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Abstract: Ultrafast time-resolved extreme ultraviolet (EUV) reflectivity measurements of optically
pumped amorphous carbon (a-C) have been performed with the FERMI free electron laser (FEL).
This work extends the energy range used in previous reflectivity studies and adds polarization
dependence. The EUV probe is known to be sensitive to lattice dynamics, since in this range
the reflectivity is essentially unaffected by the photo-excited surface plasma. The exploitation of
both s- and p-polarized EUV radiation permits variation of the penetration depth of the probe;
a significant increase in the characteristic time is observed upon increasing the probing depth (1 vs.
5 ps) due to hydrodynamic expansion and consequent destruction of the excited region, implying
that there is only a short window during which the probed region is in the isochoric regime. A weak
wavelength dependence of the reflectivity is found, consistent with previous measurements and
implying a maximum electronic temperature of 0.8 eV ± 0.4.

Keywords: liquid carbon; EUV; free electron laser; reflectivity; pump-probe; polarization

1. Introduction

Ultrafast laser irradiation has become a standard way to induce phase transitions in condensed
matter [1,2]. Depending on the material studied and the power of the laser, ultrafast melting,
sublimation, or production of extreme states such as warm dense matter or plasmas can be effected [3–6].
Laser-driven excited states typically exist for only a few picoseconds before the excited region of the
sample starts to equilibrate with the bulk, leading to extensive thermal expansion, which destroys
the sample in cases such as the present. Thus, it is necessary to probe many identical samples, as is
the case in this study, employing ultrafast probing and sample rastering in order to study the system
before its destruction by thermal expansion [7].

Here, we detail ultrafast free electron laser (FEL) probing of laser-excited amorphous carbon(a-C)
in the extreme ultraviolet (EUV) wavelength range of 21–42 nm over delay times of up to 15 ps and
using both s- and p-polarized light. The goal is to elucidate the nature of highly excited carbon, as it has
a particularly interesting predicted phase diagram, with unresolved questions as to whether a liquid
state actually exists, if there are multiple liquid states, or if it is just a highly-driven plasma state [8–12].

Carbon under extreme thermodynamic conditions was first studied by Bundy, employing flash
heating to induce ultrafast melting in graphite [13]. Others have performed ultrafast optical
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pump-optical probe reflection measurements for both graphite and diamond, wherein evidence
of ultrafast metallization ascribed to a solid-liquid transition was presented [14]. However, an optical
probe is inherently complicated by the effects of the plasma generated by the optical pump,
e.g., photo-excited electrons can strongly affect the time evolution of the reflectivity and transmission,
making data interpretation much less straightforward [15,16]. Here, an extreme ultraviolet probe in
the range 25–60 eV is used so that the photons are much less affected by the photo-induced plasma.
Moreover, we employ polarization as an additional probe of the system, which changes the probe
depth [17,18].

2. Results

The measurements were carried out at EIS-TIMEX beamline of the FERMI seeded FEL [19].
The pump-probe timing has a jitter of less than 10 fs [20]. The probe wavelength and polarization
were varied using the harmonic and Apple-II-type undulator at FERMI [21]. The samples comprised
100 nm thick coatings of a-C on silicon substrates. The optical (251 nm) pump power is sufficient to
induce sample damage, while the EUV probe power is not. This has been verified previously, based on
power densities, visual inspection, and reflectivity measurements [22].

The full dataset comprises seven FEL wavelengths with s-polarization and five with p-polarization.
Representative time curves are plotted in Figure 1, showing two different polarizations and two different
probe energies. The probe pulse reflectivity decreases sharply following the excitation pulse (∆t = 0),
but remains roughly constant for ambient samples (data at t < 0). The long-term value measured here
approaches that found at 100 ms following the pump pulse, evidencing that all of the sample dynamics
occur in the time range studied here.
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Figure 1. Reflectivity signal values as a function of delay time for 4 different combinations of wavelength
and polarization, i.e.,: (A) 25.10 nm and s-polarization, (B) 25.10 nm and p-polarization, (C) 35.86 nm
and s-polarization, (D) 35.86 nm and p-polarization. The solid blackline corresponds to the fit, while the
red dots correspond to the experimentally measured signal.

