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All-optical image denoising using a diffractive
visual processor
Çağatay Işıl 1,2,3, Tianyi Gan1,3, Fazil Onuralp Ardic1, Koray Mentesoglu1, Jagrit Digani1, Huseyin Karaca1,
Hanlong Chen1,2,3, Jingxi Li 1,2,3, Deniz Mengu1,2,3, Mona Jarrahi 1,3, Kaan Akşit4 and Aydogan Ozcan 1,2,3✉

Abstract
Image denoising, one of the essential inverse problems, targets to remove noise/artifacts from input images. In
general, digital image denoising algorithms, executed on computers, present latency due to several iterations
implemented in, e.g., graphics processing units (GPUs). While deep learning-enabled methods can operate non-
iteratively, they also introduce latency and impose a significant computational burden, leading to increased power
consumption. Here, we introduce an analog diffractive image denoiser to all-optically and non-iteratively clean various
forms of noise and artifacts from input images – implemented at the speed of light propagation within a thin
diffractive visual processor that axially spans <250 × λ, where λ is the wavelength of light. This all-optical image
denoiser comprises passive transmissive layers optimized using deep learning to physically scatter the optical modes
that represent various noise features, causing them to miss the output image Field-of-View (FoV) while retaining the
object features of interest. Our results show that these diffractive denoisers can efficiently remove salt and pepper
noise and image rendering-related spatial artifacts from input phase or intensity images while achieving an output
power efficiency of ~30–40%. We experimentally demonstrated the effectiveness of this analog denoiser architecture
using a 3D-printed diffractive visual processor operating at the terahertz spectrum. Owing to their speed, power-
efficiency, and minimal computational overhead, all-optical diffractive denoisers can be transformative for various
image display and projection systems, including, e.g., holographic displays.

Introduction
Image denoising is a fundamental problem encountered

in various fields, such as computational imaging and
displays1, computer vision2, and computer graphics3–5.
For example, in computational imaging, noise removal
from images is used to mitigate the effects of various
sources of noise and artifacts, e.g., image sensors, channel
transmission, and environmental conditions6,7. Similarly,
within the realm of computer graphics, image denoising is
crucial for reducing the low-sampling related image

rendering artifacts frequently encountered in real-time
graphics processing applications8–10.
Over the past several decades, numerous algorithms

have been developed for image noise removal11–13. Apart
from his renowned contributions to the birth of holo-
graphy, Dennis Gabor proposed one of the earliest
methods for image denoising, involving the Gaussian
smoothing of noisy images14. A plethora of other algo-
rithms emerged for image denoising, including, e.g.,
Wiener filtering2, anisotropic filtering15, total variation
(TV) denoising16, denoising by soft-thresholding17, bilat-
eral filtering18, non-local means denoising19, block-
matching and 3D filtering (BM3D)20, and among many
others11–13. While quite powerful, these classical denois-
ing techniques often need many iterations for their
inference, making them less suitable for real-time appli-
cations. Deep Neural Networks (DNNs) have also
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significantly impacted the field of image denoising, espe-
cially in the last decade21,22. These artificial DNNs have
many parameters that are stochastically optimized
(trained) using supervised learning with a large number of
noisy-clean image pairs forming the training image set.
After their training, DNNs generally operate in a non-
iterative feed-forward fashion and have shown remarkable
performance advantages for image denoising of unknown
input images, never seen before23–33. It was also reported
that DNN-based image denoisers could be used for real-
time applications, including interactive Monte Carlo
rendering8,9,34–36. Despite the recent improvements in
modern graphics processing units (GPUs), achieving
interactive speeds in Monte Carlo rendering necessitates
working with low spatial sampling, resulting in artifacts in
the rendered images. DNN-based denoisers have been
proposed to mitigate such artifacts for real-time applica-
tions, demanding the use of relatively costly and resource-
intensive GPUs37,38.
Here, we report an analog diffractive image denoiser

(Fig. 1) designed to all-optically process noisy phase or
intensity images to filter out noise at the speed of light
propagation through a thin diffractive visual processor –
optimized using deep learning. Our diffractive denoiser

framework consists of successive passive modulation
layers that are each transmissive; this diffractive archi-
tecture forms a coherent image processor that all-
optically scatters out the optical modes representing
various forms of noise and spatial artifacts at the input
images, causing them to miss the output image Field-of-
View (FoV), while passing the optical modes representing
the desired spatial features of the input objects with
minimal loss and aberrations, forming denoised images at
the output FoV without any digital computation in its
blind inference. Following its one-time supervised
learning-based training performed on a computer, a dif-
fractive image denoiser can work at any part of the elec-
tromagnetic spectrum by scaling the dimensions of its
optimized diffractive features in proportion to the wave-
length of light (λ), eliminating the need to redesign its
layers for different wavelengths of operation.
We demonstrate the capabilities of this analog dif-

fractive image denoiser framework on both phase and
intensity images, mitigating salt and pepper noise and
low-sampling related spatial image artifacts. Our analyses
show that these all-optical denoisers successfully filter out
various types of image noise or artifacts at the input using
a thin diffractive processor39–44 that axially spans
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Fig. 1 Schematic of all-optical diffractive image denoiser networks. a 5-layer diffractive denoiser operating on noisy input phase images/objects.
b 5-layer diffractive denoiser operating on noisy input intensity images/objects
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<250 × λ, while achieving a decent output power efficiency
of ~30–40%. For a proof-of-concept, the presented dif-
fractive denoiser framework was also experimentally
validated at the terahertz spectrum for removing salt-only
random noise in intensity input images using 3D-printed
diffractive layers optimized via deep learning. This phy-
sical image denoiser framework presents a rapid and
power-efficient solution for all-optical filtering of image
noise or artifacts, and can potentially be used for holo-
graphic displays and projectors operating at different
parts of the electromagnetic spectrum.

