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ABSTRACT OF THE DISSERTATION

Local Indecomposability of Hilbert Modular
representations and Mumford-Tate conjecture

by

Bin Zhao
Doctor of Philosophy in Mathematics
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Professor Haruzo Hida, Chair

In this thesis, we use the Serre-Tate deformation theory for ordinary abelian varieties to
study its associated p-adic Galois representations. As applications, we study two types of
questions. The first is to determine the indecomposability of the Galois representations
restricted to the p-decomposition group attached to a non CM nearly ordinary weight two
Hilbert modular form over a totally real field. Then second is to study the Mumford-Tate

conjecture for absolutely simple abelian fourfolds with trivial endomorphism algebras.
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CHAPTER 1

Introduction

Let A, be an abelian variety over an algebraically closed field k of characteristic p > 0.
A theorem of Serre and Tate states that the infinitesimal deformation of A, is equivalent
to that of its p-divisible group. When A/ is ordinary, the formal moduli space ﬁA /k has
a formal group structure. To be more precise, let ﬁA/k be the set-valued functor on the

category of local artinian rings with residue field k£ such that:
ﬁA/k(R) = { isomorphism classes of liftings of A, to R}.
Then there is an isomorphism of functors:
M, = Homy, (T, A(k) @z, T,A k), G,p).

This theorem of Serre and Tate has a lot of applications. It can be used to study the local
model of Shimura varieties of Hodge type at an ordinary closed point. It can also be used to
study the Galois representation attached to an abelian variety over a local field with good
ordinary reduction. In this thesis, we use the above ideas to study two types of questions in

number theory and arithmetic geometry, which will be sketched below.

1.1 Local Indecomposability of Hilbert Modular Galois Represen-

tations

Let F' be a totally real field and f be a Hilbert modular form of level m over F'. Assume
that f is a Hecke eigenform and let K; be its Hecke field. For any prime \ of Ky over a

rational prime p, let K, be the completion of Ky at A. It is well known that there is a



Galois represention p; : Gal(Q/F) — GLy(K},) attached to f. Moreover if the eigenform f
is nearly p-ordinary, then up to equivalence the restriction of ps to the decomposition group
D, of Gal(Q/F) at p is of the shape (see [52] Theorem 2 for the ordinary case and [19]
Proposition 2.3 for the nearly ordinary case):
€ *
prlp, ~

€2
R.Greenberg once asked when the local representation py|p, splits. In the elliptic modular
case, it was studied by Ghate and Vatsal and they gave an answer in [14] under some
conditions. In a recent paper [2], joint with Balasubramanyam, they generalized their result

to the Hilbert modular case under some restrictive conditions.

In this thesis, we are mainly concerned with the case that f is parallel weight two. We
also need to put the following technical condition on f when the degree of F' over Q is
even: there exists a finite place v of F' such that 7, is square integrable (i.e. special or
supercuspidal) where 7y = ®,7, is the automorphic representation of GLo(Fy) associated

to f (Fy is the adele ring of F'). Then the first main result of this thesis is:

Theorem 1. If f does not have complex multiplication, then py|p, is indecomposable.

We remark here that the above theorem can help us to study a problem raised by Coleman

on the existence of companion forms.

1.2 Mumford-Tate Conjecture for Abelian Fourfolds

Let A/ be an abelian variety defined over a number field F' of dimension n. Fix an algebraic
closure F of F' and a complex embedding ' — C. Let V = Hy(Ajc, Q) be the first singular
homology group of A ¢ with coefficients in Q. Then we denote by MT'(A),q (resp. Hg(A) q)
the Mumford-Tate group (resp. Hodge group) associated to the natural Hodge structure of
V.



On the other hand, for any rational prime [, let T;A(F') be the l-adic Tate module of A

and set V; = TJA(F) ®z, Q;. Then we have a Galois representation
o Gal(F/F) — Autg, (V).

We define an algebraic group G /q, as the Zariski closure of the image of p; inside the algebraic
group Autg,(V}), and let Gl"/@l be its identity component. By comparison theorem, we have
an isomorphism V ®q@Q; = V;. Under this isomorphism, the Mumford-Tate conjecture states

that:

Conjecture 1.1. For any prime [, we have the equality G},q, = MT(A) xg Q.

In this thesis, we are interested in the case that A,r is an absolutely simple abelian

fourfolds (so in particular n = 4).

Let g,q (resp. gi/q,) be the Lie algebra of the algebraic group MT(A)q (resp. Gig,).
Then let g (resp. by/q,) be the subalgebra of g, (resp. gi/g,) consisting of elements of
trace 0. So we have g = h @ Q- Id (resp. g, = bh; ® Q; - Id). In [32], Moonen and Zarhin
computed the Lie algebras /g and b;/q,. From their result, the endomorphism End’(A /F)
together with its action on the Lie algebra Lie(A,z) determines the Lie algebras h,q and
bi/q, uniquely except in the case that End’(4,7) = Q. When End”(4,7) = Q, we have two
possibilities for h: either b = sp, over Q or h = sly x sly x sly over Q. And similarly we
have two possibilities for b;: either h; = sp, over Q, or h; = sly x sl x sly over Q. The first
case happens when A,r comes from a generic element in the Siegel moduli space while the
second happens when A, p comes from an analytic family of abelian varieties constructed by

Mumford in [34]. The second main result of this thesis is the following:

Theorem 2. If h; = sly xsly xsly over Q;, then Ap comes from a Shimura curve constructed

by Mumford in [34)].

Since Deligne proved the inclusion h; C h ®q Q;, combining Theorem 2 with previous
work of Moonen and Zarhin, the Mumford-Tate conjecture holds for all absolutely simple

abelian fourfolds.



1.3 Organization of the Thesis

In chapter 2, we review the Serre-Tate deformation theory for abelian varieties and the
construction of Serre-Tate coordinates of ordinary abelian varieties. We also explain how to
get p-th power roots of the Serre-Tate coordinates from a splitting of the connected-étale

exact sequence of the p-divisible groups.

In chapter 3, we explain how the Serre-Tate coordinates of an abelian variety over a
local field with good ordinary reduction determine the Galois representation associated to

its p-adic Tate module.

In chapter 4, we give a brief review of Hilbert modular Shimura varieties and Siegel
modular Shimura varieties. We give the integral models of these Shimura varieties we want

to work with and list some properties which will be used in later argument.

In chapters 5 and 6, we give the proofs of Theorem 1/ and Theorem 2 respectively. As
both proofs are quite technical, we postpone to chapters 5 and 6 for summaries of techniques

and tools employed in the proofs.



CHAPTER 2

Serre-Tate deformation theory for abelian varieties

In this chapter, we review the deformation theory of abelian varieties. We do not present

the results in fully generality and refer the readers to [29] and [20] for more details.

2.1 Cartier duality theorem

In this section we recall the Cartier duality theorem for abelian schemes. For more details,
see [33] section 14, 15 when the base is the spectrum of an algebraically closed field and [37]

Chapter 1 for the general base.

Theorem 3. (See [37] Theorem 1.1) Let A and B be two abelian schemes over a scheme
S, and f : A — B be an S-isogeny. Let A' (resp. B') be the dual of A (resp. B) and
ft:B' — A be the dual of f. Then there is a pairing of finite flat group schemes over S:

(,)s  ker(f) x ker(f*) = Guys,

which 1s non-degenerate, bilinear and compatible with arbitrary base change.

Now let S be an arbitrary scheme and A /g be an abelian scheme. For any integer NV > 0,
the multiplication by N map [N]: A — A is an S-isogeny. In this case we denote the pairing
(-,-)v) in Theorem 3 by

Eu/sn : A[N] x A'[N] — Gyyys.



2.2 Serre-Tate Theorem on the deformation of abelian varieties

Let p be a prime number. For any ring R, we use A(R) to denote the category of abelian
schemes over R. We also use R,.q to denote the quotient R/nil(R), where nil(R) is the
nilradical of R. Let I C R be an ideal and set Ry = R/I. We use Def(R, Ry) to denote the
category of triples (Ag, G, 1) consisting of an abelian scheme Ay over Ry, a p-divisible group

G over R, and an isomorphism of p-divisible groups i : Gy — Ag[p™] over Ry, where Gy is

the p-divisible group over Ry obtained from G under the base change R — Ry, and Ay[p™]

is the p-divisible group of Ay. Later we also write Gg = G ®g Ry to simplify the notation.

For any object A in A(R), we have a natural isomorphism of p-divisible groups over Rj:
i: (A[p™])o = A[p™] ®r Ry — Aq[p™],

where Ay = A ®pr Ry is the abelian scheme over Ry obtained by base change. So we have a

functor:

¢: A(R) — Def(R, Ry)
A (Ag, A[p™],1).

The Serre-Tate theorem tells us that the above functor ¢ is an equivalence of categories

under certain conditions. More precisely, we have:

Theorem 4. If p is nilpotent in R and the ideal I is nilpotent in R, then the functor ¢ is

an equivalence of categories.

The proof of the above theorem is long so we divide it into several lemmas.
By the assumptions, there exist integers n and v, such that ¢ = p™ vanishes in R and

"1 =(0) in R.

Lemma 2.1. Let G and H be two abelian sheaves on the f.p.p.f. cite of R, which satisfy the

following conditions:



1. G is q-divisible, i.e. the multiplication by ¢ homomorphism [q] : G — G is an epimor-

phism;

2. the subsheaf H of H defined by H(A) = ker(H(A) — H(Ayeq)) for any R-algebra A,

15 locally represented by a formal Lie group;

3. H 1s formally smooth, i.e. for any R-algebra A and any nilpotent ideal J of A, the
map H(A) — H(A/J) is surjective.

Let Gy = G ®r Ry (resp. Hy = H ®@r Ry) be the inverse image of G (resp. H) under the

base change R — Ry. Then the following statements hold:

1. the morphism v : Hom(G, H) — Hom(Gy, Hy) obtained by the base change R — Ry is
mjective;

2. for any morphism fy : Go — Hy, there exists a unique morphism F(v, fo) : G — H
which lifts q° fo;

3. a morphism fy : Go — Hy can be lifted to R if and only if the morphism F(v, fo)
defined above annihilate the subsheaf G[¢"] = ker([¢"] : G — G) of G.

Proof. We begin by making two remarks. The first remark is that the sheaves Hom(G, H)

and Hom(Gy, Hy) are g-torsion free. In fact, as G is ¢-divisible, we have the exact sequence:

0— Glq] — Y a o

As the functor Hom(—, H) is left exact, we see that Hom(G, H) is g-torsion free. Since G is
g-divisible, so is Gy. We repeat the above argument to Gy and it follows that Hom(Gg, Hy)

is also g-torsion free.

The second remark is that the subsheaf H; of H defined by H;(A) = ker(H(A) —
H(A/IA)) for any R-algebra A is killed by ¢". In fact, as I is nilpotent in R, H; is a

subsheaf of H. As the question is local, we can assume that H is represented by a formal



A

Lie group. After choosing suitable coordinates X1, ..., X, of H, the morphism lq] : H— H

can be expressed in terms of the coordinates:
([¢)(X)): = qX; + higher degree terms of X's .

If = is a point of H;(A) for an R-algebra A, its coordinates lie in IA by definition. As ¢
vanishes in R, the coordinates of [¢](z) lie in I?A and hence [g](H;) C Hj2. Since the above
argument is true for any nilpotent ideal I, we have the inclusion [¢|(Hpx) C Hpox C Hprta

for any integer k£ > 1. In particular, [¢*](H;) C Hpo+1 = 0 as 1" = (0).

Notice that keryy C Hom(G, Hy). From the first remark above, the sheaf Hom(G, Hy)
is g-torsion free and hence ¢’-torsion free. From the second remark, the sheaf H; is killed
by ¢*, and so is Hom(G, Hy). So Hom(G, H;) = 0 and % is injective. This proves the first

statement of the lemma.

For the second statement, the uniqueness of F'(v, fy) follows directly from the injectivity
of 1. For the existence, we give the explicit expression of the morphism F(v, fy). For any
R-algebra A, since the sheaf H is formally smooth, the reduction map H(A) — H(A/IA) is

surjective. We define a homomorphism:
j: H(A/IA) — H(A)
h — q"h,
where h € H(A) is any lifting of h € H(A/IA). Notice that any two liftings of h are different
by an element in H;(A), which is killed by ¢* by the second remark above. It follows that

the homomorphism j is well defined. Now we define a homomorphism F'(v, fo)(A) : G(A) —

H(A) as the composite:
G(A) Zdution, G(A/TA) 2% Hy(AJTA) = H(AJTA) L H(A).

It is easy to check that the formation of F'(v, fy)(A) is functorial in A and hence we get a
morphism F (v, fy) which lifts ¢V fo.

We remain to prove the last statement. First notice that if fy € Hom(G, H) is a lifting



of fo € Hom(Gy, Hy), then ¢ f = F(v, fo) due to the injectivity of the map . This proves

the ’only if” part. Now we prove the ’if” part.

Applying the left exact functor Hom(—, H) to exact sequence

0—>G[q]—>G[—q]—>G—>O,

we get another exact sequence
0 — Hom(G, H) % Hom(G, H) — Hom(G[q"], H).

By assumption, the restriction of F(v, fy) to the subsheaf G[q"] is zero. So we can find
f € Hom(G, H) such that ¢"f = F(v, fo). Since ¢ f lifts ¢"fo, and the sheaf Hom(Gg, Hy)

is g-torsion free, f is a lifting of f. O

Now we can prove the full-faithfulness in Theorem /4. We need to prove the following
statement: given two abelian schemes A, B over R, a homomorphism f[p>] : A[p>] — B[p™]
of p-divisible groups over R, and a homomorphism f, : Ay — By of abelian schemes over Ry,
such that the induced homomorphism fy[p™] : Ag[p™] — By[p™] coincides with (f[p>])o =
flp>°] ®r Ry, then there exists a unique homorphism f : A — B which induces f[p>°] and
lifts fo.

We remark that if we regard abelian schemes and p-divisible groups over R as abelian
sheaves on the f.p.p.f site of R, then they satisfy all the assumptions in Lemma 2.1. So the
uniqueness of f follows from the injectivity of the morphism Hom(A, B) — Hom(Ay, By)
proved in the first part of Lemma 2.1.

We continue to prove the existence of f. By Lemma 2.1, we have a homomorphism
F(v, fo) : A — B which lifts the homomorphism ¢" fo. The induced homomorphism F(v, fy)[p>] :
A[p™] — B[p>] of p-divisible groups is a lifting of ¢* fo[p™°] = ¢"(f[p™])o = (¢" f[p*°])o-

From the injectivity of the morphism

Hom(A[p™], B[p>]) — Hom(Aq[p>], Bo[p™]),



we have the equality F(v, fo) = ¢"f[p>]. It follows that F(v, fo) annihilates the group
Alg"]. From Lemma 2.1, the homomorphism fy can be lifted uniquely to a homomorphism

F: A — B. Since F[p*] and f[p>] both lift fo[p>], we have F[p>] = f[p*].

To prove Theorem 4, it remains to prove that given an abelian scheme Ay over Ry, a
p-divisible group G over R and an isomorphism i : Ag[p™] — Gy = G ®g Ry, there exists an

abelian scheme A over R which induces the triple (Ag, G,1).

As R is a nilpotent thickening of Ry, we can always lift the abelian scheme A, to an
abelian scheme B over R. Let i : By = B ®g Ry — Ap be the corresponding isomorphism

and io[p™] : Bo[p™>] — Ao[p>°] be the induced isomorphism of p-divisible groups.

From Lemma 2.1, there exists a morphism F'(v, ig[p™]) : B[p™] — G (resp. F (v, (io[p>])"!) :
G — B[p™]) which lifts the morphism ¢"io[p™] : Bo[p™] — Ao[p™] (resp. ¢°(io[p™])~!
Ap[p™] — By[p™]). From the injectivity of ¢ in Lemma 2.1, the composite of F'(v,io[p®])
and F(v, (ip[p™])™!) (in either order) is the endomorphism [¢?*]. Hence we have an exact
sequence of f.p.p.f. sheaves over R:

(v,i0[p>])
—_—

O—>K—>B[p°°]F G —0,

where K is a subgroup scheme of B[q?"].

As the morphism [¢"](ig[p™]) : Bo[p™] — Ao[p™] is an isogeny and hence flat, and flatness
is an open property, the morphism F (v, ig[p™]) is flat and K is a finite flat subgroup scheme
of Blg*"]. So we can consider the quotient A = B/K, which is also an abelian scheme over
R. Since K lifts Bylq’], A lifts By/By[q"] = By = Ay, and the exact sequence

] F(v9i0 [poo]

0 — K — B[p™ LG o

Y

gives an isomorphism A[p™] = B[p*]/K = G,which is exactly what we wanted to prove.

2.3 Serre-Tate coordinates for ordinary abelian varieties

In this section we fix an algebraically closed field k of characteristic p > 0. Let A be

an abelian variety over k of dimension g > 1. We have seen from Theorem 4 that the

10



infinitesimal deformation of the abelian variety A/, is equivalent to that of its p-divisible
group A[p>] /. In the rest of this section, we always make the assumption that the abelian
variety A/ is ordinary, i.e. its p-adic Tate module T, A(k) is a free Z,-module of rank g. It
turns out that under this assumption, the formal moduli space §J\TA /i of Ay, has a formal

group structure. To be more precise, we have the following:

Theorem 5. Let A be an ordinary abelian variety over k and R be an artinian local ring

with residue field k. Then the following statements hold:

1. there is a bijection:

{ isomorphism classes of liftings of Ay to R} — Homg, (T,A(k) ®z, T,A'(k), Gn)

Ag = q(A/r;—, —).

Moreover, the above bijection is functorial for various R’s and give an isomorphism of
functors:

M4 — Homy, (T,A(k) @2z, T,A'(K), G,);

2. let Ajg be a lifting of Ay, and let AjR be its dual. under the canonical isomorphism
A (AN we have the formula:

Q(A/R7 «, C“t) = q(A;Ra O, a)a
for any a € T,A(k) and oy € T,A*(k);

3. let By be another ordinary abelian variety over k and A r (resp. B/gr) be a lifting of
A (resp. Byg). Let f: A — B be a homomorphism and f*: B* — A" be its dual.
Then f can be lifted to a homomorphism £ : A — B if and only if

a(A/my o, f1(Br) = a(Byr; f(), Br),

for any o € T, A(k) and (3, € T,B*(k).

11



Proof. 1. From Theorem 4, to get a lifting A/ of A is equivalent to getting a lifting
A[p>] /g of its p-divisible group A[p™] ;. Since A is ordinary and k is algebraically
closed, the p-divisible group A[p*]; is a product:

Alp>] = A x T,A(k) Qz, (Qp/Zy).

For any n > 1, the paring E4, ,n @ A[p"] x A'[p"] — ji,n defines an isomorphism of
k-group schemes:

Alp"] — Hom(A"[p"] (k). ptpn)-

Taking the inverse limit, we have an isomorphism of formal groups over k:
A — Homg, (T,A'(k), G,,),

and it induces a pairing:

Ea, : Ax T,A (k) — G

Since R is local artinian ring with residue field &, the p-divisible group A[p™] r of A /g

sits in the connected-étale exact sequence:

~

0— A — Ap™] — TpA(k> ®z, @p/Zp — 0.

