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Abstract

Purpose of review Computing advances over the decades

have catalyzed the pervasive integration of digital tech-

nology in the medical industry, now followed by similar

applications for clinical nutrition. This review discusses the

implementation of such technologies for nutrition, ranging

from the use of mobile apps and wearable technologies to

the development of decision support tools for parenteral

nutrition and use of telehealth for remote assessment of

nutrition.

Recent findings Mobile applications and wearable tech-

nologies have provided opportunities for real-time

collection of granular nutrition-related data. Machine

learning has allowed for more complex analyses of the

increasing volume of data collected. The combination of

these tools has also translated into practical clinical

applications, such as decision support tools, risk prediction,

and diet optimization.

Summary The state of digital technology for clinical

nutrition is still young, although there is much promise for

growth and disruption in the future.

Keywords Nutrition � Parenteral nutrition � Enteral
nutrition � Digital health � Machine learning � Wearables

Introduction

Accelerating advances in the power and utilitarian benefit

of digital technology have led to its pervasive integration

into society. Each step throughout the day—from the

moment we awaken to the sound of an alarm to the moment

calming music is played before bedtime—digital devices

play a central role in these functions. Virtually all indus-

tries, including those unrelated to technology, now rely on

digital technology in some form to capture data, perform

calculations, and automate processes. Nonetheless, beyond

the sheer scale of availability and assimilation of such

technologies in society is the remarkable computing power

within reach. For instance, over 80% of Americans today

wield more computing power in their palms than the

Apollo 11 guidance computer that first landed Neil Arm-

strong on the moon [1]. Such advances in processing power

and data storage sizes, and an inverse reduction in cost per

gigaflop or gigabyte, respectively, have similarly led to

development of increasingly sophisticated applications.

Storage and analysis of ‘‘big data’’ no longer require
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supercomputers that occupy large climate-controlled

rooms. In the medical industry, immense amounts of

clinical and administrative data are routinely collected by

health networks to evaluate trends in care delivery, identify

areas for cost reduction, and perform outcomes-based

research. Artificial intelligence (AI) has been harnessed to

help understand complex biological phenomena, diagnose

diseases, predict clinical outcomes, and design novel

therapeutics. The ubiquity of mobile and smart devices

even provide opportunities for more personalized real-time

data collection, data synthesis, analysis, and feedback at

the consumer to enterprise levels.

Following the rise of the medical technology (‘‘med-

tech’’) industry, there has been a burgeoning interest in the

application of similar core technologies for nutrition. These

technologies offer the opportunity to optimize nutrition, as

information about diet intake, interpretation of the diet in

the context of the person and their health, and the ability to

generate practical feedback are important features of clin-

ical nutrition. Implementation into clinical practice may

range from the use of mobile apps to track diet intake and

the use of wearable technologies to collect supportive data

to the development of decision support tools for parenteral

nutrition and the use of telehealth for remote assessment of

nutrition.

Mobile Applications

Mobile health applications represent an opportunity for

increased patient engagement, data gathering, and remote

monitoring of outcomes outside of the healthcare facility.

There now exist an estimated 165,000 publicly available

mobile health apps with wellness management and disease

management in leading areas [2]. In 2020, the mobile

health market was valued at 40 billion dollars and is

expected to grow 17.7% from 2021 to 2028 [3]. Use of

mobile apps for monitoring health data is thus a growing

area and surveys of mobile phone users in the United States

indicate that 58% of mobile phone users have downloaded

a health-related app to their device [4]. Among registered

dietitians, nearly 83% report use of mobile apps in their

practice [5]. Despite widespread use among individuals,

apps remain an ongoing area of investigation for its use in

healthcare management.

Applications focused on diet and weight loss are widely

utilized, and it is estimated that over 10,000 apps are cur-

rently available for diet and weight loss [6]. A 2015 sys-

tematic review and meta-analysis of studies evaluating

mobile apps for weight loss showed a mean reduction of

body mass index (BMI) by 0.43 kg/m2 among mobile app

users, and users may benefit from more continuous feed-

back on their health interventions [7]. For a healthcare

provider, mobile apps may provide further opportunities to

assess dietary patterns of patients instead of relying on

dietary recalls alone. This feature may provide added value

to the nutrition care process, as patients often under-report

their intake or engage in recall bias due to factors such as

body dissatisfaction or desire for social approval [8].

Diet-focused apps vary widely in terms of their func-

tions and ease of use. Self-monitoring of diet and physical

activity are commonly integrated features and individuals

may record their dietary intake and physical activity, while

establishing goals to meet in these areas, thereby receiving

continuous data feedback on their behavior [•9]. Apps may

also be purveyors of health information, including tips on

weight management or diet, whether or not this has been

vetted or verified by healthcare professionals and experts.

Other apps may have a component of social engagement

with the ability to interact on group forums or connect with

other users. Features among nutrition apps vary widely,

yet all share some commonality in terms of tracking the

user’s day-to-day dietary intake and physical activity.

Examples of applications in the weight loss space

employing such features are shown in Table 1.

Another area of interest in mobile app nutrition includes

those catered to specific disease states. Apps for diabetes,

for example, may provide users with a better understanding

of how their blood sugar management relates to their diet

and behavior. While a number of applications exist, a 2018

technical brief by the Agency for Healthcare Research and

Quality evaluated currently available mobile apps for dia-

betes self-management and found that among hundreds of

apps for diabetes, studies showed that only 5 were asso-

ciated with clinically meaningful improvements in

biomarkers such as hemoglobin A1c (HgbA1c) [10]. The

report concluded that more longitudinal, high-quality

studies are needed. As diabetes represents but one of many

disease states that may benefit from mobile app use, rig-

orous studies evaluating outcomes in app use for disease

management are often outpaced by the development and

widespread use of the apps. For patients with diabetes, apps

such as Day Two, Glucose Buddy, and Dario Health may

be utilized (Table 2). In addition to diabetes, gastroin-

testinal disease is another area where mobile apps may play

a role in monitoring and management. Some of the appli-

cations in this area are shown in Table 3.

