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Metric Optimization for Surface Analysis in the
Laplace-Beltrami Embedding Space

Yonggang Shi*, Rongjie Lai, Danny J. J. Wang, Daniel Pelletier, David Mohr, Nancy Sicotte, and Arthur W. Toga

Abstract—In this paper, we present a novel approach for the in-
trinsic mapping of anatomical surfaces and its application in brain
mapping research. Using the Laplace-Beltrami eigen-system, we
represent each surface with an isometry invariant embedding
in a high dimensional space. The key idea in our system is that
we realize surface deformation in the embedding space via the
iterative optimization of a conformal metric without explicitly
perturbing the surface or its embedding. By minimizing a distance
measure in the embedding space with metric optimization, our
method generates a conformal map directly between surfaces with
highly uniform metric distortion and the ability of aligning salient
geometric features. Besides pairwise surface maps, we also extend
the metric optimization approach for group-wise atlas construc-
tion and multi-atlas cortical label fusion. In experimental results,
we demonstrate the robustness and generality of our method by
applying it to map both cortical and hippocampal surfaces in
population studies. For cortical labeling, our method achieves
excellent performance in a cross-validation experiment with 40
manually labeled surfaces, and successfully models localized brain
development in a pediatric study of 80 subjects. For hippocampal
mapping, our method produces much more significant results than
two popular tools on a multiple sclerosis study of 109 subjects.

Index Terms—Cortex, hippocampus, Laplace-Beltrami embed-
ding, metric optimization, surface mapping.

I. INTRODUCTION

T HE AUTOMATED mapping and analysis of the surface
representation of neuroanatomy is critical in brain map-

ping research [1]–[5]. By accurately aligning corresponding
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anatomical regions, surface mapping techniques allow the
localization of subtle perturbations to brain morphometry in
population studies. While many promising techniques were
developed, there is still a lack of general, yet feature sensitive,
methods that can be applied to various anatomical structures.
By representing surfaces with their feature-aware Laplace-Bel-
trami (LB) eigen-functions, we propose in this work a novel
approach for intrinsic surface mapping in the LB embedding
space via the optimization of the conformal metric on the
surface. We demonstrate the robustness and generality of
our method by applying it to map both the relatively smooth
hippocampal surface and the convoluted cortical surface in
population studies.
To compare different brain surfaces, previous methods typi-

cally rely on the mapping of surfaces to a canonical domain such
as the unit sphere [2], [6]–[11]. After that, a customized warping
process can be applied to obtain the final map [2], [3], [12],
[13]. To map a surface to the canonical domain, conformal maps
are among the most popular tools because they have the math-
ematical guarantee of being diffeomorphic and the angle-pre-
serving property [7]–[9], [14], but large metric distortions in
these maps could affect the computational efficiency and map-
ping quality of the downstream warping process. During the
customized warping on the canonical domain, different choices
were made in previous works according to the specific brain
structure under study. For cortical surfaces, sulcal lines or cur-
vature features were often used to guide the surface warping in
the canonical domain [2], [3], [12]. For sub-cortical structures
without obvious anatomical landmarks, many different strate-
gies were developed that include the use of orientation in atlas
spaces [4], the minimization of group-wise shape variability
[13], and the incorporation of features derived from the Reeb
graph of LB eigen-functions[15], [16].
The eigen-system of the LB operator recently becomes in-

creasingly popular as a general and powerful tool for intrinsic
surface analysis [16]–[28]. Because the LB eigen-system
is isometry invariant, which is more general than typically
desired pose invariance in shape analysis, they are naturally
suited to shape analysis with intrinsic geometry. The LB
eigenvalues and the nodal counts of eigen-functions were
successfully applied to shape classification [17], [23], [28].
The LB eigen-functions as orthonormal basis on surfaces have
been valuable for signal denoising [18], the construction of
multi-scale shape representation [29], and the detection of
spurious outliers in mesh reconstruction [25]. As intrinsic
feature functions, the LB eigen-functions have also been used
to construct intrinsic Reeb graphs for the analysis of geometric
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and topological properties of MR images [22], [26]. One of
the most valuable properties of the LB eigen-functions is their
effectiveness in intrinsically describing the global geometric
feature of anatomical shapes. This capability was successfully
demonstrated in the development of novel descriptors of
cortical surfaces and hippocampal surfaces [16], [29]. By
viewing these feature-aware LB eigen-functions as intrinsi-
cally defined coordinates, an embedding of the surface into
an infinity dimensional space was proposed, which naturally
has the property of being isometry invariant and provides a
general framework for intrinsic shape analysis [19]. As a first
application, a histogram feature was developed in [19] from
the embedding for shape classification. In this embedding
space, a novel distance measure was proposed that allows the
rigorous comparison of similarity between surfaces in terms
of their intrinsic geometry [24]. Eigen-functions from the
Laplacian operator on weighted graphs were also proposed for
the mapping of cortical surfaces [27]. The main innovation of
this method is to build a single graph that connects the vertices
on two different surfaces and use the Laplacian embedding
of this graph to establish detailed maps. State-of-the-art cor-
tical labeling results comparable with FreeSurfer [30] were
reported with significantly improved computational efficiency.
By warping the LB embedding of surfaces and minimizing

their distance in the embedding space, we develop in this work
a novel approach for surface mapping that can be applied to gen-
eral anatomical structures. Unlike surface deformation in the
Euclidean space that directly modifies surface geometry, our
method iteratively changes the conformal metric on the sur-
face to realize its deformation in the high dimensional embed-
ding space. This is also different from previous works that di-
rectly warp the high dimensional embeddings with affine or
nonlinear transformations to minimize the distance between sur-
faces [31]–[33]. Our method ensures that the embedding is a
valid manifold during the deformation process and the final
maps between surfaces satisfy the condition of conformal maps.
Related to our work is the Ricci flow method that also warps the
metric on a surface to map it to canonical spaces such as the unit
sphere [34]. Guided by the feature-aware LB embedding, our
method computes the conformal maps directly between anatom-
ical surfaces that have much more uniform metric distortion
than spherical conformal maps. Compared with the method in
[27], where the focus is on improving the diffeomorphic corre-
spondences of cortical maps, our method takes amathematically
different approach that produces a novel way of computing con-
formal maps with much improved metric preserving property.
We also demonstrate the generality of our method with applica-
tions of mapping both cortical and sub-cortical brain structures.
Besides applying it to compute pairwise surface maps, we also
extend our method to build a group-wise atlas in the embedding
space, which can be useful in population studies. To demon-
strate the application of our method in brain mapping research,
we developed an automated cortical labeling method by fusing
the labels derived from the maps to a set of labeled atlases that
were computed in the LB embedding space. Results from two
population studies will be presented to illustrate the effective-
ness of our mappingmethod in modeling brain development and

detecting hippocampal changes in patients with multiple scle-
rosis (MS) and depression.
A preliminary version of this work was presented in a con-

ference paper [35]. Here, we present more complete descrip-
tions of the algorithm, extensive comparisons with previous
surface mapping methods, and demonstrate the generality of
our method with the mapping of both cortical and sub-cortical
structures. More extended explanations about the mathemat-
ical and algorithmic details of the proposed method have also
been added. Applications to two brain mapping studies will also
be presented: cortical thickness changes in pediatric develop-
ment and hippocampal atrophy in multiple sclerosis patients
with depression. The rest of the paper is organized as follows. In
Section II, we develop the general framework of surface map-
ping in the LB embedding space with metric optimization. The
numerical algorithm to compute the optimized metric is devel-
oped in Section III. After that, the extension of the metric opti-
mization algorithm to compute group-wise atlas in the embed-
ding space and its application for cortical label fusion will be
described in Section IV. Experimental results will be presented
in Section V to demonstrate the application of our method in
mapping brain surfaces with varying complexity. Finally, con-
clusions are made in Section VI.