We remark here that if we regard A as an f.p.p.f. sheaf on R, then A is defined in
the previous section as a subsheaf of A. In fact, A is the unique formal subgroup
of A[p™] which lifts A. Since A and A[p"] are multiplicative, and R is local artinian
with residue field &, the isomorphisms of k-groups A[p"] — Hom(A![p"](k), ppn) and
A — HomZP(TpAt(k:),@m) extends uniquely to isomorphisms of R-groups A[p”] —
Hom(A![p"|(k), e ) and A — HomZP(TpAt(k:),@m), and hence we have the pairing
over R:
En/mpn : Alp"] x A'p"|(k) — ppn,

and

Ea/r - A x T,A (k) — G,p.

12



We want to construct a homomorphism ¢,/ : T,A(k) — A(R) such that the connected-

étale exact sequence of A[p>] is obtained by pushing out the exact sequence
0 — T,A(k) — T,A(k) ®z, Qp — T,A(k) ®z, (Qp/Zy) — 0

along the homomorphism ¢4/r. Let m be the maximal ideal of R. We can choose an
integer n such that m"*! = (0). Since p € m and A is a formal Lie group over R, the

group A(R) is annihilated by p™. So we can define a group homomorphism:

on: Alk) — A(R)

X l—)px’

where & € A(R) is any lifting of x € A(k). (Notice that & always exists as A /g is
smooth). The restriction of ¢, to A(k)[p"] gives a homomorphism ¢, : A(k)[p"] —
A(R). These ¢,’s are compatible in the sense that ¢, 0[p] = @nsq @ A(k)[p"+'] — A(R).

Hence we have a homomorphism ¢y : T,A(k) — A(R) by taking the limit of @,’s.

~

Now we define the Serre-Tate coordinates q(A/p; —, —) € Homy, (T,A(k)®z, T,A (k),G,,),
such that ¢(A/p; a, ay) = Ea/r(pa/r(@), ou), for any a € T,A(k) and o, € T, A* (k).

From the above construction, we have a chain of isomorphisms of functors:

{ isomorphism classes of A g lifting A/} = { isomorphism classes of A[p™],p lifting A[p™],}
= Extr(TpA(k) ®z, Qp/Zy, A)
=~ Hom(T,A(k), A)

=~ Homg, (T,A(k) ©z, T,A(k),G,,)

So the construction of ¢(A,r; —, —) is functorial and we get (1).

. Recall that we fix an integer n, such that m"** = (0). Let «, (resp. ay,;) be the image
of a (resp. o) under the projection T,A(k) — A(k)[p"] (resp. T, A (k) — A'(k)[p"]).

By construction, we have:
Q(A/R; a, at) = EA/R,p" (‘Pn(an)> at,n)>
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Q(A?Ry i, Oé) = EAt/R,pn«On(at,n); an)-
Now we need the following:

Lemma 2.2. Fiz x € A(R)[p"] and y € A'(k)[p"]. There exists an artinian local ring
R’ which is finite flat over R, and a point Y € A'(R')[p"] lifting y. For any such R’
and Y, we have the equality in @m(R’):

Ea/r pn(7,y) = Eayppn (2, Y).

We remark here that in the above equality, the element Ey g n(2,y) is the image of

Es/rpn(2,y) € @m(R) under the finite flat extension R — R'.

Proof. Since the abelian scheme A is smooth over R, we can find Y; € A’(R) which lifts
y € A'(k)[p"]. Then Y; = p™Y; lies in A*(R). Since A? is a formal Lie group and hence
p-divisible, and R is local artinian, we can find another local artinian ring R’ which is
finite flat over R and Y; € A'(R’) such that p"Ys = Y5. Then Y = Y; — Y3 belongs to
AY(R)[p"] and lifts y € A'(k)[p"]. Notice that Ey /g pn(—,y), Ea/pipn(—,Y) 1 A[p"] —
f1yn both lifts the homomorphism E /. pn(—,4) : A[p"] — jipn. Since both A[p"] and
ppn are multiplicative, the lifting of E 4/, n(—, ) to R is unique. So we get the desired

equality. O]

Now we choose 2, € A(R) (resp. 2, € AY(R)) as a lifting of a,, € A(k)[p"] (resp.
apn € Al(k)[p"]). Since the group A(R) and A*(R) are killed by p”, we have 2, €
A(R)[p*"] and 2y, € A'(R)[p*™].

Now we want to prove the following formula:

q(A/r; o, o)

=E on (A, i ).
q(AI;R;Oét,Oé) A/R,p ( t, )

By Lemma 2.2) we can find a local artinian ring R’ which is finite flat over R, and
B, € A(R)[p"] (resp. By, € A'(R')[p"]) lifting av,, € A(k)[p"] (resp. aun € A'(k)[p™]).
Define

En =Wy — By € AR)[p™], Erpn = Wi — Bin € AY(R)[p™).
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Again by Lemma 2.2, we have:

q(A/R; a, at) = EA/R,p"(S@l(O‘n)a at,n)
= EA/R’,p" (()On(an)a Bt,n) = EA/R’,p” (pnglny Bt,n)

- :E)A/R’,pn (pngna Bt,n) = EA/R’,pQ" (gna Bt,n)a

and similarly

B 1
EA/R’,pQ" (Bna 515,71) '

(A p; e, @) = Bpeyp pon (Exn, Bn)
So to prove the above formula, it is enough to prove:
Ep/rrp2n (Eny Bin) - Eayrrpen (B, Ern) = Eayrr pon (Un, A ).
By direct calculation, we have:

EA/R’,pQ” (ana Qlt,n) = EA/R/,pQ" (Bn + 5117 Bt,n + gt,n)

= EA/R/’p2TL (Bn, Bt,n> : EA/R’ ,pQ" (gnu gt,n) : EA/R,,P2TL (Bﬂ? gtvn) ' EA/Rlvp2n (gn’ Bt’f‘
Since B, is killed by p”,

EA/R’,p2” (Bm Bt,n) - EA/R’,p" (pnBTu Bt,n) = 1.

Since &, € A(R)[p*"], &, € AY(R')[p*"], and both A[p*"] and A![p?"] are multiplicative,

we have Ej /g pon (En, En) = 1. So we get the desired formula.

Finally we choose liftings 2, € A(R) (resp. 2i2, € AY(R)) lifting g, € A(k)[p*"]
(resp. aio, € AY(K)[p*™]). Then p"As, (resp. p"Asan) is a lifting of a,, (resp. ).

From the above formula, we have:

q(A/g; a, ay)

q(A,;R; o, a) = EA/R,pQ" (pngbmpnﬁmn) = (EA/R,pi%n)(QlQlemn)pn € (1 + m)pn-

We can take n large enough so that (1 +m)P" = (1). So we have the desired equality

Q(A/R§ a,0y) = Q(A;Ré o, ).

15



3. By Theorem 4, the homomorphism f : A — B can be lifted to a homomorphism
f: A — Bover Rif and only if f[p™] lifts to an f[p*°] : A[p>™] — B[p>]. Such an f[p>]

must be compatible with the exact sequences:
0 — Homg, (T, A" (k), Gm) — Alp™] — T,A(k) ®z, Qp/Z, — 0,
0 — Homyg, (T, B (k), Gn) — B[p™] — T,B(k) ®z, Qy/Z, — 0,

and the homomorphisms Homg, (T,A’(k), Gn) — Homy, (T,B*(k), Gy) (induced from
f') and T,A(k) — T,B(k) (induced from f).

On the other hand, the first exact sequence gives an element in the group
Ext(T,A(k) ©z, Qp/Zy,, Homy, (T,A'(k), G,,)).
By pushing out along f*: T,B'(k) — T,A'(k), we get an element in
Ext(T,A(k) ®z, Q,/Z,, Homg, (T,B'(k),G,,)) = Homg, (T,A(k) @z, T,B'(k),G,,).
Under the above isomorphism, this element corresponds to the pairing
(o, By) = Q(A/R; Q, ft(ﬁt))-
Similarly, the second exact sequence gives an element in
Ext(T,B(k) ©z, Qp/Z,, Homy, (T,B'(k),G,,)).
When pulling back along f : T,A(k) — T,B(k), we get an element in
Ext(T,A(k) ®z, Qp/Zy,, Homg, (T,B'(k),G,,)) = Homg, (T, A(k) @z, T,B(k),G,,).
Under the above isomorphism, this element corresponds to the pairing
(a, Be) = a(Byr; f(@), By).
Hence f[p>] exists if and only if the two pairings coincide, i.e.
a(Asria, [1(Br) = a(Br; (@), B),

for any o € T,A(k), B, € T,B'(k). This finishes the proof of the theorem.
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Remark 2.3. We extract the following fact from the above proof. This fact will be frequently
used in the following calculation. For any o € T,A(k) (resp. ay € T,A'(k)), let o, (resp.
atn) be the image of o (resp. «a;) under the projection T,A — A(k)[p"] (resp. T,A" —
A'(k)[p™]). Let &, € A(R) be an arbitrary lifting of o, € A(k)[p"]. Then by definition
oa/r(a) =pta, € A(R). Since the group A(R) is killed by p", we have &, € A[p?"](R) and

Q(A/R; «, Oét) = EA/R,p" (pndn7 CYt,n)'

2.4 Section of the connected-étale sequence and p-th power roots

of the Serre-Tate coordinate

We keep the notations in the previous section. Let R be an artinian local ring with maximal
ideal m and residue field k. Assume that m™*! = (0). Let A be a lifting of A,. Then for

each integer m > 0, we have an exact sequence of finite group schemes over R:
0 — A" — Alp™] — A(k)[p™] — 0. (2.4)
By Cartier duality, we get an exact sequence:
0 — A'[p™) — A'p"] — A'(k)[p"] — 0 (2.5)
over R. The splitting of the above two exact sequences are equivalent.

The sequence (1.3) does not necessarily split over R in general. The splitting of (1.3) is
equivalent to the existence of an étale subgroup of A’[p™] which lifts A’(k)[p™]. Hence the
exact sequence (1.3) splits after an fppf extension of R. Now we fix some integer m > n in
the following discussion. Then we can find an artinian local ring R’ finite flat over R such
that each oy, € A'(k)[p™] is lifted to some &, € A'[p™|(R’). From Lemma 2.2, we have
the following equality in ((A}m(R’ ):

q(Asr; o, ap) = En o (0a/r(@0), atm) = B pm (0a/r (@), Gym) = Ea o (0™ G, Q)

where &,,, € A(R) is a lifting of a,,, € A(k)[p™]. As a,,, € A[p*™](R) by Remark 2.3, we have

Q(A/R7 «, O(t) = EA/R/,pm (pm&n% &t,m> - EA/R/,me <&m7 &t,m>-
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For any s > 0, we assume further that oy ,1s € A*(k)[p™*] lifts to some G s € A [p"|(R)

and p°Q m+s = Q. Then

S

Q(A/Rv «, at) = EA/R/7p2m (65m7 ps&t,ers) = EA/R/,me (dma 64t,m+s)p

In other words, EA/R, p2m (G G g s) 18 @ p*-th root of the Serre-Tate coordinate g(A/g; o, o).

The element E4 R (G, Qi m+s) definitely depends on the choice of & y,+s. In the following

we want to determine how it depends on the choice of the integer m and the lifting a&,,.
First let &, € A(R) be another lifting of a,,, € A(k)[p™], then B,, = én, — d’, € A(R),

and hence ,, is killed by p™. When s + n < m, by Lemma 2.2l we have

EA/R’,p2m (Bmv C~Vt‘,s-l—m) = EA/R’,pQW (Bm, at,s+m) = EA/R’,p2m (Bma pnat,s—i-m—i-n)

= EA/R’7PQ"‘ (pngmy at,s+m+n) = 1.

Hence when 0 < s < m —n, the element E,, R p2m (G, Oy 51 ) does not depend on the choice

of a,,.

Now let m’ > m be another integer and assume that 0 < s < m —n. Let &, be a lifting

of a € A(K)[p™]. Then we have

’

Eprr g Qs Gsiem) = By e (0™ 7" (G ), p

/

mfm< !

&t,Ser/)) = EA/R/,me (pm 7m<o~4m')7 &t,erm)-

As p™' "™(Ayy) is a lifting of p™ " (ay) = o € A(k)[p™], from the previous argument, we
see that
E, Ry (Cms Ot ysmr) = Eaype pom Qi O sm) -
In other words, the element Ey /s y2m (G, G4,s1m) does not depend on the choice of m.
Since the integer m can be as an arbitrary integer greater than n, from the above dis-

cussion we see that for every integer s > 1, there exists a p*-th root E4 / R/mgm(&m, Gt s1m) Of

the Serre-Tate coordinate q(A/g; @, ay) as long as we choose a compatible lifting (G )m of

(at,m>m-
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2.5 Extension to more general bases

Let W = W (k) be the ring of Witt vectors with coefficients in k and C'L, be the category
of complete local W-algebras with residue field k. Fix an object R in C'L i with maximal
ideal m. For each n > 0, set R, = R/m"*! which is an artinian local ring with residue
field £ and R = limR,,. As before we fix an ordinary abelian variety A/;. By passing to the

projective limit, we have a bijection:
{ isomorphism classes of liftings of A/, to R} — Homy, (T,A(k) ®z, T,A"(k), @m(R)),

such that for any o € T,(A)(k) and o € T,(A")(k),

q(Asr;a, o) = lim q(Ay R, ; a, o),

Pt

where A, = A @ R,,.

For any lifting A /z of A/, to R, we have the connect-étale exact sequence of Barsotti-Tate

groups over R:

0 — Alp™®] 5 Ap™] & T,A(k) ®2z, Qy/Z, — 0.

Suppose that the above exact sequence splits after a faithfully flat extension of R , i.e. there
exist a W-algebra R’ finite and flat over R, and a morphism of Barsotti-Tate groups over R’
J: TYA(k)®2,Qp/Z, — Alp™], such that moj = id : T, A(k)®z,Q,/Zy — T, Ak)®2z,Qy/Zy.

For each n > 1, set R/, = R' ®z R, = R'/m"™'R’. Then we have a split exact sequence

of Barsotti-Tate groups over R/ :

~

0— An[poo] — An[poo] — TpA(k) Rz, @p/Zp — 0.

By the discussion in the previous section, for any o € T,(A)(k), ay € Tp(A")(k) and m > 0,
we have a p™-th root of the Serre-Tate coordinate q(A,/r,; @, ay) in R}, which is denoted by
tn € @m(R;) By taking projective limit, we have that ¢,, = lim ¢,,,, € @m(R’) is a p™-th

root of the Serre-Tate coordinate ¢(Ag; o, o) in R'.
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2.6 Frobenius action on the Serre-Tate coordinate

In this section we take k to be an algebraic closure of the prime field F,. Recall that
W = W (k) is the ring of Witt vectors with coefficients in k£ and K" is the quotient field of
W, which can be identified with the p-adic completion of the maximal unramified extension

Q" of @,. Let o (resp. ¥) be the absolute Frobenius automorphism of & (resp. W).
As before we fix an ordinary abelian variety A/,. Consider the functor
DefA/,c . CLyw — Sets
R+~ { isomorphism classes of liftings of A/, to R}.

The Serre-Tate deformation theorem tells us that the functor Def, , is represented by some

object R*" in C'Lw, and the Serre-Tate coordinate gives us an isomorphism of functors:
g(—;—, —) : Defy,, — Hom(T,A(k) ®z, T,A'(k), G).

Set M4 /i = Sp(R*"") which is a formal W-torus. Define formal W-torus ﬁf}k by following
the Cartesian diagram:

—~

(=) am
9ﬁA/k; 9ﬁA/k

l Spec(X) l

Spec(W) —"Spec(W),

and define the abelian variety A%) by the following Cartesian diagram:

Al) A
Spec(k) Sﬂ;)Spec(/c).

By [29] Lemma 4.1.1, we have

Lemma 2.6. There is a canonical isomorphism X of formal W -torus: /ﬂ)\lf/)k — ﬁA@/k,

under which X(q(a, ay)) corresponds to q(o(a), o(ay)).

Since the abelian variety A, is projective, it is defined over a finite field I, inside k,

where ¢ = p' for some integer [ > 1. Let o; (resp. ;) be the [ times composition of
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o (resp. X) with itself. Then A;‘;) = Aj,. Then Lemma 2.6 indicates that 3; induces
an automorphism of the deformation space ﬁA/k which sends the Serre-Tate coordinate
q(Ayw; o, o) to Q(A%);Uz(@)affl(@t))-

For later argument, we need the following result:
Lemma 2.7. Let K/K" be a finite Galois representation inside C,. Write Ok for the

valuation ring of K. Let Ao, be a lifting of an ordinary abelian variety A, to Og. For
any o € Gal(K/K""), define an abelian scheme A%K by the following Cartesian diagram:

A©) A
Spec(Ok) SpLC@Spec((’)K).

Then A%K is also a lifting of Ay, and we have the equality:

o(q(Ajo,; s 00) = q(ATD ;s ay),

for any a € T,A(k) and o € T, A (k).

The above lemma is nothing but the functorial property of Serre-Tate coordinates so we

omit the proof here.

In the end of this section, we give a discussion of CM liftings of the abelian variety A .
Recall that we assume that the abelian variety A, is defined over a finite field F,. Let
7 : A — A be the Frobenius endomorphism of A/r,. We are interested in characterization
of liftings of Ar, with complex multiplication. When A /g, is an arbitrary abelian variety,
this question can be quite difficult. However, under the assumption that A/, is ordinary,

we have the following:

Proposition 2.8. ([31] Lemma 2.8) Let R be a complete local noetherian W (F,)-algebra
with residue field ¥, and A /g be a lifting of Ayr, to R. Let R=R Qwr,) W-

1. The following conditions are equivalent:
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(a) A ®p R is the identity element in ﬁA/k(R);
(b) the reduction map End(A,r) — End(Ap,) is an isomorphism;

(¢c) the homomorphism ©™ lifts to an endomorphism of A g for some integer m > 1.
2. The following conditions are equivalent:

(a) A®p R is a torsion element in /SJ\TA/k(R),'

(b) the reduction map End(A,r) — End(A/r,) is an isomorphism after inverting p,
i.e. we have an isomorphism End(A r) ® Z[%] ~ End(A/r,) ® Z[%];

(c) A®g R is isogenous to the abelian scheme A, g where Ay g is the identity element
m gﬁA/k (R) ;
(d) Asg has complex multiplication.

Definition 2.9. Under the notations and assumptions of Proposition 2.8, if A/r satisfies
the equivalent conditions in part (1), we say that A g is the canonical lifting of A, ; if A/
satisfies the equivalent conditions in part (2), we say that A g is a quasi-canonical lifting of

Asr,.

2.7 Partial Serre-Tate coordinates

In this section we write R for a complete noetherian local ring with maximal ideal m and
residue field k& and an abelian variety A/, which is not necessarily ordinary. Suppose that the
Barsotti-Tate group A[p>]; is not local-local, i.e. the slopes of A[p>]/, contains 0 and 1 (see
[3] for the definition of slopes of Barsotti-Tate groups over an arbitrary field) or equivalently,

the Tate module T,(A)(k) is nontrivial.