Results
In this manuscript, the terms “diffractive visual pro-

cessor”, “diffractive image denoiser”, “diffractive optical
network”, and “all-optical image denoiser” are inter-
changeably used. Figure 1 illustrates the schematic of two
different diffractive image denoisers trained to all-optically
filter out salt and pepper noise from noisy phase or
intensity input images; the first one of these diffractive
image denoisers (Fig. 1a) is trained to perform phase-to-
intensity transformations, whereas the second one (Fig. 1b)
is trained to perform intensity-to-intensity transforma-
tions between the input and output FoVs. A comprehen-
sive analysis of the all-optical image denoising
performances of these trained diffractive denoiser designs
under various levels of salt and pepper noise is demon-
strated in Fig. 2. In these numerical analyses, each one of
the all-optical image denoisers has 5 diffractive layers,
which were optimized/trained using the tiny quickdraw
dataset45. The input illumination is considered to be a
uniform plane wave (monochromatic and spatially
coherent), and the noisy input images to be filtered are in
the form of either phase-encoded or intensity-encoded
images (see Fig. 2a). For each input encoding type (phase/
intensity), different diffractive denoisers were trained using
noise probabilities (Ptr) sampled uniformly from Uð0; ρÞ
where ρ 2 0:1; 0:2; 0:4f g; Ptr determines the ratio of the
image pixels affected by noise relative to the overall pixel
count of the image; see the Methods for details. These
training noise probabilities (Ptr) were randomly sampled
for each batch of the input images during each epoch of
the training, and the noise-free case (Ptr ¼ 0) in Fig. 2b, c
corresponds to our baseline designs trained with input
images free from noise or artifacts. All the trained models
were blindly tested using the tiny quickdraw test dataset
for different test noise probabilities (Pte). Peak-Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index Mea-
sure (SSIM) were used as image quality metrics to quantify
the all-optical denoising performance of the trained
models46. Further information regarding the architecture
of the diffractive image denoisers, the noise models, the
training loss functions, the datasets, and other aspects of
our implementation are reported in the Methods section.

Figure 2b illustrates the all-optical image denoising
results of diffractive denoisers trained for noisy phase-
encoded input images (salt and pepper noise). The output
intensities shown for two test images illustrate the success
of the trained diffractive image denoisers (with
Ptr �Uð0; ρÞ where ρ2 0:1; 0:2; 0:4f g) compared to a
conventional diffractive imager trained without noise (i.e.,
Ptr ¼ 0). For instance, the denoising performance of the
diffractive model trained using Ptr �Uð0; 0:2Þ demon-
strates superior performance for phase-encoded test
images created with Pte ¼ 0:1; 0:2; and 0:4, achieving
average PSNR improvements of 0.65, 1.47, and 1.90 dB,
respectively, when compared to the diffractive imager
trained without noise, Ptr ¼ 0. A similar conclusion can be
drawn for all-optical filtering of the intensity-encoded
noisy images reported in Fig. 2c. The diffractive image
denoiser trained using Ptr �U 0; 0:2ð Þ exhibits an
improved denoising performance when compared to the
baseline diffractive imager (Ptr ¼ 0), achieving average
output image PSNR improvements of 0.83, 1.39, and
1.45 dB for different noise levels of Pte = 0.1, 0.2, and 0.4,
respectively.
We also compared our diffractive image denoisers

against a 4-f lens-based spatial filtering system, one of the
common ways of denoising in optical setups, as detailed in
Supplementary Fig. S1. In this comparison, diffractive
denoisers operating on noisy intensity images shared the
same input numerical aperture (NA) with the 4-f filter
system, as depicted in Supplementary Fig. S1a, b. For low-
pass filtering, the 4-f system employed a transparent cir-
cular aperture with a diameter of δ ´ 64λ where δ repre-
sents the level of spatial filtering. As shown in
Supplementary Fig. S1c, our diffractive processors out-
perform the 4-f system in denoising intensity images that
are impacted by salt and pepper noise. For example, the
diffractive image denoiser trained with Ptr �U 0; 0:2ð Þ
demonstrated superior denoising performance compared
to the 4-f system with δ¼ 0:6, achieving average output
image PSNR improvements of 2.76, 2.52, 2.15, and 1.49 dB
for different test noise levels of Pte¼0; 0:1; 0:2; and 0:4,
respectively. This competitive performance of diffractive
denoisers stems from their capability to execute any
arbitrary complex-valued linear transformation between
the input and output FoVs, covering spatially varying
point spread functions. In fact, this feature represents a
superset compared to all types of spatially invariant ima-
ging systems, including 4-f filtering systems.
These numerical results reported in Fig. 2 and Supple-

mentary Fig. S1 demonstrate the versatility of the all-
optical image denoiser framework to filter out salt and
pepper noise present at the input phase or intensity
images. These diffractive image denoisers effectively learn
to filter out the spatial modes that statistically represent
the targeted noise features, while successfully transferring
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the spatial modes representing the desired features of the
input objects, forming denoised intensity images at the
output FoV with minimal optical loss and aberrations. In
this sense, a diffractive image denoiser can be considered
a 3D spatial filter composed of successive phase gratings
structurally optimized through supervised deep learning
to physically couple out undesired spatial modes of tar-
geted noise features, causing them to miss the output
image FoV.
In addition to salt and pepper noise, we also designed

diffractive image denoisers to mitigate image artifacts
stemming from the Monte Carlo-based low-sampling
image renderings, as depicted in Fig. 3. In this analysis, we
report the results of different diffractive denoisers, which
were trained using noise rates (γtr) sampled uniformly
from Uð0; ρÞ where ρ 2 1; 2; 3f g for both phase-encoded
and intensity-encoded input images. γtr indicates the
noise rate of the Monte Carlo image renderings, as
detailed in the Methods section. Diffractive models with
γtr = 0 define our baseline, trained with noise-free input
images. The denoising capabilities of these diffractive
models were blindly tested for various levels of test noise,
γte 2 0; 1; 2; 3f g; see the Methods section for details. The
results of these analyses are reported in Fig. 3a, b, which
demonstrate the advantages of all-optical image denoisers
for both phase-encoded and intensity-encoded input
images, further supporting the conclusions of the earlier
analyses in Fig. 2. For example, Fig. 3a present the results
of the diffractive models trained using phase-encoded
images with γtr �Uð0; 3Þ, which outperform the dif-
fractive imager trained with γtr ¼ 0 for various test ima-
ges, improving the average PSNR values by 0.39, 3, and
1.84 dB for γte ¼ 1; 2; and 3, respectively. Similarly, Fig. 3b
demonstrates the success of the all-optical diffractive
denoiser models trained using intensity-encoded input
images, achieving average PSNR improvements of, e.g.,
2.22 and 1.45 dB for γte ¼ 2 and 3, respectively, in com-
parison to the diffractive imager trained using γtr ¼ 0.
These results reported in Figs. 2 and 3 demonstrate the