II. SURFACE MAPPING VIA METRIC OPTIMIZATION

Instead of processing surfaces in the Euclidean space where
they are defined, we develop in this section a novel surface map-
ping technique in the high dimensional LB embedding space.
The key idea in our method is that deformation in the embed-
ding space is realized by modifying the metric on the surface.
By minimizing a distance measure in the embedding space, we
can obtain optimized surface maps for general anatomical struc-
tures.
Let be a genus-zero Riemannian surface where the

metric is the standard metric induced from . For a function
, the LB operator on with the metric is defined

as

(1)

where is the inversematrix of and .
Because the spectrum of is discrete, its eigen-system is
defined as

(2)

where and are the th eigenvalue and eigen-function, re-
spectively. The set of eigen-functions
form an orthonormal basis on the surface. Using the LB eigen-
system, an embedding was proposed in [36]

(3)

For the mapping of anatomical surfaces, the most critical prop-
erty of this embedding is that it is isometry invariant. By finding
the proper embedding after factoring out sign ambiguities of the
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Fig. 1. Impact of nonisometric shape differences of two surfaces (a) and
(d). The 4,5,6,7-th eigen-functions on and are plotted in (b) and

(e), respectively. Projection of onto , and onto using the
nearest point map in the embedding space are plotted in (c) and (f), respectively.

eigen-functions, we can capture the intrinsic characteristics of
the surface geometry. This robustness has been demonstrated
to be valuable in the identifications of landmark features on
anatomical structures such as the vervet and human brain cor-
tical surfaces [24], [29]. From the point of view of creating de-
tailed, and high quality surface maps, however, there are still
important differences across surfaces that need to be addressed
even after this isometry invariant embedding. For example, we
show in Fig. 1 the eigen-functions of two hippocampal surfaces
where the second surface has a stronger bending. This noniso-
metric difference results in major differences in the eigen-func-
tions as shown in Fig. 1(b) and (e). Using the nearest point
maps in the embedding space, we can project the originally reg-
ular mesh of each surface onto the other surface as plotted in
Fig. 1(c) and (f). From the large metric distortions in the pro-
jectedmeshes,we can easily see that themaps are unsatisfactory.
For surface mapping with LB embedding, the challenge is

thus to overcome the nonisometric differences of surfaces and
increase their similarity in the embedding space. To achieve this
goal, we propose in this work to compute an optimized metric
on the surface because its LB eigen-system is completely de-
termined by the metric on the surface. Let denote a
new metric on the surface , where is a pos-
itive function on . For the regular metric, we have .
By iteratively perturbing the new metric on the surface, we
can deform the LB embedding of to remove its nonisometric
differences to other surfaces.
To optimize themetric andminimize differences between sur-

faces in the LB embedding space, we need a distance measure
in the embedding space. Given two surfaces and their LB em-
beddings, a rigorous distance measure called the spectral -dis-
tance was proposed in [24].

Definition 1 (Spectral -Distance): Let and
be two surfaces. For any given LB orthonormal basis

of and of , let

(4)

The spectral -distance between and in-
dependent of the choice of eigen-systems is defined as

where and denote the set of all possible LB
basis on and , and are normalized
area elements, i.e., and .
Because the definition of the spectral -distance includes the
and operations, it is nondifferentiable with respect to

the weight . To find the optimal weight that minimizes the
spectral -distance of two surfaces and ,
we instead minimize a more tractable energy function defined
as follows:

(5)

where is metric on , , and are the basis used for
the LB embedding of and . When the en-
ergy equals zero, we can see that both energy terms have to be
zero, thus the minimizer of the energy also minimizes the spec-
tral -distance. For simplicity, we focus here on the develop-
ment of the metric optimization algorithm and only introduce
the unknown metric on one surface. The same numerical algo-
rithm, however, can be easily extended to optimize the metrics
on both surfaces. This could have potential applications in sym-
metric surface registration and atlas construction. More details
about this possibility will be discussed in Section VI.
For two genus-zero surfaces, the existence of the minimizer is

guaranteed because all such surfaces are conformally equivalent
and the LB embedding is completely determined by their metric.
Let denote the solution that minimizes the energy.
Given the optimized metric and assuming no multiplicity in
the eigenvalues [37], the optimal basis and of
and are selected from all possible sign combinations
that minimize the energy. Note that multiplicity could occur
for symmetric shapes such as the sphere, so our assumption of
no multiplicity is for anatomical shapes with no obvious global
symmetry. The twomanifolds and are iso-
metric when the metric is chosen so that the spectral -dis-
tance is zero [24]. Because the LB eigen-system is isometry in-
variant, the identity maps between the embeddings give the iso-
metric maps between the surfaces when the spectral -distance
is zero. Since isometry is a subset of conformal maps and the
weighting introduced in the metric is conformal, we have a
conformal map from to when we combine
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Fig. 2. Illustration of the composition of three maps to form the direct con-
formal map between two surfaces.

these maps as illustrated in Fig. 2. Let denote the identity
map from to , the conformal map
from to is thus

(6)

where is the inverse map of the embedding .
One important point to note is that the metric optimization

approach is not limited to pair-wise surface maps. The energy
in (5) can be generalized to incorporate multiple surfaces and
used for the computation of group-wise atlases in the embed-
ding space, which we will discuss in Section IV-A. Next we de-
velop numerical techniques to minimize the energy that are also
general and can be applied to group-wise applications.

III. NUMERICAL OPTIMIZATION

In this section, we develop the numerical algorithm for metric
optimization and the computation of surface maps in the LB em-
bedding space. As a first step, we describe the numerical scheme
to compute the LB eigen-system given the weighted metric.
After that, an energy minimization scheme will be developed
to find the optimal metric.
Let denote a manifold with the weighted metric

. The LB operator with the new metric is then
and its eigen-system is

(7)

For numerical computation, we use the linear finite element
method [38] and represent the surface as a triangular mesh

with vertices, where and are the set of vertices
and triangles. At each vertex , we denote its barycentric co-
ordinate function as , and represent the weight function as

, and , where and are
the coefficients of the basis functions. By choosing as the test
function, the weak form of (7) is

(8)

Using this weak form, we can solve a generalized matrix eigen
problem to find the eigen-system under the weighted metric

(9)

where the entry of the matrix and on the th row and th
column are defined as

if ;

if ;

otherwise.

if

if

otherwise
(10)

where is the angle in the triangle opposite to the
edge , denotes the area of a triangle, and

denote the neighborhood of vertices, and de-
notes the triangle formed by three vertices: . Because

