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Perspective
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ABSTRACT
According to a commonly held view, the obesity pandemic is caused
by overconsumption of modern, highly palatable, energy-dense
processed foods, exacerbated by a sedentary lifestyle. However,
obesity rates remain at historic highs, despite a persistent focus on
eating less and moving more, as guided by the energy balance model
(EBM). This public health failure may arise from a fundamental
limitation of the EBM itself. Conceptualizing obesity as a disorder
of energy balance restates a principle of physics without considering
the biological mechanisms that promote weight gain. An alternative
paradigm, the carbohydrate-insulin model (CIM), proposes a reversal
of causal direction. According to the CIM, increasing fat deposition
in the body—resulting from the hormonal responses to a high-
glycemic-load diet—drives positive energy balance. The CIM
provides a conceptual framework with testable hypotheses for how
various modifiable factors influence energy balance and fat storage.
Rigorous research is needed to compare the validity of these
2 models, which have substantially different implications for obesity
management, and to generate new models that best encompass the
evidence. Am J Clin Nutr 2021;114:1873–1885.

Keywords: obesity, weight loss, dietary carbohydrate, energy
balance, macronutrients, endocrinology, insulin, glucagon, incretins,
scholarly discourse

Introduction
The last century has witnessed fundamental developments

in our understanding of the biological basis of obesity. Many
lines of investigation demonstrate that body weight is controlled

by complex and interconnected systems involving multiple
organs, hormones, and metabolic pathways. Common genetic
variants, acting on these systems, may explain >20% of the
population-level variation in BMI (1). Rare mutations have been
identified that cause obesity in humans (2). Animal models have
been generated in which mutation of a specific gene yields
susceptibility to, or protection from, obesity (3). These genetic
and molecular insights lay the foundation for many scientific
models of obesity, helping to explain individual susceptibility
to changing environmental conditions. However, in view of
the rapid worldwide increase in BMI despite relatively stable
genetic susceptibility, scientific explanations for the pandemic
must consider environmental factors.

During the last century, 2 models addressing environmental
causes of obesity have emerged. In the dominant energy balance
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model (EBM), energy-dense, tasty, modern processed foods drive
a positive energy balance through increased intake, and thereby
result in fat deposition. In the carbohydrate-insulin model (CIM),
a crucial effect of diet is metabolic, by influencing substrate
partitioning. Rapidly digestible carbohydrates, acting through
insulin and other hormones, cause increased fat deposition, and
thereby drive a positive energy balance.

In this review, we provide the most comprehensive formulation
of the CIM to date, argue that the CIM better reflects knowledge
on the biology of body weight control than the EBM, specify
testable hypotheses to help resolve controversies, and call for
constructive discourse among scientific camps on this question
of critical public health importance.

Obesity Conceptualized as an Energy Balance
Disorder

Obesity is commonly considered a disorder of energy balance.
Surrounded by highly palatable, heavily marketed processed
foods, many people consume more energy than they burn—an
imbalance exacerbated by sedentary lifestyles—with the surplus
deposited into body fat. According to this view, the foundation of
obesity management is control of energy balance by decreasing
intake (“eat less”) and increasing expenditure (“move more”)
(Supplemental Table 1). For instance, the USDA Dietary
Guidelines for Americans 2020–2025 state that, “Losing weight
… requires adults to reduce the number of calories they get from
foods and beverages and increase the amount expended through
physical activity” (4). A 2013 expert report from several major
professional health associations asserts, “To achieve weight loss,
an energy deficit is required" [High evidence strength] (5). An
influential textbook concludes, “All diets that result in weight loss
do so on one basis and one basis only: they reduce total calorie
intake” (6).

Importantly, the EBM considers all calories metabolically
alike for practical purposes (7). Thus, specific foods or diets may
produce variable amounts of weight gain or loss, but virtually
only through energy intake related to hunger, satiation, satiety,
hedonic effects, or “passive overconsumption” (8). Dietary
treatment focuses on behavioral strategies to help people reduce
energy intake, especially of the energy-dense, tasty, processed
foods thought to drive a positive energy balance, and to manage
adverse effects (e.g., hunger).

Tautologies and Other Limitations of the EBM

Energy balance and body weight

The appealing simplicity of the EBM belies an inherent
tautology. Weight gain (or more precisely, fat gain) can occur
only with a positive energy balance, in the same way that a fever
can occur only if the body generates more heat than it dissipates.
However, these reiterations of the law of energy conservation
ignore causality. During the pubertal growth spurt, energy intake
exceeds expenditure as body energy stores increase. Does in-
creased consumption drive growth or does growth drive increased
consumption? Neither possibility violates laws of physics, but
the 2 perspectives have fundamentally different physiological
bases and implications. Because the relation between energy
balance and weight change is inseverable, statements regarding

the importance of a negative balance provide no meaningful
information about etiology.