Given the multitude of mobile health apps available and

widespread use among individuals, clinicians may benefit

from employing these tools in their practices. While many

barriers currently exist related to collection and use of

personal data (e.g., assurance of accuracy privacy con-

cerns, regulatory oversight, or lack of integration into the

healthcare system) [2], these challenges may be addressed

through future collaboration with research and healthcare

institutions. While mobile apps may be an imperfect
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process at this time, they still provide value to patients

looking to utilize more data and engagement for improving

health outcomes.

Wearable Technologies

Another emerging technology in health care is wearable

devices. While a variety of consumer health monitoring

devices relevant to clinical nutrition assessment exists, this

section will focus on noninvasive wearable technologies,

which are defined as compact devices that present

information to users, enable user interactions, and are

meant to be worn on the body [11]. Wearable devices

relevant to clinical nutrition care discussed here focus on

the widely used smartwatches, the more experimental

wearable devices for dietary assessment, and emerging

wearable device technologies.

Smartwatches for Nutrition Assessment

Smartwatches are by far the most popular wearable health

monitoring devices [12]. Smartwatch technologies have

rapidly advanced in the past ten years, initially starting

Table 1 Some mobile applications for weight loss management

Mobile app Features

Cronometer

• Fasting timer—function to track fasting and see effect of fasting over time

• Food tracker—includes ability to input foods based on scanned bar code, filter food search tool based on brands,

restaurants, etc. Uses multiple databases to integrate nutritional data—Nutrition Coordinating Center Food &

Nutrient Database through the University of Minnesota (NCCDB), United States Department of Agriculture

National Nutrient Database for Standard Reference, The Canadian Nutrient File (CNF 2015), Irish Food

Composition Database (IFCDB), The Dutch Food Composition Database (NEVO), McCance and Widdowson’s

The Composition of Foods Integrated Database (United Kingdom food supply), Australian Food Composition

Database (NUTTAB). Nutrition daily report includes calories consumed, macronutrient calories and

percentages, protein by amino acid composition, fat by composition including omega-3 and omega-6, calories

burned, basal metabolic rate, fiber intake, micronutrients including vitamin A, potassium, vitamin d, vitamin E,

vitamin K, B vitamins (B1, B2, B3, B5, B6, B12, folate), minerals (calcium, copper, iron, magnesium,

manganese, phosphorus, potassium, selenium, sodium, zinc)

• Healthcare Professional Accounts—health privacy security standards. Ability to view and edit patient nutrition

targets, graph and print reports, restrict client accounts (i.e., limit access to calorie information for a patient with

an eating disorder), find new clients, and become an affiliate. At time of print, $24.95 billed monthly

• Reports and charts—ability to track changes in calories consumed and weight changes. Premium member

features include weight and body fat, lipid panel, blood pressure ? heart rate

MyFitnessPal

• Food tracker—ability to adjust calories and macronutrients based on individual needs and ability to share diary

with friends on the app. Healthcare providers can create an account on the app but do not have a special

designation in the app

• Food database tool for determining nutritional content includes carbohydrates, fats (including grams of fat from

polyunsaturated, monounsaturated, saturated, trans fats), cholesterol, sodium, potassium, carbohydrates, sugars,

protein, vitamin A, vitamin C, calcium, iron

• Exercise—ability to input exercise by type and duration, synchronize data with wearable devices, and update

nutritional needs accordingly

• Report generation—trends in weight, calories, exercise minutes, calories burned, macronutrients, fiber,

micronutrients

• Community forums—members can create conversation threads or add friends on the app

Noom

• Use of psychology and behavior change to implement weight loss—intake questions include screening questions

for previous interventions tried, risk factors, motivation, and barriers. It includes daily articles and challenges,

unlimited access to a personal coach approved by the National Consortium for Credentialing Health and

Wellness Coaches, tools to track and monitor progress, support group of peers, biometric tracking including

blood pressure and blood glucose). At time of writing, it costs $59 per month

• Research—A 2016 retrospective cohort study of nearly 36,000 adults utilizing the NOOM app demonstrated

weight loss among 77% of app user (mean duration of app use—267 days). Analyzed variables that contributed

to weight loss include gender, baseline body mass index, weight input frequency, exercise, and dinner input

frequency (p\ 0.001)

NCCDB nutrition coordinating center food & nutrient database; CNF Canadian nutrient file; IFCDB Irish food composition database; NEVO
Dutch food composition database; NUTTAB Australian food composition database
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with simple pedometers to current devices with increasing

health monitoring capabilities [13]. Smartwatches for

health-care monitoring tend to utilize one or often a com-

bination of the following technologies: accelerometer,

pedometer, gyroscope, heart rate, electrocardiography

(ECG), pulse oximetry, altimeter, barometer, proximity,

microphone, camera, compass, global positioning system

(GPS), and/or long-term evolution (LTE) communication

[14]. Smartwatches may have started out as standalone

devices, but given the greater capabilities (e.g., higher

computing power and connectivity) of smartphones, the

current smartwatches are meant to be paired with mobile

applications to enhance the user experience. Table 4 pro-

vides a list of the features of the current popular smart-

watches that are relevant to clinical nutrition care.

Smartwatches allow patients to passively gather data

about their activities of daily living. These patient-gener-

ated health data can then be shared with healthcare pro-

viders. A recent qualitative study found that healthcare

providers valued patient smartwatch data, because these

data can be used to initiate productive discussions and

inform patient care decisions [15]. Smartwatches can be

used to gather baseline data and track patient progress and

efficacy of interventions. For example, a decline in func-

tional status is one of the recommended criteria for the

identification and documentation of malnutrition [16].

Activity trackers can help clinicians monitor and evaluate

any trends in functional decline or improvement through

tracking activities of daily living. Of note, smartwatches

have been shown to more effectively recognize hand-based

activities (e.g., eating, typing, playing catch, etc.) when

compared to smartphones, but specific activity tracking

recognition technology still requires much fine tuning [17].

Using machine learning approaches, future development

work can expand to recognition of specific activities with

more accuracy.