, the coefficients in (10) are
derived from the integral of the barycentric
coordinate functions.
To minimize the energy in (5) with respect to the metric , we

represent thetwosurfacesastriangularmeshes
( , 2) and develop an iterative algorithm. For numerical
approximation of the LB embedding of the surfaces, we choose
thefirst eigen-functionsforbothsurfaces.For the targetsurface

, we compute its LB eigen-system by solving (9) with the
uniform weight and fix its embedding by picking randomly
from , which is the set of LB basis with all possible sign
combinations. For the surface , we start with the uniform
weight anditerativelyupdate and tominimize .
At each iteration, we first compute the eigen-system of

by solving (9) given the current weight and search from
to minimize . With the current basis and for

embedding, we denote and as
the nearest point maps from to , and vice versa. In each
triangle of , the nearest point to the embedding
of a vertex in is calculated and the one achieved the
minimumdistance is defined as the projection of onto

. Thus, this projection relation can be represented as the
linear interpolation from the vertices of the corresponding tri-
angle in and the interpolation coefficients are saved in the
matrix . Similarly, the projection from the embedding of
to is represented as the matrix . Given these two maps,
we write the energy in discrete form as

(11)
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where and are the surface area of and
, the matrices and are defined in (10) with uniform

weight, i.e., the standard metric induced from . Using the
eigen-derivatives with respect to the weight functions, we can
update the weight function in the gradient descent direction
as in (12), shown the bottom of the page where and

are the derivatives of the eigen-system with respect
to the conformal metric. By updating according to (12), we
iteratively move in the direction of minimizing the differ-
ences of corresponding eigen-functions of the two surfaces, and
thus their distance in the embedding space. Numerical details
about the computation of the eigen-derivatives are summarized
in the Appendix. By repeating the above steps for searching
and updating , we minimize the energy function until conver-
gence. The final conformal map is then obtained by the com-
position of the embedding , the nearest point map and
the inverse map as defined in (6). Because is an
embedding, its inverse is one-to-one and onto. Numerically we
carry the same interpolation represented in and to the Eu-
clidean space to obtain the inverse map.
When a large number of eigen-functions are used, the search

for the optimal embedding from becomes computa-
tionally expensive. We not only need to search from pos-
sible sign combinations of the eigen-functions, but also have
to consider possible switching of the order of the eigenfunc-
tions between different surfaces [31]–[33]. Histogram features
were used in previous work to search for matched eigen-func-
tions across surfaces [32]. While true multiplicities are rare,
numerically it is possible for near multiplicities to cause the
eigen-spaces to split in different directions, which would make
the direct matching of eigen-functions a difficult task. In our
algorithm, we mainly focus on resolving the sign ambiguities
and the change of the ordering of eigen-functions. The detec-
tion and analysis of high-dimensional eigen-spaces with mul-
tiplicity greater than one will be the work of future research.
In our algorithm, we take a multi-scale approach to alleviate
some of these challenges and will show that our method can
produce excellent results for many surface mapping problems.
We first optimize the embedding with low-order eigen-func-
tions, and progressively increase the dimension of the embed-
ding until the maximum order of embedding is achieved, which
greatly reduces the search space for sign ambiguities. With this
strategy, the final metric optimization algorithm is summarized
in Table I. In this algorithm, we start the metric optimization at
the order of . Convergence of the iterative process
is determined by the oscillation of the energy to be minimized.
While there is currently no theoretical guarantee about conver-
gence, we find this criterion provides a satisfactory solution
in all our experiments. Once convergence is reached for this

TABLE I
METRIC OPTIMIZATION ALGORITHM

process, we increase the order by a number , which is
typically chosen as 5 in our experiments. The algorithm stops
when the process stops at the highest order . Note that
different search strategies for the optimal embedding of
are used in step 2.1 of the algorithm. When , we
only search from the sign combinations of the eigen-func-
tions for the optimal embedding at the first iteration. In sub-
sequent iterations, for every eigen-function computed with the
updated , we find its best match with eigen-functions in the
previous iteration to establish its order and sign in the embed-
ding, which only involves comparisons. This not
only removes the sign ambiguity, but also accounts for possible
switching of the ordering of eigen-functions. When the order
is increased by , we keep the eigen-functions optimized
previously and search from the sign combinations of the
latest high-order eigen-functions for the optimal embed-
ding. This only needs to be done once in the first iteration. After
that, the same correlation operations are used to establish the
optimal embedding in subsequent iterations, where the sign and
ordering of all eigen-functions are re-established in each it-
eration.
With the numerical algorithm in Table I, we have a novel way

of computing surface maps in the embedding space. At the core
of this algorithm is the computation of the gradient of the energy
with respect to the metric to be optimized. This technique is
general and could be useful in other surface analysis problems
in the embedding space. In the next section, we will apply it to
compute a group-wise atlas in the LB embedding space.

IV. BRAIN MAPPING APPLICATIONS

For population studies, it is desirable to take a group-wise
perspective for atlas construction [13], [39]–[41]. This has the
advantage of reducing bias and speeding up convergence. In this
section, we develop a group-wise atlas construction approach in

(12)



1452 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 7, JULY 2014

the LB embedding space with the metric optimization technique
developed in the previous section. Based on this atlas construc-
tion method, a cortical label-fusion method is developed in the
embedding space.

A. Group-Wise Atlas Construction

Given a set of genus-zero surfaces ( ), our
goal is to compute a group-wise atlas that has the
smallest average distance to all individual surfaces in the em-
bedding space. Theoretically we can choose the geometric rep-
resentation of the atlas as any genus-zero surface because
they are conformally equivalent. In practice, we choose as
the surface that has the smallest distance to all other surfaces in
the set to speed up convergence. Our goal is to find the optimized
metric that minimizes the following energy function:

(13)

where and are the LB embeddings of and (
). To avoid potential bias, multiple surfaces could be

used as and the optimized energy of each choice can be
compared to find the group-wise atlas with the smallest distance
to all the surfaces.
To numerically compute the group-wise atlas, we follow a

similar approach as in Section II for metric optimization. While
the multi-scale approach in Table I could be extended to the
group-wise atlas construction, we focus here on using only the
low-order eigen-functions for computational efficiency. Prac-
tically this also makes sense as the goal is to use the atlas to
capture low frequency variability across the population without
over-fitting the data. Let denote the number of eigen-func-
tions used for embedding. At initialization, we first compute the
eigen-system for with and denote them as .
By fixing this initial embedding, we remove sign ambiguities
in all surfaces as follows. For each surface , we compute
its eigen-system and search through sign combinations to
obtain the embedding that minimizes the distance to the em-
bedding of . We denote the eigen-system for this embed-
ding of as . Note that they are fixed in subse-
quent iterations. After that, we iteratively optimize the weight
to find the group-wise atlas. At each iteration, we compute the
eigen-system of . The sign ambiguities are removed
by comparing with the eigen-system computed in the previous
iteration as in Table I. Given the embedding, the gradient of the

energy with respect to the metric can then be computed as
defined in (14) as shown at the bottom of the page where
denote the area of surface, and are defined as in (10) for

and , respectively. The interpolation matrix , and
are used to represent the nearest point maps between and

in the embedding space. We update in the gradient de-
scent direction and continue this process until convergence to
obtain the group-wise atlas . Note there is no aver-
aging of surfaces in the group for the computation of the atlas,
and it has exactly the same mesh structure as the initial surface

.

