢

j
l�1

ii

 (1 + c)E⇡
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� c
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It implies that

� E⇡
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ml
),u, F )

mlY

j=1

1(J
⇢
j
l�1)

#

 (1 + c)E⇡

"
mlX

j=m⇤+1

 
NX

i=1

1(i 2 Sl

j
)(uOP

i,⇢
j
l�1
� ui) + (fj � fOP

j,⇢
j
l�1

)

!
1(J

⇢
j
l�1)

#
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Thus, we have

E⇡

"
(U(S⇤,u, F )� U(Sl,u, F ))
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Define �i,t as the total number of times that message i is sent to active users at time t.
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If none of item i is recommended at time t, �i,t = 0. Summing over all users, we have
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l=1

E⇡

"
mlX

j=1

1(J c

⇢
j
l�1

)

#

 C1

p
log T

NX

i=1

E⇡

"
TX

t=1

�i,t

s
1

Ti(t� 1)

#
+ C1

p
log T

MX

j=1

E⇡

"
TX

t=1

1(⇢j
l
= t for some l)

s
1

T̃j(t� 1)

#

+
TX

l=1

E⇡

"
mlX

j=1

1(J c

⇢
j
l�1

)

#
,

where C1 is some constant. Note that �i,t  M since the total number of users waiting for
messages at time t is at most M . Thus, we have

Ti(t) = Ti(t� 1) + �i,t, 8i.

It indicates that

E⇡

"
TX

t=1

�i,t

s
1

Ti(t� 1)

#
M + E⇡

2

4
dTi(T )/MeX

k=1

M

r
1

kM

3

5  C2E⇡[
p
Ti(T )].

Similarly we have

E⇡

"
TX

t=1

1(⇢j
l
= t for some l)

s
1

T̃j(t� 1)

#
 C3E⇡

q
T̃j(T )

�
.

Since
P

i2X Ti(T ) MT and
P

M

j=1 T̃j(T ) MT , we have

C1

p
log TE⇡

"
X

i2X

p
Ti(T ) +

MX

j=1

q
T̃j(T )

#
 C4

p
log T (

p
NMT +M

p
T )

 C5

p
NMT log T ,

where the last inequality holds because M  N . Applying Lemma B.4.1, we have
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l=1
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"
mlX

j=1

1(J c

⇢
j
l�1

)

#
ME⇡

"
TX

t=1

1(J c

t
)

#
M

TX

t=1

 
X

i2N

E⇡

⇥
Bc

i,t

⇤
+

MX

j=1

E⇡[E
c

j,t
]

!
 C 0.
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Combining all the results above, we have

TX

l=1

E⇡[U(S⇤,u, F )]� E⇡[U(Sl,u, F )]


TX

l=1

E⇡

"
(U(S⇤,u, F )� U(Sl,u, F ))

mlY

j=1

1(J
⇢
j
l�1)

#
+ (1 + c)

TX

l=1

E⇡

"
mlX

j=1

1(J c

⇢
j
l�1

)

#

 C
p
NMT log T ,

for some constant C.

B.5 Proofs in Section 2.5

Recall that Yl,i is the response of user l when message Il(i) is displayed. The response of the
user, when message Il(i) with feature zIl(i) is displayed, is

Yl,i = µ(z0
Il(i)

�⇤) + ✏l,i, (B.5.1)

where ✏l,i = 1�µ(z0
Il(i)

�⇤) with probability µ(z0
Il(i)

�⇤), and ✏l,i = �µ(z0Il(i)�
⇤) with probability

1 � µ(z0
Il(i)

�⇤). Meanwhile, Ŷl,j is the response on abandonment of user l with feature xl

when she rejects message Il(j). Similarly, it can be written as

Ŷl,j = µ(x0
l
↵⇤
j
) + ✏̂l,j, (B.5.2)

where ✏̂l,j = 1 � µ(x0
l
↵⇤) with probability µ(x0

l
↵⇤), and ✏̂l,j = �µ(x0

l
↵⇤) with probability

1 � µ(x0
l
↵⇤). The following Lemma proves that both ✏l,j and ✏̂l,j are sub-Gaussian with

parameter � = 1.