The most recent technology advance in smartwatches is

the addition of cardiovascular health measures. As shown in

Table 4, popular smartwatches include features to monitor

heart rate, monitor blood oxygen levels, take ECG, and/or

track heart rate variability. In 2017, the Apple Watch

accessorywristband, theKardia Band,was the first to receive

Table 2 Some mobile applications for diabetes management

Mobile app Features

Day Two

• Utilizes the Algorithm Diet—requires that patients submit a stool sample to establish a profile of the

patient’s gut microbial ecosystem; integrates this with lab values such as HgbA1c to determine

individualized dietary plans for patients. Provides insights into how body uniquely metabolizes foods

in order to utilize food as medicine approach to managing type 2 diabetes

Glucose Buddy

• Glucose tracking—tracking of blood sugar, medication, hemoglobin A1c, weight, and blood pressure

• Dietary intake—ability to track intake via photo recognition or scanning product bar codes

• Data export—download reports to share with healthcare providers

• Education and coaching—12-week diabetes education plan with 5 min lessons, ability to meet one-on-

one with certified diabetes coaches

• Integration with other wearable devices—integrate data from FitBit, Apple Watch, etc

Dario Health

• Blood glucose monitoring system and blood pressure monitoring system—Dario Meter combines meter,

lancet, and test strips in a unit to enable blood glucose testing and data upload within 6 s of applying

drop of blood to the test strip. Per Dario app information page, tested to meet FDA guidance for

accuracy, with 95% of measurements within 15% of true lab-tested value

• Hypo alert with global positioning system (GPS) locator—If blood glucose monitor reads dangerously

low blood glucose levels, app will text message up to 4 emergency contacts with GPS information

• Diet tracking—tag foods eaten and application will calculate carbohydrates. Ability to share data with

healthcare providers

FDA food and drug administration; GPS global positioning system
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Food and Drug Administration (FDA) clearance for detec-

tion of atrial fibrillation, the most commonly encountered

arrhythmia in clinical practice [18, 19]. Since then, Apple

Watches have evolved to include inherent ECG monitoring

capabilities with the newer series watches (Series 4 and

higher) not requiring an accessory wristband to monitor and

detect atrial fibrillations [18–20]. Primary research indicates

direct-to-consumer smartwatches that passively detect atrial

fibrillations can be useful in clinical settings. However, the

algorithms used for specific and sensitive detection of

arrhythmias will need to be further validated [21, 22].

Overall, cardiovascular health data provided by smart-

watches can be used by nutrition care providers to integrate

into their nutritional assessments to monitor and evaluate the

efficacy of nutrition interventions for patients.

Wearable Devices for Dietary Assessment

Currently, much of dietary self-assessment occurs via

mobile applications (discussed in section ‘‘Mobile

Applications’’) that allow users to actively maintain digital

dietary records. Patients often show their digital food dia-

ries to clinicians during nutrition visits. Despite still being

in the prototype stages and with limited utility in the

clinical setting, wearable dietary monitors are being

developed as a new method to passively capture dietary

intake [23]. The most promising wearable dietary intake

sensors currently being researched are sound, image, and/or

motion [23].

Acoustic-based food intake wearable devices utilize

microphones to detect chewing and/or swallowing patterns

that could theoretically give insight into the type and/or

relative quantity of food being eaten. For example, in a

study using a tiny microphone embedded in an ear device,

researchers created a sound-based recognition system that

was able to distinguish between three test foods (potato

chips, lettuce, and apple) with 94% accuracy [24]. The

system analyzed acoustic variables (structural and timing)

associated with chewing and used this data to predict bite

weight, defined as ‘‘a quantity of food amount that is

Table 3 Some mobile applications for gastrointestinal conditions

Mobile App Features

Cara Care: IBS

• IBS, FODMAP tracker—tracks bowel movements, stress, dietary intake, pain, and other GI symptoms; shows

trends and correlations among inputted data and symptom outcomes

• 12-week IBS program—self-paced low FODMAP diet plan with access to tips for managing IBS based on

science, medically validated IBS questionnaires, and chat with dietitian

• Data sharing—ability to share data with medical provider

Gali Health: IBD

• Artificial intelligence health assistance—gathers data on date of diagnosis, disease form and activity,

symptoms, and challenges with current care in order to create personalized recommendations

• Health tracking and analytics—daily health and treatment monitors, ability to generate reports and share with

care team

• Information—chat feature with Gali for asking IBD-related questions, gather disease-related insights

• Community—ability to comment on posts, ask questions, share experiences with users

My Symptoms

• Food and symptom diary—ability to track food, symptoms, bowel movements, exercise, stress, sleep, in order

to help determine patterns and trigger foods in the diet

• Reports—provides diary analysis to illustrate correlations between various factors and symptoms

FODMAP fermentable oligo-, di-, monosaccharides and polyols, IBD inflammatory bowel disease, IBS irritable bowel syndrome
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ingested into the mouth with each bite taken.’’ Bite weight

prediction models were selected based on recognized food

types. While this study was limited in the types of foods

detected, one can imagine that the employment of machine

learning can be used to advance this field of sound-based

dietary intake sensors in food intake tracking.

Image-based food intake wearable devices use cameras

to classify foods and/or estimate portion sizes. One

notable wearable image-based device is the eButton, which

is a miniature computer with a camera embedded in a 6 cm

(or 2.4 in) diameter button, meant to be worn on the chest

[23, 25–28]. The eButton automatically takes images at a

preset rate of a meal being eaten and theoretically, the

images can be analyzed by an algorithm to detect the food

item and portion size based on environmental cues such as

plate and eating utensils [28].With food item and portion

size information, the calories and nutrients data can sub-

sequently be obtained from a linked dietary database. Other

wearable devices that capture digital images in dietary

assessment typically require subsequent coding by nutri-

tionists to identify the type and amount of foods eaten [26].

With smartphones being more commonplace, patients may

opt to use mobile applications that utilize the camera on

their smartphones to take food images for dietary assess-

ment [25], although using smartphones for dietary assess-

ment would require active rather than the passive data

collection offered by wearable devices.