We say that a Barsotti-Tate group G,r is multiplicative if its dual G; r 1s ind-étale. We
say that G is local-local if both G,z and G’} g are connected. As k is algebraically closed,
we can decompose the Barsotti-Tate group A[p™], as A[p™] = A[p™=]o? x A[p>=]", where

A[p>]°r4 is a product of a multiplicative Barsotti-Tate group with an ind-étale Barsotti-Tate
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group, and A[p>=]" is local-local.

Now we assume that R is artinian and m"™! = (0) for some n > 1. Let A/p be a lifting

of A, to R. We assume further that we have a decomposition of Barsotti-Tate groups over
R:
A[poo] — A[poo]ord % A[poo]ll7

where A[p>°]°"? (resp. A[p>]") lifts A[p>°]o? (resp. A[p™=]"). This is equivalent to saying that
A[p™] can be decomposed as A[p™]™ x A[p>=]" over R, where A[p>°]™!* is multiplicative

and A[p>]" is local-local. Then we have an exact sequence of Barsotti-Tate groups over R:
0 — Ap®)™ — Ap®)? — To(A)(k) @z, (Qp/Zy) — 0.

Similar with the ordinary case we define a homomorphism

'y =P,
where T is an arbitrary lifting of z in A(R). Write ¢,/ as the composition
T, (A)(k) — Alp"](k) = A(R) — A[p™]™"(R).

On the other hand we have a perfect pairing of k-group schemes A™[p"] x A![p"] — ppm,
which can be lifted uniquely to a perfect pairing of R-group schemes A[p"]™ x At(k)[p"] —

tyn. By taking limit, we have a perfect pairing
ea/r s Alp™™ x T,A' (k) — Gy
over R. Then we can define the partial Serre-Tate coordinate by the formula:

g(Asr;— =) 1 Ty(A)(k) @z, T,(A)(k) — Gu(R)

o @ oy = GA/R(SOA/Ra ),

for any o € T,(A)(k) and oy € T,(A")(k).
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As in the ordinary case, we assume that the exact sequence
0— A[poo]m“” — A[pOO]ord — Ty (A) (k) ®z, (Qy/Zy) — 0

splits after some faithfully flat extension R’ of R. Then for any oy = (o) € T,AY k),
we choose a compatible lifting (&) of (o) in A[p®] (R, ie. dy, € Ap"]”%(R’) and
P(Qtmy1) = aypn. Then for any s > 0 and m > n + s, the element Ey , jom (7(Qm), Qtmys) 18
a p°-th root of the partial Serre-Tate coordinate q(A g; @, ay), where 7 : A— Alp>]mult ig

the natural projection and &,, € A(R) is an arbitrary lifting of a,,, € A[p™|(k).

Also similar to section 2.5 by taking projective limit, we can extend the above result to

R e CL/W.
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CHAPTER 3

Galois representations attached to ordinary abelian

varieties

Let Ar, be an ordinary abelian variety over a finite field I, where ¢ is a power of a prime
p. We have seen in the previous chapter that the liftings of A/, to characteristic 0 are
determined by the Serre-Tate coordinates. On the other hand, if K is a finite extension of
Qg and A/ is a lifting of A/p,, we can consider the Galois representation p of Gal(K/K)
associated to the p-adic Tate module of A /. In this chapter, we explain how the Serre-Tate
coordinates of A /i determine the Galois representation p. For later argument, we want the
representation p valued in the symplectic group so we need to impose a polarization on the
abelian scheme A i. So we divide our discussion into two cases: elliptic curves and polarized

abelian varieties.

3.1 The case of elliptic curves

Fix an algebraically closure k of the prime field F, for a fixed prime p > 0 and an ordinary
elliptic curve Ey. Let K be a finite extension of Q" with valuation ring Ox and recall that
K" is the quotient field of the ring W = W (k). Let Q be the algebraic closure of K*" inside
C,. Then we have the isomorphism of Galois groups: Gal(Q2/K*") = Gal(Q,/ Q). As K

ur

', we take L to be the composite of K" and K" over

and K" are linearly disjoint over QQ

"> which is the p-adic completion of K inside (2. Let O, be the valuation ring of L.

Suppose that E /o, is a lifting of £/, to Ok. Since E;, is an elliptic curve, it is naturally

isomorphic to its dual E}k, and hence we have a Serre-Tate coordinate ¢(E,o,;—,—) :
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T,E(k) ®z, ToE(k) — Gu(Ok).

From the exact sequence of Barsotti-Tate groups over Og:

~

0—E—EPp>] — T,E(k) ®z, (Qy/Zy) — 0,
we have an exact sequence of Tate modules:
0— TPE(@P) - T,E(Q,) = T,E(k) — 0.

We identify TPIE(QP) as a submodule of T,E(Q,) under i. Then we can choose a Z,-basis
{v° = (v2),v% = (v¥)} of T,E(Q,) (with v2,v¢" € E[p"](Q,)) such that v° is a basis of the

Z,-module T,E(Q,) and v* is mapped to a basis © = (u,) of T,E(k) under the map = (with
u, € Ep"|(k)). Then set t = ¢(E/0,; u, u).

Under the Z,-basis {v°, v} of T,E(Q,), we have a Galois representation attached to
T,E(Q,):

p: Gal(Q/K) — CLy(Z,)

x(a) b(o)
0 1

where x : Gal(Q,/K) — Z) is the p-adic cyclotomic character.

On the other hand, for each integer n > 1, the element v € E[p"](Q,) generates an étale
subgroup of E[p"] which lifts the constant group scheme E[p"|(k),,. Thus we can find a
(possibly infinite) extension K of K inside @,, such that v¢* is defined over O for all n (O
is the valuation ring of K ). Replacing K by its Galois closure inside Q,, we can assume that
K /K is Galois. Let L be the composite of K and K" over Q,", and Oj be the valuation

ring of L. Under the above notations, the exact sequence of Barsotti-Tate groups:

~

0 —E — E[p>] — TpE(k) Xz, (Qp/Zp) — 0,

splits when base change to O;. By the discussion in Chapter 2, for any integer s > 1, we
have a unique p*-th root A/t € O; of the Serre-Tate coordinate ¢ which depends only on

v = (v¥). Our main result is the following:
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Theorem 6. For any o € Gal(Q,/K) and integer s > 1, under the isomorphism Gal(Q,/K) =
Gal(Q2/L), we have the equality:
0( :O\S/E) et o)b(o).

T\/Z - EE/@IJ#’S (US » Us

Proof. For any integer n > 1, let W,, = Og/mi'Og = Op/m7™Op (my (resp. myp) is

the maximal ideal of Ok (resp. Op)) and /V[v/n = W, ®o, O, which is an artinian local
ring faithfully flat over W,. Set E,y, = E xo, W, and t, = ¢(E,w,;u,u). Then we have
t = th t, € @m(OL). From the discussion in Section 2.4, for each m > n + s, we have a

unique p°-th root of ¢,,, which is given by the formula:

p\s/a = E]E/szﬂm (dm,m 676754,_5) € Hp2m (Wn)a

where a,,,, € E(W,,) is an arbitrary lift of u,,, € E[p™](k), and o _ , is the reduction of v¢!

mts s
in E[pm“](Wn). From the discussion in Section 2.4, we have %/t = lim »/%, € @m((f)i).
Now for any o € Gal(Q,/K), since K /K is Galois, ¢ induces an automorphism of K,
and hence induces an automorphism of Wn for each n. We still denote this automorphism
by o.
Since &, € E(W,,) and o fixes K, 0(Gynn) = G- By our assumption on the expression

of the Galois representation p, we have o(v") = b(c)v°+v*, and hence o(05, ) = b(0)v5, .+

m-+s
(T
As the pairing Ej i me(—, —) is compatible with arbitrary base change, we have
U( pj/ﬂ) == U(EE/Wn,me (&m,na ﬁszrs)) = E]E/Wn7p2m (U(&m,n)a U(@wars))

—et

= EE/Wn,pzm (dmﬂw b(g)@;—s—s + 177673—1—5) = E]E/meZm (&m,ny @g@+s)b(a) : EE/Wn,me (dm,na Vpts

= %EE/Wn o (s Ogs)"-

e E(W,) and ., € E[p*™](W,,)

Now we analyze the term Eg 5 o0 (Gin, Unigs)- AS O

lifts u,, € E[p™](k) C E[p*"](k), from Lemma 2.2, we have

EE/Wn,pQW (&m,’m 621-&-8) = EE/Wn,me (uma @Sn-}-s) = EE/mezm (77557 T}:n.ys)

—et —0

N s —et —o _ N
E]E/me%n (p Um—‘rs? Um—i—s) - E]E/Wn,pQWJrS (vm—i-s? Um-l—s)'
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]
m+s

The last term is the projection of EE/OR7p2m+s (v§f+s, vy, ) under the base change Oy — Wn,

which is denoted by Eg/o . ps (v, v2).

s 7s

By a direct computation, we have

et o . m, et m_ .o . et o
Egjo, pom+s (Vpssr Upys) = Eg/o. ps (D" U g D Ups) = Eg/o ps (Ve v?).

Hence we have

o(Wtn) = Vi - (Bejog o (v, v9)" .

By taking projective limit for n, we have the desired equality:

o P\g/g) = W/t EIE/Of(va(Ugta U;)b(a) = Wt EE/QMS(U?’ U;)b(a)'

3.2 Generalization to higher dimensions

We keep the same notations as in section 3.1. In this section we want to generalize the result
in the previous section to higher dimensions. Let K/Q)" be a finite extension inside @p with

valuation ring Of. The field L is defined to be the composite of K and K" over Q}".

Fix an algebraic closure k of the prime field IF,,. Let A/, be an abelian variety and A o,
be a lifting of A/, to Ok. Then we have a connected-étale exact sequence of Barsotti-Tate

groups over Op:

0—A— Alp™] — T, A(k) ®z, (Qy/Zy) — 0.
For every integer n > 1,we have a perfect pairing:

epn - Alp"] x Ap"|(k) — G

P

over Op. Taking projective limits, we have a perfect pairing:
epe : TRA(C,) X TyA (k) — Ty (C,)
over Op. For later argument, we fix a basis (yec = ((yn),, of the Z,-module T, (C,).
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Now suppose that we are given a polarization A : A — A’ of A o, whose degree is
prime to p. This polarization induces isomorphisms of p-adic Tate modules T,A(C,) —
T,A*(C,) and T,A(k) — T,A(k), which are still denoted by X\. We can take a Z,-basis
{vg, ... 00 0§ .. ve} of the p-adic Tate module T,A(C,) such that:

1. {vS,...,02} is a Z,-basis of T,A(C,);
2. {vt, ... v} is a lifting of a basis {u1,...,u,} of the Tate module T,A(k);

3. under the pairing e,~ and the isomorphism A : T, A(k) — T,A"(k), we have eye (07, A(u;)) =
i i 7 J and ey (0F, A1) = G i = J.

Under the basis {v7,...,v%,vf, ... v}, the Galois representation attached to the Tate

module T,A(C,) is of the shape:

p: Gal(Q,/K) — Gspy,(Zy)

Xp(0) - I, B(o)
0 I,

where x, : Gal(Q,/K) — Z, is the p-adic cyclotomic character, I, is the n x n identity
matrix and B = (b;)1<ij<n : Gal(Q,/K) — M,x,(Z,) is a map valued in the set of n x n

symmetric matrices.

Now we consider the Serre-Tate coordinates t;; = ¢(Ao,;w;, A(u;)). From the discus-
sion in section 2.4, the lifting v¢* of u; gives a compatible sequence of p-th power roots

{ ®/ij}s=12.. of the Serre-Tate coordinates t;;, for 1 < 1,5 < n.
Under the above notations, we have:

Theorem 7. For any o € Gal(Q,/K) and integer s > 1, under the isomorphism Gal(Q,/K) =

Gal(2/L), we have the equality:
o &/ti;) _ Cbij (@)
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3.3 Extension to the decomposition group

In this section we want to extend the previous results to the decomposition group, i.e. we
want to use the Serre-Tate coordinates to study the Galois representation of the decompo-

sition group. First we give a cohomological interpetation of Theorem 7.

Remark 3.1. Recall that we have a Galois representation

p: Gal(Q,/K) — Gspy,(Z,)
Xp(g) I B(U)
O In

By direct calculation, for every pair 1 < i,j < n, the map b;; : Gal(Q,/K) — Z, is a
l-cocycle if we define the action of Gal(Q,/K) on Z, by the p-adic cyclotomic character

Xp- Hence we have an element in the cohomology group H'(Gal(Q,/K),Z,(x,)), which is
denoted by l_)z»j.

On the other hand, under the basis (yec 0f T,y (C,), we have an isomorphism of
Gal(Q,/K)-modules Z,(x,) — Tppp=(C,) which sends 1 to (. So we have an isomor-

phism of cohomology groups:
H(Gal(Qy/K), Zy(xp)) — H(Gal(Qy/ K), Tyhtye= (Cp)).
Now by Kummer theory, we have an isomorphism:
H (Gal(@y/K), Ty (C,)) = KX,

where K * is the pro-p-completion of the multiplicative group K*. As @m((’)L) =1+mg,
we can regard @m((’)L) as a subgroup of K*. Then Theorem [7| tells us that under the
isomorphism

HY(Gal(Q,/K), Zy(x,)) — K*,

the element Bij coming from the Galois representation p corresponds to the Serre-Tate coor-

dinate tij € @m(OL) - f/f?
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We start from the case of elliptic curves. Let K/Q, be a finite extension with valuation
ring Ok and residue field F, (¢ = p" for some integer r > 1) and let E o, be an elliptic
curve whose special fiber E/p, is ordinary. Recall that we fix an algebraic closure Q, (resp.
k) of Q, (resp. F,). Under the ordinary assumption, we have an exact sequence of the p-adic
Tate modules:

0 — T,E(Q,) = T,E(Q,) = T,E(k) — 0.

As in section 3.1, we choose a Z,-basis {v°, v} of T,E(Q,) such that v° is a basis of T,E(Q,)
and v is mapped to a basis u of T,F(k) under the reduction map. Under this basis, we

have a Galois representation attached to T,E(Q,):

P - Gal(@p/K) — GL2(Zyp)

where x,, : Gal(Q,/K) — Z is the p-adic cyclotomic character and 7 : Gal(Q,/K) — Z*
is an unramified character. Now we define a map ¢ : Gal(Q,/K) — Z, by setting c(c) =
n~Yo)b(o) for all o € Gal(Q,/K). As p is a representation, a direct calculation shows
that ¢ : Gal(Q,/K) — Z, is a 1-cocycle valued in Z,(x,n2). If we choose a different
lifting v** € T,E(Q,) of u € T,E(k), the 1-cocycle ¢ : Gal(Q,/K) — Z, is changed by a
1-coboundary valued in Z,(x,n~2). Hence to determine the Galois representation p (up to
isomorphism), it is enough to determine the corresponding element of ¢ : Gal(Q,/K) — Z,

in the cohomology group H*(Gal(Q,/K), Z,(x,n2)). In fact, we have the following relation:

Theorem 8. For any o € Gal(Q,/K) and integer s > 0, we have the equality:

0( P\S/E)n(a)72 et ,0\c(o)
p\s/l_f = E]E/Qp,pS ('Us ) Us) .

Proof. The proof is quite similar with that of Theorem |6, so we do not give all the details
here.

We assume that there is a Galois extension K /L such that the exact sequence

~

0 —E — E[p>] — TpE(k) ®z, (Qp/Zp) —0
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splits over Of. As in the proof of Theorem (6, we can define W, Wn, t,. Then for m > s+n,
\/_ E]E/W p2m (am ns @fyf,+s)
For o € Gal(Q,/K), we have

o(Wtn) = Eg i, o (0(Gmn), 0(051,)) = By 5. o (0(Gmn), b(0) 5y, + 1(0) 000 ).

As & € E(W,) is a lifting of u,, € E[p"](k), the element o(&,,) € E(W,) is a lifting
of o(uy) = n(o) - uy, € E[p™|(k). From the argument in section 2.4, the element %/, is

independent of the choice of the lifting of u,,. Thus we have

blo)n(o) .

gt )n(0)2

IE/W p2m( m,n>s m+3) E/W p2'm(am’l’b7 m—+s

- (p\/a)n(a) EE/W me(Otmn,UfnJrs)b(a)"(a)-

By the same analysis on the term Eg i pgm(dmm, Uy, +S) as in the proof of Theorem 6, and

taking limit for various n, we have the desired equality:
0_( p%) _ ( p%)n(a)Q ) EE/(’)K,pS (Ugt, Ug)b(a)n(o) _ ( p\s/g)n(a)Q . EE/@pmS (U:jt, U;)b(a)ﬁ(o)'
Taking the ~?(o)-th power on both sides, we get the desired equality. O

Remark 3.2. As in Remark 3.1, we can give a cohomological intepretation of Theorem
8. Let K“" be the maximal unramified extension of K in Q, and let I = Gal(Q,/K"") C

Gal(Q,/K) = G be the inertia group. Then we have the inflation-restriction exact sequence:
0— HY(G/I, Zp(Xpn_Z)I) — H'(G, Zy(xyn~?)) — H'(I, Zp(Xpn_z))G/I — H*(G/I, Zp(Xpn_2)I)-

As the character 7 is unramified, the inertia group I acts on Z,(x,n %) by the p-adic cyclo-

tomic character. Hence Z,(x,n~%)! = 0. Se the restriction map induces an isomorphism:
Hl(Ga Zp(Xpn_Q)) — H' (1, Zp(Xp))G/I-
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From Remark 3.1, under the isomorphism of /-modules Z,(x,) — Tpup=(C,) which sends 1
to lim Eg g, (v, v2) and the isomorphism H' (I, Tppy(C,)) = (WX, the image of ¢ in

e S
—

HY(I,7Z,(x,)) corresponds to the Serre-Tate coordinate ¢t € (Kur)*.

On the other hand, it is easy to check that the map

Gal(Q,/K) — Ty (Cp)
o( %/t
7 T
is a 1-cocycle valued in H'(G, Tpup<(Cp)(xpn %)) whose restriction to the inertia group
corresponds to the Serre-Tate coordinate ¢ under the above isomorphism. Using this coho-

mological interpretation, we get another proof of Theorem 8.

Moreover, from the restriction map, we see that the image of ¢ in H 1([ Zy(xp)) is in-

variant under the action of G. Let f : I — Tyup=(Cp),0 — lim
corresponding to the Serre-Tate coordinate ¢. For any g € GG, the actlon of g on the cocycle

f is given by the formula:
fio) =g flg og).
Hence

(”\/—) 0 g(V1),,

_ im 29 — (lim—2\ Y
(g(lim——===))" (lim o (D) )

9(g) — imﬂ xp(9)n~2(9)
folo) = (Im—w7)

As {%/t} is a compatible p-th power roots of ¢, {g(%/t)} is a compatible p-th power
roots of g(¢). Under the isomorphism induced by Kummer theory, the 1-cocycle o —
(li m”‘é(p\}[)))"_Q(g) corresponds to g(t)" "@. So we have the equality g(t) = 7@, The
cohomological interpretation gives another proof of Lemma 2.6.