Lemma B.5.1 The noise ✏l,j and ✏̂l,j defined in Equation (B.5.1) and Equation (B.5.2) are
sub-Gaussian, i.e., for all l and any  � 0 we have

E[e✏l,j |F
⇢
j
l�1]  e

2
/2 and E[e✏̂l,j |F

⇢
j
l�1]  e

2
/2,

where Ft is the filtration associated with the policy ⇡ up to time t.

Proof. Proof of Lemma B.5.1 According to the problem setup, ✏l,j = 1 � µ(y0
Il(j)

�⇤)
with probability µ(y0

Il(j)
�⇤), and ✏l,j = �µ(y0

Il(j)
�⇤) with probability 1 � µ(y0

Il(j)
�⇤), so

E[✏l,j|F⇢
j
l�1] = 0 and �1  ✏l,j  1 almost surely. From Hoe↵ding’s inequality (Lemma A.1.

in [18]), we have
E[e✏l,j |F

⇢
j
l�1]  e

2
/2, for all  � 0.

Similarly, we have
E[e✏̂l,j |F

⇢
j
l�1]  e

2
/2, for all  � 0.
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Proof. Proof for Lemma 2.5.6 Since we randomly select the feature vectors in the first
⇠Z rounds, we have

�min

 
E

"
⇠ZX

l=1

zIl(1)z
0
Il(1)

�����Fl�1

#!
= �min

 
⇠ZX

l=1

E[zz0]

!
� �0⇠Z .

Applying Lemma B.6.2, for t � ⇠Z , we have

P

✓
�min (Vt) 

1

2
�0⇠Z

◆

 P

 
�min

 
⇠ZX

l=1

zIl(1)z
0
Il(1)

!
 1

2
�0⇠Z and �min

 
⇠ZX

l=1

E[zIl(1)z
0
Il(1)

|Fl�1]

!
� �0⇠Z

!

 dZ
⇣e
2

⌘��0⇠Z/(2R)

= dZ
⇣e
2

⌘��0
p
dZT/(2R)

.

Fix � = 1/
p
T . Since T satisfies that

1

2
�0
p

dZT �
512M2

µ
�2

4

✓
d2
Z
+

1

2
log T

◆
,

then by Theorem B.6.1 (in Appendix B.6), with probability at least 1 � 3�, the maximum
likelihood estimator satisfies, for any z 2 BdZ , we have

|z0(�̂t � �⇤)|  3�



p
log(1/�)kzk

V
�1
t

.

Applying union bound, we have

P

✓
|z0

i
(�̂t � �⇤)|  3�



p
log(N/�)kzikV �1

t
, 8i 2 [N ]

◆
� 1� 3�.

Now we prove for E j

X
. Define the set of timestamps corresponding to Mj,t as

⌦j = {t|T̃j(t)  ⇠X and T̃j(t) = T̃j(t� 1) + 1},

which denotes the timestamps when the user faces the choice of abandonment after rejecting
j messages. Define g(t, j) as the index of user who rejects the jth message at time t. To
prove the inequality related to �min(Mj,t), we note that

�min

0

@
X

t2⌦j

E
⇥
xg(t,j)x

0
g(t,j)|Ft�1

⇤
1

A � �min

 
⇠XX

k=1

E[xkx
0
k
1(W (xk) � j � 1)]

!
� �0⇠X
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where the above inequality holds by Assumption 2.5.2.
Therefore, for t satisfying T̃j(t) � ⇠X , applying Lemma B.6.2, we have

P

✓
�min (Mj,t) 

1

2
�0⇠X

◆

= P

0

@�min

0

@
X

s2⌦j

xg(s,j)x
0
g(s,j)

1

A  1

2
�0⇠X and �min

0

@
X

s2⌦j

E[xg(s,j)x
0
g(s,j)|Fs�1]

1

A � �0⇠X

1

A

 dX
⇣e
2

⌘��0⇠X/(2R)

= dX
⇣e
2

⌘��0
p
dXT/(2R)

.