B. Fusion of Cortical Labels

Anatomically cortical surfaces are composed of a set of rel-
atively well-defined regions, and their automated parcellation
can help ROI-based analysis for features such as gray matter
thickness [11], [30], [42]. Based on the group-wise atlas and
conformal surface maps, we develop here a novel approach for
automated cortical labeling by fusing the manually delineated
labels on a set of surfaces [43]–[45].
Given a set of surfaces ( ) and their manu-

ally delineated label , where is a set of discrete
labels, we first construct their group-wise atlas . Let

denote the LB embedding of the group-wise atlas. For each
surface, we then compute its optimized embedding using
the pair-wise surface mapping algorithm in Table I that min-
imizes the distance to . For an unlabeled, subject surface

, we compute its optimal metric such that the distance
between its LB embedding and is minimized. With
all the embeddings, the conformal maps from
the subject surface to the labeled surfaces can be defined easily

(15)

where denote the nearest point map from to .
Using these maps, we calculate the label on the subject sur-

face by fusing the labels from ( ) with
weighted voting [43]–[45]. At every point of , the weight
of are computed according to the similarity of mean curva-
ture between the labeled and subject surface. Let be
the th vertex, and be its -ring neighborhood. The map
of this set of points onto is . The similarity be-
tween and at this vertex is defined as the Pearson’s
correlation coefficient between the mean curvature of the two
set of points and

(16)

(14)
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Fig. 3. Metric distortions of a cortical and hippocampal surface during the LB
embedding process. For each surface, the 10th and 90th percentile of edge length
distortion ratio with respect to the dimension of the embedding space are plotted.
(a) Cortical surface. (b) Hippocampal surface.

where denote the mean curvature. Following the label fu-
sion approach, we calculate the weight for each label as

by summing up the similarity mea-
sure from surfaces with the same label at the corresponding
point . The final label at the vertex is derived as
the one with the maximal weight

(17)

By applying the label fusion approach to all vertices on ,
we obtain the label map for the whole cortical surface.

V. EXPERIMENTS

In this section, we demonstrate our metric optimization ap-
proach for surface mapping by applying it to map cortical and
hippocampal surfaces in brain imaging studies. We will first il-
lustrate the detailed property of our method in individual map-
ping experiments. After that, both the cortical labeling and hip-
pocampal mapping methods derived from our metric optimiza-
tion approach will be compared with previous surface mapping
methods and applied to two population studies to demonstrate
their potential in large scale brain mapping research.

A. Mapping Cortical and Hippocampal Surfaces

In this experiment, we apply our algorithm to the mapping of
cortical and hippocampal surfaces extracted from MR images.
We will show that our method can achieve high quality mapping
results on brain surfaces of varying complexity and demonstrate
its applicability in studying general neuroanatomical structures.
Before we perform surface mapping with our method, we

need to determine the number of eigen-functions to use
for different surfaces. Ideally we want the embedding to be as
isometric as possible to minimize numerical errors of all the
interpolation operations in the embedding space, but computa-
tional cost should also be considered for large meshes. For this
purpose, we calculate the metric distortion during the embed-
ding process. Given a triangular mesh , its em-
bedding is also a triangular mesh , where

denotes the coordinates of the vertices in the embed-
ding space. The metric distortion during embedding is calcu-
lated as the ratio of the length of corresponding edges in
and after normalization with respect to surface areas. For a

Fig. 4. Demonstration of the mesh quality in the cortical mapping experiment.
(a) Source surface . (b) Target surface . (c) Projection of the mesh of

onto with our map. (d) Projection of the mesh of onto the unit
sphere with the spherical conformal map. (e) Projection of the mesh of
onto with the map computed by Spherical Demons. (f) Metric distortion of
our map from to : [ , same for (g), (h), (j),
and (k)]. (g) Metric distortion of the spherical conformal map: . (h)
Metric distortion of the map computed by Spherical Demons: . (i)
Point set on for the computation of geodesic distances. (j) Metric distor-
tion of our map as measured by geodesic distances: . (k) Metric
distortion of the Spherical Demons map as measured by geodesic distances:

.

cortical and hippocampal surface, we plotted in Fig. 3 the 90th
and 10th percentile of edge length distortion ratio as a function
of the number of eigenfunctions. With the increase of ,
the metric distortion decreases as the two curves move toward
each other. For the cortical surface, we can see the largest drop
in metric distortion happens when we increase from 3 to
6. For the hippocampal surface, the largest drop in metric dis-
tortion occurs when we increase from 5 to 10. The two
curves in Fig. 3(b) also move much rapidly toward each other
as compared with the curves in Fig. 3(a). Guided by the plots in
Fig. 3, we typically choose for cortical surfaces as
a trade-off between embedding quality and computational cost.
For hippocampal surfaces, the mesh size is much smaller, so we
can afford to pick a higher in our experiments.
For the mapping of cortical surfaces, the source and target

surfaces are shown in Fig. 4(a) and (b), where the surfaces are
coloredwith their mean curvature. Both surfaces are represented
as triangular meshes with 10 000 vertices. For the parameters in
Table I, we choose , and . The
iterative process in metric optimization is illustrated in Fig. 5.
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Fig. 5. Iterative energy minimization process for metric optimization. (a) Minimization of the energy. (b)–(h) Iterative changes of the metric . (a) Energy. (b)
. (c) . (d) . (e) . (f) . (g) . (h) .

Fig. 6. Alignment of eigen-functions between the source surface and the
target surface with metric optimization. The third and sixth eigen-functions
are shown here for comparison, especially in regions highlighted by the dashed
ellipsoids. The eigen-functions of after metric optimization are denoted as

and . (a) . (b) . (c) . (d) . (e) . (f) .

The decrease of the energy with the increase of the iterations is
plotted in Fig. 5(a). Starting with plotted in Fig. 5(b),
the metric gradually changes and stabilizes after iteration 30.
The whole computational process took around 3 h on a 2.6-GHz
Intel Xeon CPU with maximal memory consumption around 3
GB. With the minimization of the energy, the LB embedding
of the surface moves toward the embedding of the target sur-
face. To demonstrate that this is indeed the case, we plotted the
third and sixth eigen-functions of the source surface before and
after metric optimization as compared with the target surface in
Fig. 6. The most obvious changes can be observed in regions
highlighted by the dashed ellipsoids, where the agreement of
the corresponding eigen-functions can be seen clearly. Com-
pared with the optimized metric plotted in Fig. 5(h), we can see
that these two regions are unsurprisingly among those with large
metric deformations.
Using our map from the source to the target surface, we can

project the mesh of in Fig. 4(a) to the target surface .
The result is plotted in Fig. 4(c), where the projected mesh is
color-coded by the mean curvature of . We can see not only

the regular mesh structure is very well preserved during the pro-
jection, but the folding pattern of the gyrus of aligns very
well with the target surface. As a comparison, we also projected
the mesh of the source surface onto the unit sphere using its
spherical conformal map computed with the method in [9]. The
projected mesh is also color-coded with the mean curvature of