internal generalization capabilities of the trained dif-
fractive denoisers as the test images (although never seen
before) were acquired from the same dataset (tiny quick-
draw). To explore the external generalization of the all-
optical denoisers to different datasets containing images
with distinct spatial features, we conducted additional
tests using Fashion MNIST and EMNIST image data-
sets47,48, as illustrated in Fig. 4. The trained diffractive
image denoiser, which mitigates the low-sampling arti-
facts of Monte Carlo renderings (γtr �Uð0; 2Þ) from
phase-encoded input images, and the baseline diffractive
imager trained with γtr ¼ 0 are both tested with noisy
input images with different levels of noise (γte2 0; 1; 2f g).
The average PSNR and SSIM values calculated across the
corresponding test datasets confirm the external

generalization capabilities of the all-optical image denoi-
sers. For example, as illustrated in Fig. 4a, the diffractive
image denoiser trained with γtr �Uð0; 2Þ achieves aver-
age PSNR (SSIM) improvements of 1.74 dB (0.157) for
γte ¼ 1 and 3.37 dB (0.285) for γte ¼ 2, when compared
to the baseline diffractive imager trained without noise
(γtr ¼ 0). A similar analysis is reported in Supplementary
Fig. S2, which further confirms the external generalization
capabilities of diffractive image denoisers trained with salt
and pepper noise. In addition to this external general-
ization performance, the test images from the Fashion
MNIST dataset also highlight the success of diffractive
denoisers in processing gray-scale images never seen
before. In fact, further improvements in the denoising
performance for these gray-scale Fashion MNIST images
are attainable by training a diffractive image denoiser
from scratch using the Fashion MNIST training dataset
(see Supplementary Fig. S3a). For example, the diffractive
denoiser trained using the Fashion MNIST dataset
(Ptr �U 0; 0:2ð Þ) achieves an average PSNR improvement
of 1.39 dB compared to the diffractive denoiser trained
using the tiny quickdraw dataset (Ptr �U 0; 0:2ð Þ) when
both models are tested using images of the Fashion
MNIST test dataset at a noise level of Pte ¼ 0:1. In addi-
tion to these analyses, Supplementary Fig. S3b demon-
strates the versatility of the diffractive image denoiser
framework by successfully mitigating other types of noise,
such as a modified version of the salt and pepper noise
with 4 noise levels (see the Methods section for details).
One of the essential characteristics of all-optical image

denoisers, as well as other diffractive visual processors, is
their output diffraction efficiency. In the previously
demonstrated results reported so far, the all-optical image
denoising performance of these diffractive models was
achieved without employing a training loss term to
penalize low diffraction efficiency at the output FoV. To
understand the trade-off between the output diffraction
efficiency and the image quality, we conducted additional
analysis reported in Fig. 5. As detailed in the Methods
section, we adjusted the output diffraction efficiency of an
image denoiser by varying the weight (β) of the diffraction
efficiency loss term. During the training process of each
diffractive image denoiser model, noisy input images (tiny
quickdraw dataset) were used, after being subjected to salt
and pepper noise with a noise probability (Ptr) sampled
uniformly using Uð0; 0:2Þ. These image denoiser models
trained with various β values were subsequently tested on
images that were affected by salt and pepper noise with a
noise probability of Pte ¼ 0:1. As depicted in Fig. 5a, for
the denoising of phase-encoded images, an all-optical
diffractive denoiser can achieve ~28% diffraction effi-
ciency with negligible degradation in its output image
quality (~0.08 dB and ~0.004 decrease in the average
PSNR and SSIM values, respectively). Similarly, for

Işıl et al. Light: Science & Applications           (2024) 13:43 Page 5 of 17



P
h

as
e

Target

Phase
input

Target

Target

Intensity
input

a

b

In
te

n
si

ty

16.98 dB 12.48 dB 6.64 dB 4.64 dB 17.85 dB 12.63 dB 7.04 dB 4.59 dB

10.85 dB 12.68 dB 4.57 dB 3.80 dB 11.34 dB 13.16 dB 4.35 dB 4.10 dB

11.44 dB 12.83 dB 9.58 dB 4.14 dB 11.77 dB 13.08 dB 9.82 dB 4.05 dB

10.61 dB 12.81 dB 9.81 dB 6.56 dB

0

1

In
te

n
si

ty

0

1

In
te

n
si

ty

0

1

11.13 dB 13.07 dB 9.87 dB 6.34 dB

17.50 dB 13.88 dB 7.58 dB 5.28 dB 18.31 dB 13.95 dB 7.84 dB 4.99 dB

12.63 dB 12.97 dB 5.84 dB 2.69 dB 12.60 dB 13.17 dB 5.68 dB 2.17 dB

12.60 dB 13.04 dB 9.54 dB 5.57 dB 12.54 dB 13.13 dB 9.96 dB 5.52 dB

12.15 dB 12.88 dB 9.94 dB 6.82 dB 12.44 dB 13.19 dB 9.91 dB 6.34 dB

15.13 dB 7.31 dB 4.89 dB 14.87 dB 7.39 dB 4.55 dB

15.13 dB 7.31 dB 4.89 dB 14.87 dB 7.39 dB 4.55 dB

γ
te

 = 0

γ
tr
 = 0

γ
tr
 ~ U (0, 1)

γ
tr
 ~ U (0, 2)

γ
tr
 ~ U (0, 3)

γ
tr
 = 0

γ
tr
 ~ U (0, 1)

γ
tr
 ~ U (0, 2)

γ
tr
 ~ U (0, 3)

γ
te

 = 1 γ
te

 = 2 γ
te

 = 3

γ
te

 = 0 γ
te

 = 1 γ
te

 = 2 γ
te

 = 3 γ
te

 = 0 γ
te

 = 1 γ
te

 = 2 γ
te

 = 3

γ
te

 = 0 γ
te

 = 1 γ
te

 = 2 γ
te

 = 3

0

π

3 λ

3 λ

Fig. 3 Simulation results of 5-layer all-optical diffractive image denoisers for filtering out Monte Carlo low-sampling artifacts. a All-optical
image denoising results of different diffractive denoisers with phase-encoded inputs, which are trained using γtr sampled uniformly from different
intervals. The PSNR value for each case is shown beneath the respective output image. b All-optical image denoising results of different diffractive
denoisers using intensity-encoded inputs, which are trained using Ptr drawn uniformly from different intervals