Since T satisfies that

1

2
�0
p

dXT �
512M2

µ
�2

4

✓
d2
X
+

1

2
log T

◆
,

then by Theorem B.6.1, when �min(Mj,t) � 1
2�0
p
dXT �

512M2
µ�

2

4

�
d2
X
+ 1

2 log T
�
, with prob-

ability at least 1 � 3/
p
T , the maximum likelihood estimator satisfies, for any x 2 BdX , we

have

|x0(↵̂j,t � ↵⇤)|  3�



r
1

2
log Tkxk

M
�1
j,t
.

It implies that

P ((E j

X,t
)c) = E[1((E j

X,t
)c)]  E[1((E j

X,t
)c)1(PX,t)] + E[1(Pc

X,t
)]

 3� + dX
⇣e
2

⌘��0
p
dXT/(2R)

.

Hence, for any 1  j M ,

P (E j

X,t
) � 1� 3� � dX

⇣e
2

⌘��0
p
dXT/(2R)

.

Similarly, we have

P (EZ,t) � 1� 3� � dZ
⇣e
2

⌘��0
p
dZT/(2R)

.

Proof. Proof for Lemma 2.5.7 For any t � r+1, define B =
P

i2At
V �1/2
t�1 Xi,t(V

�1/2
t�1 Xi,t)T ,

then we have

det(Vt) = det

 
Vt�1 +

X

i2At

Xi,tX
0
i,t

!

= det(Vt�1)det

 
I +

X

i2At

V �1/2
t�1 Xi,t(V

�1/2
t�1 Xi,t)

T

!

= det(Vt�1)
Y

j

(1 + �j(B)),
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where �j denotes the jth largest eigenvalue. Let tr(B) denote the trace of matrix B. Note
that

�j(B)  tr(B) =
X

i2At

tr
⇣
V �1/2
t�1 Xi,t(V

�1/2
t�1 Xi,t)

T

⌘
=
X

i2At

kXi,tkV �1
t�1

 ��1
min

(Vt�1)
X

i2At

kXi,tk2 M,

where the last inequality holds because |At|  M , kXi,tk2  1, and the condition that
�min(Vr+1) � 1. Combining with the inequality x  2M log(1 + x) for x 2 [0,M ], we have

log(det(Vt)) = log(det(Vt�1)) +
X

j

log(1 + �j(B))

� log(det(Vt�1)) +
1

2M

X

j

�j(B)

= log(det(Vt�1)) +
1

2M
tr(B)

= log(det(Vt�1)) +
1

2M

X

i2At

kXi,tkV �1
t�1

.

It implies that
X

i2At

kXi,tkV �1
t�1
 2M log

✓
det(Vt)

det(Vt�1)

◆
.

Thus, we have
r+nX

t=r+1

X

i2At

kXi,tkV �1
t�1
 2M

 
r+nX

t=r+1

log

✓
det(Vt)

det(Vt�1)

◆!
 2M log

✓
det(Vr+n)

det(Vr)

◆
.

Since the trace of Vn+r is bounded by (n + r)M from above and bounded by 1 from below.
Hence,

det(Vn+r) =
dY

i=1

�i 
✓
(n+ r)M

d

◆d

,

and

det(Vr) =
dY

i=1

�i � �d
min

(Vr) � 1.

Applying Cauchy-Schwartz inequality yields,

r+nX

t=r+1

X

i2At

kXtkV �1
t


vuutnM
r+nX

t=r+1

X

i2At

kXtk2
V

�1
t


s

2nM2 log

✓
det(Vr+n)

det(Vr)

◆



s

2nM2d log

✓
(n+ r)M

d

◆
.
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Our proof for Theorem 7 utilizes one result from [68], which is stated as Lemma B.6.1
in Appendix B.6 for completeness. Lemma B.6.1 presented a finite-sample version of the
classical asymptotic normality results of the maximum likelihood estimator (MLE) under
the assumption of sub-Gaussian of the noise ✏t with parameter �, i.e., there exists � > 0
such that for all  � 0, we have E[e✏t |Ft�1]  e

2
�
2
/2.