. The difference of our direct conformal map between cor-
tical surfaces and the spherical conformal map can be best il-
lustrated with the metric distortion during the mapping process,
which we measure as the ratio of the length of corresponding
edges of the projected mesh in Fig. 4(c) and (d) to the original
mesh in Fig. 4(a). The histograms of the metric distortion of
these two maps are plotted in Fig. 4(f) and (g). Compared with
the metric distortion of the spherical map in Fig. 4(f), we can see
that the histogram in Fig. 4(e) is centered around one and shows
the conformal map computed with our method does a much
better job in reducing metric distortion. For further comparison
with spherical maps, we applied the publicly available Spherical
Demons registration algorithm [11] to register the spherical con-
formal maps of both surfaces using their mean curvature. The
source mesh was then projected to target surface using
the registered spherical map and the result is shown in Fig. 4(e).
The histogram of the edge length distortion ratio between the
projected mesh in Fig. 4(e) and (a) is plotted in Fig. 4(h). Clearly
it has much more variable metric distortion as compared to our
method.
Besides the distortion of local edge length, we also used pair-

wise geodesic distances of a set of uniformly scattered points
on the surface to compute more global metric distortions of the
maps. As shown in Fig. 4(i), a set of 100 points scattered over the
source surface were used in this experiment. The geodesic
distance between each pair of points was computed with the fast
marching algorithm on triangular meshes [46]. Using the sur-
face maps computed with our method and Spherical Demons,
we projected the point set onto the mesh in Fig. 4(c) and (e).
Pairwise geodesic distances of the point set were then com-
puted on the projected meshes and their ratio with respect to the
corresponding pairwise geodesic distance on the source surface

was calculated. As a summary, the histogram of the ratio
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Fig. 7. Mapping results of hippocampal surfaces. (a) Source surface . (b)
Target surface . (c) Optimized metric . (d) Projection of the source mesh
onto the target surface. (e) Projection of the source mesh onto the unit sphere
with spherical conformal map. (f) Projection of the source mesh onto the target
surface after Spherical Demons registration. (g) Metric distortion of our map:

[ , same for (h), (i), (k), and (l)]. (h) Metric distortion
of the spherical conformal map: . (i) Metric distortion of the map
after Spherical Demons registration: . (j) Point set for the compu-
tation of geodesic distances. (k) Distortion ratio of Geodesic distances with our
map: . (l) Distortion ratio of geodesic distances with the map from
Spherical Demons registration: .

of geodesic distances from our method and Spherical Demons
are plotted in Fig. 4(j) and (k). As can be seen from the much
smaller standard deviation of geodesic distance distortion ratio
in Fig. 4(j), our method achieved better performance in pre-
serving more global geodesic distances as well.
Next we show the mapping results of two hippocampal sur-

faces with the use of a much higher number of eigen-functions.
The source and target surfaces are plotted in Fig. 7(a) and (b).
These are the same surfaces shown in Fig. 1(a) and (d), except
that we color-code both surfaces here with their mean curvature
for better visualization of mapping quality. The nonisometric
difference between the surfaces can be seen that the target sur-
face has more bending. This is reflected in the eigen-functions
plotted in Fig. 8, where the sixth and seventh eigen-functions of
both surfaces are plotted. To minimize their differences in the

embedding space, we applied the algorithm in Table I with the
following parameters: , , and .
Note that here the multi-scale optimization scheme was applied
for computational efficiency. For these hippocampal surfaces
with 1000 vertices, the computational process took 20 min on a
2.6-GHz Intel Xeon CPU and the maximal memory consump-
tion is around 60 MB. The optimized metric is plotted on the
source surface in Fig. 7(c). From the eigen-functions computed
with the optimized metric shown in Fig. 8(c) and (d), we can
see the metric optimization process successfully aligns the LB
embeddings of the two surfaces. With the direct conformal map
from the source to the target surface, we can project the mesh of
the source surface onto the target surface as shown in Fig. 7(d),
which is color-coded with the mean curvature of the source sur-
face. By comparing the coloring of the mesh in Fig. 7(b) and (d),
we can see corresponding regions are very well aligned. More
quantitatively, the correlation coefficient between the mean cur-
vature of corresponding points on the source and target mesh
is 0.87. Similar to the cortical mapping experiment, we also
project the source mesh onto the unit sphere with the spherical
map computed with the algorithm in [9] and plot the result in
Fig. 7(e), which shows the spherical map generates very irreg-
ular mesh structure. This is corroborated by the histograms of
metric distortions shown in Fig. 7(g) and (h) from our map and
the spherical map, respectively. For the spherical maps of both
hippocampal surfaces, the Spherical Demons algorithm was ap-
plied to align the surfaces with their mean curvature. After that,
the obtained map was used to project the source mesh onto
the target surface as shown in Fig. 7(f). We can see it has more
irregular mesh structure than the mesh in Fig. 7(d) even though
the mean curvature is matched thanks to the Spherical Demons
registration, which resulted in a correlation coefficient of 0.85
between the mean curvature of the source mesh and its projec-
tion on the target surface. The edge length distortion ratio be-
tween the projected mesh in Fig. 7(f) and source mesh Fig. 7(a)
is calculated and its histogram is plotted in Fig. 7(i). For the
three maps shown in Fig. 7(d)–(f), the standard deviations of
the edge distortion ratio are: 0.16, 0.71, and 0.38. This confirms
that our method produces the most regular mesh structure. We
also quantify the metric distortion of surface maps with more
global geodesic distances of a set of 50 points shown in Fig. 7(j).
Similar to the cortical mapping experiment, the ratio of pairwise
geodesic distances are calculated for our map and the Spherical
Demons map, and the histograms of the geodesic distance dis-
tortion ratio of the two maps are plotted in Fig. 7(k) and (l). For
the two maps shown in Fig. 7(d) and (f), the standard deviation
of the geodesic distance distortion ratio are 0.10 and 0.17. This
further confirms that our method achieves better performance
in preserving metric than the maps produced by spherical regis-
tration. These results demonstrate that our method can generate
hippocampal surface maps with highly regular metric distortion
and excellent alignment of geometric features.

B. Multi-Atlas Cortical Label Fusion

In the second experiment, we demonstrate our metric
optimization method in group-wise atlas construction and
cortical label fusion. Using the LONI Probabilistic Brain Atlas
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Fig. 8. Improved agreement of hippo eigen-functions. Sixth and seventh eigen-
functions are shown here for comparison. The eigen-functions of after
metric optimization are denoted as and . (a) . (b) . (c) .
(a) . (b) . (c) .

(LPBA40) [47], which consists of a set of 40 manually la-
beled MR volumes, we develop an automated cortical labeling
system by fusing labels from the atlases. Cross-validations will
be performed on the LPBA40 data to quantitatively evaluate
the accuracy of the labeling system. The effectiveness of this
system in brain mapping study will also be demonstrated on a
brain development study with 80 subjects.
As a first step for atlas construction, we reconstructed the cor-

tical surfaces from the T1-weighted volumes of the LPBA40
data set with the method in [26]. A set of 24 manually delin-
eated gyral labels were projected onto the cortical surfaces to
generate the individual atlas surfaces in our system. Example
surfaces with labels are plotted in Fig. 9. In our experiment, only
the left hemispherical surfaces were used for atlas construction,
but the automated labeling system was applied to both left and
right hemispherical cortical surfaces. This helps demonstrate the
robustness of our intrinsic mapping method to contralateral dif-
ferences of cortical surfaces. From the 40 atlas surfaces, we con-
structed a group-wise atlas surface with eigen-functions.
As a test of the robustness of the group-wise atlas construction
algorithm, we started it with two different initial surfaces and
compared the obtained atlases. To visualize the results, we ap-
plied multi-dimensional scaling (MDS) to the 40 atlas surfaces
and the two group-wise atlases with their spectral -distances as
the dissimilarity measure. The results are shown in Fig. 10. We
can see clearly that the group-wise atlas construction algorithm
converges to the same solution with two different initializations.
For the first initial surface, the group-wise atlas is visualized in
the center of Fig. 9, where the coloring on the surface shows the
optimized weight function.
With the pairwise mapping algorithm, we computed the con-

formal map from every individual atlas surface to the group-
wise atlas surface to enable the multi-atlas fusion algorithm in
Section IV-B. To automatically generate the label on a new sur-
face, we first computed its conformal map to the group-wise
atlas with metric optimization. After that, the fusion algorithm
developed in Section IV-B can be applied.