Palatability and food intake

Regarding dietary drivers of obesity, common versions of the
EBM focus on the variety and availability of “hyper-palatable”
(9), energy-dense, processed foods (Supplemental Table 1).
Clearly, people tend to eat more of the foods that they find tasty,
and palatability seems to influence short-term food selection
and energy intake. However, surprisingly little evidence relates
palatability directly to chronic overconsumption (i.e., relative
to energy requirements) in laboratory animals or humans under
normal conditions (10–12).

Compared to a standard diet, a cafeteria diet composed of
a variety of presumably palatable human “junk foods” causes
rodents to gain weight (13). Importantly, this diet differs in
macronutrients, sugar, saturated fat, and fiber; differences in
composition, not palatability, appear to cause the weight gain
(10, 14, 15). To examine this issue, Tordoff et al. (10) added
highly palatable nonnutritive flavors to a standard rodent diet.
When offered a choice, mice showed a strong, persistent
preference for the flavored over the unflavored diet. However,
the flavored diet increased neither food intake nor weight gain.
In a complementary design, Ramirez (15) reported that rats
rejected a bitter liquid diet in favor of a plain solid diet
of the same nutrient composition when given a choice, but
that rats given only the bitter liquid diet increased energy
intake and weight compared with those given only the solid
diet.

As reviewed by Johnson and Wardle (11), no interventional
studies in humans have demonstrated a causal relation between
palatability and obesity, controlling for confounding factors
such as macronutrient composition. Moreover, major putative
contributors to palatability—dietary fat (16), energy density (17),
food variety (18), and food processing per se (19, 20)—have not
been shown to cause long-term weight gain.

The very notion of palatability seems to lack an operational
definition beyond “fast foods,” foods high in “fat, sugar, and
salt,” or “ultra-processed” foods (9). In fact, palatability is
not a fixed property of food, but rather modifiable through
learning and influenced by physiological state. In humans, insulin
administration associated with mild hypoglycemia preferentially
activates limbic-striatal brain regions, promoting a greater desire
for high-calorie foods in general and possibly high-carbohydrate
foods (21–23). In the absence of clear correlates to intrinsic
food properties, hyper-palatable foods have been defined as
those that drive food intake—another tautology of the EBM,
which simultaneously attributes increased food intake to hyper-
palatable foods.

Anomalies

By focusing on energy balance—characteristically through
conscious control, as highlighted in Supplemental Table 1—the
basic formulation of the EBM essentially disregards knowledge
about the biological influences on fat storage (24, 25). Moreover,
a central conundrum is to understand why the so-called body
weight “set point” (7) has increased rapidly among genetically
stable populations. In the 1960s, the average man in the United
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States weighed ∼75 kg. Providing excess dietary energy to
increase his weight to 90 kg would have elicited biological
responses (e.g., decreased hunger, increased energy expenditure)
to resist that gain. Today, the average man weighs ∼90 kg;
restricting energy to reduce his weight to 75 kg would elicit
opposite responses (26–30). By excluding a metabolic effect of
diet, common versions of the EBM offer no explanation for
what changes in the environment have dysregulated the biological
systems that counteract energy imbalance and resist weight
change.

Furthermore, conceptual adoption of the EBM has failed to
stem the obesity pandemic. Governments and professional health
organizations heavily promote energy restriction (especially with
low-fat diets) and exercise; nutrition labels on packaged foods
prominently display calorie content; and personal responsibility
to avoid excess weight gain is emphasized in patient care.
Nevertheless, obesity prevalence continues to increase world-
wide, prompting spectacularly complex formulations of the EBM
addressing myriad biological, behavioral, environmental, and
societal factors converging on energy balance (Supplemental
Figure 1), with questionable practical translation.

The CIM as a Physiological Explanation for the
Obesity Pandemic

Like the EBM, the CIM posits that changes in food quality
drive weight gain. However, according to the CIM, hormonal
and metabolic responses to the source of dietary calories, not
merely calorie content, lie upstream in the mechanistic pathway.
In other words, the CIM proposes a reversal of causal direction:
over the long term, a positive energy balance does not cause
increasing adiposity; rather, a shift in substrate partitioning
favoring fat storage drives a positive energy balance, as shown in
Figure 1. Among modifiable factors, dietary glycemic load (GL)
has central importance.

GL is defined as the arithmetic product of total carbohydrate
amount and glycemic index (GI—a measure of how foods with
controlled amounts of carbohydrate raise postprandial blood
glucose) (31). GL is a validated predictor of postprandial
glycemia with consumption of typical foods, meals, or eating
patterns (32–34). High-GL foods include processed grains, potato
products, and foods with a high free sugar content (34). Most
fresh whole fruits, minimally processed grains, legumes, nuts,
and nonstarchy vegetables have moderate or low GL. Fats and
proteins, with no direct impact on postprandial blood glucose,
have a nominal GL of 0.