Now we put everything together to prove the regret bound for the contextual version.
Proof. Proof of Theorem 7 Define Ft as the filtration associated with the policy ⇡ up

to time t. Recall that

EZ,t := {|z0
i
�̂t � z

0
i
�⇤|  !i,t(z), 8i 2 [N ]}, 8t 2 [⇠Z + 1, T ], and

E j

X,t
:= {|x0↵̂j,t � x

0↵⇤
j
|  !̃j,t(x)}, 8x 2 BdX , 8t s.t. T̃j(t) � ⇠X + 1;

where ⇠Z =
p
dZT and ⇠X =

p
dXT . Assume the sequence o↵ered to user l (entering at time

l) is Sl with ml messages in total. Let ⇢j
l
be the timestamp of sending the jth messages in

S
l. Recall that Vs,t =

P
t2 s(T )

P
N

i=1 1(i 2 At)zi,tz0i,t. Define

Ps

Z,t
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⇢
�min(Vs,t) >

1

2
�0⇠Z

�
, 8t 2 [⇠Z + 1, T ], and PZ,t =

⌫\

s=1

Ps

Z,t
,

where ⌫ = log T . Recall that g(t, j) is the index of user who rejects the jth message at time
t. Following similarly from the proof for non-contextual SC-bandit, we have

E⇡

"
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l=1

(U(S⇤,u, F )� U(Sl,u, F ))
Y

k2Ml

1(EZ,k)1(PZ,k)
mlY

j=1

1(E j

X,⇢
j
l

)1(Pj

X,⇢
j
l

)

#

 (1 + c)⇠Z + (1 + c)E⇡

"
TX

l=⇠Z

mlX

j=1

 
NX

i=1

1(i 2 Sl

j
)
⇣
uOP

i,⇢
j
l�1
� ui

⌘ Y

k2Ml

1(EZ,k)1(PZ,k)

!#

+ (1 + c)M⇠X +
MX

j=1

(1 + c)E⇡

2

4
X

t2⌦j(T )

�
fj(xg(t,j))� fOP

j,t�1(xg(t,j)))
�
1(E j

X,t
)1(Pj

X,t
)

3

5

= (1 + c)⇠Z + (1 + c)ME⇡
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�
1(EZ,t)1(PZ,t)

!3

5

+ (1 + c)M⇠X +
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j=1

(1 + c)E⇡

2

4
X

t2⌦j(T )

�
fj(xg(t,j))� fOP
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1(E j
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Since

X

t2 s(T )

 
NX

i=1

1(i 2 At)!
(s)
i,t
1(Ps

Z,t
)

!
=

X

t2 s(T )

 
NX
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1(Ps
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!
,

then by Lemma 2.5.7, we have
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!
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p

2dZ log (T/dZ) | s(T )|.

On the other hand, by the algorithm step (line 10-15), we have
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� 2�s
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Therefore, we have
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Similarly, for any 1  j  M , since in our setting only one user will get the jth message at
one time, we have

E⇡
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4
X

t2⌦j(T )

1((Pj

X,t
)c)

3

5  TdX
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Thus,
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According to Lemma 2.5.6, we have
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Combining all the results above, we have
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B.6 Supplementary results

Lemma B.6.1 (Theorem 1 in [68]) Suppose the choice model is Yt = µ(x0
t
✓⇤) + ✏t and ✏t

is sub-Gaussian with parameter �. Define At =
P

t�1
k=1 xkx

0
k
, � > 0, and assume

�min(At) �
512M2

µ
�2

⌘4

✓
d2 + log

1

�

◆
,

where xk 2 Bd and Mµ, ⌘ are parameters defined in Lemma 2.5.5 and Assumption 2.5.2.
Then, with probability at least 1 � 3�, the maximum likelihood estimator, denoted as ✓̂t,
satisfies, for any x 2 Bd, that

|x0(✓̂t � ✓⇤)| 
3�

⌘

p
log(1/�)kxk

A
�1
t
.

