Lawrence Berkeley National Laboratory
Recent Work

Title
Enron Data Revisited - Neighborhood Queries with FastBit Win over Popular Commercial
Database System

Permalink
https://escholarship.org/uc/item/7wm2g4kq
Author

Wu, Kesheng

Publication Date
2006-04-26

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7wm2g4kq
https://escholarship.org
http://www.cdlib.org/

Enron Data Revisited - Neighborhood Queries with FastBit Win over Popular
Commercial Database System

Kurt Stockinger, Doron Rotem, Arie Shoshani, Kesheng Wu
Computational Research Division
Lawrence Berkeley National Laboratory
University of California
1 Cyclotron Road, Berkeley, CA 94720, USA

1 Introduction

In our previous work we analyzed the Enron data set
and showed how FastBit [1] can be used for speeding up
multi-dimensional queries [3]. We demonstrated that our
approach is between a factor of 100 to 1000 faster than one
of the most commonly used open-source database systems
called MySQL. In this article we evaluate the performance
of neighborhood queries (nested queries) that are impor-
tant for studying communication patterns and the flow of
information. Consider, for instance, that one might want to
know all the recipients of emails that were sent by person
P. However, some people never communicate directly with
certain people and rely on either messengers or the fact that
emails get forwarded to them. In SQL, this kind of query is
expressed as follows:

SELECT recipient FROM EnronDB WHERE sender IN
(SELECT DISTINCT recipient
FROM EnronDB WHERE sender = ’'P’);

This query reveals all the recipients that received a mes-
sage from person P via one intermediate person. We call
this a neighborhood query with nesting level 1. In order to
find all recipients that received messages from person P via
two intermediate persons, we would need to introduce an
additional nesting level to our neighborhood query, such as:

SELECT recipient FROM EnronDB WHERE sender IN
(SELECT DISTINCT recipient
FROM EnronDB WHERE sender IN
(SELECT DISTINCT recipient
FROM EnronDB WHERE sender = ’"P’));

In this article we will evaluate the performance of multi-
level neighborhood queries with FastBit and compare it
with a popular commercial database system that we call
CDBS. For the peformance evaluation we use CDBS with
the default optimization option.

2 Data

For our performance measurements we used the Enron
data set that was prepared by [2]. Since the data was orig-
inally stored in MySQL-format, we had to convert it and
import to the format that is understood by CDBS. Like in
our previous work [3] we duplicated the size of the data by
a factor of 10. All the data is stored in one database table
with 20 million rows and 9 columns, such as sender, recipi-
ent, message ID, message folder, message subject, time etc.
Besides the data stored in CDBS, we stored each column in
a separate raw binary file and built a bitmap index for each
of them. The total size of the raw data is 3,780 MB. The
total size of the bitmap indices is 170 MB.

3 Performance Results

Figure 1 shows the performance of a 3-level neighbor-
hood query. For each query we have randomly chosen the
sender. Thus, the number of recipients is different for each
query. We can see that FastBit is on average a factor of 16
faster than the commercial database system.

One of the reasons for CDBS to be significantly slower
than FastBit is the clustering. Most commercial database
systems cluster the columns of a record together. The is
very efficient for write-optimized databases with frequent
updates. However, the disadvantage of this clustering is
that all the column values have to be read even if only one
column needs to be retrieved. In order to show this effect,
we removed 7 columns of our table and only stored those
columns that are needed for our queries, namely the sender
and the recipient. This test case is equivalent to building a
materialized view on two columns.

Figure 2 shows the results for the same query for two
different CDBS tables. One table contains all 9 columns
(CDBS-9), whereas the other table only contains 2 columns
(CDBS-2). As we can see, the performance for CDBS is

2000

1800

1600

1400

1200

1000
& CDBS

Time [sec]

800 A FastBit

600
400

200

hak A A A

5,000,000 10,000,000 15,000,000
Number of hits (recipients)

Figure 1. Performance of 3-level neighbor-
hood queries: “Retrieve the indirect recipi-
ents of all emails that were sent by person
P”.

significantly faster than for CDBS-9 since only a subset of
the data has to be read. However, FastBit is still about a
factor of 3 faster than CDBS 3. Note the logarithmic scale
on the y-axis.