While s-polarization and p-polarization measurements both yield time constants that generally
increase with increasing wavelength, a larger effect is found from switching from s-polarization to
p-polarization. As shown in Figure 2, s-polarization has a time constant of ~1 ps, while p-polarization
has a time constant of ~5 ps. Previous work estimated the plasma frequency to correspond to an energy
< 5 eV, which is substantially below that of the probe energy [22]. However, at the longer probe
wavelengths used here, the reflectivity should be higher which may lead to our observed change in
time constant. The expected reflectivity changes are due to dynamics of the lattice, with s-polarization
and p-polarization providing different probe depths [23]. The p-polarized data at 28 nm appears to be
aberrant compared to the rest of the data, and we believe that it is due to random fluctuations.
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Figure 2. Decay time constants obtained from fitting the experimental data for p-polarized (red circles)
and s-polarized (blue triangles) probe as a function of wavelength. The error bars correspond to the
error in the fit.

3. Discussion

Transient EUV reflectivity exhibits markedly different trends then what is observed in the optical
regime, which has a significantly faster reflectivity increase followed by a slow decay [14]. The optical
results have been attributed to a large increase in free electron density, leading to a metallic-like surface,
initially increasing the reflectivity, followed by the relaxation of the electrons and lattice expansion [24].
In contrast, EUV reflectivity is sensitive primarily to lattice dynamics, simplifying the interpretation.

Previous work has shown that the decay lifetime τ as a function of probe wavelength can be
approximated assuming a constant surface expansion velocity at short times as

τ
(
λprobe

)
= f

λprobe

υ
(1)

where f is a parameter depending on the probe polarization and the exact form of the density gradient,
and υ is the velocity of the expanding surface [14,22,25]. This result implies that the time constant
should increase linearly with the wavelength of the probe. This result can be used in conjunction with
the simplification of the expression for a surface experiencing a shockwave (Equation (2)) to calculate
the electronic temperature.

υ =
2

γ− 1

√(ZKbTE

M

)
' 2

√
KbTE(eV)104 m

s
(2)

In this case, Z is the effective charge, TE is the electron temperature, M is mass of the carbon atom,
and Kb is the Boltzmann constant. Given the large scatter in the experimental data, when including
all of the points and using the s-polarization f value of 0.6, an expansion velocity of 9.5 ± 1 nm/ps
is obtained, substantially lower than both the previously determined 17 ± 4 nm/ps and the speed of
sound in graphite 18 nm/ps [14,22,26]. However, due to the limited number of points and the large
error bars, this value is sensitive to the removal of outlier points, and a value within error of the speed
of sound can also be obtained. Using wavelengths between 22 and 32 nm, the expansion velocity is
calculated to be 13 ± 0.5 nm/ps, within the error bars of the previous measurement. The p-polarized
data are even more difficult to interpret, given the large scatter and error bars, but a value consistent
with expansion at the speed of sound is reasonable. The calculated surface expansion velocity can then
be used to calculate the electronic temperature, as detailed in Ref. [22]. While the surface temperature
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calculated from a fit of all data is closer to 0.4 eV than to the 0.8 eV value reported previously [22],
the large scatter in the data indicates that a definitive assignment is not possible at present.

The large difference between s-polarization and p-polarization results in terms of decay time
constant can be understood in terms of differences in what is being probed, as the p-polarization
has a larger penetration depth [17,18], implying that it is actually sensitive to the underlying silicon
substrate and related energy diffusion. However, expanding the films would make the experiment
significantly harder to interpret as it would lead to a significantly less homogeneous phase of carbon.