Lemma B.6.2 (Lemma 3.1 in [113]) Consider a finite adapted sequence {Xk} of positive-
semidefinite matrices with dimension d, and suppose that

�max(Xk)  R almost surely.

Define the finite series

Y :=
X

k

Xk and W :=
X

k

Ek�1Xk.

For all µ � 0,

P (�min(Y)  (1� �)µ and �min(W) � µ)  d

✓
e��

(1� �)1��

◆µ/R

for � 2 [0, 1), and

P (�max(Y) � (1 + �)µ and �max(W)  µ)  d

✓
e�

(1 + �)1+�

◆µ/R

for � � 0.
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B.7 Numerical experiments

B.7.1 Robustness of non-contextual SC-Bandit algorithm

In this study, we investigate the robustness of Algorithm 2, by comparing how the regret
changes with respect to di↵erent values of attraction probabilities u.

We consider a setting with N = 30 and the cost of abandonment c = 0.5. The attrac-
tiveness u is uniformly generated from [0,0.2]. We present four experiments in this study.
For the first two experiments, W , which measures a user’s tolerance towards unsatisfactory
content, is drawn from Poisson distribution with mean � = 8 and � = 15 respectively. Under
this setting,

P (abandon after jth unsatisfactory message) = P (W = j|W � j) =
�je��/j!

1�
P

j�1
k=1 �

ke��/k!
.

We define the truncated abandonment distribution as

fj =
�je��/j!

1�
P

j�1
k=1 �

ke��/k!
, for j  2� and fj = f[2�], for j > 2�.

Fig B.2 illustrates the abandonment probability as a function of the number of prior rejected
message with respect to di↵erent values of �. The abandonment probability fj first increases
and then remains the same. It depicts one type of abandonment behavior which “plateaus
out” after its initial surge.
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Figure B.2: Abandonment probability with respect to the number of unsatisfying message
when W is drawn from truncated Poisson 1) with mean 8; 2) with mean 15.

For Experiment 3 and 4 of this study, W is drawn from geometric distribution with
parameter p = 0.2 and 0.4 respectively. Under this setting, the abandonment probability is
independent of the number of unsatisfactory messages, i.e., fi = p for all i.

Figure B.3 shows the results based on 20 independent simulations for di↵erent scenarios
of u. The average regrets are 389.26, 293.28, 323.89, and 681.93, respectively. Figure B.3
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Figure B.3: Experiments on non-contextual SC-Bandit problem with Algorithm 2, with
respect to di↵erent abandonment distributions.

suggests that when the abandonment’s tail distribution is heavier, it is easier for the algo-
rithm to learn the optimal ranking. The intuition is that if the user is more tolerant towards
unsatisfactory messages, the platform is more likely to send out longer sequences of messages,
enabling faster learning.

B.7.2 Robustness of contextual SC-Bandit algorithm

In this study, we investigate the robustness of Algorithm 3 as we perturb the coe�cients ↵j

and �. We consider a setting with N = 30 and c = 0.5. The message contexts zi include
3 features, which are uniformly generated from [0, 1]3. There are also 3 features for user
contexts x, which are uniformly generated from [0, 1]3.

We perform three experiments. In Experiment 1, the coe�cient related to the abandon-
ment distribution is ↵j = (0.1j, 0.08j, 0.15j,�3j), where ↵0 is the intercept. The coe�cient
related to the valuation of messages is � = (�1,�0.8, 0.2, 0.1), where �0 is the intercept. In
Experiment 2, we keep � unchanged, while the coe�cient ↵j = (0.05j, 0.04j, 0.075j,�3j).
In Experiment 3, ↵ remains the same as in Experiment 1, and � = (�0.5,�0.4, 0.4, 0.2).