Işıl et al. Light: Science & Applications           (2024) 13:43 Page 6 of 17



External generalization to Fashion MNIST dataset

Target

Phase
input

In
te

n
si

ty Target Target

Target

External generalization to EMNIST dataset

Target Target

a

b

23.21 dB 11.91 dB 6.30 dB 25.63 dB 13.35 dB 7.61 dB 23.67 dB 12.15 dB 6.57 dB

15.16 dB 15.46 dB 11.31 dB

0

6
0 1 2

10.5

15

19.5

P
S

N
R

 (
d
B

)

24

6

10.5

15

19.5

P
S

N
R

 (
d
B

)

24

0.1

0.3

0.5

0.7
S
S

IM

0.9

0.1

0.3

0.5

0.7

S
S

IM

0.9

1

In
te

n
si

ty

0

1

In
te

n
si

ty

0

1

In
te

n
si

ty

0

1

In
te

n
si

ty

0

1

In
te

n
si

ty

0

1

17.33 dB 15.22 dB 10.69 dB 15.71 dB 15.63 dB 11.24 dB

19.32 dB 10.58 dB 5.66 dB 23.24 dB 12.20 dB 6.80 dB 22.14 dB 12.35 dB 6.87 dB

15.48 dB 17.46 dB 12.04 dB 15.32 dB 15.99 dB 10.70 dB 14.55 dB 15.38 dB 10.26 dB

14.91 dB 7.44 dB 14.68 dB 7.50 dB 15.22 dB 7.44 dB

14.98 dB 7.85 dB 14.79 dB 7.45 dB 14.86 dB 7.41 dB

γ
te

 = 0 γ
te

 = 1 γ
te

 = 2 γ
te

 = 0 γ
te

 = 1 γ
te

 = 2 γ
te

 = 0 γ
te

 = 1 γ
te

 = 2

γ
te

 = 0 γ
te

 = 1 γ
te

 = 2 γ
te

 = 0 γ
te

 = 1 γ
te

 = 2 γ
te

 = 0 γ
te

 = 1 γ
te

 = 2

γ
tr
 = 0

γ
tr
 ~ U (0, 2)

Phase
input

γ
tr
 = 0

γ
tr
 ~ U (0, 2)

γ
tr
 ~ U (0, 2)

γ
te

0 1 2
γ

te

0 1 2
γ

te

0 1 2
γ

te

γ
tr
 = 0

γ
tr
 ~ U (0, 2)

γ
tr
 = 0

γ
tr
 ~ U (0, 2)

γ
tr
 = 0

γ
tr
 ~ U (0, 2)

γ
tr
 = 0

P
h

as
e

0

π

3 λ

P
h

as
e

0

π

3 λ
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intensity-encoded images, all-optical denoisers can be
designed to have up to ~34% diffraction efficiency while
incurring a negligible decrease in output image quality
(e.g., ~0.11 dB and ~0.016 in the average PSNR and SSIM
values, respectively); see Fig. 5b. While a 4-f low-pass
filtering system can in general achieve a much better
diffraction efficiency, it is important to note that the
presented diffractive framework outperforms these 4-f
systems in denoising performance as illustrated in

Supplementary Fig. S1. Moreover, 4-f systems are con-
siderably bigger when compared to the thickness of the
presented diffractive denoisers that axially span <250 × λ.
For an experimental proof-of-concept of the presented

technique, we built a 3-layer diffractive image denoiser
that was trained for noisy intensity images with salt-only
noise, with the noise probability (Ptr) uniformly sampled
from the interval Uð0; 0:2Þ. As depicted in Fig. 6a, the
resulting diffractive design was then fabricated and

16.5

ββ = 0 1 104
107

109

1010

1011

1012

1014

P
S

N
R

 (
d
B

) 16

15.5

15

16

P
S

N
R

 (
d
B

) 15.5

15

14.5

0.66

S
S

IM

0.62

0.58

0.54

0.62

S
S

IM

0.58

0.54

0.5

0 5 10 15 20

Diffraction efficency (%) Diffraction efficency (%)

25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

0 10 20 30 40

Diffraction efficency (%)

50 60 70 80 0 10 20 30 40

Diffraction efficency (%)

50 60 70 80

β = 0 β = 0
107 1011

1015
1019

1023

1025

1027

1029

107
1011

1015
1019

1023

1025

1027

1029

β = 0 1 104 107

109
1010

1011

1012

1014

In
te

n
si

ty

Target

1

0

In
te

n
si

ty1

0

Phase
input

Target
Intensity

input

The image quality-diffraction efficiency trade-off of all-optical denoisers using phase-only inputs

The image quality-diffraction efficiency trade-off of all-optical denoisers using intensity inputs

a

b

β = 0 β = 1 β = 104 β = 109 β = 1014

β = 0 β = 1015β = 107 β = 1023 β = 1029

P
h

as
e

0

π

3 λ

3 λ

Fig. 5 Quantitative performance of 5-layer diffractive image denoisers as a function of the output diffraction efficiency for phase-encoded
and intensity-encoded inputs. The weight of the diffraction efficiency loss term (β) is varied to train diffractive image denoisers with different
output efficiencies. These all-optical image denoisers for each input type are trained using the tiny quickdraw training dataset under the salt and
pepper noise with Ptr sampled uniformly from the interval U(0,0.2). Subsequently, the trained models are tested on the tiny quickdraw test dataset,
affected by the salt and pepper noise with Pte= 0.1. a All-optical image denoising performance of the diffractive denoisers with phase-encoded
inputs as a function of the average output diffraction efficiency. b All-optical image denoising performance of the diffractive denoisers with intensity-
encoded inputs as a function of the average output diffraction efficiency