Fig. 9. Illustration of the group-wise atlas construction using the LPBA40 data.
Group-wise atlas is plotted in the center of the figure.

Fig. 10. Projection of the 40 surfaces (plotted as ) and group-wise atlases
(plotted as ) from two initial surfaces (plotted as ) onto a 2-D plane using
MDS.

Using the 40 individual atlas surfaces with manual labels,
we first conducted a leave-one-out cross-validation to quantita-
tively evaluate the performance of our labeling algorithm. Note
that the group-wise atlas surface only serves as a geometric
center of the population and there is no label associated with the
surface, thus it was fixed during the cross-validation. For each
of the 40 surfaces, we computed its automatically generated la-
bels by fusing the manual labels from the other 39 surfaces.
The Dice coefficient between the manual and fused label was
computed for each region on all surfaces. The mean and stan-
dard deviation (STD) of the Dice coefficients for the 24 ROIs
are listed as Dice I in Table II. Across all regions, the average
Dice is 0.82. For many regions, the Dice coefficients approach
0.9. As a comparison, we turned off the metric optimization
process in all computations and ran the leave-one-out cross-val-
idation experiment again to generate fused labels on the 40
surfaces. The mean and STD of the Dice coefficients between
manual and automatically generated labels are listed as Dice II
in Table II. Interestingly we can see that these two methods
achieved very similar performance in many of the regions,
which indicates that label fusion applied to the LB embedding
space can already achieve very good results. For each of the 24
ROIs, we applied a t-test to the 40 Dice coefficients from these
two methods to compare if their performance is significantly
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TABLE II
LEAVE-ONE-OUT CROSS-VALIDATION RESULTS. DICE COEFFICIENTS ARE LISTED AS . (DICE I: LABEL FUSION WITH METRIC OPTIMIZATION; DICE

II: LABEL FUSION WITHOUT METRIC OPTIMIZATION. DICE III: FREESURFER LABELING RESULT ONE. DICE IV: FREESURFER LABELING RESULT TWO)

different. In seven ROIs (pre-cuneus, middle-occipital, infe-
rior-occipital, cuneus, middle-temporal, inferior-temporal, and
lingual gyrus), Dice I is significantly higher ( )
than Dice II. There is no ROI that Dice II is significantly better
than Dice I. This shows that much improved performance of
gyral labeling can be achieved with the help of metric optimiza-
tion.
To compare with state-of-the-art cortical labeling methods,

we first mapped all 40 surface to the sphere and then applied
Spherical Demons to align them using their mean curvature.
We chose Spherical Demons as the tool for spherical registra-
tion because it is computationally efficient and can obtain the
same level or better performance in cortical parcellation than
the spherical registration tool in FreeSurfer [11]. After that,
tools in FreeSurfer [30] were applied to perform the leave-
one-out cross-validation. For each surface, the
tool of FreeSurfer was applied to automatically generate the la-
bels using the classifier learned by the tool of
FreeSurfer from the other 39 surfaces. To test the impact of dif-
ferent spherical mapping methods on the accuracy of cortical
labeling, we repeated the experiments with spherical maps ob-
tained from two different ways: the spherical conformal map
and the spherical map generated by the and

tool in FreeSurfer. For spherical maps calcu-
lated from each method, Spherical Demons registration and
FreeSurfer labeling were applied. Dice coefficients between
manual and automatically generated labels were computed and
their mean and STD are listed in Table II: Dice III for the
spherical conformal map and Dice IV for the FreeSurfer spher-
ical map. For each ROI, a t-test was applied to the Dice co-
efficients from our metric optimization method (Dice I) and
FreeSurfer (Dice III or Dice IV) to test if there are signifi-
cant differences. From the t-test results applied to Dice I and
Dice III, there are 7 ROIs that our method achieved signifi-
cantly better performance ( ): gyrus-rectus, infe-
rior-occipital, para-hippocampal, lingual, fusiform, insular and
cingulate gyrus. There is no ROI that Dice III is significantly
better than Dice I. From the t-test results applied to Dice I and
Dice IV, there are 5 ROIs that our method achieved signifi-
cantly better performance: gyrus-rectus, para-hippocampal, lin-
gual, insular, and cingulate gyrus, and one ROI that FreeSurfer
achieved better performance: cuneus. For the rest of the ROIs,

Fig. 11. Cortical labeling results on both hemispheres of five subjects from
the pediatric study. Top row: superior view. Bottom row: inferior view.

both our method and FreeSurfer achieved similar level of accu-
racy. In Table II, we have highlighted results of Dice I with red
color for ROIs that it achieved significantly better performance
in both comparisons with Dice III and IV from FreeSurfer. The
Cuneus region that Dice IV obtained significantly better per-
formance than Dice I is also highlighted with blue color. From
these comparisons, we can see our method achieved excellent
performance in automated cortical labeling.
To demonstrate the effectiveness of our method in population

studies, we applied it to MR images from a brain development
study. The dataset is composed of T1-weighted MR volumes
from 80 subjects with an age distribution from 7 to 17 years old.
For each MR volume, both pial and white matter cortical sur-
faces were automatically extracted with the method in [26] and
the labeling algorithm was applied to automatically generate the
labels on the pial surface of both the left and right hemisphere.
Because our surface mapping and labeling algorithms are in-
trinsic to surface geometry, there is no need of special handling
for either hemisphere. As an illustration, we plotted the labeling
results of five subjects in Fig. 11. For each subject, superior and
inferior views of the labels on both hemispheres were plotted.
We can see that excellent results have been obtained for all sub-
jects.
With cortical labels, we can investigate localized changes

of structural and functional features during brain development.
Here we focus on the change of gray matter thickness with age.
Gray matter thickness at each point of the pial surface was com-
puted as the shortest distance to the white matter surface [26]
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Fig. 12. Regression results on the left hemisphere. (a) Results of the superior-fronal, inferior frontal, superior-parietal, medial-occipital, and medial-temporal
gyrus. (b) Results of the cingulate, precuneous, lingual, fusiform, and inferior-occipital gyrus.

and the mean thickness of each gyrus was used as the variable
for regression analysis. For brain development, it was reported
in various studies that an inverted U-shape trajectory, which
was typically modeled with third order polynomials, reflects the
underlying synaptic pruning process [5], [48]. In this experi-
ment we follow a similar approach and applied the third order
polynomial for the regression analysis of thickness changes
versus age. The significance of the regression model is mea-
sured with the -test. For demonstration purposes, we plot the
results of five regions on the lateral and medial surfaces of the
left hemisphere in Fig. 12, where the adjusted and -value
of the -test were included. We can see that highly significant
results were obtained with our method. The results also show
that these regions experience different development processes.
In particular, the inferior and superior frontal gyrus clearly
demonstrate a nonlinear development process, while the thick-
ness of regions such as the superior parietal gyrus exhibits an
almost linear trajectory. This is consistent with previous reports
that higher-order frontal regions mature later than lower-order
regions such as the superior parietal gyrus [5], [48]. This exper-
iment demonstrates that potential of our method in large scale
cortical mapping studies.