Motion-based dietary assessment wearable devices are

often worn on the wrist to track wrist movements during

eating. These devices integrate an accelerometer and/or a

gyroscope to record lifting, turning, and/or rotation

movements of the wrist to count bites as a proxy marker for

caloric intake [23, 27]. As these devices are meant to be

worn all day, the sensor needs to be able to distinguish

between eating events and non-eating wrist movements.

Researchers have tested devices that are able to pick out

periods of eating during all-day tracking with good accu-

racy [29]. Algorithms to estimate number of bites using

inertial data and predictive equations to estimate caloric

intake associated with a single bite have been developed

[30, 31]. It should be noted that these devices need to be

worn on the dominant hand used for eating.

Importantly, these wearable dietary intake sensors are

still in development. Future work will need to focus on

algorithms that can distinguish between different foods,

especially solid versus liquid foods, more accurately esti-

mate food portions and volumes, and remove background

sound, image, and motion data in real-world environments

that are not related to food ingestion. It has been noted that

fusion devices that track sound, image, and motion could

be developed and coupled with smartphone applications

via Bluetooth technology to allow higher computing power

and a more sophisticated user interface [28, 32]. In fact,

one can imagine adding the detection of eating events and

estimation of caloric intake from activity data to current

smartwatch features.

Future Direction of Wearable Devices

Recently released wearable devices reveal the trajectory of

the industry. One challenge unique to wearable devices is

that device size can limit computing power and battery life.

Table 4 Features of current popular smartwatches relevant to clinical nutrition care

Device, costa Health monitoring features Additional features

Apple Watch

Series 6

Tracks fitness (distance, elevation), monitors heart rate, monitors

blood oxygen levels, takes ECG, tracks sleep

Can customize digital watch face

Water resistant 50 m, GPS, maps, plays music, Apple

pay, can be used to call and text when smartphone is

nearby

Fitbit Sense Tracks fitness (steps, distance, elevation), monitors heart rate,

monitors blood oxygen levels, takes ECG, monitors on-wrist

skin temperature, tracks heart rate variability, tracks sleep,

estimates daily stress score, can be used to track menstrual

health

Can customize digital watch face

Water resistant 50 m, GPS, plays music, Fitbit Pay, can

make calls and text when smartphone is nearby

Samsung Galaxy

Watch3

Tracks fitness (distance), monitors heart rate, monitors blood

oxygen levels, takes ECG, tracks sleep, monitors stress levels,

fall detection, analyzes running movement and suggests stride

improvements

Can customize watch design at purchase

GPS, plays music, and email, text messaging

notifications and calls when smartphone is nearby

Wear OS Google

Smartwatch

software

Tracks fitness (steps, distance), monitors heart rate Variety of designs: Google partnered with watch

designer brands GPS, Maps, plays music, Google

Pay, Google calendar synching, and email, text

messaging notifications and calls when smartphone is

nearby

aWebsites accessed in January 2021
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Ideally, wearable devices should be lightweight, comfort-

able to wear, and power efficient. The trend in pairing

wearable devices with smartphone applications is a solu-

tion to creating a small, easy-to-wear device with

increasing monitoring capabilities. Given that smartphones

are ubiquitous nowadays, new and future wearable devices

will likely rely on mobile applications for user interface.

As an example, the Amazon Halo wristband health

monitor was released in Fall 2020 and there is no screen on

the device [33]. The Amazon Halo wristband not only

tracks activity (intensity and duration and sedentary time)

but also monitors sleep, tracks heart rate, estimates body

composition, and detects mood (via tone of voice analysis).

The use of the Amazon Halo and its features does require a

smartphone and a subscription membership ($3.99/month)

with Amazon. The most novel and controversial aspects of

the Amazon Halo are its ability to estimate percent body fat

from a three-dimensional model of the user’s body based

on photos and its tone analysis aimed to help the user

communicate more effectively with others [34]. The body

composition estimation feature is of interest in nutrition

assessment. The mobile application associated with the

Amazon Halo creates a three-dimensional model of the

user and allows the user to simulate what they may look

like with more or less body fat. This wearable device has

not yet been studied in clinical trials, so the accuracy of the

body composition analyses when compared to other clini-

cal methods (such as bioelectrical impedance analysis and

whole-body dual-energy X-ray absorptiometry) remains to

be seen. Healthcare concerns have also been raised, espe-

cially related to potential body dysmorphia and particularly

in adolescent populations, as a result of this body compo-

sition feature. Another concern is the clinically appropriate

interpretation of the body composition results [35]. While

many reference ranges for body fat percentages have been

published for various populations, there is no consensus on

what is considered normal body fat percentage. There is no

one-size-fits-all algorithm to appropriately interpret body

composition results. Future algorithm development will

need to take into account as many factors as possible (e.g.,

genetics, ethnicity, fitness, dietary intake, etc.) to present

results in the context of overall personalized health.

Another emerging technology in wearable devices is the

goal of creating a noninvasive blood glucose monitor. At

the January 2021 Consumer Electronic Show (CES) virtual

conference, a Japanese startup company, Quantum Opera-

tion Inc., showcased a prototype noninvasive glucose

monitor [36]. The Quantum Operation Inc. Glucose Mon-

itor looks like a smartwatch and houses a small spec-

trometer used to scan the blood through the skin for

glucose concentrations [37]. The company supplied a

sampling of data comparing their monitor’s blood glucose

measurements with those taken using a commercial

glucometer, the FreeStyle Libre [36]. The sampling data

shows variation between the data collected by the Quantum

Operation glucose monitor and continuous blood glucose

measurements.

As wearable devices move from the realm of wellness

monitoring to become more medical devices (where

information obtained from devices will be used to make

medical decisions), they will be subject to regulation by the

FDA [•13]. In anticipation, the FDA has been working with

wearable device manufacturers, such as Apple, and intro-

duced the Digital Health Software Precertification (Pre-

Cert) Program for low-risk device approval [38]. The

purpose of the FDA Pre-Cert Program is to ‘‘provide more

streamlined and efficient regulatory oversight of software-

based medical devices developed by manufacturers who

have demonstrated a robust culture of quality and organi-

zational excellence, and who are committed to monitoring

real-world performance of their products once they reach

the U.S. market.’’