Işıl et al. Light: Science & Applications           (2024) 13:43 Page 8 of 17



precisely aligned for experimental testing using a single-
pixel THz detector and a continuous-wave THz illumi-
nation source (λ= ~0.75 mm). Figure 6b shows sample

binary intensity images of a handwritten letter under
different levels of salt-only noise, along with their pho-
tographs after the fabrication. Furthermore, the phase
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profiles of the trained layers of the diffractive image
denoiser and photographs of these layers after their fab-
rication through 3D printing are illustrated in Fig. 6c.
During the training of this diffractive model, small ran-
dom 3D misalignments were introduced to the positions
of the diffractive layers to ensure a physically resilient
design, which is also referred to as the “vaccination” of the
diffractive model49,50. Also, an additional loss term for the
output diffraction efficiency was incorporated in the
design of the diffractive denoiser, resulting in an efficiency
of ~2%. The trained diffractive denoiser was also com-
pared against a standard diffractive imager using the same
physical configuration and optimization settings, trained
with noise-free images; Supplementary Fig. S4 demon-
strates the improved denoising performance of our
experimental diffractive design trained with noisy images
compared with this noise-free design.
The schematic of our experimental setup is depicted in

Fig. 6d; see the Methods section for further details. The
trained diffractive image denoiser model was experimen-
tally tested on several binary intensity images with various
levels of salt-only noise, determined by different noise
probabilities (Pte2 0; 0:05; 0:1; 0:15f g). Figure 7 provides
the optical layout and the experimental results of the
3-layer diffractive denoiser using these noisy inputs. We
observe a very good concordance between the numerical
and experimental results presented in Fig. 7c, validating
the accuracy and resilience of the 3D-fabricated all-optical
diffractive image denoiser. The success of these mea-
surements provides an experimental proof-of-concept of
the presented framework for all-optical image denoising.
Moreover, the denoising performance of diffractive pro-
cessors on more extreme, unrecognizable images is
depicted in Supplementary Fig. S3a. For example, at a
noise level of Pte ¼ 0:4, the “T-shirt” phase image from the
Fashion MNIST test dataset becomes almost unrecog-
nizable for human perception, and the diffractive denoiser
trained using Ptr �Uð0; 0:4Þ successfully recovers most
parts of the image, mitigating the input noise.
While the results depicted in Fig. 7c showcase the

experimental proof-of-concept of the all-optical image
denoising framework, the experimental performance is
relatively inferior compared to the numerical results
presented earlier. This discrepancy is primarily due to the
reduced degrees of freedom inherent in our experimental
design. To create a misalignment-resilient system with
sufficient output diffraction efficiency, a vaccination
strategy with an additional loss term was used during the
training of the experimental model (as detailed in the
Methods section). These measures, however, led to a
reduction in the effectively available degrees of freedom of
the diffractive denoiser model. Additionally, fabrication-
related imperfections in the physical system also impact
the image-denoising performance of the diffractive model.

By further improving the 3D fabrication resolution and
alignment precision, the performance of these physical
diffractive denoisers can be significantly enhanced.

Discussion
We introduced a deep learning-enabled diffractive image

denoiser framework capable of addressing various forms of
noise inherent to different input types, e.g., phase or
intensity images. In our analyses, the all-optical denoisers
were used to remove both salt and pepper noise and the
spatial artifacts originating from the Monte Carlo low-
sample image renderings that are typically addressed using
nonlinear filters and deep neural networks running on
GPUs. The presented diffractive image denoisers success-
fully filter out these different types of noise at the input
using analog processing of the input object waves; this
process effectively couples out the characteristic modes
that statistically represent the noise features using the sub-
wavelength phase structures of the diffractive layers opti-
mized through deep learning. These phase structures are
also optimized to cause minimal optical loss and aberra-
tions for the traveling waves that represent the character-
istic modes of the input objects. In this sense, the
diffractive image denoiser can be considered a smart ana-
log spatial mode filter composed of successive phase
gratings with a lateral pitch of ~λ/2. Additionally, these all-
optical image denoisers do not consume any power during
the filtering operation except for the illumination light that
diffracts through passive layers. Regarding the output dif-
fraction efficiency, our findings reveal that these analog
image denoisers can achieve e.g., ~30–40% power effi-
ciency without significantly compromising their image
denoising performance. The presented diffractive image
denoising framework was also demonstrated experimen-
tally, using a 3D-printed diffractive model, successfully
removing salt-only noise from input images as illustrated in
Figs. 6 and 7.
The principles underlying diffractive image denoisers

can be adapted to suppress other types of noise, including
speckle, which is a common issue in holography and
coherent imaging/sensing in general. Key factors causing
speckle noise include high temporal and spatial coherence
of illumination sources, along with the uneven phase
profiles found in computer-generated holography meth-
ods51,52. While reducing the coherence of the light source
can mitigate speckle noise, this is less desirable due to its
adverse effects on the sharpness and resolution of the
reconstructed holographic images52. Deep learning-
optimized diffractive processors show promise in direct
suppression of speckle noise under coherent illumination
conditions51. In principle, diffractive processors can also
be designed to function under partially coherent or
incoherent illumination to mitigate different forms of
noise with different statistical features53,54.
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The fundamental components of the presented image
denoisers are diffractive layers, consisting of trainable
phase structures with a lateral feature size of ~λ/2. The
physical communication and collaboration among these

sub-wavelength phase structures across different layers
are crucial in the functionality of the diffractive image
denoising process. For example, Fig. 1 provides a visual
representation of various diffractive layers from different
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image denoisers, each working on noisy phase or intensity
input images. While the overall characteristics and
topology of these diffractive layers may appear similar, it is
the diversity and the full utilization of all the degrees of
freedom in these sub-wavelength phase features that
collectively achieve the desired image-denoising task.
In our analyses and results, the denoising capabilities of