The real and imaginary optical constants corresponding to refractive index n and extinction
coefficient k from an amorphous film are shown in Figure 3 [27]. Over the 20–45 nm range, the extinction
coefficient (k) increases monotonically and the refractive index (n) decreases. While there is a noticeable
increase in extinction as the probe length increases, it alone does not explain the observed data. The
p-polarization data at 28 nm appear to be due to random fluctuations in the experiment.
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amorphous carbon thin film are shown for the relevant pump and probe wavelengths. Taken from [27].

In principle, it is possible to invert the reflectivity measurements to obtain n and k (the real
and imaginary components of the complex index of refraction) from the Kramers–Kronig relation.
However, given the quantity of data here, it was not possible to solve due to discontinuities related to
solution hopping [28]. A direct solution of the real and imaginary parts of the optical constants would
allow for the determination of reflectivity and transmission as a function of time, and given additional
related experiments, temperature. This would effect a more detailed understanding of the physical
properties of liquid carbon. While this can, in principle, be addressed by making large approximations,
it is difficult to justify such approximations here.

4. Materials and Methods

The experimental setup has been detailed previously [22,29]. Briefly, at the EIS-TIMEX end-station,
an optical pump pulse (251 nm, 130 fs, pulse energy ~35 µJ) focused to approximately 70 × 100 µm2

FWHM and an FEL pulse (very roughly 29–59 eV, pulse length ~70 fs, ~1 µJ) focused to 30 × 15 µm
impinged upon a 100 nm amorphous carbon film of 2.1 g/cm3 density with roughness less than 1 nm,
and oriented at approximately 40◦ relative to the pump pulse [19]. The fluence of the optical laser had a
large variation and may be related to the noise in the observed signal. The FEL and optical pulses were
divergent by approximately 10◦, which was exploited to separate the beams and measure the reflected
FEL intensity on an AXUV photo-diode (Opto-Diode) with a response time of significantly less than
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0.1 s. The photodiode was shielded from the pump pulse and other stray radiation by a 100 nm thick
Al foil. Polarization of the FEL has been characterized previously [30].

As the pump pulse damaged the sample, a series of FEL probe pulses were used to optimize the
measurement:

(i) Three FEL pulses well before the arrival (unpumped reflectivity);
(ii) One value followed very shortly after the pump pulse (pump-probe);
(iii) One value 100 ms after the pump pulse (post damage reflectivity).

The sample was then rastered to a new spot and the sequence repeated. We observed no evidence
of sample damage from step (i). Error bars are one standard-deviation. Shown in Figure 4 is the
different reflectivity curves for the entire series of pump pulses with horizontal polarization at 41.83 nm.
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Figure 4. The reflectivity curves from a representative sample for 41.83 nm horizontally polarized light.
The pre-shots (black triangles), pump-probe (red circles) and post-shots (blue triangles) corresponding
to steps (i) (ii) and (iii), respectively. Only the pump-probe shows a large change in reflectivity on the
timescale studied here.
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The reflectivity observed as a function of delay was fit using the following empirical model:{
A0 t < 0
Aexpe−t/τ + A1 t ≥ 0

(3)

The dynamics studied are significantly slower than the pulse durations used in the experiment,
so such a simple model is well justified.

5. Conclusions

Irradiation by intense ultrafast optical laser pulses causes a large decrease in the EUV reflectivity
of amorphous carbon films. The process is significantly simpler than what is found with reflectivity
in the optical regime, and is consistent with previous measurements, revealing a maximum electron
temperature of 0.8 eV, while adding to the energy ranges and polarization dependence explored.
The s-polarized FEL probe decays significantly faster (~1 ps) then the p-polarized (~5 ps) probe.
The p-polarized FEL probe has a larger penetration depth and is thus sensitive to different dynamics
than the s-polarized probe is. Ultimately, given additional data, it should be possible to completely
invert the Kramers–Kronig relationship and solve for n and k.
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FEL Free electron laser
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EUV Extreme ultraviolet
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