10000
1000 m—o/’_”/v’
) 9
9]
2,
@ + CDBS-9
£ = CDBS-2
= A FastBit
100
]
10

5,000,000 10,000,000 15,000,000
Number of hits (recipients)

Figure 2. Performance of 3-level neighbor-
hood queries: “Retrieve the indirect recipi-
ents of all emails that were sent by person
P”.

As we can see in Figure 1, the number of recipients is

quite large and might not be meaningful. However, in a real
life situation, some analysts might be interested in emails
that are sent within a certain time period after a given event.
We thus evaluate the performance of multi-level neighbor-
hood queries with time constraints. Since these queries in-
volve three attributes (sender, recipient and date), we built a
table with only these columns (corresponding to a material-
ized view on three columns). Note, this is the optimal case
for CDBS.

Figure 3 shows the performance results of 3-level neigh-
borhood queries over a time interval of 3 months. We see
that in this case, CDBS performs slightly better than Fast-
Bit. However, we see that CDBS takes more time for evalu-
ating queries with O hits as well as more than 1 million hits.
The average query processing time for CDBS and FastBit
is 5 and 1.8 seconds, respectively. As the time window in-
creases, the performance gain of FastBit over CDBS is even
more significant (see Figures 4 and 5). With time intervals
of 6 and 12 months, FastBit is on average a factor of 5.5 and
6.4 faster than CDBS.

Time Window: 3 Months

1,000
100

")
Q
L, 10 ¢ CDBS-3
v A FastBit
£
|_

500,000 1,000,000 1,500,000

Number of hits

Figure 3. Performance of 3-level neighbor-
hood queries: “Retrieve the indirect recipi-
ents of all emails that were sent by person P”
over a time window of 3 months.

4 Summary

In this article we evaluated the performance of neighbor-
hood queries that are typical for studying complex commu-
nication patterns. These patterns are very common in situ-
ation where people do not community with each other di-
rectly but through messengers. We have shown that FastBit
significantly outperforms the commercial database system.

Time Window: 6 Months References

[1] FastBit, http://sdm.1lbl.gov/fastbit. April
2006.

10000

1000
[2] J. Shetty, J. Adibi, The Enron Email Dataset, Database
Schema and Brief Statistical Report, Retrieved from
o CDBS3 http://www.isi.edu/ adibi/Enron/Enron_
Dataset_Report .pdf, Jan. 2006

100

10

Time [sec]

[3] K. Stockinger, D. Rotem, A. Shoshani. K. Wu, Analyz-
ing Enron Data: Bitmap Indexing Outperforms MySQL
Queries by Several Orders of Magnitude, Technical Re-
port, LBNL-59437, Berkeley Lab, Berkeley, California,

0.1+
1,000,000 2,000,000 3,000,000 4,000,000 USA, Jan. 2006.
Number of hits

Figure 4. Performance of 3-level neighbor-
hood queries: “Retrieve the indirect recipi-
ents of all emails that were sent by person P”
over a time window of 6 months.

Time Window: 12 Months

10,0004

1,000
*

100+ ¢ CDBS-3
A FastBit

Time [sec]

10+

2,500,000 5,000,000 7,500,000 10,000,00
0

Number of hits

Figure 5. Performance of 3-level neighbor-
hood queries: “Retrieve the indirect recipi-
ents of all emails that were sent by person P”
over a time window of 12 months.

Acknowledgment

The work was funded by the Department of Homeland
Security. We also want to thank Mark Dedlow from Berke-
ley Lab for his assistance on CDBS.