the diffractive denoisers have been demonstrated for the
salt and pepper noise and the low-sampling artifacts of
Monte Carlo image renderings. Especially for real-time
imaging applications, the removal of noisy Monte Carlo
renderings is a critical challenge, which has led to the
development of various deep learning-based digital image
denoisers8,9,34–36. Compared to these digital approaches,
the all-optical analog operation of diffractive image
denoisers enables the processing of input images as the
light diffracts through very thin optical elements that
axially span <250× λ; this ultra-high speed and power
efficiency of diffractive image denoisers would especially
be important for real-time image processing applications.
For comparison, deep learning-enabled vision networks,
as demonstrated in refs. 55,56, typically demonstrate a
latency of ~60ms57. Our diffractive image processors can
process each image in sub ns, consuming minimal power
except for the illumination light and operating without
the need for digital storage. Although denoisers based on
electronic neural networks achieve state-of-the-art
denoising performance, the rapid processing and low-
power consumption of diffractive image denoisers offer
notable advantages, especially for their stand-alone utili-
zation for ultra-fast processing and hybrid vision systems
that combine diffractive processors and electronic neural
networks37,58–60. Even when compared to non-iterative
classical filtering methods, such as the Wiener filter,
which exhibits much lower latency compared to iterative
methods, the competitive denoising performance of dif-
fractive processors coupled with their efficiency in terms
of speed, storage, and power consumption would be
beneficial in many applications, particularly those
demanding ultra-fast processing of scenes.
In this work, the diffractive image denoiser models were

tested across various levels of different noise types. As
shown in Figs. 2–5, the synthesized images at the output
of the diffractive denoisers exhibit varying degrees of blur
as a function of the input noise level or the output dif-
fraction efficiency targeted during training. For example,
Fig. 4 illustrates a trade-off between the denoising per-
formance and image quality. A similar trade-off
mechanism emerges between the image quality and the
output diffraction efficiency of the denoiser models, as
depicted in Fig. 5. This analysis reveals that a targeted
increase in the output diffraction efficiency leads to a
reduction in the sharpness of the denoised images for a
given number of diffractive degrees of freedom that can be

optimized. A better trade-off curve/relationship between
the image filtering performance and the output diffraction
efficiency can be achieved by increasing the number of
trainable features and layers of a diffractive model.
In general, diffractive visual processors can perform any

arbitrary complex-valued transformation between their
input and output FoVs with negligible error if they have a
sufficient number of trainable diffractive features, which
scales with the multiplication of the number of useful pixels
at the input and output FoVs61–63. For diffraction-limited
operation, the lateral size of each diffractive feature should
be ~λ/2, controlling all the propagating modes in air within
the diffractive processor volume. However, fabricating a
multi-layer diffractive visual processor with phase elements
densely packed with a lateral feature size of ~λ/2 is chal-
lenging, especially for visible and IR wavelengths, due to the
tight alignment and fabrication requirements. To mitigate
these challenges and develop 3D fabrication processes
optimized for diffractive network models, there have been
various efforts to fabricate 3D diffractive networks operating
in the visible and IR wavelengths64–66. To bring the pre-
sented framework to shorter wavelengths in, e.g., the visible
band, different methods of 3D nano-fabrication, such as
two-photon polymerization and optical lithography, can be
used to manufacture and align the resulting diffractive layers
of a diffractive image denoiser. In addition to these, vacci-
nation strategies49,50 have been introduced to mitigate the
impact of fabrication errors and physical misalignments by
intentionally (and randomly) introducing such variations to
the layers of a diffractive model during the training process
to have more robust diffractive systems that can better
withstand physical imperfections. One disadvantage of such
vaccination efforts is that the independent degrees of free-
dom within the diffractive processor are reduced since the
vaccination process effectively increases the feature size at
the diffractive layer; this, however, can be mitigated by using
wider and deeper architectures involving, e.g., a larger
number of diffractive layers that are each wider.
Another limitation of the presented approach is that we

only considered monochromatic illumination that is
spatially coherent. While this assumption can be justified
for certain applications that utilize, e.g., holographic
image projection/display set-ups, it is also possible to
extend the design of all-optical image denoisers to operate
under spatially and temporally incoherent light. Dif-
fractive optical networks, in general, form diffraction-
limited universal linear transformers between an input
and output FoV, and can be trained using deep learning to
operate at various illumination wavelengths59,67–71, also
covering spatially incoherent illumination54. Therefore,
all-optical image denoisers and the underlying design
framework can be extended to filter/denoise color images
(e.g., RGB) or even spatially and temporally incoherent
hyperspectral image signals.
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In summary, we presented power-efficient and ultra-
high speed all-optical image denoisers that filter out input
image noise in the analog domain without consuming any
power except for the illumination source. The success of
all-optical image denoisers can inspire the creation of all-
optical visual processors crafted to solve various other
inverse problems in imaging and sensing.

Materials and methods
Diffractive image denoiser design
An all-optical image denoiser contains a series of dif-

fractive surfaces l ¼ 0; 1; ¼ ;L� 1, each of which is
located at a different axial position zl. The field trans-
mittance of each diffractive surface Tl x; yð Þ that is used to
modulate the coherent wavefield Ul x; yð Þ is stochastically
optimized using deep learning72. The modulated coherent
wavefield U 0

l x; yð Þ ¼ Ul x; yð ÞTl x; yð Þ is propagated to the
axial position of next diffractive layer zlþ1 using the
angular spectrum method, based on the Rayleigh-
Sommerfeld diffraction integral that represents a 2D lin-
ear convolution of the propagation kernel wðx; y; zÞ and
the modulated wavefield U 0

l x; yð Þ:
Ulþ1 x; yð Þ ¼ U 0

l x; yð Þ � wðx; y; zlþ1 � zlÞ

wðx; y; zÞ ¼ z
r2

1
2πr

þ 1
jλ

� �
exp j

2πr
λ

� �

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ð1Þ
where Ulþ1 x; yð Þ denotes the coherent wavefield at the
axial position zlþ1. The field transmittance function of
each surface Tl x; yð Þ is defined as:

Tl x; yð Þ ¼ exp j
2π
λ

τ λð Þ � nað ÞHl x; yð Þ
� �

ð2Þ

where τ λð Þ ¼ n λð Þ þ jκ λð Þ is the complex refractive index
of the optical material, na ¼ 1 refers to the refractive
index of the medium (air in our case) surrounding the
layers, and Hl x; yð Þ represents the thickness profile of the
corresponding diffractive surface, which is defined as

Hl x; yð Þ ¼ Ol x; yð Þðhm � hbÞ þ hb ð3Þ
where Ol x; yð Þ is an auxiliary variable array used to
compute the thickness value for each x; yð Þ point between
½hb; hm�. Ol x; yð Þ and consequently the thickness profile
Hl x; yð Þ for each diffractive layer l are jointly optimized
using deep learning to obtain field transmittance function
Tl x; yð Þ for each surface72–74.