C. Hippocampal Mapping in Multiple Sclerosis

In the third experiment, we applied our mapping algorithm
to study hippocampal atrophy in MS patients with depression.
The dataset includes T1-weighted MR images from 109 female
patients with MS. Using the Center for Epidemiologic Studies-
Depression (CES-D) scale as the measure for depression, the
subjects were split into two groups: low depression (
) and high depression ( ). Hippocampal masks

were automatically segmented from theMR image with the FSL
software [49]. The mesh representation of each hippocampus
was then generated with the surface reconstruction method in
[25], which has the advantage of being able to remove outliers
without introducing shrinkage. In this experiment, we applied
our method to map the right hippocampus of all subjects, which
establishes one-to-one correspondences across population for
points on hippocampal surfaces and allows the application of
statistical tests to detect localized group differences.

As a first step, we constructed a group-wise atlas as the
target for each subject. For the construction of the group-wise
atlas, we used the first 10 eigen-functions for metric optimiza-
tion. The selection of the order at 10 is mostly based on the
trade-off between computational cost and the metric distor-
tion in embedding. The parameter analysis in Fig. 3(b) shows
that the largest drop in metric distortion occurs when we in-
crease the order from 5 to 10. While further increasing the
order will reduce the metric distortion, the computational cost
will rise dramatically and become infeasible for a large collec-
tion of shapes used here. From the 109 surfaces, we picked the
surface with the minimal spectral -distance to all other sub-
jects as the geometric representation of the group-wise atlas.
A remeshing process was applied to this surface to generate
a regular mesh representation with 1000 vertices [50], which
we denote as the atlas surface. The number of vertices selected
in the remeshing process is to reduce computational cost in
metric optimization, yet preserve enough detail for the detec-
tion of group differences. To complete the construction of the
group-wise atlas, we computed the optimized metric by mini-
mizing the energy in (13) and the result is plotted in Fig. 13 on
the atlas surface. To study group differences, all surfaces were
mapped to this group-wise atlas with the metric optimization
algorithm in Table I with the same parameters as in the first
experiment: , , . Using the
conformal maps to the atlas, we pulled back the mesh structure
of the atlas surface to each subject surface, which established
the one-to-one correspondences for statistical analysis. At each
vertex, the thickness was then computed using the Reeb graph
of the first LB eigen-function [16]. Using the thickness as the
variable, a two-tailed t-test was applied at each vertex to map
the differences between the low-depression and high-depres-
sion groups. The -value generated by the t-test at each vertex
is plotted onto the atlas surface in Fig. 14(a) and (b). The corre-
lation between thickness and the CES-D score are plotted in
Fig. 14(c) and (d), where we have masked out regions with
nonsignificant correlation coefficients ( ). Clearly the
regions with significant -values have mostly negative correla-
tion coefficients. The detected group differences thus show pa-
tients with high depression have more atrophy in those regions.
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Fig. 13. Optimized metric of the group-wise atlas of the hippocampal sur-
faces. (a) Superior view. (b) Inferior view.

Fig. 14. Hippocampal mapping results from our method. (a), (b) Superior
and inferior views of the -value map. (c), (d) Superior and inferior views
of the correlation coefficients with CES-D scores. Note that regions with
nonsignificant correlation coefficients have been masked out and plotted as
gray. 10 000 permutation tests were applied and an overall -value of 0.016
was obtained.

To correct for multiple comparison, we applied 10 000 permu-
tation tests and obtained an overall -value of 0.016 [3], which
shows the significance of the -value map in Fig. 14(a) and (b).
For comparisons with previous methods, we first applied the

popular SPHARM tool [51], [52] to map the right hippocampus
of all subjects and test for group differences. With the seg-
mented masks from all subjects as the inputs, the SPHARM
tool was able to automatically generate their mesh representa-
tions whose vertices have one-to-one correspondences across
all subjects. As suggested in the manual of the SPHARM tool,
spherical harmonics up to order 12 was used for hippocampal
mapping. An icosahedron subdivision of the sphere at the di-
vision rate 10 was adopted such that all surface meshes will
have 1024 vertices that are comparable to the number of ver-
tices in our group-wise atlas. It was shown that the reconstructed
meshes from SPHARM tended to have more artificial oscilla-
tions than the meshes we generated with the method in [25].
To factor out the impact of different mesh reconstruction algo-
rithms, we projected the SPHARM mesh to the mesh used in

Fig. 15. Mapping results from SPHARM for comparisons with our method. (a)
Superior view. (b) Inferior view. 10 000 permutation tests were applied and an
overall -value of 0.18 was obtained.

our experiment. For each vertex in the SPHARMmesh, we find
the triangle from our mesh that has the smallest distance to this
vertex and calculate its projection as the nearest point in that tri-
angle. Thus the projection has sub-vertex accuracy. This is the
same projection process we used in the LB embedding space
for calculating maps between the embeddings of surfaces. After
that, the thickness was computed for statistical analysis. This
allows us to focus on the impact of the correspondences gener-
ated by the SPHARM tool on studying group differences. The
-value map from the SPHARM correspondences is plotted in
Fig. 15(a) and (b). We can see very few regions reach signif-
icance in detecting group differences. To correct for multiple
comparison, the same number of permutation tests were applied
and it gave an overall -value of 0.18 to this -value map, which
failed to reach significance.
Next we compare our method with the ShapeWorks tool that

uses an entropy-based particle system to perform group-wise
surface mapping [53]. The inputs to the ShapeWorks tool are the
109 segmented masks. The only parameter to set are the number
of particles to use and the STD of the Gaussian kernel used in
the preprocessing step of ShapeWorks for smoothing the mask
boundaries, which we found a necessary step for ShapeWorks
to achieve good performance. To be comparable to the number
of vertices used in previous experiments, we set the number of
particles to be 1024. For all masks, we set the mm
to avoid overly shrinking the boundary. In our experience, if
the STD is set to be , it will result in the removal of critical
anatomical information, especially in thin regions such as the
subiculum of the hippocampus. After group-wise optimization,
ShapeWorks generate a set of particles for each shape that have
one-to-one correspondences across the population.
Unlike our method and the SPHARM tool, there is no

consistent mesh structure across population for the particles in
ShapeWorks. This means that the correspondences could be
nondiffeomorphic. To demonstrate this point, we computed a
mesh representation of the particles in the mean shape generated
by ShapeWorks. As shown in Fig. 16(a), a very uniform mesh
structure was generated for the mean shape, where the particles
from ShapeWorks serve as the vertices of the triangular mesh.
Using the correspondences of particles, the mesh structure of
the mean shape was applied to all subjects. As an example,
we show in Fig. 16(b) the mesh representation of one subject
surface, where several self-intersections were highlighted with
arrows. In Fig. 16(c), we also show the projection of the mesh
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Fig. 16. Nondiffeomorphic mapping results from ShapeWorks. (a) Mesh representation of the mean shape from ShapeWorks results. (b) Self-intersections of one
subject shape. (c) Projected mesh structure from the group-wise atlas to the same subject with our method. (d) Histogram of self-intersections in all 109 ShapeWorks
mapping results.