A recent review of scientific literature in the field of

wearable health monitoring technologies revealed the top

concerns regarding wearable devices are security and

safety, especially if the data from wearable devices are

used for medical decisions [39]. A major advantage of

using wearable devices for assessing health is the fact that

this technology does not rely on subjective information and

removes the burden of self-reporting. Wearables can be

helpful in clinical interventions as they provide real-time

information to users and have the potential to change

immediate behaviors. Ideally, a wearable device should

transmit real-time data to a patient’s healthcare team, and

clinical interventions would be determined based on that

data. Moving forward, in order for consumer-based wear-

able devices to be more widely used in clinical practice,

there needs to be ways for user data to be privately and

securely shared with clinicians. Ultimately, clinicians will

play an integral role in interpretation of wearable device

monitoring data, as ‘‘data must be interpreted before they

can be considered real information’’ [40]. It is important

for clinicians to be familiar with current and emerging

wearable devices and their limitations as they help patients

transform collected data into useful information for making

healthcare decisions.

Artificial Intelligence

AI is broadly defined as the application of computers to

independently or semi-independently perform functions

that mimic human intellect. Machine learning, a subset of

AI, involves computer algorithms that process and learn

from data without requiring explicit programming to define

each step. Deep learning is a further subset of AI and
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machine learning that involves the use of multi-layered

neural networks (‘‘deep learning’’) to permit far more

complex analyses. As suggested in the term, neural net-

works were designed to mimic the complex neuronal net-

work architecture of the human brain. Similar to how a

person learns principles through repeated observations,

large datasets are typically required to train the AI system

how to interpret data. The AI system can nonetheless

improve (‘‘learn’’) over time as it gets exposed to more

data. Training can be performed in a supervised, semi-

supervised, or unsupervised manner. Supervised learning

involves the use of labeled data that ‘‘teach’’ the system

about the meaning and relationships within the data, such

as labeling fruit images with their respective identifiers

(e.g., apple, orange, lemon) to allow the system to identify

shared and unique features inherent in each fruit type.

Unsupervised learning involves the processing of data

without human intervention, such as pattern recognition of

unlabeled data for clustering, anomaly detection, or

reduction of complex data. Basic machine learning func-

tions can include pattern detection, prediction, classifica-

tion, language processing, and image recognition. These

functions can be seen in consumer-oriented services, such

as spam filters, real estate price estimators, video recom-

mender systems, chatbots, and facial recognition. These

functions can similarly be ported to applications in nutri-

tion. Some domains include diet optimization, food image

recognition, risk prediction, and diet pattern analysis.

Diet Optimization

In an early demonstration of the utility of machine learning

for personalized nutrition, Israeli investigators collected

one-week data on the diet, anthropometrics, blood param-

eters (e.g., blood glucose, hemoglobin A1c, cholesterol),

lifestyle (e.g., physical activity, sleep), and the gut micro-

biota in a cohort of 900 healthy individuals [41]. When

applying the ‘‘carbohydrate counting’’ approach to esti-

mating post-prandial glycemic response (PPGR), the cor-

relation between a meal’s carbohydrate content and PPGR

was statistically significant but modest (R = 0.38). The

machine learning model that considered the participant-

specific data was ,however, more effective at predicting

PPGR in both the training (n = 800; R = 0.68) and vali-

dation (n = 100; R = 0.70) cohorts. To demonstrate the use

of PPGR prediction for diet interventions, the investigators

conducted a trial on 26 healthy participants who first

received instructions on a dietitian-designed diet based on

their individual dietary preferences and constraints. Par-

ticipants underwent another week of diet, blood, and

activity profiling while on their custom diets, similarly as

the original 900 participants. The 26 participants were then

randomized to either the ‘‘prediction arm’’ or the ‘‘expert

arm.’’ In the former arm, the machine learning algorithm

was used to design a ‘‘good’’ diet composed of low-pre-

dicted PPGR and a ‘‘bad’’ diet composed of high-predicted

PPGR specific to the individual. In the latter arm, clinical

experts designed the ‘‘good’’ and ‘‘bad’’ diets based on

prior knowledge of foods with high glycemic burden.

Participants would consume both ‘‘good’’ and ‘‘bad’’ diets

in independent weeks. For the prediction arm, 83% (10/12)

of participants had significantly higher PPGR when con-

suming the ‘‘bad’’ diet than the ‘‘good’’ diet. For the expert

arm, similar trends were observed in 57% (8/14) of par-

ticipants. This technology has since been commercialized

with the Day Two mobile application on the front

(Table 2).

Food Image Recognition

Image recognition is a popular function of deep learning. In

health care, deep learning has been used for analyzing

radiographic images for diagnosis of pneumonia, dermal

images for identification of melanoma, and endoscopic

images for detection of colonic polyps [42–44]. For nutri-

tion, a natural use of deep learning would be food image

recognition. Early models that trained with 50,000 food

images could reach a reasonable accuracy of 78 to 92% for

identifying the pre-categorized food image [45]. The top-5

accuracy (where the computer provides its top 5 guesses)

was even higher at 91 to 98% accuracy. While these

models prove the feasibility for AI to detect food images

with reasonable accuracy, a primary limitation is the arti-

ficial method to train and test the system. That is, the

training dataset would include a finite number of labeled

food items and the testing or validation datasets would

include the same catalog of labeled food items. However,

in a real-world scenario, there are innumerable types of

food items. With an early neural network model developed

by our laboratory, we were able to achieve similar training

and validation performance as the other models, while

using 222,285 curated images representing 131 pre-defined

food categories [46]. However, in a prospective analysis of

real-world food items consumed in the general population,

the accuracy plummeted to 0.26 and 0.49, respectfully.