Vaccination of the diffractive image denoisers
To mitigate the impact of potential misalignments in

the physical implementation of a diffractive processor,

error sources were integrated into the forward model
during the training of the diffractive design that was
experimentally demonstrated. These error sources are
modeled by 3D displacement vectors, Dl ¼ ðDx;Dy;DzÞ
corresponding to the difference in the position of dif-
fractive layer l, from its ideal location, where Dx;Dy;
and Dz were defined as uniformly distributed random
variables,

Dx � Uð�Δx;ΔxÞ
Dy � Uð�Δy;ΔyÞ
Dz � Uð�Δz;ΔzÞ

ð4Þ

where Δx, Δy, and Δz represents the maximum displace-
ments along the x-, y-, and z- axes, respectively. Thus, the
position of the diffractive layer l at ith iteration L(l,i) is
defined as

Lðl;iÞ ¼ Llx; L
l
y; L

l
z;

� �
þ Dðl;iÞ

x ;Dðl;iÞ
y ;Dðl;iÞ

z

� �
ð5Þ

Training and testing datasets
In our numerical results, we used 72,000 randomly

selected images from the quickdraw dataset45. These
images (28 × 28 pixels) were augmented by random
rotations (ϴ� U �15�; 15�ð Þ) and padded to 32 × 32 pix-
els. Then, they were split into three sets of images
including 60,000 training, 2000 validation, and 10,000 test
images. The prepared dataset is called tiny quickdraw
dataset. To analyze the external generalization of the
trained models, we also tested the resulting diffractive
designs with unseen images from datasets different from
the tiny quickdraw dataset including 14,400 EMNIST
handwritten letters test images (interpolated to 32 × 32
using bicubic kernel) and 10,000 Fashion MNIST test
images (scaled by 0.8 and interpolated to 32 × 32)47,48.
For the experimentally demonstrated design, the

EMNIST dataset was used, which was split into two sets
containing 80,000 training and 8,800 validation images.
These datasets, along with the EMNIST test dataset
(14,400 images) were interpolated to 20 × 20 pixels and
used for the optimization and evaluation of
experimentally-tested diffractive image denoiser. Without
loss of generality, the contrasts of the images were
inverted to facilitate the 3D fabrication of noisy objects in
our experiments.

Implementation details of all-optical denoisers for the
numerical results
The smallest feature size of a transmissive diffractive

layer and the sampling period of the propagation model
were chosen as 0.5λ. Input and output FoVs of the dif-
fractive image denoisers were 16λ × 16λ (32 × 32 in pix-
els). In addition, the size of each diffractive layer was
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chosen as 64λ × 64λ (128 × 128 in pixels). The window
size of the propagation model was defined as 256 × 256 in
pixels, and the matrices representing the FoVs and the
diffractive layers were padded with zeros to avoid aliasing.
In the numerical simulations, the material absorption was
assumed to be zero (κ(λ)= 0), which is a valid assumption
considering the overall thickness of our diffractive pro-
cessor, axially spanning <250 × λ. The axial distance
between two consecutive planes was chosen as 40λ. The
phase coefficient function of each layer θl x; yð Þ ¼
2π
λ n λð Þ � nað ÞHl x; yð Þ and consequently the field trans-
mittance function Tl x; yð Þ were stochastically optimized
using deep learning. θl x; yð Þ were initialized as 0 for
each layer.

Implementation details of the experimental results
A monochromatic THz illumination source

(λ= ~0.75mm) was used in the experiments. Input/output
FoVs were determined to be 40λ × 40λ (3 cm × 3 cm) and
the size of each diffractive layer was selected as
66.67λ × 66.67λ (5 cm× 5 cm). The diffractive feature width
of the layers and the sampling period of the propagation
model were chosen as ~0.667λ. The pixel size at the
measurement plane was ~1.33λ, which is equivalent to the
noise feature size at the input FoV. To accurately fabricate
the transmissive diffractive layers and the noisy/clean input
objects, the complex refractive index of the 3D-printing
material τ(λ) was measured as ~1.6518 + j0.0612. During
the training of the experimentally-tested diffractive image
denoiser, the thickness profile of each trainable layer
Hl x; yð Þ was optimized in the range [0.5mm,~1.65mm]
that corresponds to ½�π;πÞ for phase modulation. For
experimental testing, a 3-layer all-optical image denoiser
was trained, fabricated, and tested. The axial distance
between the input plane and the first diffractive layer was
set to ~13.34λ. The other axial distances between succes-
sive layers were chosen as ~66.67λ. To have a
misalignment-resilient design, the positions of the layers
and the object were randomly shifted during training fol-
lowing the vaccination strategy outlined in Eq. 5. The
maximum axial and lateral misalignments Δx, Δy, and Δz

were chosen as ~0.26λ, ~0.26λ, and ~0.5λ, respectively.
The thickness profiles of the trained diffractive surfaces
and noisy/clean input objects were converted into STL files
using MATLAB and they were fabricated by using a 3D
printer (Objet30 Pro, Stratasys Ltd.).
The schematic diagram of the experimental setup is

shown in Fig. 6d. The incident wave was generated using a
modular amplifier (Virginia Diode Inc. WR9.0M SGX)/
multiplier chain (Virginia Diode Inc. WR4.3 × 2
WR2.2 × 2) (AMC) with a compatible diagonal horn
antenna (Virginia Diode Inc. WR2.2). An RF input signal
of 10 dBm at 11.1111 GHz (fRF1) generated by a synthe-
sizer (HP 8340B) was used as the input and multiplied 36