Figure B.4 shows the results based on 20 independent simulations for each of the three
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Figure B.4: Experiments on contextual SC-Bandit problem with Algorithm 3, with respect
to di↵erent parameters.

experiments described above. The average regrets for the three experiments are 28.93, 21.26,
and 21.04, respectively. Comparing Experiment 1 and 2, ↵ is smaller in Experiment 2,
implying that users are more tolerant of unsatisfactory messages. As a result, the platform
is more likely to send out longer sequences of messages, which is translated into faster learning
and a lower regret as shown in Figure B.4. By varying � in Experiment 3, the attraction
probabilities of messages ui become higher. We observe faster learning in Experiment 3,
and the same phenomenon is also observed in the non-contextual experiments shown in
Figure B.3.
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Figure B.5: Distribution of price and attraction probability of products.
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Table B.1: Logistic Regression Result on User Abandonment Behavior Parameter µ(�(x))

Coe�cient

Gender = Male (ref = Female) 0.122⇤⇤⇤

(0.023)

Age level = 0 (ref = 6) 0.534
(0.418)

Age level = 1 (ref = 6) �0.139
(0.086)

Age level = 2 (ref = 6) �0.263⇤⇤⇤
(0.076)

Age level = 3 (ref = 6) �0.318⇤⇤⇤
(0.075)

Age level = 4 (ref = 6) �0.306⇤⇤⇤
(0.075)

Age level = 5 (ref = 6) �0.234⇤⇤⇤
(0.076)

Shopping level = Shallow (ref = Deep) 0.523⇤⇤⇤

(0.159)

Shopping level= Medium (ref = Deep) 0.303⇤⇤⇤

(0.046)

Intercept �4.827⇤⇤⇤
(0.073)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

B.7.3 Experiments on non-contextual SC-Bandit (Real Data)

In this section, we focus on the non-contextual SC-Bandit setting. We use the estimated
parameters from the data as our ground truth. We evaluate the regret for Algorithm 2 and
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Table B.2: Logistic Regression Result on Product Valuation

Coe�cient

Price �1.918e�04⇤⇤⇤
(1.547e�05)

Intercept �2.766⇤⇤⇤
(0.005)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

compare it with a competing algorithm which is defined next.
A benchmark algorithm for SC-Bandit Due to the novelty of our setting, there
does not exist a direct benchmark in the literature. We propose a benchmark algorithm
which adopts the explore-then-exploit approach, similarly to the algorithm in [101]. There
is an exploration phase where every message is learned for at least � log(t) times during the
time period [0, t], where � is a tuning parameter. After this phase, the algorithm uses the
estimated parameters to determine an optimal sequence which is o↵ered to all subsequent
users. To make the algorithm more competitive, it utilizes knowledge it has already learned
to make the exploration more e�cient. To be precise, suppose we want to guarantee that
message i is explored during the exploration phase, we assign message i to the first tier, i.e.,
S1 = {i}. Then we solve the optimal sequence problem excluding message i based on the
valuations of the messages which it has already learned, and then attach them after message
i. The optimization problem one needs to solve here is nearly identical to (2.3.2) with an
additional constraint that S1 = {i}.
Experiment setup We consider a setting with N = 100, where we select 100 products
from category 1665. We use the fitted parameters � shown in Table B.1 and compute the
corresponding ui(zi) as the ground truth for the product valuation. Similarly, we compute
the average abandonment rate across all users as the ground truth for the tolerance, where
p = 0.64%. We set c = 8.5 in this experiment.
Experiment results Figure B.6 shows the regret comparison of Algorithm 2 and the bench-
mark algorithm. The average regret is 829.02 for Algorithm 2 and 1591.63 for the benchmark
algorithm. Both curves grow in the sublinear shape, but the regret is almost a half in our
algorithm compared to the benchmark algorithm.
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Figure B.6: Comparison of Algorithm 2 with the benchmark.