The rapid absorption of glucose after consumption of a high-
GL meal increases insulin secretion, suppresses glucagon secre-
tion, and elicits a glucose-dependent insulinotropic polypeptide
(GIP)-dominant incretin response (35–37). This highly anabolic
state, for the first hours after eating, promotes avid uptake of
glucose into muscle, liver, and adipose and stimulates lipogenesis
in liver and adipose. Three hours after eating, most of the nutrients
from a high-GL meal have been absorbed from the digestive
tract (38). However, the persistent anabolic actions from this
hormonal response slow the shift from uptake to release of
glucose in liver and fatty acids in adipocytes. Consequently,
total metabolic fuel concentration in the blood (from glucose,
nonesterified fatty acids, and ketones) decreases rapidly in the late
postprandial phase, possibly to concentrations below that in the

fasting state (39–41). The brain perceives this signal as indicating
that critical tissues (e.g., liver) (24) are deprived of energy—a
state of “cellular semistarvation” as it has been termed (42)—and
may respond to the metabolic challenge with a counter-regulatory
hormone response (39). Simultaneously, hunger and cravings
for high-GL foods (i.e., those that rapidly raise blood glucose)
increase, setting the stage for a vicious cycle. Energy expenditure
may also decline related to decreased fuel availability, hormonal
(e.g., thyroid) effects on metabolic pathways and thermogenic
tissue, or compensatory adaptations (e.g., in autonomic tone)
affecting the postprandial state, resting energy expenditure (43),
muscular efficiency (44), or physical activity level (45).

Thus, the marked increase in GL across the population
since the low-fat diet era—due to a concurrent increase in
total carbohydrate and the exceptionally high GI of modern
processed carbohydrates (46, 47)—produces a sequence of
pathophysiological events that limits metabolic fuel availability
to critical oxidative or energy-sensing tissues, especially in the
late postprandial phase, driving a positive energy balance (31,
48). Beyond GL, the CIM provides a conceptual framework
for understanding how other dietary components [e.g., fructose
(49–52), protein and fatty acid type, fiber, food order within a
meal (53)], behaviors [e.g., meal timing (54), circadian rhythm,
physical activity], and environmental exposures [e.g., endocrine
disruptors (55)] may affect body weight through associated
mechanisms (e.g., de novo lipogenesis, intestinal function and
microbiome, muscle insulin resistance, chronic inflammation,
epigenetic modifications) rather than via direct effects on intake
and expenditure.

This reversal of causal direction, although provocative regard-
ing obesity, seems obvious in some other physiological states.
The growth of a child drives increases in intake over time.
Similarly, fetal growth, with uptake of metabolic fuels from the
maternal circulation, drives overeating (relative to expenditure)
in the mother, not the converse.

If the CIM is substantially correct, then the strategy to
produce a negative energy balance through conscious control
of food amount and physical activity level is likely to fail
for many people. Restricting energy intake when consuming
a high-GL diet would neither lessen the predisposition to fat
storage nor diminish hunger during dieting. Rather, by further
reducing metabolic fuel availability, hunger would increase and
energy expenditure may decline. In contrast, weight reduction
produced by carbohydrate restriction would decrease the insulin-
to-glucagon ratio, enhance lipolysis and fat oxidation, and result
in lower spontaneous food intake. Restriction of carbohydrate
intake to very low amounts with consumption of a ketogenic
diet may elicit additional mechanisms involving the biological
actions of ketones (56), a possibility beyond the scope of this
review.

Predictions and Testable Hypotheses Arising from
the CIM

The mechanistic relations depicted in Figure 1 lead to numer-
ous testable hypotheses (Supplemental Table 2). Key findings
from laboratory animal and human research are considered
below, according to the corresponding numbers in Supplemental
Table 2.



1876 Ludwig et al.

H
IG

H
-G

LY
C

EM
IC

-
   

  L
O

A
D

 D
IE

T

F
IG

U
R

E
1

D
yn

am
ic

ph
as

e
of

ob
es

ity
de

ve
lo

pm
en

t
in

th
e

ca
rb

oh
yd

ra
te

-i
ns

ul
in

m
od

el
.

T
he

re
la

tio
n

of
en

er
gy

in
ta

ke
an

d
ex

pe
nd

itu
re

to
ob

es
ity

is
co

ng
ru

en
t

w
ith

th
e

co
nv

en
tio

na
l

m
od

el
.

H
ow

ev
er

,
th

es
e

co
m

po
ne

nt
s

of
en

er
gy

ba
la

nc
e

ar
e

pr
ox

im
at

e,
no

tr
oo

t,
ca

us
es

of
w

ei
gh

tg
ai

n.
In

th
e

co
m

pe
ns

at
or

y
ph

as
e

(n
ot

de
pi

ct
ed

),
in

su
lin

re
si

st
an

ce
in

cr
ea

se
s,

an
d

w
ei

gh
tg

ai
n

sl
ow

s,
as

ci
rc

ul
at

in
g

fu
el

co
nc

en
tr

at
io

n
ri

se
s.

(C
ir

cu
la

tin
g

fu
el

s,
as

m
ea

su
re

d
in

bl
oo

d,
ar

e
a

pr
ox

y
fo

r
fu

el
se

ns
in

g
an

d
su

bs
tr

at
e

ox
id

at
io

n
in

ke
y

or
ga

ns
.)