Future refinement of AI for food image recognition would,

therefore, benefit on training models with a significantly

broader diversity of food items that may have to be adapted

to specific cultures.

Risk Prediction

Conventional approaches for analyzing data, such as

visualization for trends or use of multivariable regression

models, often suffice. On the other hand, the advantage of

machine learning is its ability to parse large high-
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dimensional data to identify complex patterns that would

otherwise have been hidden. In an analysis of six waves of

the National Health and Nutrition Examination Survey

(NHANES) and the National Death Index, investigators

compared the ability of Cox proportional hazards and

machine learning to predict 10-year cardiovascular disease-

related mortality in 29,390 individuals [•47]. The Cox

proportional hazards model that included age, sex, black

race, hispanic ethnicity, total cholesterol, high-density

lipoprotein cholesterol, systolic blood pressure, antihyper-

tensive medication, diabetes, and tobacco use appeared to

significantly overestimate risk. The addition of dietary

indices did not change model performance, while the

addition of 24-h diet recall worsened performance. By

contrast, the machine learning algorithms had superior

performance than all Cox models.

4.4 In a prospective study conducted by the University

of Athens (Greece), 2583 participants completed a baseline

questionnaire, dietary evaluation, and 10-year follow-up

[48]. The dietary instrument was the European Prospective

Investigation into Cancer and Nutrition (EPIC)-Greek

questionnaire. Multiple linear regression and machine

learning were compared in their ability to predict the

10-year Cardiometabolic Health Score (a composite of

cardiovascular disease, diabetes mellitus, hypertension, and

hyperlipidemia). The linear regression models had a pre-

dictive accuracy of 16 to 22% when classifying the dietary

pattern within the same tertile as the Cardiometabolic

Health Score; the machine learning models had a higher

accuracy around 40%.

Diet Pattern Analysis

In a prospective study of 7572 pregnant women in the

Nulliparous Pregnancy Outcomes Study: monitoring

mothers to be (nuMoM2b), participants completed the

Block 2005 Food Frequency Questionnaire to reflect their

typical dietary intake around 3 months prior to conception

[49]. The investigators compared multivariable logistic

regression with machine learning to estimate the risk of

adverse pregnancy outcomes based on fruit and veg-

etable consumption. Among women in the C 80th per-

centile of total fruit or vegetable density consumption,

there was a modestly lower incidence of preterm birth,

small-for-gestational-age births, gestational diabetes, or

pre-eclampsia. The logistic regression model did not

identify an association between fruit and vegetable con-

sumption and adverse pregnancy outcomes, while the

machine learning model found that the highest fruit or

vegetable consumers had lower risk of preterm birth, small-

for-gestational-age birth, and pre-eclampsia.

Digital Technology and Nutrition Support

The nutrition support team (NST) is a specialized team that

provides expertise and guidance to medical teams on the

nutritional needs of patients [50]. NST members vary

across institutions but may be compromised of physicians,

advanced practice providers, dieticians, nurses, and phar-

macists. Digital innovations, improvements, and integra-

tions into the electronic health record (EHR) have impacted

nutrition care provided by the NST over a spectrum of

activities, such as diagnosis and coding, treatment inter-

ventions, and follow-up care [51].

Since the NST is typically a consultative service, an

important first step is the recognition of a nutritional con-

cern, such as malnutrition, by the primary team [52].

Malnutrition is a clinical condition where the patient is

undernourished and not meeting their nutritional needs

[52, 53]. Recognition of malnutrition is important because

it is associated with increased morbidity and mortality

[52, 54]. Numerous validated malnutrition screening tools

(e.g., NRS-2002, MUST, SGA) have been created and can

be utilized for screening [52]. Importantly, the widespread

adoption of EHRs has enabled the integration of these

screening tools into clinical workflows, such as admission

orders or office visit intakes. In addition, the use of

embedded screening tools in the EHR allows the ability to

capture the discrete data and can drive clinical decision

support processes that can be configured to notify the NST

to perform a formal malnutrition assessment [51, 55]. If

malnutrition is not initially present, patients can be

rescreened at regular intervals for ongoing assessment

during the course of longitudinal care of the patient. One of

the strengths of the EHR is the ability to capture data for

trending and activation of alerts if clinical decision support

logic is met.

After a positive malnutrition screen, the NST performs a

nutrition assessment of the patient to determine if the

patient meets criteria for malnutrition. The nutrition

assessment includes food intake and nutrition history,

anthropometrics, nutrition focused physical exam, and

review of clinical and medical history as well as review of

tests and procedures [51]. A study by McCamley et al.

demonstrated that after implementation of an EHR, there

was not only a 72% increase in admissions requiring

nutrition intervention but also the time spent per nutrition

event was reduced by 22% post-EHR implementation. If

after the nutrition assessment by the NST, the patient meets

clinical criteria for malnutrition, the NST member or

clinician should then accurately document and code the

malnutrition diagnosis. Importantly, this has implications

that not only can affect patient care but also is important
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for appropriate coding, billing, and reimbursement

[51, 56, 57].

For patients unable to meet their nutritional needs

through enteral means alone, parenteral nutrition (PN) is a

nutritional modality that can be utilized by the NST to meet

the patient’s nutritional needs through intravenous rather

than enteral route. PN is a complex admixture that contains

both macro- and micronutrients along with electrolytes and

trace elements. Although PN can be lifesaving and life-

sustaining, it is a high-risk treatment that has the potential

to harm patients if ordered or administered incorrectly [58].

In order to reduce the chance of error, PN is recommended

to be ordered through a computerized provider order entry

system (CPOE) [59]. By utilizing CPOE, alerts can be

developed to notify the prescriber if doses exceed the

recommended or safe clinical limits or exceed the limits of

compatibility. After entry of the PN order, another digital

advance is the integration of the EHR to the automated

compounding device (ACD) that prepares the PN. The

digital link from the order to the ACD eliminates any

manual transcription, including handwritten, verbal, or fax

transmissions in the PN workflow thereby reducing the

chance for error and harm to patients [58].The supporting

evidence for this workflow was highlighted in a 2016 study

from a large academic pediatric hospital where the fre-

quency of PN errors was 0.27% (230 errors/84,503 PN

prescriptions) with no errors due to transcription [60].