The case of higher dimensions is more complicated. Let A o, be an abelian scheme

of relative dimension n whose special fiber A/, is ordinary. As in section 3.2, we can

choose a Z,-basis of the p-adic Tate module T,A(Q,) = T,A(C,) under which the Galois
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representation attached to T,A(Q,) is of the shape:

p: Gal(Q,/K) — GSp,,(Z,)
xp(0)-T(o)  B(o)
0 (T(e)™)"

here again ¥, : Gal(Q,/K) — ZX is the p-adic cyclotomic character, B = (b;j)1<;j<n
Gal(Q,/K) — Myuxn(Z,) is a map, and T(-) : Gal(Q,/K) — GL,(Z,) is the unramified ho-
momorphism which sends (any) Frobenius element in Gal(Q,/K) to a matrix X € GL,(Z,).

Under the above setting, we define a map C' : Gal(Q,/K) — Z, by requiring that C(c) =
B(o) - T(o)! for any o € Gal(Q,/K). A direct calculation shows that C : Gal(Q,/K) —
Myxn(Zy) is a 1-cocycle if we define the Gal(Q,/K)-action on M,,(Z,) by the formula:
o-M = x,(0)T(c) - M - T(co)'. Let I C Gal(Q,/K) be the inertia group. Again the

inflation-restriction exact sequence tells us that the restriction map induces an isomorphism:
H (Gal(Qp/ K), Masn(Zy)) — H'(I, Mo (Z) () @),

For 1 < i,j < n, the restriction of the map b;; : Gal(Q,/K) — Z, to the inertia group I is a
1-cocycle valued in Z,(x,). From Theorem [7 and Remark 3.1, under the isomorphism

H'(1,Zy(xy)) = H' (1, Typie (Cy)) = (K7,
the images of b;;’s correspond to the Serre-Tate coordinates t;;’s. Hence the Serre-Tate co-
ordinates t;;’s determine the images of the 1-cocycle C' in the cohomological group
HY(Gal(Q,/K), Myxn(Z,)) and hence determine the Galois representation p (up to isomor-
phism).

Since we know little about the matrix A, we cannot expect to get an explicit expression
of the 1-cocycle C' as in Theorem [8. For later argument, we consider a special case: suppose
that there exists a finite extension L/Q, with valuation ring Oy, and a matrix W € GL,,(Op)
such that WXW™! = D = diag{dy,...,d,} is a diagonal matrix in GL,(O). Hence
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(Wt)*lXt_lVVt = D!, Now we consider a conjugation of the Galois representation p:

w0 w0 _
p = p 1 Gal(Qy/K) — GSp,y,(Or)
0 (WH 0 Wt
Xp(o) - T'(0)  B'(0)
0 (T"(o)~1)!

g —

where T" : Gal(Q,/K) — GL,(Oy) is the unramified homomorphism sending (any) Frobe-
nius element to the matrix D € GL,(Op). By direct calculation, B'(c) = WB(o)W*. So
for any 1 < i,j < n, the map bj; : Gal(Q,/K) — Oy is an O;-linear combination of by’s.
From our previous discussion, the Serre-Tate coordinates tx;’s of Ap, determine the im-
ages of by’s in H'(I,Z,(x,)), and hence determine the images of bi;’s in HYI,01(xp)) =
HY(I,Zy(xp)) ®z, Or. On the other hand, if we define n; : Gal(Q,/K) — Of as the
unramified character which sends (any) Frobenius element to d; € Op, then the map
;= mj - by - Gal(Q,/K) — Op is a 1-cocycle valued in Op(x,ni1;). Again the restric-

tion map gives us an isomorphism
HY(Gal(Q,/K), OL(xmimy)) — H'(1, 01 (x,)) S @/,

So in this way, the Serre-Tate coordinates determine the images of ¢; in H'(Gal(Q,/K), OL(xpmin;))-
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CHAPTER 4

Shimura varieties

In this chapter, we give a review on the Hilbert modular Shimura varieties and Siegel modular
Shimura varieties. We give the construction of the integral models of these Shimura varieties

and study the local model of these Shimura varieties at closed ordinary points.

Throughout this chapter we always fix a totally real field F' with integer ring Op. The

degree of F' over Q is denoted by d.

4.1 Abelian varieties with real multiplication

In this section we introduce the notion of abelian varieties with real multiplication (AVRM

for short).

Fix an invertible Op-module L, with a notion of positivity L, on it: for each real embed-
ding 7 : F' — R, we give an orientation on the line L ®¢, » R. First we recall the following

definition in [7]:

Definition 4.1. An L-polarized abelian scheme with real multiplication by OF is the triple

(Asg, L, @) consisting of

1. Ass is an abelian scheme of relative dimension d;

2.1 : Op — End(A)g) is an algebra homomorphism which gives A;s an Op-module

structure;

3. ¢p: L — Homgim(A/s,AjS) 1s an Op-linear morphism of sheaves of Op-modules on

the étale site (Schys)a of the category of S-schemes, such that ¢ sends totally positive
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elements of L into polarizations of Ass, and the natural morphism o : A ®p, L — A*
is an isomorphism. Here A is the dual abelian scheme of A, and L is the constant

sheaf valued in L, and the sheaf Hom%ﬂm(A/s, Alg) is defined by :

(Schys)ee 2 T — HomgiTT(AT/T,AtT/T) = {\: Ap, — AtT/T|)\ is Op-linear and

symmetric}

When L = c¢ is a fractional ideal of Op with the natural notion of positivity, we call the
isomorphism « : A ®p, ¢ — A" a c-polarization of A (see [28]1.0 for more discussion). We
also make the convention that for ¢ € ¢, the morphism \(c) : A — A" is the corresponding

symmetric Op-linear homomorphism.

Remark 4.2. The f.p.p.f. abelian sheaf A ®¢,. L is the sheafication of the functor

(SCh/S)f.p.p.f. 5T — A(T) ®(9F L.

This sheaf is represented by an abelian scheme over S, which is denoted by A ®o, L.

Hence the isomorphism « in (3) can be regarded as an isomorphism of abelian schemes over

S.

Definition 4.3. Let A,g be an abelian scheme over a scheme S of relative dimension d, and
t: Op — End(A/g) be an algebra homomorphism. We say that the pair (Asg,t) satisfies
the condition (DP) if the natural morphism o : A Qo Hom%ﬂm(A/s,A’}s) — A' is an iso-
morphism. We say that the pair (Asg,t) satisfies the condition (RA) if Zariski locally on S,
Lie(A/s) is a free Og @z Op-module of rank 1.

We remark here that the two conditions (DP) and (RA) in Definition 4.3 can be checked
at each geometric point of the base scheme S. When the pair (A /g, ¢) satisfies the condition
(RA), we come to the notion of abelian schemes with real multiplication (by Op) defined
in [41]. As explained in [7]2.9, when dp is invertible on S, condition (DP) in Definition
4.3 implies (RA). For later use, we explain that condition (RA) implies (DP) under some
assumption on S and by a suitable choice of the pair (L,L,), we can make A5 be an

L-polarized abelian scheme with real multiplication by Op . First we need the following;:
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Proposition 4.4. ([41]1.17,1.18) Let A5 be an abelian scheme of relative dimension d,and
t: Op — End(A4/s) be an algebra homomorphism. Then the étale sheaf Hom%zm(A/s,A’;S)
defined above is locally constant with values in a projective Op-module of rank 1, endowed
with a notion of positivity corresponding to polarizations of A,g. In particular, when S is

normal and connected, this sheaf is constant.

Here we remark that in [41], the abelian scheme A /g is assumed to satisfy condition (RA).

But this condition is not necessary in the proof of the above proposition.

Now assume that S is normal and connected (e.g. S is the spectrum of the integer ring of
a number field). Then from Proposition 4.4/ we can find a projective Op-module M of rank 1
with a notion of positivity M and an Op-linear isomorphism ¢ : M — Homg?;m(A /8 Ajs).

To check this ¢ satisfies condition (3) in Definition 4.1, we still need to check that the

morphism « : A ®p, M — A" is an isomorphism.

We can assume that S = Spec(k), where k is an separably closed field and we want to
prove that « is an isomorphism of abelian varieties over k. Then it suffices to show that for
any rational prime [, there exists 0 # A € M, such that deg(p(\)) is prime to [. In fact, for
any o € M, we have a natural morphism A — A ®e, M whose effect on R-valued points is

given by the formula (R is an k-algebra):
AR)3>a— a®p, A € A(R) ®o, M.

The composition of this morphism with « is ¢()). Hence deg(a)|deg(p(A)). In particular,

deg(a) is prime to [. As [ is arbitrary, deg(a) = 1 and hence « is an isomorphism.

To prove the existence of A\, we apply an argument in [I5] Chapter 3 Section 5: when
char(k) > 0, by [41]1.13, we can always lift the pair (A, ¢) to an abelian scheme with
real multiplication (A ), I) satisfying (RA). Here W (k) is the ring of Witt vectors of k.
Hence we can assume that char(k) = 0. By Lefschetz principle, we can assume that & is the
complex filed. Then the existence of A follows from the complex uniformization [15]Chapter

2 Section 2.2.
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The following proposition tells us that when S is a scheme of characteristic 0, condition

(RA) and hence (DP) is automatically satisfied.

Proposition 4.5. Let k be a field of characteristic 0, Ay, be an abelian variety of dimension
d, and v : Op — End(A ) be an algebra homomorphism. Then Lie(A)y) is a free Op ®z k-

module of rank 1.

Proof. By Lefschetz principle we can again work over the complex field. Then the result

follows from [15] Chapter 2, Corollary 2.6. O

4.2 Hilbert modular Shimura varieties

In this section we introduce the integral model of Hilbert modular Shimura varieties we will

work with.

Fix a finite set of primes =. Set
m -
Z(E) = {E S Q|m,n S Za (nap> = 17vp S ‘:}'

Then define O =) = O ®z Z(=), and (’)(XE% . as the set of totally positive units in Oz). Also

we define:

Z =1mZ/nZ, 2 =WimZ/nZ, Zs = || Z,
le=
where in the first inverse limit, n ranges over all positive numbers, and in the second inverse

limit, n ranges over all positive integers prime to =. Let A be the adele ring of Q. Then set
AE®) = {3 € Al = 200 = 0,V € Z},
and FyEoy = F 0300) AE0)

Define the algebraic group G = Resp,;z(GL(2)) and let Z be its center. K is an open
compact subgroup of G’(z) which is maximal at =, in the sense that K = G(Zz) x K&,
where

K® = {2z € K|z, =1for all p € Z}.
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Definition 4.6. Define the functor E’E) : Schyz., — Set, such that for each Zz)-scheme
S, 8’(,?)(5) = [(A/s, 1, A\, 7F)]. Here [(Ass,t, A\, 7)) is the set of isomorphism classes of

quadruples (Ayg, ¢, A\, 1) consisting of:

1. an abelian scheme Ag of relative dimension d;

2. an algebra homomorphism v : Op — End(A/g) such that the pair (Ag,t) satisfies the
condition (DP) (see Definition 4.5);

3. a subset {Aou(b) : b € OF ,} of Hom(Ays, Alg) ®z Q, where A+ Ajg — Al is an

Op-linear polarization of A, whose degree is prime to =;

4. 79 s a rational K-level structure of the abelian scheme Ass (see Remark 4.8 below).

An isomorphism from one quadruple (Ag, t, A\, 1) to another (A’/S, N, 7)) ds an element

f € Hom(A;s, A5) @z Z(z) whose degree is prime to = such that:
1. foud)=1(b)o f forallbe Op;
2. floXN o f =\ as subsets of Hom(A s, A?S) ®z Q;
3. we have the equality of level stuctures: V& (f)(7®) = 7/E) .
Now we choose a representative I = {c} of fractional ideals in the finite class group

CUK) = (Fyzn)* O, , det(K).

For each ¢, fix an Op-lattice L, C V = F? such that A(L A L) = ¢*. Here A : VAV — F

is the alternating form given by ((ay, az), (b1, b2)) — a1by — asb;.

Definition 4.7. Define the functor Ef)c : Schyz ., — Set,such that for each Zz)-scheme S,
EE)C(S) = {(A/s,t, 6, @} )=, where {(A)s,t,¢,a'F)} )~ is the set of isomorphic classes of

quadruples (Ajg,t, ¢, a'®)) consisting of
1. an abelian scheme A;g of relative dimension d;
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2. an algebra homomorphism ¢ : Op — End(A/g) such that the pair (Ajs,t) satisfies the
condition (DP) (see Definition .5);

3. a c-polarization ¢ : AQp, ¢ — A* of Ag (see Definition |4.1);

4. @) is an integral K -level structure of the abelian scheme Ass (see Remark 4.8 below).

An isomorphism from one quadruple (Ajg, i, ¢, a'®) to another (A, ¢, &) is an iso-
/ /S

morphism [ : A — A" of abelian schemes over S such that

1. fou(b)=14d(b)o f forallbe Op;
2. ft0¢/0(f®opfdc) =¢: ARo, ¢ — At
3. we have an equality of integral level structures: T (f)(a®) = &/,

Remark 4.8. Here we briefly recall the notion of level structures on an abelian scheme
with real multiplication. As in Definition 4.6 and 4.7, we fix an abelian scheme A5 and a
homomorphism ¢ : Op — End(A/g). Take a point s € S and let 5 : Spec(k(5)) — S be a
geometric point of S over s, where k(s) is a separably closed field extension of the residue

field k(s) of S at the point s. Consider the prime-to-= Tate module

T=(A;) = Tim AIN](K(3)),

N

where N runs through all positive integers prime to =, and set V=(4;) = T=(A5) ®z Zz,
which is a free F)=)-module of rank 2. When N is invertible on .S, the finite scheme A[NV]
is étale over S. The algebraic fundamental group 7 (.5, s) acts on A[N](k(5)), and hence on
T=(A;) and VE(A;). This action is compatible with the action of G(Z®) (resp. G(FyEo))
on T=(As) (resp. V=(45)).

We define a sheaf of sets ILV®) : (Sch/g)ee — Set on the étale site of the category of

S-schemes such that for any connected S-scheme S’ we have:

ILVE(S) = HO(x(S,5), Isomo, (L. @0, Z,T%(Ay))),
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where § is a geometric point of S’ over a point s’ of S’. The étale sheaf ILV ) is independent
of the choice of &' (see [20] Section 6.4.1). The group G( Z3) acts on the sheaf I LV ) through
its action on the Tate module T=(Ay), and we denote by ILV®) /K the quotient sheaf of
ILV®) under the group action of K. An integral K-level structure of A /s is a section

a® e ILV® /K(S). Similarly we define another sheaf RLV ) : (Sch/g)¢ — Set such that

for any connected S-scheme S’, we have:
RLVE(S) = HO(n(S,5), Isome, (V @7 AE) VE(Ag))),

and define the quotient sheaf RLV®) /K in the same way. Then a rational K-level structure
of Ajs is a section ) € RLV®) /K(9).

Suppose that we have another abelian scheme A’/S and a homomorphism ¢ : Op —
End(A’g). We can similarly define two étale sheaves TLV'®) and RLV'®) replacing A
by A’/S in the above construction. If f : A — A’ is an Opg-linear isomorphism of abelian
schemes, the isomorphism f induces an isomorphism of Tate modules T (Ay) = TE)(A”)
for any geometric point 5 of S. Hence f induces an isomorphism of étale sheaves T®)(f) :
ILV® — JLV'® which is compatible with the G(Z®)-action. Thus f also induces an
isomorphism TG (f) : ILVE /K — ILV'® /K for all subgroup K of G(Z). For any integral
K-level structure a'®) € ILV® /K (S), we use T (f)(a®) to denote its image under the
isomorphism 7 (f). Similarly if f: A — A’ is an Op-linear prime-to-Z isogeny of abelian
schemes, then f induces an isomorphism V& (Ag) = V& (AL) and hence isomorphisms of
étale sheaves VE (f) : RLV®E — RLV'E) and VE)(f) : RLV® /K — RLV'® /K. For
any rational K-level structure 7% € RLV®) /K(S), we use V& (£)(7®) to denote its image
under the isomorphism V&) (f). We refer to [21] Section 4.3.1 for more discussion on this

topic.

Theorem 9. When K is small enough (e.g. det(K®) N OX C (K® N Z(Z))?), then we

have a natural isomorphism of functors:

1 HEE)C — 8/%5)

cel
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The proof is essentially given in [20] Section 4.2.1 so we omit the proof here. The
only thing we want to remark here is that for any quadruple (A/g,¢, A, 7)) considered in
Definition 4.6, we can find an abelian scheme A’/ ¢ with real multiplication ¢',and an Op-linear
prime-to-= isogeny f : A — A’ of abelian schemes over S such that A’/S admits an integral
level structure. Since S is a Z(z)-scheme, the isogeny f is étale. From Lemma 5.9, the pair
(A’g,¢') also satisfies the condition (DP). Then we can follow the argument in [20] Section

4.2.1 to conclude this theorem.

From [7], the functor Sf)c is representable. By Theorem 9, when K is small enough, we
can assume that the functor &’ 9 is represented by a Zz)-scheme S hf). From [7] Theorem
2.2, the scheme S hf) is flat of complete intersection over Zz), and smooth over Z(E)[ﬁ].

Now we take the projective limit of Shf) for varying K, and get a Zz)-scheme Sh®),
It is clear that Sh;EZ)@ represents the moduli problem €&’ S Schyg,., — Set, such that
for each Zz)-scheme S, 8’;?(5) = [(A/s, 6, A,n®)]. where [(4/s,¢, A\, 75))] is the set of
isomorphism classes of quadruples (A4/g, ¢, A, 7)) considered in Definition 4.6, except that
n® € RLA®)(S) is a rational level structure instead of a rational K-level structure for
some open compact subgroup K. An isomorphism from one quadruple (A/g, ¢, A, &) to
another (A’/S, /N, ') is an element f € Hom(As, A’/S) ®z Z(=) whose degree is prime to
= such that it satisfies the first two conditions in Definition 4.6, and also V&) (f)(n®) = n'®

instead of that last condition there.

For any g € G(Fu@=~ ), the map sending each quadruple (A/g, ¢, A, n®)) to another
quadruple
)

(Ass, 1, A, g(n®)) induces an automorphism of the functor &’ =) and hence an automorphism

of the Shimura variety S hg)m by universality. We still denote this action by g.

For simplicity we denote the Shimua variety S hg)@) by Xz, in the following discussion.
Pick a closed point x, € X(F,). Let K be a neat subgroup of G(F,@=~)). Then the natural
morphism X — Xy = X/K is étale. Let Ox,, and Ox, ., be the stalk of X and Xy
at x,, respectively. The completion of Ox,, is canonically isomorphic to the completion

of Oxy,, and we denote this completion by @xp. Suppose that z, is represented by a
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quadruple (Agz,, Lo, o, @'F)) € 8%1(]?1))-

Let C'L,w, be the category of complete local W-algebras with residue field F,. Consider

the local deformation functor ﬁp : CLw, — Set, given by

Dy(R) = {(A/rs trs 0r)|(A/Rs LRy 0R) X8 Fp = (Ag/z, s 10, $0)} /2,

here the triple (A/g, tr, $r) consists of an abelian A schemes over R, an algebra homomor-
phism ¢p : Op — End(A/g) and a c-polarization ¢r of A/z. An isomorphism from a triple
(AR, LR, ®r) to another (A’/ ro Ur, @) is an isomorphism f : A — A’ of abelian schemes over

R such that
1. for all a € Op, we have fouig(a) =igr(a)o f: A— A
2. flodhho(f®ld) = ¢r: A®o, c— A
Define a functor DEF,, : CL,w, — Set by the formula:
DEF,(R) = {(D/r, Ar,er)} /=,

where D, p is a Barsotti-Tate Op-module over R, Ag : D ®o, ¢ — D! is an Op-linear
isomorphism of Barsotti-Tate Op-modules over R (D! is the Cartier dual of D), and ep :
Dy = D @ F, — Ap[p™] is an isomorphism of Barsotti-Tate Op-modules over the special

fiber Spec(FF,) of Spec(R).