O
th

er
ho

rm
on

es
w

ith
ef

fe
ct

s
on

ad
ip

oc
yt

es
in

cl
ud

e
se

x
st

er
oi

ds
an

d
co

rt
is

ol
.F

ru
ct

os
e

m
ay

pr
om

ot
e

he
pa

tic
de

no
vo

lip
og

en
es

is
an

d
af

fe
ct

in
te

st
in

al
fu

nc
tio

n,
am

on
g

ot
he

r
ac

tio
ns

,t
hr

ou
gh

m
ec

ha
ni

sm
s

in
de

pe
nd

en
to

f,
an

d
sy

ne
rg

is
tic

w
ith

,g
lu

co
se

.S
ol

id
re

d
ar

ro
w

s
in

di
ca

te
se

qu
en

tia
ls

te
ps

in
th

e
ce

nt
ra

lc
au

sa
l

pa
th

w
ay

;
as

so
ci

at
ed

nu
m

be
rs

in
di

ca
te

te
st

ab
le

hy
po

th
es

es
as

co
ns

id
er

ed
in

th
e

te
xt

.I
nt

er
ru

pt
ed

re
d

ar
ro

w
s

an
d

as
so

ci
at

ed
nu

m
be

rs
in

di
ca

te
te

st
ab

le
hy

po
th

es
es

co
m

pr
is

in
g

m
ul

tip
le

ca
us

al
st

ep
s.

B
la

ck
ar

ro
w

s
in

di
ca

te
ot

he
r

re
la

tio
ns

.A
N

S,
au

to
no

m
ic

ne
rv

ou
s

sy
st

em
;G

IP
,g

lu
co

se
-d

ep
en

de
nt

in
su

lin
ot

ro
pi

c
pe

pt
id

e.



The carbohydrate-insulin model 1877

1) Hormonal response to GL

The effects of GL on pancreatic hormone and incretin
secretion are well established. As reviewed by Unger (35)
50 y ago, carbohydrate increases the insulin-to-glucagon ratio
by not only stimulating insulin secretion, but also paracrine
suppression of glucagon secretion. After a 60% compared with
20% carbohydrate meal, the integrated insulin-to-glucagon ratio
was 7-fold higher in adults habituated to a high- compared with
a low-carbohydrate diet (40). GL also affects incretin hormone
secretion. Oral glucose or a high-GI meal rapidly stimulates GIP
secretion, produced in the proximate small intestines; conversely,
a low-GI meal has a greater effect on glucagon-like peptide-1
(GLP-1), produced in the distal intestines (36, 37).

2) Insulin and tissue-specific insulin sensitivity

Insulin sensitivity is commonly measured at the whole-body
level, obscuring critical differences among tissues. Jeanrenaud
and colleagues (57, 58) infused rats with insulin by minipump,
resulting in well-tolerated hypoglycemia. By day 4 of infusion,
glucose utilization, glucose transporter type 4 (GLUT4) expres-
sion, lipoprotein lipase activity, and lipogenesis were increased
in adipose tissue, whereas muscles developed insulin resistance.
These contrasting effects persisted when hypoglycemia was
prevented by glucose infusion. Dallon et al. (59) showed that
insulin administration reduced uncoupling protein-1 (UCP-1) and
mitochondrial respiration in brown adipose tissue. Within the
physiological range, insulin regulates energy expenditure (60)
at least in part by suppressing UCP-1 mRNA, via peroxisome
proliferator–activated receptor γ (PPARG) upregulation, in
brown and white adipose tissues in mice—a mechanism that has
been recapitulated in cultured 3T3L1 preadipocytes (61).

3) Tissue-specific insulin sensitivity and fat storage

Greater insulin sensitivity in white adipose tissue relative
to metabolically active or energy-sensing tissues will alter
substrate partitioning in favor of fat deposition. In support
of this prediction, mice with adipose-specific ablation of the
insulin receptor have reduced adiposity without change in energy
intake; they are also protected against age-related metabolic
abnormalities (62). Conversely, ablation of the insulin receptor
in muscle or the central nervous system increases adiposity
(63, 64).

4) Insulin, glucagon, and adiposity

In rodents, chronic insulin treatment increases food intake and
adiposity, and these effects are dissociable. Torbay et al. (65)
gave rats daily insulin or saline injections, keeping food intake
the same between groups. After 4 wk, the insulin-treated rats had
increased fat mass and reduced carcass protein. Consistent with
this finding, mice with genetically reduced insulin secretion have
higher energy expenditure and are protected from diet-induced
obesity (61, 66, 67).

In humans, insulin and drugs that increase insulin secretion or
adipose insulin sensitivity cause weight gain, whereas those that
decrease insulin secretion [including α-glucosidase inhibitors
(68), which functionally lower the GI of starch] cause weight
loss (69). Patients with type 1 diabetes undergoing intensification

of insulin therapy for 2 mo experienced a 2.4-kg increase in
body fat, associated with decreased energy expenditure and
therefore not fully attributable to changes in dietary intake and
urinary glucose excretion (70). Genetic variants associated with
increased insulin secretion predict weight gain, including in a
bidirectional Mendelian randomization study (71, 72). Pancreatic
tumors that secrete insulin may cause weight gain, whereas those
that secrete glucagon cause weight loss (73).