Like PN, enteral nutrition (EN) has also benefited from

the digital advances in health care. The number of EN

products available on the market today is large, and hos-

pitals often also have a number of these products available

on their formulary to order for patients. In addition, cap-

turing the EN product used as well as documenting the

amount used is important for the overall care of patients.

To address these issues, Kamel et al. demonstrated the

steps for development of an electronic nutrition adminis-

tration record (ENAR) with a linked nutrition tab in their

EHR [61]. Working with the EHR vendor, they were able

to create order panels that standardized the EN ordering

process. After EN administration, the amount of EN was

documented and captured for inclusion in the patient’s ins

and outs, which is important for ongoing clinical volume

assessment.

Lastly, the coronavirus disease 2019 (COVID-19) pan-

demic brought about significant changes in healthcare

delivery [62]. NSTs were not spared as from the system-

wide disruption and were required to adapt how they

practiced nutrition care [63]. One significant advancement

was the use of a virtual care model [62–65]. In this type of

model, the patients and the care team do not need to be

physically co-located and the patient is not seen in a tra-

ditional face-to-face visit. The hospital or clinic visit is

instead conducted through a virtual format such as video,

telephone, or electronic consultation. The significance of

the virtual visit is that it allows the continued involvement

of specialized teams, such as an NST, to be involved in the

patient care with lowered risk of infection transmission for

providers and patients. Meyer et al. published their expe-

rience with creation and experience with virtual NST

model in a multisite healthcare system [•66]. With imple-

mentation of the virtual NST, they demonstrated improved

appropriateness of PN use (97.2% vs 58.9%) and also

improved glycemic control (83.5% vs 62.2%).

Keating et al. published their work assessing the

agreement and reliability between clinician-measured and

patient self-measured clinical and functional assessments

for use in remote monitoring, in a home-based setting,

using telehealth [67]. They noted that patient self-assessed

clinical and functional outcome measures for metabolic

health and fitness had good agreement and reliability on

average with face-to-face clinician-assessed outcome

measures, but that aside from body weight, no clinical or

functional outcome was deemed acceptable when com-

pared with minimal clinically important difference. As

health systems increasingly develop hybrid care pathways

incorporating both in-person and remote nutritional

assessments, there is an increasing need for the develop-

ment of standardized measures for remote nutritional

assessments [•68]. Additionally, development of virtual

care pathways will need to consider patient training to

improve the uptake and reliability of patient home-based

health assessments and anthropometric measurements.

Conclusion

The adoption of digital devices and AI have opened

exciting avenues for personalized nutrition and optimiza-

tion of nutrition care. Mobile applications and wearable

technologies have since facilitated longitudinal, real-time,

and multi-type data collection, while advances in com-

puting power and refinements in machine learning algo-

rithms have permitted high-dimensional analyses of large

datasets to generate meaningful observations. The multi-

modal integration of technology has, thus, allowed for

development of sophisticated applications in medicine and

nutrition. Similarly, digital health has improved the quality

and safety of nutrition support care, while telehealth helped

preserve this quality of care during the COVID-19 pan-

demic. As the application of cutting-edge digital tech-

nologies lags in nutrition relative to the medical or other

consumer-oriented industries, disruptive technologies in

nutrition are still forthcoming but near. As such, continued

research and development in these areas will indubitably

produce technological innovations for nutrition that would
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have once been relegated to science fiction just a few years

ago.
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Kelly R, et al. Real-time differentiation of adenomatous and

hyperplastic diminutive colorectal polyps during analysis of

unaltered videos of standard colonoscopy using a deep learning

model. Gut. 2019;68(1):94–100.

45. Shen Z, Shehzad A, Chen S, Sun H, Liu J. Machine learning

based approach on food recognition and nutrient estimation.

Procedia Comput Sci. 2020;174:448–53.

46. Limketkai BN, Ebriani J, Amundson A, Raj FP, Grover C,

Canlian N, et al. Convolutional neural network for assessment of

dietary intake. Gastroenterology. 2021;

47. •Rigdon J, Basu S. Machine learning with sparse nutrition data to

improve cardiovascular mortality risk prediction in the USA

using nationally randomly sampled data. BMJ Open.

2019;9(11):032703. Use of machine learning to analyze nutrition
data for risk prediction of cardiovascular mortality

48. Panaretos D, Koloverou E, Dimopoulos AC, Kouli G-M, Vam-

vakari M, Tzavelas G, et al. A comparison of statistical and

machine-learning techniques in evaluating the association

between dietary patterns and 10-year cardiometabolic risk

(2002–2012): the ATTICA study. Br J Nutr. 2018;120(3):326–34.

49. Bodnar LM, Cartus AR, Kirkpatrick SI, Himes KP, Kennedy EH,

Simhan HN, et al. Machine learning as a strategy to account for

dietary synergy: an illustration based on dietary intake and

adverse pregnancy outcomes. Am J Clin Nutr.

2020;111(6):1235–43.

50. Ukleja A, Gilbert K, Mogensen KM, Walker R, Ward CT, Ybarra

J, et al. Standards for nutrition support: adult hospitalized

patients. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr.

2018;33(6):906–20.

51. Kight CE, Bouche JM, Curry A, Frankenfield D, Good K,

Guenter P, et al. Consensus recommendations for optimizing

electronic health records for nutrition care. J Acad Nutr Diet.

2020;120(7):1227–37.

52. Cederholm T, Jensen GL, Correia MITD, Gonzalez MC,

Fukushima R, Higashiguchi T, et al. GLIM criteria for the

diagnosis of malnutrition - A consensus report from the global

clinical nutrition community. Clin Nutr Edinb Scotl.

2019;38(1):1–9.

53. Teigen LM, Kuchnia AJ, Nagel EM, Price KL, Hurt RT, Earth-

man CP. Diagnosing clinical malnutrition: perspectives from the

past and implications for the future. Clin Nutr ESPEN.