For any triple (A/g,tr, ¢r) in ﬁp(R), let A[p™]/r be its p-divisible Barsotti-Tate Op-

module over R. The c-polarization ¢r of A,z gives an isomorphism Ag : A[p™] ®o, ¢ —

[a¥)

At[p] = (A[p>])". The isomorphism (A,g, g, dr) Xr Fp = (Agz,, to, ¢o) gives an isomor-

phism e : A[p®] @ F, — Ag[p™]. By the Serre-Tate deformation theory, we have:

Proposition 4.9. The above association (A, tr, or) — (A[p™|/r, Ar, €r) induces an equiv-

alence of functors lA)p — DEF,.

We define two more functors DEF; : CL)w, — Set,? = ord, I, by:

DEF,(R) ={(D",¢",€")}/=,
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here in the triple (D?, ¢7, &%), D" is a Barsotti-Tate Op-module over R,¢° : D’ ®p, ¢ — (D)!
is an isomorphism of Barsotti-Tate Op-modules over R, and €’ : D' @ F, — Ag[p™]” is an

isomorphism over [F,,.

Since Ag/p, admits an actoin of Op, we have the decomposition of Barsotti-Tate Op-

modules:

[p™] = @AO[P }

plp

Here p ranges over the primes ideals of O over p and for each p, let
Ap[p™] = lim Ao[p"]
be the p-divisible Barsotti-Tate group of Ay. We also define
Tp(Ao) = hin Ao[p"](F,)
as the p-divisible Tate module of Aj.
Similar with [24] Proposition 1.2, we have the following facts:
1. the functor DEF), is represented by the formal scheme §p /w, associated to (/’)\xp;

2. there is a natural equivalence of functors: DEF, = DEFlg”"d X DEFél,and hence the
formal §p/Wp is a product of two formal schemes 3\;7/"{‘,{% and §g/wp such that DEF; is

represented by §; W, for 7 = ord, ll;

3. For each p € Zo”l fix an isomorphism O, = T,(Ap). Since ¢ is prime to p, by the
c-polarization ¢, we also have an isomorphism O, = T,(Aj}). Then S’\;;{fvp is a smooth
formal scheme over W, which is isomorphic to

H Hom(T},(A) ®o, T, G H Hom(O,, G H Gom ®z, O
pEEOTd eED’I‘d EEOTd

here O = Homg, (O, Z,).
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In fact, for any triple (A/g, (g, ¢r) in ﬁp(R), the level structure ap™® on Ay can be
extended uniquely to a level structure on A,z. Then the functor lA?p, and hence the functor

DEF, by Proposition 4.9, is represented by the the formal scheme :S'\p/Wp =Spf (@xp)

For a triple (D/g, Agr,er) € DEF,(R), we have a canonical decomposition the Barsotti-
Tate Op-module D = D% x D! where D¢ is the maximal ordinary Barsotti-Tate Op-

submodule of D, and D" is its local-local complement. From this we have a morphism
DEFp(R) 2 (D/RaAR>5R) = {<D7TRd>AR|D0’“d>5R|DWd): (Dl/leAR‘D”aER’D”)} S DEF;M(R)XDEF;Z(R%

from which we get a equivalence of functors between DEF), and DEFpOTd X DEF;’ . Hence

the formal scheme §p /w, is a product of two formal schemes §;}"§Vp X §Ilf/wp.

In contrast with [24] Proposition 1.2, the formal scheme §p /w, may not be smooth when

p divides the discriminant dr of F' since the Shimura variety S h%( | we consider here is not
P

smooth. But from the Serre-Tate deformation theory, the formal scheme 3\;7/"{‘,{% is always

smooth, and this is the part we are interested in.

4.3 Siegel modular Shimura varieties

In this section we recall basic results on Siegel modular Shimura varieties. Our main reference
is [20].
Fix a positive integer d and a prime p. Let Zg, be the localization of Z at (p). Let

G o = GSp(2d) g be the symplectic similitude group over Q, i.e. for any Q-algebra R, we

have
G(R) = {X € GLy(R)| X" JyX = v(X)Jy, for some v(A) € R},
0 —1y4 .
where J; = . Define the Siegle upper half space
g O

Hy = {Z =X +1iY € ded(C)’Z = Zt,Y > 0}
Set X = Hy U Hy. For any integer N > 0, define

~

T(N) = {a € GSpyy(Z)|a = 1 mod N}.
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Let W = Q% with the alternating form ¥(x,y) = 2'Jyy. For each Q-algebra R, G(R) =
GSpyy(R) acts on W ®g R in the natural way, preserving the alternating form ¢ up to scalar
multiplication. Set L=1L Qz 7Z and L, =L ®z 7, W, =W ®q Q, for each rational prime
p. Let {e; = (1,0,...,0),e2 = (0,1,...,0),...,e20 = (0,0,...,1)} be the standard Z,-basis
of Ly.

For N > 3, consider the following moduli problem:

En: Schygiy — Sets,

S = En(5) :{(Av)‘vm\/)}/%v

such that for each Z[]-scheme S, Ey(S) is the set of isomorphism classes of the triples

(A, A\, ) consisting of:

1. an abelian scheme A /g of relative dimension d;
2. a principal polarization \ : A — A! of A;

3. alevel N structure ny : (Z/NZ)** = L/NL = A[N](k(s)), under which the symplectic
pairing < -,- > on L/N L is sent to the Weil pairing on A[/N]induced by the polarization
A, and s : Spec(k(s)) — S is a geometric point of S.

It is well known that the moduli problem Ey is represented by a scheme A, v,z 1

Moreover, the C-valued point of A; y is given by
ALy (€) = GQ\(X x G(A7)/T(N).
Then we define two pro-schemes:
Sh/@ = mNAl,N/Z[%}v Sh%ﬁ,) = liin(P,N):lAl,N/Z[%]

Take a closed point x, = (Ag, Ao, n(()p )) JF, €5 h(?)(F,) such that the abelian variety A, /By
is ordinary. Under this assumption, the endomorphism algebra D = End®(Az,) is a matrix

algebra over a CM algebra (i.e. a finite product of CM fields) M. The CM algebra M
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is generated by the Frobenius endomporphism of Az over Q. Let R be the order of M
generated by the Frobenius map of Ayr, over Z. Let R(,) = R ®z Zy). Define a torus Tyz
by setting

T(Zy) ={a € Rz -z € L}
For each g € G(A®*)), it acts on the moduli problem £® by sending a triple (4, ), n(p))/s €
EP)(S) to the triple (A, \,n® o g) /s- By universal property, g induces an automorphism of
the Shimura variety S h(/%)(p), which is still denoted by g¢.

Define a homomorphism p : T(Z,)) — G(AP>)) by the formula a o n(()p) = nép) o p(a), for

a € T(Zg)). The image of T'(Z,)) under p stabilizes the closed point x, under the action of
G(AP>)) on Sh%( : explained as above.

Let §p /w, be the formal completion of the Shimura variety S h%)@) along the closed point
z,, where W, = W (F,) is the ring of Witt vectors with coefficients in F,. As the abelian

variety Ag g, is ordinary, by Serre-Tate deformation theory, we have an isomorphism:
S, = Homy, (Sym(T, Ao (F,) @z, T, Ao(F,)), Gn).

Each a € T(Z,)) gives an automorphism on the Serre-Tate deformation space §p. In terms

of the Serre-Tate coordinates, this action is give by the formula:
aot=(to(a®a) )" forte Homg, (Sym(T,A¢(F,) ®z, T,A¢(F,)), @m)

For simplicity, we assume that the abelian variety Az is simple. But the following results
can be generalized to non-simple cases without any difficulty. Under this assumption, M is a
CM field and if Az, is defined over a finite field F, (¢ is a power of p), then M is generated
by F, over Q. Let F' be the maximal totally real subfield of M. We make another assumption
that the degree of M over Q is 2d. We choose embeddings ¢, ..., pq : M — Q, such that
all the embeddings of M into Q are given by the set {©1,..., 94, @1,..., P4}, where - means
a complex conjugation in Q, and M acts on the rational Tate module TpAO(I_Fp) ®z Q by the
character I1L_,@;. Then we have chosen the embeddings ¢, ..., ¢4 so that the deformation
space §p has canonical coordinates ¢; ; on which the group T'(Z)) acts through the character

ei- @l <4, < d.
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CHAPTER 5

Local Indecomposability of Hilbert Modular Galois

Representations

In this chapter, we fix F' to be a totally real field with degree d over Q and use Op to
denote its integer ring. Let D = Dp/q be the different of F//Q and dp = Normp,q(D) be its
discriminant. For any prime p of Op, let O, (resp. F},) be the completion of Op (resp. F)
with respect to p. We use A to denote the adele ring of Q, and use Fj (resp. Fj f) to denote

the adele ring (resp. finite adele ring) of F'.

Let f be a parallel weight two Hilbert modularo form of level m over F'. Assume that f is
a Hecke eigenform and let Ky be its Hecke field. For any prime A of Ky over a rational prime
p, let K¢, be the completion of Ky at A. It is well known that there is a Galois represention
pr: Gal(Q/F) — GLy(Ky,) attached to f. Moreover if the eigenform f is nearly p-ordinary,
then up to equivalence the restriction of p; to the decomposition group D, of Gal(Q/F) at
p is of the shape (see [52] Theorem 2 for the ordinary case and [19] Proposition 2.3 for the

nearly ordinary case):
€1 k
prlp, ~
€2
Recall that we put the following technical condition on f when the degree of F' over Q
is even: there exists a finite place v of F' such that 7, is square integrable (i.e. special or
supercuspidal) where 7; = ®,m, is the automorphic representation of G'Ly(F)) associated

to f (Fj is the adele ring of F). In this chapter, we prove the first main result in this thesis,

i.e. the following:

Theorem 10. If f does not have complex multiplication, then pys|p, is indecomposable.
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Before starting the argument, we want to give a sketch of our argument. Under the
assumption on f, there exist an abelian variety A/ and a homomorphism L — End’(A F/F)
where L /Ky is a finite extension and the degree of L over Q equals to the dimension of Ay,
such that the Galois representation p; comes from the A-adic Tate module of A (at least upto
a twist of a character). Hence the theorem is reduced to prove: if the abelian variety Ay, p
does not have complex multiplication, then its A-adic Tate module T)(Ay) is indecomposable
as an I,-module, where I, is the inertia group of Gal(Q/F) at a prime p of F over p. By an
analysis of the endomorphism algebra of an abelian variety of G L(2)-type in section 5.1, we
can always take L to be a totally real field (see Proposition [5.4). Moreover, we can assume
that Ay is absolutely simple and has good reduction at p. Then the key argument can be

divided into two steps:

First, under the assumption that Ay, does not have complex multiplication, we can find
two distinct primes £ and £ of F not lying over p with the following property: the abelian
variety Ay /p has good reduction at Q and £, and if we use Ay (resp. Ag) to denote the
reduction of A; at Q (resp. £), then End) (Aq /5,) and Endj (Ag/z,) are non-isomorphic CM
quadratic extension of L (see Lemma [5.13). Here ¢ (resp. [) is the residue characteristic
of the prime 9 (resp. £). The proof is a slight modification of the argument given in [24]
using Faltings’s isogeny theorem, a Serre-type open image theorem due to Ribet, and some
standard results on the density of primes. As is clear from the argument given in the proof
of Lemma 5.13, when the prime p is ramified in the field L, we need to construct an extra

auxiliary prime in our argument.

Second, we prove that if the A-adic representation of I, attached to the Tate module of
Ay is decomposable, it is impossible to find the primes Q and £ with the property in the
first step. The idea is that by putting polarization and level structure on Ay p, the abelian
variety Ay /p gives rise to a point on the Hilbert modular Shimura variety we defined in
section 4.2. In section 5.2 we prove that each L-linear isogeny of Ay 5 with degree prime
to ¢ induces an automorphism of the Shimura variety, and hence an automorphism of the

ordinary deformation space of the mod ¢ reduction of Ay sitting in the special fiber of x
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at ¢. Using the rigid analytic logarithms of the Serre-Tate coordinates on the ordinary
deformation space (see section 5.2 below), we can prove that this automorphism must also
fixes the special fiber of 2 at I. Then we can conclude that End’ (Aq /5,) and End} (Ag/z,)

must be isomorphic as L-algebras.

We prove the main result in Section 5.3, and we give an A-adic version of our result by
applying an argument in [14]. At the end we explain how our result can be applied to study
a problem of Coleman on determining which classical elliptic modular forms lie in the image

of the operator defined in [5].

5.1 Abelian Varieties of GL(2)-type

Let £ be a number field with degree d over Q, and A 5 be an abelian variety of dimension d.
Set End"(A 5) = End(A 5) ®z Q, which is a finite dimensional semisimple algebra over Q.
Suppose that we have an algebra homomorphism £ — End’(A /@), which identifies F with
a subfield of End’(A /5)- Recall that the abelian variety A 5 has complex multiplication if
End’(A /@) contains a commutative semisimple subalgebra of dimension 2d over Q. Then

from [23] Section 5.3.1, we have the following two results:

Proposition 5.1. If A/@ does not have complex multiplication, then A/@ is isotypic (i.e.
there exists a simple abelian variety B g such that A/@ 1S 1sogeneous to (B/@)e for some

e>1), and EndOE(A/@) =FE.
Proposition 5.2. Under the conditions of Proposition 5.1, if we assume further that A g
1s simple, then one of the following four possibilities holds for D = EndO(A/@) :

1. FE is a quadratic extension of a totally real field Z and D is a totally indefinite division

quaternion algebra over Z;

2. E 1s a quadratic extension of a totally real field Z and D is a totally definite division

quaternion algebra over Z;
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3. E is a quadratic extension of a CM field Z and D is a division quaternion algebra over

Z;
4. E =D and FE 1is totally real.

Remark 5.3. 1. A quaternion algebra D over a totally real field Z is called totally in-
definite if for any real embedding 7 : Z — R, the R-algebra D ®, R is isomorphic to
the matrix algebra M,(R); the quaternion algebra D, is called totally definite if for
any real embedding 7 : Z — R, the R-algebra D ® . R is isomorphic to the Hamilton

quaternion algebra H.

2. From Proposition /5.1, we see that End®(A /@) is always a central simple algebra and F

is a maximal commutative subfield of End’(A /@);

3. As remarked in [23], case 2 in Proposition 5.2 cannot happen by [47], Theorem 5(a)

and Proposition 15.

Proposition 5.4. Under the notations and assumptions in Proposition 5.1, assume further
that there exists a totally real field k such that the abelian variety A/@ is defined over k, and
the homomorphism E — EndO(A/@) factors through End"(A ). Then we can find a totally
real field F' with degree d over Q, which can be embedded into D = EndO(A/@) as a unital

subalgebra of D.

Proof. By Propositon 5.1, we can find a simple abelian variety B g and an integer e such that
A g is isogeneous to (B/5)°. Hence we have an isomorphism of simple algebras End"(A 5) =
M. (End"(B g))-and d = e - dy, where dy is the dimension of Bg. Since any maximal
commutative subfield of End®(A /) has degree d over Q, any maximal commutative subfield
of D; = End’(B /) should have dimension d/e = d;. In other words, we can find number
field £, of degree d; over Q, which can be embedded into End’(B /5) as a subalgebra. Since
A /g does not have complex multiplication, neither does Bg. In summary, B g satisfies all
the assumptions in Proposition 5.2, Assume that End’(B /@) is of type 3 as in Proposition
5.2, i.e. End’(B /) is a division quaternion algebra over a CM field Z and [E; : Z] = 2.
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Since d; = [Ey : Q] = 2[Z : Q], the degree s of Z over Q equals to %. Since Z is a
CM field, we can find s’ = 7 different embeddings 7; : Z — Q,i = 1,...,s, such that
Homg(Z,Q) = {71, ..., Ty, 71, ..., Ts' }, Where 7; is the complex conjugation of 7; for i = 1, ..., s’

Then we have an isomorphism

0:DiggR= [] M(C)

Let 7; be the composition

D;—Di®@gRS  [[ Ma(C) ™ M(C),

where the map 7; is the i-th projection, for i = 1,...,s’. Let &; be the complex conjugation of
m;. Then {m, ..., 7y, T, ..., Ty} are all the absolutely irreducible (complex) representations
of Dy (up to isomorphism).

On the other hand, we have a representation of Dy by p; : Dy — Endc(Lie(B) ®g C).
Let r; (resp. s;) be the multiplicity of m; (resp 7;) in p;. Then for any z € Z, the trace of

p1(z) is given by the formula:

—22 rii(2) + 8:7i(2)).

Since Lie(Aq) = (Lie(B,g))¢, we have the representation p : D — Endc(Lie(A) ®g C), such

that for any z € Z,

Tr(p(z)) = eTr(p1(2)) = 262 rimi(2) + 8:7i(2)).

Since Z C E and the homomorphism £ — End’(A /) factors through End’(4,;), we have
Tr(p(2)) € k, for any z € Z. From [47] Section 4, we have r; +s; = 2, for all i = 1,..., ¢
Thus for each i, either r; = s; =1 or r; - s; = 0. If r; - 5; = 0 for at least one 7, then Tr(p(z))
cannot lie in the totally real field &k for all z € Z as Z is assumed to be a CM field. Hence

r; = s; = 1 for all i. Then by [47] Theorem 5(e) and Proposition 19, this case cannot happen.

Combined with Remark [5.3(3), we see that End®(B /g) is either a totally real field or a
totally indefinite division algebra over a totally real field. Then the existence of F' results

from:
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Lemma 5.5. Let D be a central simple algebra over a totally real field Z with [D : Z] = d°.
If for all real embeddings 7 : Z — R, the R-algebra D ®z . R is isomorphic to the matriz
algebra My(R), then we can find a field extension F/Z with degree d such that F is totally

real and can be embedded into D as an Z-subalgebra.

Proof of the lemma: We use an argument similar with the proof of Lemma 1.3.8 in [3].
It is enough to find a field extension F'/Z with degree d such that F' is totally real and splits
D(i.e D ®y F = My(F)).

Let ¥ be a non empty set of non-archimedean places of Z containing all the finite places
where D does not split, and Y, be the set of archimedean places of Z. By the weak
approximation theorem, the natural map:

Z—>Hva H 7,

VEY VEY o

has dense image. Hence we can find a monic polynomial f(X) € Z[X] of degree d, such that
it is sufficiently close to a monic irreducible polynomial of degree d over Z, for all v € X,
and it is sufficiently close to a totally split polynomial of degree d over R for all v € ¥,. Set
F = Z[X]/(f(X)). Then F/Z is a degree d field extension such that F is totally real and
for any v € 3, there is exactly one place w of F' lying over v and hence F,/Z, is a degree d

extension of local fields.