5) GIP-dominant incretin secretion and fat storage

The cardiometabolic benefits, including weight loss, of
GLP-1 agonism are widely recognized. Recently, the adverse
effects of GIP, the incretin with the most potent influence on
insulin secretion (74), have come to attention, motivating a
search for therapeutic antagonists. GIP administration promotes
preadipocyte differentiation and fat storage, and, in the brain,
inflammation and insulin resistance. GIP receptor knockout mice
are protected against diet-induced obesity (36, 75–78).

6) GL, metabolic fuels, food preference, and energy balance

Consumption of a high- compared with a low-GL meal results
in reduced circulating metabolic fuel concentration after 3–
5 h (39–41, 79), associated with altered substrate partitioning,
reduced energy expenditure, and a counter-regulatory response
(31, 39, 41, 80, 81). Furthermore, spontaneous transient declines
in blood glucose predict hunger, meal initiation or requests,
and energy intake (82–84). Insulin administration, which lowers
the concentration of all the metabolic fuels, causes hunger
and possibly a preference for high-GL foods (21–23). Indeed,
endogenous hyperinsulinemia may mediate the cravings and
binge-eating behaviors associated with high-GL foods through
similar mechanisms (85, 86). Hunger has also been observed with
drugs that block sensing or oxidation of metabolic fuels (87–90),
with a preference for carbohydrate in some experimental settings
(91, 92).

7) GL, energy balance, and obesity

In animals, high- compared with low-GI diets increase
adiposity independently of energy intake, in association with
lower physical activity level (45, 93–96). Studies comparing
high- with low-carbohydrate diets in animals have produced
heterogeneous results (97, 98), an issue considered below.

Most but not all acute studies in humans report reduced
hunger or energy intake in the late postprandial state after low-
compared with high-GI meals (31, 99). Low- compared with
high-carbohydrate diets also increase total energy expenditure
after 2–3 wk (100). Over the long term, high-fat diets result
in more weight loss than high-carbohydrate diets (16, 101–
104), contrary to expectation from considerations of energy
density. Furthermore, studies suggest a unique diet–phenotype
interaction, in that individuals with high insulin secretion or
other abnormalities of glucose homeostasis appear especially
susceptible to adverse metabolic responses and weight gain when
consuming a high-GL diet (96, 105–110). In ad libitum–fed male
monkeys, a higher-GL/high-sugar diet compared with a lower-
GL/low-sugar diet increased adiposity without increasing total
energy intake through age 20 y (111). However, the chronic effect
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of GL on body composition in humans, with control for energy
intake, has not been determined.

8) Causal direction

In experimental models of obesity, metabolic defects involving
substrate partitioning and energy expenditure may manifest
without (or before) increased food intake, demonstrating the
conceptual plausibility of this fundamental feature of the CIM
(60, 112–114). This sequence of events is well established in
experimental ventromedial hypothalamic obesity (42, 48, 115–
119). Immediately after injury to the ventromedial hypothalamus,
hyperinsulinemia develops without systemic insulin resistance,
and sympathetic nervous system tone is decreased. Importantly,
spontaneous physical activity is reduced during development of
ventromedial hypothalamic obesity and increased fat deposition
occurs even with restriction of food intake to that of controls.
(Prevention of hyperinsulinemia after hypothalamic damage
diminishes but does not abolish hyperphagia or increased
adipose tissue lipogenesis, demonstrating how other influences
on adipocyte metabolism, such as autonomic dysfunction, could
alter fuel partitioning and cause obesity consistent with the
CIM.) A similar sequence of metabolic events, independent of
increased food intake, occurs during development of obesity
with insulin administration (65, 120) and with a high-GI diet
(45, 93–96). Pragmatic and ethical limitations preclude such
experiments in humans. In a prospective observational study and
a Mendelian randomization analysis, increased adiposity better
predicted decreased physical activity level than the converse (121,
122).

Criticisms
With recent attention to the CIM (123), numerous reviews

claim to have “falsified” the model, or otherwise challenged its
validity (7, 124–135). However, specific criticisms are based
on weak or misleading evidence, leading to the following
misinterpretations.

Genetic variants associated with adiposity relate primarily
to the central nervous system, not the adipocyte as would be
predicted by the CIM (134, 135)

The brain expresses genes controlling virtually all aspects
of energy metabolism, beyond those that may affect hunger
directly, including through hormonal and autonomic control
of pancreatic islets, liver, and adipocytes. The identification
of more genes related to BMI expressed in the brain than in
the adipocyte provides little information about the downstream
pathways or organ systems involved. Indeed, pathway analysis
identified genetic susceptibility to obesity as involving “insulin
secretion/action, energy metabolism, lipid biology and adipoge-
nesis” (1). Of the hundreds of single-nucleotide polymorphisms
known to contribute to population risk of obesity, the affected
gene, direction of effect, molecular mechanisms, tissues of
action, and integrated physiological mechanism are only well-
characterized for a handful. In one extensively studied example,
obesity resulting from genetic disruption in leptin signaling is
not necessarily mediated exclusively through hunger and energy

intake; the ob/ob mouse has markedly increased adiposity even
when energy-restricted to prevent excessive weight gain (136).