times to produce continuous-wave (CW) radiation at
0.4 THz. The AMC was modulated with a 1 kHz square
wave for lock-in detection. The axial distance between the
exit aperture of the horn antenna and the object plane of
the 3D-printed diffractive image denoiser was ~75 cm and
the aperture of the horn antenna is measured to be
~4mm× 4mm. The output FoV of the diffractive
denoiser was scanned using a 0.25 × 0.5 mm detector with
a step size of 0.75 mm. To enhance the Signal-to-Noise
Ratio (SNR) and better align with the output pixel size of
our design, which was ~1.33λ (1 mm), a 3 × 3 bilinear
upsampling and 4 × 4-pixel binning were used. The sig-
nals were detected by a Mixer (Virginia Diode Inc. WRI
2.2) equipped with a pinhole (0.25 × 0.5 mm) placed on an
XY positioning stage composed of vertically combined
two linear motorized stages (Thorlabs NRT100). A
10 dBm RF signal at 11.0833 GHz (fRF2) was sent to the
detector as a local oscillator to down-convert the signal to
1 GHz for further measurement. The down-converted
signal was amplified by a low-noise amplifier (Mini-Cir-
cuits ZRL-1150-LN+) and filtered using a 1 GHz
(+/−10MHz) bandpass filter (KL Electronics 3C40-1000/
T10-O/O). The signal was initially measured by a low-
noise power detector (Mini-Circuits ZX47-60) and read
by a lock-in amplifier (Stanford Research SR830) with the
1 kHz square wave serving as the reference signal. The
raw data were subsequently calibrated into a linear scale.

Image noise models
In this work, two main noise models, namely salt and

pepper noise2 and low sampling noise of Monte Carlo
renderings8,9, were used to demonstrate the all-optical
denoising performance of diffractive image denoisers for
phase-encoded and intensity-encoded input objects. The
former noise model represents a common noise type
caused by abrupt and pronounced fluctuations within
pixel values2,75. For both phase-encoded and intensity-
encoded image denoising, the noise probability per image,
Ptr for training and Pte for testing, determines the ratio of
the pixels affected by salt or pepper noise relative to the
overall pixel count within the image. Either salt or pepper
noise is selected with a probability of 0.5. The pixel value
of the salt is 1 for intensity images and π for phase images.
The pixel value of the pepper is 0 for both intensity and
phase images. We also used a modified version of the salt
and pepper noise with 4 possible pixel values including 0,
0.33π, 0.66π, and π; see Supplementary Fig. S3b. Each one
of these 4 pixel values is selected with a probability of
0.25. In the experimentally-tested design, only salt noise
with a probability of 1 is used to simplify the fabrication of
the noisy input objects in our experiments.
The second noise model involves image artifacts from

Monte Carlo low-sample renderings, which poses an
important problem for interactive ray tracing in real-
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world applications9. Unlike the salt and pepper noise, the
noise model for ray tracing with low samples per pixel
depends on pixel values and their positions in an image.
To apply this noise model to input images, first, additive
uniform noise nðx; yÞ � Uð0; 0:5Þ is applied to every
nonzero pixel. Following that, some pixels are impacted
and set to 0 based on the noise probability per pixel
Pγðx; yÞ that depends on the pixel location (x, y) and γ.
Pγðx; yÞ can be written as follows:

Pγ x; yð Þ ¼ 1� rmax
γr x;yð Þ ; γr x; yð Þ � rmax

0; otherwise

(

rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmax

2 þ ymax
2

q

rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ð6Þ
where rmax denotes the radius of a circle that encloses the
image/object. r(x, y) refers to the distance between each
pixel (x, y) and the center of the image. γ sets the noise
rate of a poorly rendered image. γtr and γte are used to
represent the noise rates for the training and testing
phases, respectively.

Training loss function and imaging performance
comparison metrics
The loss function used for the training of our diffractive

image denoiser models can be written as:

L ¼ 1
N

XN
i¼1

yi �
PN

i¼1yiPN
i¼1ŷi

ŷi

�����
�����þ βe�η

η ¼ 100 ´
Po

Pi
ð7Þ

where yi and ŷi represent each target image (ground truth)
and the corresponding diffractive image denoiser output
intensity, respectively. N denotes the number of pixels in
each image. Pi and Po ¼

PN
i¼1ŷi are the optical power

incident on the input FoV and the output FoV,
respectively. β is used to adjust the average diffraction
efficiencies of the all-optical image denoisers, which was
set to be 0.05 for the experimentally-tested diffractive
model and 0 for the numerically-tested designs, except for
those presented in Fig. 5, which used different β values
during their training to analyze the trade-off between the
image denoising performance and the output diffraction
efficiency.
To increase the generalization of the trained diffractive

image denoisers, several data augmentation strategies
including random image rotations (0, 90, 180, and 270
degrees), random flipping, and random contrast

adjustments were incorporated into the training process.
Python (v3.8.13) programming language and TensorFlow
(v2.5.0, Google LLC) were used for the design of the all-
optical image denoisers. The models were trained using a
GeForce RTX 3090 GPU (Nvidia Corp.) and an AMD
Ryzen Threadripper 3960X CPU (Advanced Micro Devi-
ces Inc.) with 264 GB of RAM.
To ensure a fine balance between the exploration and

exploitation phases during the optimization process, we
used cosine decay with warm-up to schedule our learning
rate76. This scheduler initially increases the learning rate
linearly from a predefined minimum value of ηmin to a
maximum value of ηmax over a specified number of warm-
up epochs Twarm�up as follows:

ηt ¼ ηmin þ
ηmax � ηmin

� 	
Twarm�up

´ t ð8Þ

where ηt represents the learning rate at epoch t. Then, for
the remaining epochs (t>Twarm�up), the learning rate
starts to decrease with cosine decay as

ηt ¼ ηmin þ
1
2

ηmax � ηmin

� 	
1þ cos

π ´ t � Twarm�up
� 	
T � Twarm�up

� �� �

ð9Þ

where T denotes the total number of epochs. ηmax and
ηmin were set to be 0.002 and 0. For the numerically-tested
designs, T and Twarm�up were 500 and 62 epochs,
respectively. For experimentally-demonstrated design, T
and Twarm�up were 150 and 22 epochs, respectively. All
models were trained using the Adam optimizer with a
batch size of 200. Each of the numerically-tested designs
utilized ~12 h of training, spanning 500 epochs.
To quantify our denoised imaging results, PSNR and

SSIM metrics were used to compare the all-optical image
denoising performance of different diffractive designs46.
For the SSIM computation, the standard TensorFlow
implementation with a maximum value of 1 was used, and
for the PSNR computation we used:

PSNR ¼ 10log10
1

1
N

PN
i¼1 yi �

PN

i¼1
yiPN

i¼1
ŷi
ŷi

����
����
2

0
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