We still need to check that F splits D. Since D ®y F' is a central simple algebra over F
and F' is a global field, it is enough to prove that for any place w of F' (archimedean and
non-archimedean), we have an isomorphism D ®y F,, = My(F,). Let v be the place of Z

over which w lies.

If w is archimedean, then Z, = F,, = R, and hence
D®yz F, =2 (D®y Z,) @z, Fo = My(R), (5.6)

by our assumption on D.

If w is non-archimedean and v is not in ¥,then D ®, Z, is already isomorphic to the

matrix algebra over Z,, so we are safe in this case.
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Finally, assume that w is non-archimedean and v € . As F,,/Z, is a degree d extension
of local field, the base change from Z, to F,, induces a homomorphism of Brauer groups
Br(Z,) — Br(F,), which under the isomorphism Br(Z,) = Br(F,) = Q/Z by local class
field theory, is nothing but multiplication by d. As [D : Z| = d?, the order of D ®z Z,
in Br(Z,) is divisible by d. This implies that D ® F,, represents the identity element in
Br(F,); i.e.D ®z F,, = My(F,). Hence F'/Z is the desired extension.

]

Hereafter we always work with the pair (Ag,¢: F' — End"(A /g)), where I is a totally
real field with degree d over Q. Since the abelian variety A /g 1s projective, we can find a
number field k such that A is defined over k, and End(A5)) = End(Ay). Let Oy be the
integer ring of k, and for all prime ideals 8 of O, over some rational prime p, let O(y) be
localization of Oy at the prime B and Fg = O /P be its residue field. As in [24], we make

the following assumption:

(NLL) the abelian variety A/, has good reduction at 3 and the reduction Ay = A®oy Fyp

has nontrivial p-torsion FF,-points.

Change the abelian variety A if necessary, we can assume that ¢ gives a homomorphism
t: Op — End(A4);). Let F, be an algebraic closure of Fg. W, = W (F,) is the ring of Witt

vectors of F,. We have the decomposition of Barsotti-Tate Op-modules:

Ao[p™] = @Ao [p>°].
plp

Here p ranges over the primes ideals of O over p and for each p, let
Ag[p™] = lim Ay [p"]
be the p-divisible Barsotti-Tate group of Ay. We also define
T3(Ao) = lim Aofp")(F,)
as the p-divisible Tate module of Aj.
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We say that a prime p of Of over p is ordinary if Ag[p] has nontrivial F,-points, otherwise
we say that p is local-local. When p is ordinary and p is unramified in k£, we have an exact

sequence of Barsotti-Tate Op-modules over W,,:

0 — iy @z, Op — A[p™]w, — Fp/Op — 0.
Here O; = Homg, (O, Z,) is the Z,-dual of O,.

Let Egrd be the set of all ordinary primes of O over p, and Eg be the set of all local-local
primes. Then the condition (NLL) is equivalent to the fact that X9 is not empty. Also we
define:

Aop™ = @B Aolp™], Aop™]" = €D Aolp™].

peXgrd pexl!

At the end of this section, we explain how the pair (A, ¢ : F — End’(Ay;)) can give
a point in the Hilbert modular Shimura variety defined in section 4.2. More precisely, we
want to prove that there is a c-polarized abelian variety A’/Ok with real multiplication by Op

which is isogenous to A .

We can find an order O in F' which is mapped into End(A) under ¢. By Serre’s Tensor
construction ([3]1.7.4.), we can find an isogeny f : A — A’ over k, and the induced isomor-
phism End’(A4 ;) — EndO(A//k) carries Op C End’(A ;) into End(A);). Hence we have an
algebra homomorphism ¢/ : Op — End(A’/k). By our assumption, A/, has good reduction at
the prime P of O. By the criterion of Néron-Ogg-Shafarevich ([48] Section 1 Corollary 1),
A’/k also has good reduction at 3, and hence can be extended to an abelian scheme A//Oon)
(recall that Oy is the localization of Oy, at the prime ). Since Oy is a normal domain,
by a lemma of Faltings (see [11] Lemma 1), the restriction to the generic fiber induces a
bijection

End(A//O(m)) — End(A)y).

So we have an algebra homomorphism Op — End(A’/om), which is again denoted by ¢'.

o6



o , 5 .

From Proposition 4.4, the étale sheaf Homoim(A’/Om,A’/to(m)) is a constant sheaf ¢ for
some fractional ideal ¢, with the natural notion of positivity ¢,. Thus we have a natural
. . . Sym / 1t . .
isomorphism ¢ : ¢ — Homg, (A /O(m),A /O(tm) which sends totally positive elements of ¢ to
polarizations of A//Om. We still need to check that the natural morphism « : A’ ®p, ¢ — A"

is an isomorphism over Opy. As char(k) = 0, by Proposition 4.5, « is an isomorphism at

the generic fiber of Op). Hence « is an isomorphism again by Faltings lemma.

In summary, we have:

Proposition 5.7. Let Ay, be an abelian variety of dimension d satisfying the condition
(NLL) above, and v : F — End°(Ay;) be an algebra homomorphism. Then we can find a
fractional ideal ¢ and an c-polarized abelian scheme (AI/O(&B)’ !, p) with real multiplication by

Op such that Ay, is k-isogenous to A’/k.

Remark 5.8. Let A/g be an abelian scheme of relative dimension d and ¢ : Op — End(A/g)
be an algebra homomorphism. By a similar argument as above, we see that if S is an integral
normal scheme and the generic fiber of S is of characteristic 0, then the pair (A,g,:) must

satisfy the condition (DP).

For later discussion, we need the following:

Lemma 5.9. Let A/S,A’/S be two abelian schemes of relative dimension d, and v : Op —
End(A4/5),/ : Op — End(A’/S) be two algebra homomorphisms. Suppose that there exists an
Op-linear étale homomorphism of abelian schemes f : A — A'. If the pair (A/s,t) satisfies

the condition (DP), so does (Ag,').

Proof. Without loss of generality, we can assume that S = Spec(k) for some separably closed
field k. If char(k) = 0, then (A)g, ) satisfies (DP) automatically by Proposition 4.5. So
we can assume that char(k) = p > 0. From the discussion of [15] Page 100 — 101, the pair

(A/k, ) can be lifted to characteristic 0; i.e., there exist:

1. a normal local domain W with maximal ideal m and residue field & such that the

quotient field of W is of characteristic 0;
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2. an abelian scheme Ay with an Op-action i : Op — End(fl/w) such that (A, ¢)
is isomorphic the the pull back of (A/W, 7) under the natural morphism Spec(k) —
Spec(WV).

Replacing W by its m-adic completion if necessary, we can assume that W is complete.

Since f : A — A’ is étale and Op-linear, C' = ker(f) is a finite étale Op-submodule of
Aji. Then we can lift C' to an étale Op-submodule é/w of fl/W. Let /Nl’/W be the quotient
of A yw by C /w, with the natural homomorphism ' : Op — End(fl’/W) induced from A W
By the above construction it is easy to see that (A’/W, ') lifts (A%, ). Then from Remark
5.8, (A, ) satisfies (DP). O

5.2 Eigen coordinates

At the beginning of this section we set up some notations. Let & C Q be a number field and
= be a finite set of primes. For each p € =, choose a finite extension Zp of L, in C, such

that:

Lk Ciy'(Ly);

2. 14, 1(Zp) contains the Galois closure of F in Q.

Denote by Wp the valuation ring of Ep. Then define:

W= =i, (W,) CQ W, =W=nk.
peEE
The ring )7\75 is a semilocal ring, and for each [ € =, there is a unique maximal ideal m; with

residue characteristic [. Let EE be the quotient field of WE

Given the totally real field F, let S hﬁ)(:) be the Hilbert modular Shimura variety con-

structed in section 4.2. Suppose that the quadruple (A 1, \,n®)) represents a point

/W’
z € Sh®(Wz) such that the image of z lies in Sh®(W;). For each p € Z, = induces an
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F,-valued point z, € Sh®)(F,). Then the quadruple (Ag/, s bops A, 77535 )) obtained by mod

p reduction represents the point z,.

This section consists of the key arguments and ideas used in the proof of the local inde-
composability result. We give a sketch of what we want to do in this section before we start

the down to earth arguments.

First we construct a torus R(XE) acting on the Hilbert modular Shimura variety which fixes
the closed point z,. Hence this action induces an automorphism on the formal completion
§p of the Shimura variety Sh(®) at the closed point z,. From the previous section, we
have a decomposition §p W, = A;’}"{‘%,p X gg/wp. Then we recall the construction of p-eigen o-
coordinates in [24] and give the explicit expression of the action of R(XE) on these coordinates.
When the ind-étale exact sequence of the Barsotti-Tate Oy-module A[p>] splits over Wp, we
calculate its Serre-Tate coordinates in Lemma [5.12. It turns out that when p is ramified in
the base field (so W, # Wp) this Serre-Tate coordinate is a p-th power root of unity and the
abelian variety A W, is isogenous to an abelian variety whose Serre-Tate coordinate at p is
1. From the construction of the eigencoordinates, the p-eigen o-coordinates of these abelian
varieties are all 0 for any embedding o : F' — @p which induces the prime p in F. Since we

can change our abelian variety by an isogenous abelian variety, the eigen coordinates should

be the right object to study.

The above calculation is local at p. We want to transit the action of Rz, on gp /w, to the
deformation space §l yw, for some other prime [ with the property that there exists a prime
£ of k over [ and A e has partially ordinary reduction at £. Let 7 : A — Spec(WE) be
the structure morphism and set w = m, (€2 A /W:) which is an O ®g Wg—module and define

w®2

=wQp o, W- This is the global object which allows us to compare the action of R(XE)
at different local deformation space. The sheaf w®? is related with the Serre-Tate coordinates
(or the eigen coordinates) through the Kodaira-Spencer map. The Kodaira-Spencer map is
not an isomorphism in general if the reduction of A . at P is not ordinary. We want to have

decomposition of w®2 by its Op @z Wz-module structure as in [29]. Recall I = Hom(F, Q).

29



The natural homomorphism
Op @z We — WE a®@b— (0(a) - boer

is not an isomorphism when the prime p € = is ramified in Op. It becomes an isomorphism
when base change to the quotient field ENE of WE On the other hand, the formation of
the sheaf w e is compatible with arbitrary base change. So we can decompose the sheaf
w®? g L= as a direct sum ®,¢;0%% such that on @2, the ring Op acts by the embedding
o : F — Q. Under this decomposition and the Kodaira-Spencer map, we can compare the
endomorphism algebras of the reductions of A e at different primes and get our main result

Theorem [11 at the end of this section.

5.2.1 Construction and properties of eigen coordinates

By [24] Lemma 2.2, we have

Lemma 5.10. If Ay, is not supersingular (i.e. erd # (), then there exists a CM quadratic
extension M of I, and an isomorphism of F-algebras Op : M = End%(A;B/Fp). Set R =
MnN 9;31(EndoF(Am/]pp)), which is an order in M. If a prime ideal p in Of belongs to Ezrd;

i.e. Aglp] has nontrivial F,-rational points, then p splits into two primes PP in R with
P 4P,

As in [24], we make the convention that we choose P such that Ag[P] is connected and
Ap[P] is étale.

By the above lemma, we have an isomorphism M ®p F, = F, x F}, such that the first
factor corresponds to P and the second factor corresponds to P. As M can be naturally
embedded into M ®p F},, we have two embeddings from M to [}, which correspond to the
two factors of F}, x F,. We always regard M as a subfield of F}, by the first embedding, while
the second embedding is denoted by ¢ : M — F,,.

Let Rz = R®z Z=). For a € R(XE), Osp(r) is a prime-to-= isogeny of Agg , and hence

induces an endomorphism of V& (Ag). We still denote this endomorphism by g (). Define
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amap p: Rz — G(Fyex) such that for each o € Rz, p(a) is given by the formula:
g o pla) = Op(a) o iy,

Fix a prime-to-Z polarization Ag of Ay as a representative of Ag. Under the isomorphism
f, the Rosati involution associated to Agp on EndOF(A;B /7,) induces a positive involution on
field M. As M is CM, this involution must be the complex conjugation on M. Hence for any
a€ Ry, /\§31 0 Ogp(a)! o Ap = Op(@). Then Op(a)! o Ay 0 Og(a) = A 0 Osp(@) 0 Op(ax) = Ap 0
Op(a). Since ad € Of, ,, we have Op(a) o Apobdyp(a) = Ags. So Op(v) is an isogeny from the
quadruple (Ag/F, , L, Mg, 775133)) to (Agys,, Ly, Mg, 9‘33(04)(775))) = (Ay/r,: tp; /_\%PA(Q)(U:(;))) in
the sense of Definition 4.6; in other words, the automorphism g = p(«) of the Shimura

variety S hﬁ\)@ = Shﬁ?@ X2z, We fixes the closed point x,,.

Denote the formal scheme §p/Wp as the completion of the Shimura variety S hf/\)}: along
the closed point z,, and v, : §p/wp — Shﬁ),p is the natural morphism. As explained in
Section 4.2, S, w, is the product of two formal schemes SZ’/"{‘pr and Sg/wp’ and if we fix an

~

isomorphism O, = T,(Ag) for each p € X7, then S;}"{‘fvp is isomorphic to Hpezord@m @z, Oy
By deformation theory, we have a Serre-Tate coordinate t, € @m ®z, Oy for each p € yord,
Then for each object R in the category C'L,y,, and an R-valued point = € §p(R), the
Serre-Tate coordinate gives us an element t,(z) € Gm(R) ®z, Op = (1 + mp) ®z, O}, here

mp is the maximal ideal of R. In particular, when R is a subring of C,, we can consider the

p-adic logarithm log, : R — C,. Consider the following map:

log, ® Id : (1 4+ mg) @z, Oy — C, ®z, 05 = Hom(0,,C,) =[] C,

Here the notation o ~ p means that the composite map i,00 : F' — Qp induces the prime
p of F. For such o, let 7, be the projection of Il,.p_,g ,~pCp to its o-factor. Then we get an
element 7,(x) = 7, o (log, ® Id)(t,(z)) € C,. The association x € §p(7€) — 7,(z) € C, gives

p-adic rigid analytic functions on the rigid analytic space (§;’Td)p*‘m associated to §13Td'

Remark 5.11. From the above construction, we can see that actually the eigen coordinates
take values in the valuation ring of the field C,. But in later argument, we need to invert

the prime p when comparing the eigen coordinates and the invariant differential sheaf of
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Ayy_ by the Kodaira-Spencer map. Hence we always regard the coordinates 7, as Cp-valued

functions on the formal scheme §§rd or C,-valued rigid analytic functions on (§;7"d)p_“".

Since the action of g = p(a) on the Shimura variety S hﬁ\)@ fixes the closed point x,, this
action also preserves the formal schemes §;7"d and Sy, and hence g = p(«a) acts on the function
7, for each o ~ p, p € £ By [22] Lemma 3.3, the action of g = p(a) on the Serre-Tate
coordinate t, is given by the formula g(¢,) = tg‘lfc. (See the explanation after Lemma [5.10
for the two embeddings of M to F}). Then by the construction of 7,, we see that the action
of g = p(a) on the function 7, is given by the formula: g(7,) = 7, 0 p(a) =i, 0 o (') - 7.
We remark here that i, o o : ' — Q, naturally extends to an embedding i, oo : F, — Q,,
and hence the expression i, o o(a'™¢) is well defined. As in [24], the function 7, is called a

p-eigen o-coordinate.

Now consider the original point x € S h(E)(WE), which is represented by the quadruple

(A L, ).

Wz

Lemma 5.12. Assume that we have a prime p € X", such that the exact sequence of

Barsotti-Tate Op-modules :
0 — fipee @z, Op — A[p™] — F,/Op — 0

splits over over Wp. In this case, the Serre-Tate coordinate t,(x) for the prime p at the
point x must be a p-th power root of unity. In particular, for the p-eigen coordinate we have

T,(x) =1 for all o ~ p.

This fact is proved in [1] Section 7 or [25] Section 6.3.4 in the case of elliptic curves. The
higher dimensional case is considered in [6] when the abelian variety has ordinary reduction
at . Since the discussion in the partially ordinary case may not exist in the references, for

the sake of completeness we give a proof here.

Proof. First we assume that the ring R = M N Qil(End@F (Agr,)) in Lemma [5.10/ is the

integer ring Oy, of M. From Lemma 5.10 , the prime p in O splits into two primes P and
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P in Oy such that the finite group scheme Ap[P]/5, (resp. Agp[P]g,) is connected (resp.

étale).

From the splitting of the exact sequence
0— Hpoo ®Zp O; — A[poo] — Fp/op — 0

over Wp, for each integer n, there exists a finite subgroup scheme A[P"] i, of A[p"] /i, Which

projects isomorphically to Ag[P] s, under the reduction map. Denote the quotient abelian
scheme (A/A[P"]) v, by A e and let 7, : A — A/, be the natural projection defined over
n/Wp

—~

W
As M is a number field, there exists a positive integer N and an element a € O); such

that PN = (a) in @);. Under the isomorphism : = En 7 ), the element a € Oy,
hat PV Oy Under th hism Oy : M = Endj(Agyz, ), the el @)

gives an isogeny of Ag s whose kernel is Ag[PV] 5 , which is still denoted by a.

From the above construction, the projection 7y : A — Al is a lifting of the isogeny
a:Ap — Agp to /Wp. From [29] Theorem 2.1(4) or [6] Formula 3.7.2, we have the following
equation:

tp(A;V/Wp; a(@), o) = ty(A g s o, a(d)),
for o,/ € T,Ap(F,). Here a is the complex conjugate of a in M. From our choice of the
element a € Oy, the action of a (resp. a) on T,Aq(F,) is divisible by p (resp. invertible).
Hence the above equation tells us that the Serre-Tate coordinate t,(A W, Qs o) is a p-th
power. Now we replace a by arbitrary power of a, and repeat the above argument. It follows
that tp(A/Wp;oz,a’) is a p"-th power for all n > 1. As tp(A/Wp;oz,o/) € @m(Wp), we have
to(A

i, d) =1forall a,a’ € T,Ap(F,). So we have t,(x) = 1.
In the general case, as the ring R is an order in M, we can find a positive integer m
such that ma € R. We replace a by ma in the above argument, and it is easy to see that

tp(x)™ = 1 in this setting. As the Serre-Tate coordinate t,(z) belongs to @m(/va), we can

take m as a power of p, as desired. O
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5.2.2 Comparison of endomorphism algebras at different special fibers

In this section we want to compare the endomorphism algebras of the special fibers of the

abelian scheme A e The key ingredient is the Kodaira-Spencer map, which we will recall

below.

As we can regard z € Sh®(Wx) as a Wp—rational point the point z actually sits in the
formal scheme §p/wp7 in other words, if we regard z as a morphism Spec(WE) — Sh® | then

this morphism factors through v, : S, — Sh(®),

Let (Ay™v, umv ¢u"V) be the universal object over S, Let m, : A — S, be the

structure morphism and e, : §p — Ag"i” be the morphism corresponding to the identity

element. Consider the sheaf wy™ = (1) (€2 Ayniv /§p) = e;(Q Ayni /§p) over §P/Wp7 which has

a natural O§p ®z Op-module structure, and compatible with arbitrary base change. Set

univ unLv

(wpniv)®2 = untv Q05 @,0p) Wy Then we have the Kodaira-Spencer map:
p

KS: (w;fm“)m — Qg 1w, -
We remark here that the Kodaira-Spencer map is ng ®z Op-linear and compatible with the

g = p(a)-action on both sides.