Metabolic fuel concentrations in the blood are typically
high, not low, in obesity (134)

As with many physiological systems, causal mechanisms may
be evident only during dynamic changes, not after compensation
and re-establishment of a new homeostasis. For instance, sodium
balance is negative initially, but not chronically, with thiazide
diuretic treatment. Reduced circulating fuel concentrations have
been documented early in the development of experimental
obesity and several hours after a high-GL meal in humans,
as considered above. As insulin resistance develops, metabolic
fuel concentrations rise. Moreover, circulating fuels are at best
a proxy for substrate sensing and oxidation; these may be
dissociated under certain conditions, such as insulin resistance or
diabetes. The CIM posits a state akin to “internal starvation”—
an acceleration of fasting physiology emerging in the late
postprandial period. Studies of cellular metabolism and energy
sensing are needed to test this hypothesis.

Rodent studies of high-fat diets contradict the CIM (97)

Low-carbohydrate diets have been reported to both cause (97)
and prevent (98) adiposity in rodents, heterogeneity that may
relate to confounding aspects of diets beyond GL and nondietary
factors such as genetic background. Often, high-fat diets used in
the laboratory contain not only high amounts of sugar, but also
exceptionally high saturated fat content (94), which in rodents
causes hyperinsulinemia, liver and muscle insulin resistance, and
hypothalamic inflammation (137–143). The ensuing metabolic
dysfunction shifts substrate partitioning toward adipose through
mechanisms consistent with, not contrary to, the CIM (Figure 1).
Substitution of unsaturated fat for saturated fat in these protocols,
or ablation of toll-like receptor signaling, reduces metabolic
dysfunction and adiposity (137–143).

Energy intake is not reduced by low- compared with
high-carbohydrate diets in some feeding studies (135, 144)

Low-carbohydrate diets have high energy density due to their
high fat content. Changes in energy density influence food intake
acutely (145), but this effect does not persist (17). Myriad factors
of dubious relation to chronic energy balance—such as utensil
size (146) or plate color (147)—influence acute consumption.
The greater long-term weight loss when consuming high-fat diets
than when consuming low-fat diets (16, 101–104) highlights
the pitfalls of extrapolating chronic macronutrient effects from
studies of a few weeks’ duration.

Energy expenditure is not increased by low- compared with
high-carbohydrate diets in some feeding studies (128, 135)

Short-term studies of metabolic outcomes may also produce
misleading results, related to adaptive processes after changes in
macronutrients. With initiation of a very-low-carbohydrate diet,
ketones rise, providing an alternative fuel to the brain, thereby
preserving lean mass. However, even with fasting, ketones do
not reach a steady state until 3 wk (148); on a ketogenic diet,



The carbohydrate-insulin model 1879

nitrogen balance may remain negative (indicating lean mass
breakdown) for 1 mo (149). An adaptive process of several
weeks has also been observed with more moderate, nonketogenic
macronutrient changes (150–152). In a recent meta-analysis,
low- compared with high-carbohydrate diets slightly reduced
energy expenditure in trials < 2.5 wk, but low-carbohydrate diets
increased energy expenditure in longer trials (100). Contrary to
theoretical concerns for experimental error (135), data from a
large 5-mo study demonstrating increased energy expenditure
when consuming a low-carbohydrate diet during weight-loss
maintenance appear robust (106, 153, 154).

Weight loss is not substantially greater for low- than for
high-carbohydrate diets in long-term trials (7, 125, 130, 131,
133, 135)

Most diet trials have used low-intensity interventions to
promote behavioral change. Most participants in these studies
have difficulty sustaining dietary change, limiting inferences
about efficacy. In the Pounds Lost (Preventing Obesity Using
Novel Dietary Strategies) study (155), participants reported little
difference in macronutrient intakes at 2 y and biomeasures
of adherence (serum triglycerides, urinary nitrogen excretion)
showed little differentiation between dietary groups. In DIET-
FITS (Diet Intervention Examining The Factors Interacting with
Treatment Success), weight loss was greater when consuming
a low-carbohydrate than when consuming a low-fat diet at 3
and 6 mo, a difference that did not persist at 12 mo (156,
157). Of note, the low-fat diet included a focus on reducing
refined carbohydrates, and both GI and GL decreased in this
diet group. The DIRECT trial (Dietary Intervention Randomized
Controlled Trial), in which participants received prepared meals
to enhance adherence, reported greater weight loss with an ad
libitum low-carbohydrate diet than with a calorie-restricted low-
fat diet, which persisted at 2 y (158).