2018;26:13–20.

54. Hudson L, Chittams J, Griffith C, Compher C. Malnutrition

Identified by Academy of Nutrition and Dietetics/American

Society for Parenteral and Enteral Nutrition is Associated With

More 30-day readmissions, greater hospital mortality, and longer

hospital stays: a retrospective analysis of nutrition assessment

data in a major medical center. JPEN J Parenter Enteral Nutr.

2018;42(5):892–7.

55. Mogensen KM, Bouma S, Haney A, Vanek VW, Malone A,

Quraishi SA, et al. Hospital nutrition assessment practice 2016

survey. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr.

2018;33(5):711–7.

56. Giannopoulos GA, Merriman LR, Rumsey A, Zwiebel DS.

Malnutrition coding 101: financial impact and more. Nutr Clin

Pract Off Publ Am Soc Parenter Enter Nutr. 2013;28(6):698–709.

57. Doley J, Phillips W. Coding for malnutrition in the hospital: does

it change reimbursement? Nutr Clin Pract Off Publ Am Soc

Parenter Enter Nutr. 2019 Dec;34(6):823–31.

58. Vanek VW, Ayers P, Kraft M, Bouche JM, Do VT, Durham CW,

et al. A call to action for optimizing the electronic health record

in the parenteral nutrition workflow. Nutr Clin Pract Off Publ Am

Soc Parenter Enter Nutr. 2018;33(5):e1-21.

59. Ayers P, Adams S, Boullata J, Gervasio J, Holcombe B, Kraft

MD, et al. A.S.P.E.N parenteral nutrition safety consensus rec-

ommendations. JPEN J Parenter Enteral Nutr.

2014;38(3):296–333.

20 Page 12 of 13 Curr Surg Rep (2021) 9:20

123

https://www.amazon.com/Amazon-Halo-Fitness-And-Health-Band/
https://www.amazon.com/Amazon-Halo-Fitness-And-Health-Band/
https://www.theverge.com/2020/8/27/21402493/amazon-halo-band-health-fitness-body-scan-tone-emotion-activity-sleep
https://www.theverge.com/2020/8/27/21402493/amazon-halo-band-health-fitness-body-scan-tone-emotion-activity-sleep
https://www.nytimes.com/2020/12/09/technology/personaltech/amazon-halo-review.html
https://www.nytimes.com/2020/12/09/technology/personaltech/amazon-halo-review.html
https://www.engadget.com/quantum-operation-inc-wearable-glucose-121015450.html
https://www.engadget.com/quantum-operation-inc-wearable-glucose-121015450.html
https://quantum-op.co.jp/
https://quantum-op.co.jp/
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-program;F9wkZZsI-LA!Wai7u74fKJw4By4v0GuOnAbAW9crwf8Jz7tAYhEwshIvE-e9Fqduch90L2ajbh5wjlbsk
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-program;F9wkZZsI-LA!Wai7u74fKJw4By4v0GuOnAbAW9crwf8Jz7tAYhEwshIvE-e9Fqduch90L2ajbh5wjlbsk
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-program;F9wkZZsI-LA!Wai7u74fKJw4By4v0GuOnAbAW9crwf8Jz7tAYhEwshIvE-e9Fqduch90L2ajbh5wjlbsk
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-program;F9wkZZsI-LA!Wai7u74fKJw4By4v0GuOnAbAW9crwf8Jz7tAYhEwshIvE-e9Fqduch90L2ajbh5wjlbsk
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-program;F9wkZZsI-LA!Wai7u74fKJw4By4v0GuOnAbAW9crwf8Jz7tAYhEwshIvE-e9Fqduch90L2ajbh5wjlbsk


60. MacKay M, Anderson C, Boehme S, Cash J, Zobell J. Frequency

and severity of parenteral nutrition medication errors at a large

children’s hospital after implementation of electronic ordering

and compounding. Nutr Clin Pract Off Publ Am Soc Parenter

Enter Nutr. 2016;31(2):195–206.

61. Kamel AY, Rosenthal MD, Citty SW, Marlowe BL, Garvan CS,

Westhoff L, et al. Enteral nutrition administration record (ENAR)

prescribing process using computerized order entry: a new

paradigm and opportunities to improve outcomes in critically ill

patients. JPEN J Parenter Enteral Nutr. 2020.

62. Wosik J, Fudim M, Cameron B, Gellad ZF, Cho A, Phinney D,

et al. Telehealth transformation: COVID-19 and the rise of virtual

care. J Am Med Inform Assoc JAMIA. 2020;27(6):957–62.

63. Allan PJ, Pironi L, Joly F, Lal S, Van Gossum A. Home Artificial

Nutrition & Chronic Intestinal Failure special interest group of

ESPEN: an international survey of clinicians’ experience caring

for patients receiving home parenteral nutrition for chronic

intestinal failure during the COVID-19 Pandemic. JPEN J Par-

enter Enteral Nutr. 2021;45(1):43–9.

64. Ohannessian R, Duong TA, Odone A. Global Telemedicine

Implementation and Integration Within Health Systems to Fight

the COVID-19 Pandemic: A Call to Action. JMIR Public Health

Surveill. 2020;6(2):18810.

65. Farid D. COVID-19 and telenutrition: remote consultation in

clinical nutrition practice. Curr Dev Nutr. 2020;4(12):124.

66. •Meyer M, Hartwell J, Beatty A, Cattell T. Creation of a virtual

nutrition support team to improve quality of care for patients

receiving parenteral nutrition in a multisite healthcare system.

Nutr Clin Pr. 2019. Implementation of a virtual nutrition support
team

67. Keating SE, Barnett A, Croci I, Hannigan A, Elvin-Walsh L,

Coombes JS, et al. Agreement and reliability of clinician-in-clinic

versus patient-at-home clinical and functional assessments:

implications for telehealth services. Arch Rehabil Res Clin

Transl. 2020;2(3):100066.

68. •Bagni UV, da Silva Ribeiro KD, Bezerra DS, de Barros DC, de
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