By the isomorphism S, §]‘;”d X §Ilf over W,, we have the decomposition: Qg , =
(WOTd)*ngd/Wp @ (Wll)*qu/Wp’ where or? . §p — gl‘)”"d and 7 : S, — §g are the natural
p p

projection. Since §g”l = Hpezord@m ®z, O, if we set §p = @m ®z, Oy, then we have

p)
ngrd/wp = @pegwd(wp)*Qgp/Wp, where m, : §g”l — §p is the natural projection. To express
p
the g-action on Qg,,q W, in a simple way, we base change this module to Zp, i.e. we consider
p

Q§§T.d/wp ®w, L, = Q@g?'d/ip = Dpexorallg 7, which is free of finite rank over (S;’”d)/zp.
Moreover, for each p € X7, the set {d7r,|7 ~ p} forms a basis of the module Qg 7, over §p,

here 7,’s are the p-eigen coordinates constructed above.

On the other hand, we consider the cotangent bundle (w'"*)®? @y, L, = (&1"")%2,
which has a natural Or ®z Zp—module structure. By our construction of Zp, for any em-
bedding 0 : F — Q, 0(Op) is contained in i 1(Zp). Hence we have the isomorphism

Or ®z Zp = 11, F_,@Zp. By this isomorphism we can decompose the O ®z Ep—module
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(@pmiv)€2 as (Wu™)®? = @,.p_g(Wy™")®* such that on the bundle (Ty™*)®**, Op acts

through the embedding o.

Then by [29] section 1.0, for each p € X", the Kodaira-Spencer map induces an isomor-
phism

@ (a}gniv)®20 N (ﬂ-p o Word)*Q§p/Epa

0:F—Q,0~p
under which the bundle (@;f”w)@" corresponds to the sub-bundle generated by dr,. Hence
the action of g = p(a) preserves each (Wy™*)®** and acts it by multiplying the scalar 4, o

o(a'~¢). Moreover, as we assume that 7,(z) = 0 for all o ~ p, g also preserves (Wi™")¥ (x).

Now we can state the main result in this section:

Theorem 11. Fiz an embedding oy : F — Q, such that i, o o1 induces p. If there exists
some prime | # p in Z, such that the prime | induced from i, o oy belongs to X", then we
have an isomorphism of F-algebras: End%(Agp/pp) >~ End}(Ag/). Here Agp sits in the
quadruple (Ag/g,, e, Ae, 7],(35)) obtained by mod | reduction of the point x € Sh(E)(VNVE).

Proof. Set w = m,(Q which is naturally an Or ®7 Wg—module. Again we set w®? =

)
AW’
w ®(OF®ZWE) w. The base change w®? Oy L= is an OF ®7 L=-module. By our construction

of L=, we have an isomorphism:

From this we have the decomposition: w®? @ L= =&, oW

Since the formation of the cotangent sheaf w®"" over §p is compatible with arbitrary

p

base change, by the Cartesian diagram:
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we see that @7 @z L, = (wpmv)€29(z). As g = p(a) acts on the Shimura variety Sh%)vg,
g sends the bundle w®? Q. L= and hence each factor G®%° to the corresponding bundles

over g(z). As g preserves (w*"")¥27(z) for all o ~ p, it also preserves ©®??. In particular, g

P

preserves @®271,

As %% @5 L, = (@miv)®291(z) | g also preserves the fiber (T"%)®201 (1) of the bundle

(opmiv)®291 gt the point x; and acts on it by multiplication by 7; o oy(). Hence g must

act on the eigen coordinate 7,,;(x) by multiplying i, o o1(«), and g preserves the sub-
bundle of Qg y, (z) generated by dry, (z). If g sends z; € ShE)(F,) to another point

x; # xy, the action of g has to move the deformation space §l over xz; to the deformation

space §l’ over x;, where §l’ is the completion of Sh%)v

along the closed point z;. Then

g induces an isomorphism of cotangent bundles g : Qg ,(z) — le, w,(9(2)) and hence

g cannot preserve any sub-bundle of §f/ﬂ§lvl (), which is a contradiction. So ¢ fixes the

point 2y, i.e. there exists a prime-to-Z isogney fg(a) of Ag,such that ég(Oé) o 77)(35) = 77)(35) o
p(a), and hence establishes an isomorphism from the quadruple (Agg,, e, Mg, 17,(35)) to the
quadruple (Ag/g,, e, 5\2,77}(35) o p()). The association a — fg(cr) gives us an embedding
M — EndOF(Aﬂ/pl). Since End%(Ag/ 7,) is also a CM quadratic extension of F' by Lemma

5.10, this embedding must be an isomorphism. Hence we get the desired isomorphism of

F-algebras.

5.3 Main result on local indecomposability and applications

Let k be a number field. Suppose that we are given an abelian variety A/, and an algebra
homomorphism ¢ : Op — End(A/;) (recall that F is a totally real field of degree d over Q
and Op is its integer ring). Assume that there is a prime ideal 8 of k over a rational prime p,
such that A/, satisfies the condition (NLL) in section 5.1. From Proposition 5.1, the abelian
variety A,g = A Xy Q is isotypic. Without loss of generality, we can assume that A Jk 18

absolutely simple. Let Iy be the inertia group of Gal(Q/k) at the prime .
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Before we give the main result, we need the following:

Lemma 5.13. If the abelian variety A,g = A, Xy Q does not have complex multiplication,
we can find two primes £ and Q of k lying over | and q respectively (p,l,q are distinct
primes), such that A, has good reduction at £ and Q, and F-algebras EndOF(AQ/H:-l) and
EndOF(AQ/qu) are non-isomorphic CM quadratic extension of I, here Ags, (resp. Aqsr,) is

the reduction of Ay, at £ (resp. Q).

Proof. Fix an embedding ¢ : F — Q such that the composition i; o ¢ induces the prime p.

From [24] Proposition 7.1, the set
{£|& is a prime of k over a rational prime [ # p such that A, has good reduction at £, and ¥ # @

has Dirichlet density 1. On the other hand, the primes [ in F' which splits completely over

Q also has Dirichlet density 1, we can find a prime £ of k over a rational prime [ such that:
1. [ is unramified in F;

2. Ay has good reduction at £ and ¥¢0rd contains the prime [ induced by i; 0o and I splits

over Q.

Let Ag/p, be the reduction of Ay, at £, and set Mg = End%(Ag/Fl). By Lemma 5.10, Mg is
a quadratic CM extension of the field F.

Now by an argument in [24] Proposition 5.1 we can find a prime £ of k over a rational

prime g # p, [, such that
1. Aj, has good reduction at £Q;
2. X2 contains the prime induced by i, 0 0;
3. Mg = End%(AQ/Fq) is a CM quadratic extension of F' which is non-isomorphic to Me.

For completeness, we give a sketch of the construction of  and refer to [24] Proposition

5.1 for more details. We use D to denote the division algebra End"(A /&) and let Z be the
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center of D. From Proposition 5.2, Z is totally real and either Z = F' = D or D is a

quaternion division algebra over Z and [F : Z] = 2.

For any prime q of F, we fix an isomorphism T,(A4) = (Opgq)?, and denote by 74 :
Gal(Q/k) — GL3(OFg) as the induced Galois representation on T,(A). Define the algebra
Cyq = Zgrq(Gal(Q/k))] as the subalgebra of End%cl (T4(A)) = Endo, (T4(A)) ®o0,, Zq, of
rq generated over Z, by the image of ry. Then by Faltings’ isogeny theorem, Cj is either
isomorphic to a quaternion division algebra over Z; or isomorphic to Ms(Z,). In the case
q = I, Cy is isomorphic to My(F\) = My(Z;). Under this assumption,we can apply an
argument in [42] Chapter 4 to prove that the image Im(r;) contains an open subgroup of

SLy(Zy) C C.

Choose a quadratic ramified extension K/Q;. Since F/Q; is unramified, K and F} are
linearly disjoint over ;. Let L be the compositum field of K and Fy. Define the torus 7)o,

of GLyjo,, as the norm 1 subgroup of Reso, 0, (Gn); i.e.
T(Opy) ={z € O |Normyp(z) = 1}.

Hence T)o,,, is a maximal anisotropic torus of G Ly, and T(Op,) NS Ly(Z;) is a maximal

anisotropic torus of G'Lyz,.

Choose o € T(Opy) NIm(r) N SLy(Z;), such that a has two different eigenvalues in
Qi. Then T(Ogy) is the centralizer T,, of o in GLy(OF;). Since the isomorphism classes of
maximal torus in G Ly, is finite, the isomorphism class of the centralizer of a is determined
by a mod p/, for some integer j large enough. In other word, if 3 € SLy(Z;), such that a = 3
mod p’, then the centralizer Tj of (3 is isomorphic to T, = T. By Chebotarev density, we
can find a prime Q of k over a rational prime ¢ # p,[, such that A/, has good reduction
at 9 and r(Frobg) = a mod p’. Hence the commutator T, (propy) of 7(Frobg) is isomrphic
to T. Let Mg be the field generated over F' by the eigenvalues of r(Frobg). By the above

construction, [ does not split in Mg, and hence Mg is not isomorphic to Mg. Further by

[24] Proposition 7.1, we can assume that £ contains the prime induce from iz 0 0.

Then it is clear from the above construction that the primes Q and £ satisfy the desired
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property. ]
Now we can state and prove the main theorem in this section:

Theorem 12. Under the above notations and assumptions, suppose further that A,y =
A Xy, Q does not have complex multiplication, then for any p € Zgrd, the p-adic Tate

module T,(A) of A is indecomposable as an I-module.

Proof. Let the prime 9 and £ be the primes of k in the previous lemma. Define a finite
set of primes = = {p,q,l}. For this set =, we define the semilocal ring Wi as in section
5.2. Hence the abelian variety A/, can be extended to an abelian scheme A W From
Proposition 5.7, replacing A/, by an isogenous abelian variety if necessary, we can assume
that the abelian scheme A g5 admits an Op-action ¢+ : Op — End(A /Wk) and a c-polarization
¢ for some fractional ideal ¢ of F'. Then by choosing a integral level structure o= of A, we get

a quadruple (A e b s «=), which represents a point in the Shimura variety x € S h(E)(VNVk).

Now assume that the Tate module T},(A) is decomposable as an Ip-module. Then the

exact sequence of Barsotti-Tate Oy-modules over Wp:
0 = fipee @z, Op — Alp™] — F,/Op — 0

splits. Then by Theorem [11, we must have isomorphisms of F-algebras: Mg = End%(AD /I_Fp)
and Mg = End}%(Ag /F,)- But this contradicts with our construction Mg % Mg. Hence Tp,(A)

must be indecomposable as an Ip-module. O

5.3.0.1 Application to Hilbert modular Galois represenations

As the first application of Theorem 12, we study the Galois representation attached to
certain Hilbert modular forms. First we recall the notions of Hilbert modular forms and

Hecke operators.

Let I = Homg(F, Q), and let Z[I] be the set of formal Z-linear combinations of elements in
I. Then Z[I] can be identified with the character group X (T') of the torus T'. Take k = (ky)qe1
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such that k, > 2 for all 0 € I and all the k,’s have the same parity. Set t = (1,...,1) € Z[]]
and n = k — 2t. Choose v = (v,)ser such that v, > 0, for all o, v, = 0 for at least one o,

and there exists p € Z such that n 4+ 2v = ut € Z[I]. Then define w = v+ k —¢.

Recall that in Section 4.2 we define the algebraic group G = Reso,./z(GL;) and T =
Reso,./z(Gy,). Denote by v : G — T the reduced norm morphism. Fix an open subgroup
U of G(z) = GLQ(@F) where Op = Op @7, Z = II,0F,. In the last product, p ranges over
all the prime ideals of O and Op,, is the completion of O at p. Let Fjy = F ®z A be the
adele ring of F'. We can decompose the group G(F}j) as the product Go, x Gy, where G
(resp. Gy) is the infinite (resp. finite) part of G(Fy), and for each u € G(F}), we have the

corresponding decomposition u = U us.

Let b be the complex upper half plane and i = v/—1 € h. Let h be the product of d copies
of b indexed by elements in I and 2y = (4,...,4) € hL. Define a function j : G4 x bt — C!
by the formula:

ar b;
) 2 = (CTZT + dT)TEI'

Cr dT 7€l

Definition 5.14. Define the space of Hilbert modular cusp forms Si.,(U;C) as the set of

functions [ : G(Fy) — C satisfying the following conditions:
1. flewu=f, for all u € UCs, where Croy = (R* - SO3(R))' C Go, and
flewu(z) = j(to, 20) "0 (uoo ) f (zu™h);

2. flax) = f(x) for alla € G(Q) = GLy(F);

3. For anyx € Gy, the function f, : b1 — C defined by uso(20) > (oo, 20)F0 (o) ™ f (2o

for us € Gy is holomorphic;

1 a
4. fFA/Ff x| da =0 for all x € G(Fy) and additive Haar measure da on
0

1
Fy/F.
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When F = Q, we also add the following condition: the function |Im(2)*/2f,(2)| is uniformly
bounded on by for all x € Gy = GLy(Ay).

Fix an integral ideal m of F', we define three open subgroups of GLQ(@ F):

a b ~ ~
Uo(m) = S GLQ(OF)|C e mOp s
c d
a b ~ ~ ~
Ul(m) = S GLQ(OF)’C S m(’)F,a =1 mod mOp ,
c d
a b ~ ~ ~
U(m) = € GLy(Op)|c € mOp,a =d =1 mod mOp » ,
c d

and set Sy, (m, C) = S, (U (m), C).

Let U, U’ be two open compact subgroups of Gy and fix € G. Define a Hecke operator
[U2U"] : Skw(U; C) = Sku(U'C), f =) fliwi,

where {z;} is a set of representatives of the left cosets U\UxzU’; i.e., we have UzU’" = [[ Ux;
and when we consider the action f|j ,x;, we regard z; € Gy as an element in G(Fy) such
that its infinite part consists of d copies of identity matrices. For all prime ideal q of F', fix

a uniformizer 7, of Fy, and define the Hecke operator

1 0
T(q) = U Ul : Sk7w<U; (C) — Sk,w<U; C),

0 By

where 3, € F, Axf is the finite idele whose g-component is w4 and all the other components are

1. For each fractional ideal n of F', set o = an;’q(") eF Axf, and define the Hecke operator

0
)= |U Z Ul : Sp(U;C) = Spu(U:C).
(6%

Let f € Siw(m,C) be a normalized Hilbert modular eigenform in the sense that for any

prime ideal q of F', there exists c(q, f) € Q and d(q, f) € Q such that T(q)(f) = c(q, f) - f
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and (q)(f) = d(q, f)- f. Let K be the field generated over Q by all the c(a, f)’s and d(a, f)’s.
Shimura proved that K is a number field which is either totally real or CM. Denote by Oy

the integer ring of K.

For such an f, let 7; = ®m, be the automorphic representation of GLy(F,) on the linear
span of all the right translations of f by elements of GLy(F}), here Fj is the adele ring of
Fand 7, is a representation of G Ly(F},) for each finite place v of F'. We assume that one of

the following two statements holds:
1. [F: Q] is odd;
2. there exists some finite place v of F' such that m, is square integrable.

For such an eigenform f, the following result is known (see [21] Theorem 2.43 for details and
historical remarks). For each prime A of Oy over a rational prime p, there is a continuous
representation psy : Gal(Q/F) — GLy(O;,), which is unramified outside primes dividing

mp such that for any primes q 1 mp, we have:

trace(ps . (Frobg)) = c(q, f), and det(psr(Froby)) = d(q, f)Nq.

Here Oy, is the completion of O at A, F'robg is the Frobenius of Gal(Q/F) at g,and for any
ideal b of Op, Nb is the cardinality number of the ring Or/b.

Fix a prime p of O over a rational prime p, let Dy(resp. I,) be the decomposition group
(resp. inertia group) of Gal(Q/F) at p. Let A be a prime of Oy over p. From [52] Lemma
2.1.5, if ¢(p, f) is a unit mod A, then the restriction of ps to D, is upper triangular, i.e.

there exist two characters €;, €5 of Dy, such that

€1 *
pralp, ~
€2
Lemma 5.15. Suppose that k = 2t and f is nearly p-ordinary in the sense that c(p, f) is
a unit mod X. Then there exists an abelian variety Ag/p, a finite extension L/Ky and an

homomorphism L — EndO(Af/F) such that degree of L over Q equals to the dimension of

As and up to a character the A-adic representation pyx comes from the Tate module of Ay.
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Proof. As the Hecke operator T'(p) acts nontrivially on f, from [19] Corollary 2.2, the local
representation m, of GLy(F}) is either a principal representation m(&,,n,) or a special rep-
resentation o (&, 7,). From the argument in [19] Section 2, we can find a finite character
X : FYJF* — Q* (Fy is the adele ring of F') such that the p-component of x satisfies y, = &,
on O, and unramified at every infinite place of . Then the argument in [19] Section 2
implies that the automorphic representation xy ® 7 corresponds to a primitive p-ordinary
newform fo. If we regard the representations psy and py, » as representations in G Ly(Q,),
then they are related by the formula p;) ® ™! = py,.x. It is enough to prove the statement
for the newform f; and henceforth we assume that the Hilbert modular form f is a primitive

p-ordinary newform with character ¢ for some idele class character ¢/ of F' with finite order.

From [16] Theorem 4.4 or [51] Theorem 2.1, there exists an abelian variety Ay defined over
F' | a finite extension L/K; whose degree equals to the dimension of A; and an embedding
¢ : L — End(Ay p) such that the A-adic representation associated to the Tate module of
Ay is isomorphic to py . Moreover the number field L is either totally real or CM. To be
more precise, there exists an integer e such that dim(As/p) = e[Ky : Q). When [F : Q] is
odd, e = 1 and there is nothing to explain in this situation. When [F' : Q] is even, e can
be bigger than 1, and a priori the p-adic Tate module of Ay /r gives us a representation of
Gal(Q/F) in GLy(Ly),where Ly is a finite extension of K. Since this representation is
odd, by choosing suitable eigenvectors of a complex conjugation ¢ € Gal(Q/F) as basis for

T,(Ay), we can realize this representation in GLy(K ). (See [52] Section 2.1 for details.)