Some populations, such as in Asia, consume high-GL diets,
yet they have relatively low rates of obesity

The diets of subsistence farming societies were historically
based on inexpensive, high-carbohydrate grains and tubers
without the metabolic consequences suggested by the CIM.
However, such ecological observations are subject to multiple
interpretations, among them that people in these rural societies
had high levels of occupational physical activity and restricted
food availability, both of which might offset dietary influences
on weight gain. Among Chinese with recent access to high-
GL/high-sugar diets, obesity and metabolic disease have reached
epidemic proportions (159). Beyond macronutrient changes,
the “nutrition transition” in developing nations beginning in
the 1970s (coincident with the low-fat diet era in the United
States and Europe) is typified by replacement of traditional
carbohydrates with processed starches and sugars that have a
higher GL (160). In any event, many dietary and nondietary
factors undoubtedly contribute to these trends.

Straw man argument

Some critics assert that the CIM considers the actions of insulin
only in the postprandial period and only in adipose tissue, noting

that insulin affects adiposity independently of carbohydrate
(135). Clearly, insulin is a multifunctional hormone, secreted in
response to numerous dietary and nondietary factors. However,
the actions of carbohydrate on metabolism persist well beyond
the postprandial state, as demonstrated by the “second meal
effect,” wherein the GI of supper influences glucose tolerance
the next day (161, 162), and by the effect of a low-carbohydrate
diet on fasting insulin (163). Indeed, the CIM considers that
substrate partitioning and fat deposition are determined by the
integrated actions of insulin, together with other hormones and
autonomic inputs, in multiple organs, not just adipose tissue
(Figure 1). To avoid confusion, it should be recognized that the
name of a scientific model typically reflects major distinguishing
features—carbohydrate and insulin, here—not the full scope of
causal factors and mechanistic relations.

Conversely, one might ask whether our formulation of the
EBM is a straw man. In support of our argument, Supplemental
Table 1 exemplifies the overwhelming dominance of energy
balance in textbooks and professional society statements, and
the importance of establishing a negative energy balance, chiefly
through decreased intake. None of these articles, nor the recent
dismissals of the CIM, provide a mechanistically oriented,
testable model addressing dietary drivers of obesity, beyond the
recurring focus on widely available, inexpensive, energy-dense,
highly palatable, processed foods. The metabolic effects of diet,
such as on substrate partitioning—a key distinguishing aspect
of the CIM—do not feature in these iterations of the EBM.
Illustrating this point, a scientific statement from the Endocrine
Society on obesity pathogenesis concludes: “The impact of diet
on obesity risk is explained largely by its effect on calorie
intake, rather than by changes of either energy expenditure or
the internal metabolic environment. Stated differently, ‘a calorie
is a calorie.’ Thus, habitual consumption of highly palatable and
energy-dense diets predisposes to excess weight gain irrespective
of macronutrient content” (7).

Other logical fallacy

Some might argue that new iterations of the CIM serve to
“move the goalposts,” obscuring the contest of opposing ideas.
However, the relevant question is whether developmental stages
of a model offer a consistent distinction from conventional
thinking. For the CIM, a clear distinction, implicit in iterations
dating back a century (Table 1), entails reversal of the causal
pathway linking diet, and specifically carbohydrates, to weight
gain.

Resolving controversies

The definitive research needed to resolve persisting controver-
sies will be challenging. The average increase in body weight
throughout the last half century is attributable to the storage of
<1 g extra fat per day, illustrating the difficulty in exploring
causal mechanisms with short-term studies. But this difficulty is
no justification for basing scientific knowledge on inconclusive
research (135). The failure of the low-fat diet for obesity, as
advocated in the late 20th century, can be traced in part to reliance
on weak evidence from short-term and confounded studies. Better
funding for nutrition research and creative study designs will
be needed, including for 1) mechanistically oriented feeding
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TABLE 1 Historical precedents regarding the carbohydrate-insulin model of obesity

Year Authors Quotation

1924 Harris (164) “[O]ne of the causes of hyperinsulinism is the excessive ingestion of glucose-forming foods … It is
possible that the hunger incident to hyperinsulinism may be a cause of overeating, and, therefore, the
obesity that so often precedes diabetes.”

1938 Wilder and Wilbur (165) “[It seems that] mobilization of fat from fat depots is resisted in obesity and that deposition is
accelerated…. The effect after meals of withdrawing from the circulation even a little more fat than
usual might well account both for the delayed sense of satiety and for the frequently abnormal taste
for carbohydrate encountered in obese persons. Energy requirements must be satisfied one way or
another, and if part of the food is made less available for metabolism, the result, as is the case in
diabetes, inevitably is hunger. A slight tendency in this direction would have a profound effect in the
course of time.”

1941 Bauer (166) “The current energy theory of obesity, which considers only an imbalance between intake of food and
expenditure of energy, is unsatisfactory…. An increased appetite with a subsequent imbalance
between intake and output of energy is the consequence of the abnormal anlage [predisposition]
rather than the cause of obesity.”

1942 Hetherington and Ranson (42) “[High calorie intake and a sedentary life] may be only symptomatic, and not fundamental. It is not
difficult to imagine, for example, a condition of hidden cellular semistarvation caused by a lack of
easily utilizable energy-producing material, which would soon tend to force the body either to
increase its general food intake, or to cut down its energy expenditure, or both.”