structure from the group-wise atlas in Fig. 13 to the same
subject with our method. Clearly there is no self-intersection.
The histogram of the number of self-intersections in the 109
hippocampal shapes computed by ShapeWorks was plotted
in Fig. 16(d), which shows that this is a general problem for
particle-based optimization in ShapeWorks. The same test of
self-intersection was also applied to all 109 mapped surfaces
computed by our method and no self-intersection was detected.
For thickness-based statistical analysis, we projected the par-

ticles of each subject surface onto the corresponding mesh used
in our experiment to pull back the thickness with linear in-
terpolation. After that, the same statistical analysis can be ap-
plied to every particle to test for group differences. To visualize
the results, we plotted the -value map on the mean shape in
Fig. 17(a) and (b). To correct for multiple comparisons, we also
applied 10 000 permutations to the ShapeWorks mapping re-
sults and an overall -value of 0.042 is achieved, so the map
in Fig. 17 reaches significance. On the other hand, the -value
map generated by our method, as shown in Fig. 14, not only
reaches a higher level of significance from permutation tests,
but also shows more continuity in regions with highly signifi-
cant -values. This is especially obvious from the inferior view
of map shown in Fig. 14(b) and Fig. 17(b). More quantitatively,
there are only 2.9% particles in Fig. 14 that have a -value below
0.01, but 6.1% points with -values below 0.01 in our map in
Fig. 14. Overall we can see that our method has the advan-
tage of being able to compute high quality surface maps with
no self-intersection, and can produce more significant -value
maps for this hippocampal study. On the other hand, we have
to be cautious in interpreting the results when comparing the
-value maps because no ground truth is available about the
hippocampal atrophy. For this study, we used correlation with
CES-D scores shown in Fig. 14(c) and (d) as a simple way of
testing whether the detected shape differences are clinically in-
terpretable. To obtain ground truths about neuronal loss in hip-
pocampus, however, would require data from postmortem his-
tological studies. This is future work of great value to medical
shape analysis research.

VI. DISCUSSION AND CONCLUSION

In this paper, we developed a novel approach for the mapping
of neuroanatomical surfaces based on their intrinsic geometry.
By optimizing a conformal metric, our method minimizes a dis-
tance measure in the LB embedding space and generates con-
formal maps directly between anatomical surfaces with highly

Fig. 17. Mapping results from ShapeWorks for comparisons with our method.
(a) Superior view. (b) Inferior view.

regular metric distortion. This metric optimization technique
has also been generalized to the construction of group-wise sur-
face atlas in the embedding space and used for cortical label
fusion and population studies. We demonstrated the robustness
and generality of our method by successfully applying it to map
cortical and hippocampal surfaces in two brain mapping studies.
In this work, we focused on unidirectionally warping the

metric of a single surface to minimize its distance to a target
surface or a group of surfaces in the LB embedding space, but
the techniques developed in this paper can be extended to si-
multaneous warping of the metrics on two or multiple surfaces
with a slight modification to the algorithm described in Table I.
Instead of running Step 2 of the algorithm only for one surface,
we only need to repeat it for each surface with the metric and
embedding of the other surfaces fixed. As an example, we
show in Fig. 18 the optimized metrics for the two hippocampal
surfaces in Fig. 7 after this modification. By comparing the
metrics on the two surfaces in Fig. 18(a) and (b), we can see
intuitively they complement each other throughout the sur-
faces. More specifically, in regions where the first surface
expands with the increase of its metric, the second surface
works cooperatively by decreasing its metric at corresponding
locations. From a transitivity point of view, this symmetric
warping process is equivalent to establishing the map between

and by going through a middle surface in the
embedding space. Compared with the results in Fig. 7, we
found numerically that the distances of corresponding vertices
of the unidirectional and symmetric mapping results are around
12% of the average edge length of the surfaces. This shows
the transitivity error is almost an order of magnitude below
the resolution of the mesh representation of the surfaces. The
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Fig. 18. Results from simultaneous metric optimization for the mapping of two
hippocampal surfaces. (a) Optimized metric on (b) Optimized metric on

.

symmetric warping process could be viewed as a way of com-
puting the mean shape of two surfaces in the embedding space.
For future work, we will study the extension of our algorithm
to the simultaneous warping of multiple surfaces. This could
lead to new ways of computing group-wise atlases in the LB
embedding space.
One important direction in our future work is to improve

the computational speed of our algorithm. The bottleneck of
the metric optimization process is the calculation of the eigen-
derivatives. We will investigate coordinated descent strategies
to cycle through a different set of vertices at each iteration to
reduce the number of eigen-derivatives to be computed. We
will also study new ways of representing the weight function
to reduce its dimension, and thus the computational burden on
eigen-derivative evaluation.
For cortical label fusion, we used a weighted voting approach

in our current work. For further improvement, we could incor-
porate smoothness regularization for better regularity of region
boundaries. More interestingly, we plan to introduce the novel
fusion strategy proposed recently in [54] to our labeling system
and investigate whether it will further improve the performance
of automated cortical labeling.
For future work, we will also conduct more extensive valida-

tion of our algorithm on the mapping of other sub-cortical sur-
faces extracted from T1-weighted MR images. The extension of
themapping algorithm for the analysis of fiber bundles extracted
from diffusion MR images will be an interesting direction. Be-
sides intrinsic geometry, we will also explore the integration of
multi-modal measures with the LB embedding for more accu-
rate mapping of brain anatomy.

APPENDIX
GRADIENT OF EIGEN-VALUES AND EIGEN-FUNCTIONS

The generalized eigen-function problem is

(18)

where denotes the matrix in (9). Following the algo-
rithm proposed in [55], we describe here how to compute the
derivative of the eigenvalues and eigen-functions with respect
to the weight .

Let and denote the th eigenvalue and eigen-function,
we can compute the derivative on both sides of the above equa-
tion as

(19)

where is independent of . From the above equation, we
have

(20)

Pre-multiplying both sides with , we obtain

(21)

because and .
Let . To com-

pute the derivative of the eigen-function, we then need to solve

(22)

Because is singular, this equation is under-determined.
To address this problem, Nelson proposed to write

(23)

and we obtain

(24)

which is still under-determined. To fix this problem, we can fix
the th component of to be zero, where is the index of the
component that has the largest magnitude in . This is realized
by setting the th component of as zero and the th row and
column of as zero except the diagonal term, which
is set to one. The equation becomes

(25)

where is the 1 to th components of , and is
the to the end of the vector . This problem is nonsingular
given the assumption that there is no multiplicity at [55]. We
can solve it and obtain .
Using the condition that , we obtain

(26)

Substituting the expression into the
above equation, we get

(27)

This completes the solution for .
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