1953 Pennington (167) “[Caloric restriction] reduces the weight of anyone, obese or lean, regardless of metabolic status, by
opposing the homeostatic mechanism for maintaining energy balance. A more rational form of
treatment, then, would be one which would enable the organism to establish a homeostatic
equilibrium between caloric intake and expenditure at a normal level of body weight. In such a case,
treatment would be directed primarily toward mobilization of the adipose deposits, and the appetite
would be allowed to regulate the intake of food needed…. The use of a diet allowing an ad libitum
intake of protein and fat and restricting only carbohydrate appears to meet the qualifications of such
a treatment.”

1957 Thorpe (168) “Restriction of carbohydrate intake removes the stimulus to insulin production, so that the fat storage
activity of insulin will be held to a minimum. … Fat will be mobilized from the adipose deposits of
the body, oxidized to ketones in the liver, and circulated to the tissues in this easily combustible
form…. [F]or it has long been known that, while carbohydrate can be readily converted into fat in
the body, fat cannot be converted into carbohydrate in any significant amounts.”

1965 Berson and Yalow (169) “The precise relationship of obesity to diabetes is not clear. We generally accept that obesity
predisposes to diabetes; but does not mild diabetes predispose to obesity? Since insulin is a most
potent lipogenic agent, chronic hyperinsulinism would favor the accumulation of body fat.”

studies of sufficient duration to distinguish transient from chronic
macronutrient effects (≥1 mo), focusing on determinants of
individual predisposition to dietary effects; 2) clinical trials of
efficacy with sufficient treatment intensity and fidelity to promote
long-term behavior change (≥1 y); and 3) cohort studies, ideally
beginning in childhood, of the natural history of obesity (≥10 y).

Clinical and Public Health Translation
Calorie restriction for obesity treatment results in weight

loss—initially—giving patients the impression they have con-
scious control over their body weight. But predictable biological
responses oppose weight loss, including decreased metabolic rate
and elevated hunger. Therefore, ongoing weight loss requires
progressively more severe calorie restriction, even as hunger
increases. Few people achieve clinically significant weight loss
over the long term with this approach. Those who cannot might
feel implicitly stigmatized as lacking in self-control.

Translation of the EBM to public health may be especially
problematic. To prevent obesity, the USDA advises Americans to
“stay within calorie limits” (4). Outside the research laboratory,
there is no feasible way to measure individual energy require-
ments to a precision within 300 kcal/d. An overestimation of
this magnitude would produce rapid weight gain. For practical

purposes, people must determine their dietary energy allowance
empirically, as the amount with which body weight remains
stable—yet another tautology.

According to the CIM, humans in the modern, industrial food
environment may have greater long-term control over what than
how much they eat. By reducing anabolic drive with a low-
GL diet, patients may experience less hunger and improved
energy level, promoting spontaneous weight loss in the same
way that an antipyretic reduces fever without conscious control
of heat balance. A practical strategy is to substitute high-GL
foods (refined grains, potato products, concentrated sugars) with
high-fat foods (e.g., nuts, seeds, avocado, olive oil), allowing for
moderate intake of total carbohydrate from whole-kernel grains,
whole fruits, and legumes and nonstarchy vegetables. For those
with special susceptibility, such as high insulin secretion or severe
insulin resistance, stricter reduction in total carbohydrate may be
optimal.

Conclusions
As with virtually all models of complex biological phenomena,

the iteration of the CIM presented here cannot provide a complete
and precise representation of all causal mechanisms; nor does
it preclude the existence of other causative influences. The
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value of a scientific model is in stimulating discourse and
informing the design of research. Premature claims to have
falsified or refuted the CIM, based on weak and confounded
evidence, impede constructive scientific discourse. Controversy
notwithstanding, important common ground may already exist.
For instance, hardwired hedonic preferences for sweetness may
drive consumption of sugary foods (consistent with the EBM),
which in turn may also affect substrate partitioning through
calorie-independent mechanisms (consistent with the CIM). In
this sense, conventional notions of palatability and the metabolic
effects of preferred foods would work in concert to drive fat
accumulation. Or perhaps time-restricted eating could reduce
hunger and thereby facilitate calorie restriction, in part through
hormonal mechanisms (54).

The field of obesity should embrace paradigm clash as an
essential step forward. Toward this end, investigators should,
first, refrain from hyperbolic claims to have disproven (or
proven) alternative explanations of the obesity pandemic; second,
clarify the EBM, specifying contrasting causal and testable
hypotheses; third, form collaborations among scientists with
diverse viewpoints to test predictions in rigorous and unbiased
research; and fourth, to facilitate these aims, depersonalize the
debate, scrupulously avoiding ad hominem argument. Rigorous
research using complementary designs will be needed to resolve
the debate, clarify a middle ground, or point the way to new
explanatory models that better encompass the evidence. With
the massive and growing burden of obesity-related diseases
throughout the world, this work must assume priority.
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