]

Remark 5.16. As c¢(p, A) is a unit mod A, the abelian variety A; has potentially semistable
reduction at p by the lemma in [5I] Section 2. More precisely, if we denote by F, the
number field corresponding to the character ¢ by class field theory, then A; has semistable
reduction over Fy,. In fact, choose a prime X' of Oy over a rational prime ! # p and consider
the A-adic representation py . When p does not divide the level m, the abelian variety Ay
has good reduction at p because the representation pyy is unramified at p. If p divides m,

one can consider the complex representation o, of the local Weil-Deligne group W;,p of F
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at p associated to pyy (see [50]). Then by a result of Carayol [4], we have an isomorphism
m(oy) = my, where mw(0y,) is the representation of GLo(F}) associated to o, under the local
Langlands correspondence. In particular, the Euler factor L(my, s) of the L-series at p is given
by (1 —c(p, /)Np~*)~'. As c(p, f) # 0 by assumption, L(mp, s) is nontrivial. Hence m, is
either a special representation o(a,, 3,) or a principal series representation 7 (ay, 8,), where
yp, fp are two quasi-characters of F*. In the first case, from [51] Theorem 2.2, the reduction
of Ay at p is purely multiplicative. From the uniformization result in [36], psx|1,ncai@/rF,) 18
indecomposable. As I, NGal(Q/F,) is a subgroup of I, with finite index, and char(K;) = 0,
the representation py s, is also indecomposable. In the second case, as the Euler factor
L(my, s) # 1, one of the quasi-characters o, 3, is unramified. By comparing the determinant
of the two representations 7, and oy, we see that the product ¢, Yy, is unramified, where
1, is the p-component of the idele class character 1. Hence over Fy,, both quasi-characters
ap and (3, are unramified. Then from the criterion of Néron-Ogg-Shafarevich, the abelian

variety Ay has good reduction over I, at p.

Now we would like to prove the following:

Theorem 13. Under the above notations and assumptions in lemma |5.15, if f does not

have complex multiplication, then the representation py |, is indecomposable.

Proof. From Lemma [5.15/and Remark 5.16 we can assume that Ay has good reduction over
Fy. From Proposition 5.2, we see that Ay g is isotypic; i.e. there exists a simple abelian
variety B,g such that there exists an isogeny ¢ : Ay — B¢ for some integer e > 1. This
isogeny induces an isomorphism of simple algebras i : End’(A; Q) — End’((B 10)¢). Hence
we have an embedding 65 =i06 : L — End’((B/g)°).

From Proposition 5.4, we can find a totally real field Fg and a homomorphism tp :
Fg — End’(B/g), such that [F : Q] = dim(B,g). Let Z be the center of the division
algebra End’(B /@) From the proof of Proposition 5.4, if we identify Fz as a subalgebra of
End’(B,g) by tp, then Z C F and [Fjp : Z] < 2.
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If [Fp: Z] =1, we have Fp = Z and hence Fiz C 6p(L). Since both Ay and B are

projective varieties, we can find a finite extension M of Fy, such that
1. the abelian variety B is defined over M;

2. we have the equalities of endomorphism algebras: End(Ayq) = End(Ay) and
End(B,g) = End(B)).

3. the isogeny ¢ is defined over M.

Under the above notations, the isogeny ¢ gives an isomorphism of p-adic Tate modules

T,(B) ®p, L = T,(A), which is equivariant under the action of the Galois group Gal(Q/M).

If [Fp: Z] = 2, Fip may not contained in the image 65(L). In this case, we can find
a quadratic extension K /L such that Fiz can be embedded into K. As the homomorphism
0:L— EndO(A ¥ /@) identifies L with a maximal commutative subfield of the simple algebra
End’(A;/5), we can extend this homomorphism to a homomorphism ¢’ : K — EndO(Afc /@),

which identifies K with a maximal commutative subfield of End’(A42 -). Similarly we can

f/Q
extend the homomorphism fp to a homomorphism 6% : K — EndO(B?é). Since A7 /g s

isogeneous to B?f@, the simple algebras EndO(Afc /0

automorphisms of a simple algebra are inner, by choosing a suitable isogeny from A?c /0 to

Bff@, we have an isomorphism 7 : EndO(A?c/Q) o EndO(B?é), such that i’ o 0 = 0 : K =

EndO(B?é). By the same argument as above, we can find a finite extension M/F, such that

) and EndO(B?é) are isomorphic. Since all

we have an isomorphism of p-adic Tate modules: T,(B) ®p, K = T,(As) ® K, which is

equivariant under the action of Gal(Q/M).

As 371\4 is isogenous to Ay, By has good reduction at a prime p’ of M over the
prime p of F'. By Theorem 12, for any place A\ of Fz such that the A\g-divisible Barsotti-
Tate module of By is ordinary, the corresponding Ap-adic Tate module is indecomposable
as a Gal(Q/M) N I,-module. By the above isomorphism of Tate modules, we see that
PralGai@/ang, 18 indecomposable. Since Gal(Q/M) N1, is a subgroup of I, with finite index,

and char(Ky) = 0, the representation py |7, must be also indecomposable. O
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From Theorem [13, we can prove a result on local indecomposability of A-adic Galois
representations. First we briefly recall the definition of ordinary Hecke algebras defined in

[17] Section 3.

Let ® be the Galois closure of F in Q. The embedding (- Q — @p induces a p-adic
valuation on ¢ and we denote by Qg the valuation ring. Let K be a finite extension of the
p-adic closure of ® in Q,, and Ok be the valuation ring of K. Let F.,/F be the maximal
abelian extension of F' unramified outside p and oo, and Z be its Galois group. Let Z;
be the torsion free part of Z. Let A = Okl[[Z1]] be the continuous group algebra of Z,
over Ok. Then A is (noncanonically) isomorphic to the formal power series ring of 1+ §
variables over O, where 0 is the defect in Leopoldt’s conjecture. Let x : Gal(Q/F) — Z%
be the cyclotomic character. The restriction of x to Z; gives a character of Z;, which is still
denoted by x. For any integer k > 2 and a finite order character ¢ : Z; — Q,. The character

ext 1 7, — @p gives a homomorphism ki, : A — @p.

For any two open compact subgroups U,U’ of Gy and = € Gy, we have the modified

Hecke operator defined in [17] Section 3:
(UzU") : Sy(U;C) — S (U'; C).
For each prime ideal q of F', set

1 0
To(q) = U U : Sk@(U; C) — Sk,w<U; C),

0 B4
where [, is the same as in the definition of T'(q).

Fix an integral ideal n of F' which is prime to p, and for each integer @ > 1, set
Skw(mp®;C) = Spw(Ur(nNU(p*)); C). Define the Hecke algebra hy ,(np®; Og) as the Og-
subalgebra of Endc (S, (np®; C)) generated by all the Ty(q)’s over Og and define hy, ,,(np®; O ) =
hiw(np®; Op) ®o, Ok. Inside hy,(np*; Ok) we have the p-adic ordinary projector e, =

n!

lim,, .o, To(p)™ and we have the ordinary Hecke algebra hﬁf’g}(npa; Ok) = eahgw(np®; Ok).

For 8 > a > 0, we have a natural surjective Og-algebra homomorphism hgfg(npﬁ ;Ok) —
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B (np®; Orc), and we define
hi (np™; Oxc) = lim BTG (np™; Ok).

From [17] Theorem 3.3, the ordinary Hecke algebra h¢"4 (np>; Ok ) is a torsion free A-module

k2w

rd
W

of finite type, and the isomorphism class of h{"S(np>; Ok) as an Ok-algebra only depends

on the class of v in Z[I]/Zt, and hence we denote this algebra by ho"¥(np™; Ok).

Now set h = h"¥(np™; O ). Fix Spec(Ar) — Spec(h) a (reduced) irreducible component
of h and let 7 : h — A be the corresponding homomorphism. Then Ay is finite free over
A, and the quotient field L of Ay is a finite extension of the quotient field of A. Let P be
a Q,-valued point of Az, and let pp : A — Q, be the corresponding homomorphism. The
point P is called an arithmetic point if ¢p is an extension of ki, for some k and e. If P is
an arithmetic point, then the composition ¢p o F : h — Q, gives the Hecke eigenvalues of a
classical Hilbert modular form f of weight £ and tame level n. We also say that the Hilbert
modular form f corresponds to P, and f belongs to the family F. We say that F has complex
multiplication if there exists an arithmetic point P in F, such that the corresponding Hilbert
modular form has complex multiplication. Once this is the case, then for all arithmetic point

in F, the corresponding Hilbert modular form also has complex multiplication.

It’s well known that there is a 2-dimensional Galois representation pr : Gal(Q/F) —
GLy(L) attached to F such that for each prime p of F' over p, the restriction of pr to the
decomposition D, is upper triangulai.e. pr|p, is of the shape:

Op  Up

P]-‘|Dp ~ )
Ep

here 4, e, : Dy, — Ap are two characters of D,,.
Theorem 14. Suppose that F does not have complex multiplication, and F has an arithmetic
point P which corresponds to a weight 2 Hilbert modular form satisfying the condition required

in Theorem [13. Then there exists a proper closed subscheme S of Spec(Ar) such that for

all arithmetic points P of Spec(Ar) outside S which corresponds to a classical form f, the
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representation ps|p, is indecomposable, where py is the Galois representation attached to f.
In particular, when Leopoldt conjecture holds for I and p, then for all but finitely many

classical forms f belonging to F, the representation p¢|p, is indecomposable.

The proof follows essentially from the argument in [14] Theorem 18. For the sake of

completeness, we give a proof here.

Proof. By the assumption and Theorem [13, the representation ¢ po pr|p, is indecomposable.
Hence pr|p, is indecomposable either. Define ¢, = 6;1 ~up : Dy — Ap. Then it’s easy to
check that cr satisfies the cocycle condition and pr|p, is indecomposable if and only if the
class [cp] of ¢, in H'(Dp, Ap(dpe, ")) is nontrivial. Since Ay is finite over A, the residue
field of Ay, is finite and let ¢ be its order. Let E; be the compositum of the finitely many
tamely ramified abelian extension of F,, whose order divides ¢ — 1, and F be the maximal
abelian pro-p-extension of F,. Denote by E the compositum field of E; and Ey and set
H = Gal(Q,/E) C D,. Then the characters d, and e, are trivial when restricted to H.

Hence the restriction of pr to H is of the shape:

1 A
P]-‘|HN y
0 1

for some (additive) homomorphism A : H — Ay. From [14] Lemma 19, the restriction
HY(Dy, AL(0pe, ")) — H'(H, AL(0pe, "))

is injective. Since [c,] is nontrivial in H'(Dy, Ap(dpe, ")), the homomorphism A : H — Ay
is nontrivial. Let I be the ideal of Ay generated by A(H). Then [ is nonzero and I defines
a proper closed subscheme S of Spec(Ap). If f is a classical Hilbert modular form in F,
then pf|y is decomposable if and only if f corresponds an arithmetic point in S. Hence
for any arithmetic point P of F outside S, which corresponds to the modular form f, the

representation py|x, and hence py|p, is indecomposable. O
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Now we consider the nearly ordinary case. Let
OF,p = lim OF/p”(’)F

be the p-adic completion of Op at p, and Up be the torsion free part of Oﬁp. Then set
I' = Z; x Up and let A’ = Ok]|[I']] be the continuous group algebra. For any finite character

e:I'— @;, we have another character
['=7 xUp — Q. (a,d) = x(a)"d"((a,d)),

. . . . / —~
which induces a homomorphism k. : A" — Q,.

We briefly recall the definition of nearly ordinary Hecke algebras defined in [18] Section
1. For any o > 1, set U, = Ui(n) N U(p®), and let hy,,(np®; Op) be the Op-subalgebra
of End¢(Skw(np®*; C)) generated by all the Hecke operators (U,zU,) for x € Uy(np®) over
Og. Set hy,(np*; Ok) = hyw(np®; Os) e, Ok. Applying the ordinary projector e, we
get the nearly ordinary Hecke algebra hZ;furd(npo‘; Ok), and by taking limit, we have the
Hecke algebra hj9™(np™; Ok). From [18] Theorem 2.3, the Hecke algebra hy-o™(np™; O)
are all isomorphic to each other for all pair (k,w) as Og-algebras and denote this algebra
by h™°"4(np>; O ), which is a torsion free A’-module of finite type. Let Spec(A}) be an
irreducible component of Spec(h™*(np>; O)) and let F : W™ (np>; Ok) — A7 be the
corresponding homomorphism. We know that A’ is free of finite rank over A’. A Q,-rational
point P € Spec(A;)(Q,) is called an arithmetic point if the corresponding homomorphism

wp extends K, , . for some n,v. For such an arithmetic point, the composition ¢p o (F) gives

the eigenvalues of a Hilbert modular form of weight (k,w) and tame level m.

For such an F, we have a two dimensional Galois representation pr : Gal(Q/Q) —
G Ly(A7) such that for any prime p of F' over p, the restriction pr|p, is upper triangular.

Similarly to Theorem (14, we have the following result:

Theorem 15. Suppose that F does not have complex multiplication, and F has an arith-
metic point P which corresponds to a (parallel) weight 2 Hilbert modular form satisfying the

condition required in Theorem!15. Then there exists a proper closed subscheme S of Spec(A’)
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such that for all arithmetic points P of Spec(A}) outside S which corresponds to a classical
form f, the representation py¢|p, is indecomposable, where py is the Galois representation

associated to f.

5.3.0.2 Application to a question of Coleman

In the rest of this chapter, we work with elliptic modular forms. Let p > 3 be a prime
number and N be a positive number prime to p. For each integer k we use M, (I'y(N)) (resp.
SH(T1(N))) to denote the space of overconvergent p-adic modular forms (resp. cuspforms)
of level N over C, (see [27] for the definitions). In [5] Proposition 6.3, Coleman proved
that there is a linear map 6%~' : MJ_, (I1(N)) — M, (T (N)) such that the effect of 6%
on the g-expansions is given by the differential operator (q%})k’l. Also there is an operator
U on M](T';(N)) such that if F(q) = ,50a,¢" is an overconvergent modular form, then
U(F)(q) = n>0apnq". Recall that if F' is a generalized eigenvector for U with eigenvalue A in
the sense that there exists some n > 1 such that (U — \)"(F') = 0, then the p-adic valuation
of X is called the slope of F. From [5] Lemma 6.3, if f € S}(I';(IV)) is a normalized classical
eigenform of slope strictly smaller than k — 1, then f cannot be in the image of *~!. On
the other hand, a classical eigenform cannot have slope larger than k£ — 1. Then it remains
to consider the remaining boundary case; i.e. overconvergent modular forms of slope one
less than the weight. In [5] Proposition 7.1, Coleman proved that for k > 2, every classical
CM cuspidal eigenform of weight k and slope k — 1 is in the image of §*~!. Then he asked
whether there is non-CM classical cusp forms in the image of #*~1. Since the only possible

slope for new forms of weight k is £ —1 (see [12] Section 4), it’s enough to consider old forms.

Let g = ¥,,>1a,4" be a classical normalized eigenform of level NV and weight £ > 2. Denote
by K, = Q(as|n = 1,2,...) the Hecke field of g, which is known to be a number field. For
each prime p of K, over the rational prime p, it induces an embedding i, : K, — @p and
let v, be the corresponding valuation on K,. Then we can regard g as a modular form over
Q, by ip. As explained in [12] Section 4, one can attach to g two oldforms on I'y(N) N Ty(p)

whose slopes add up to £ — 1. When the eigenform g is p-ordinary; i.e. vy(a,) = 1, one of
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the associated oldforms has slope 0 and the other has slope k — 1 . We denote the latter

oldform by f. What we can prove is the following:

Proposition 5.17. Let g be a weight two normalized classical cusp eigenform on I'y(N) with
the Hecke field K,. Suppose that there exists a prime p of K, over the rational prime p such
that g is p-ordinary, and the associated slope one oldform f is in the image of the operator

0. Then g is a CM eigenform.

Proof. Let p,,: Gal(Q/Q) — GLy(K,,) be the p-adic Galois representation attached to g.
As explained in [10] Proposition 1.2 or [13] Proposition 11, when f is in the image of 6, the
restriction of p,, to an inertia group I, of Gal(Q/Q) at p splits as the direct sum of the
trivial character and the character x,, where Y, is the p-adic cyclotomic character. Then

from Theorem 13 the eigenform g must have complex multiplication. O

Remark 5.18. In [10] Theorem 1.3, Emerton proved that if the assumption in the above
proposition is true for all primes p of K, over p, then g is a CM eigenform. Hence the above
proposition can be regarded as an improvement of his theorem. Also in [13] Section 6, Ghate
discussed the case when p divides the level N. In this case he explained that one can also
attach to the eigenform g a primitive form f with the same weight and level as g. Then he
proved that f is in the image of 6 if and only if the restriction of p,, to the inertia group
I, splits (we need to emphasize here that Ghate’s argument works for all weights, but we
restrict ourselves to the weight two case where Theorem [13 is applicable). Hence the result

in Theorem [13] also applies and the above proposition still holds in this case.
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CHAPTER 6

Mumford-Tate conjecture for abelian fourfolds

6.1 Background about the Mumford-Tate conjecture

First we summarize the known results towards the Mumford-Tate conjecture.

Let A be an abelian variety of dimension d over a number field F. Fix an embedding

F < C and an algebraic closure F' of F.

The singular homology group V = H;(A(C),Q) is a 2d-dimensional vector space over
Q. Then we have the Hodge decomposition Vo = V ®g C = V10 & VO~ such that
V-10 = V0~1 We define a cocharacter py : Gy c — Aute(Ve) such that any z € C* acts

on V719 by multiplication by z~! and acts trivially on V%=1,

Definition 6.1. The Mumford-Tate group of the abelian variety A, is the smallest algebraic
subgroup MT(A) C Autg(V) defined over Q such that the cocharacter ps factors through
MT(A) XQ C.

For any rational prime [, let TJA(F) be the l-adic Tate module of A and set V; =

T A(F) ®z, Q;, which is a 2d-dimensional vector space over ;. Then we have a Galois

representation:

pr: Gal(F/F) — Autg, (V).

We define Gjq, as the Zariski closure of the image of p; inside Autg, (V;) and let Gy, be its

identity component. From Faltings’ theorem, the group G?/Ql is reductive.

The Mumford-Tate conjecture predicts that

Conjecture 6.2. For any prime [, we have the equality G}, = MT(A) xg Q.
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Deligne proved the following:

Theorem 16. For any prime |, we have the inclusion G},q, € MT(A) xq Q.

The Mumford-Tate conjecture for abelian varieties with trivial endomorphism algebras
was first studied by Serre. In [43],[45] and [46], he proved the Mumford-Tate conjecture for
such abelian varieties whose dimensions satisfy certain numerical conditions. In this thesis
we assume that d = 4 and the abelian variety A, is absolutely simple. Then the absolute
endomorphism algebra End°(A,r) is a division algebra. In [32], Moonen and Zarhin proved
that in almost all cases, the endomorphism algebra End®(A,r) together with its action on
the Lie algebra Lie(A,r) uniquely determines the Lie algebras of the Mumford-Tate group
MT(A) g and the reductive group G’l"/Ql. Then only exception happens when End®(A,r) = Q.
In this case, there are two possibilities for the Lie algebra of MT(A) g together with its action

on V ( resp. the Lie algebra of Gf/@l together with its action on V}):

1. ¢ @ sp, with the standard representation, where ¢ is the 1-dimensional center ¢ of the

Lie algebra;

2. ¢Dsly®slyDsly, with the 1-dimensional center ¢, and the representation of sly @ sl B sl

is the tensor product of the standard representation of sls.

Together with Theorem [16), to prove the Mumford-Tate conjecture for simple 4-dimensional

abelian varieties, it is enough to prove the following:

Theorem 17. Let A)p be an abelian variety of dimension 4 over a number field F'. Suppose
that End(A,p) = Z. If for some prime I, the group G?/Qz together with its action on V|
belongs to the second case listed above, then the same is true for the the group MT(A) q
together with its action on 'V, i.e. the Mumford-Tate conjecture holds for A,p.

Theorem [17/is the second main result in this thesis. We give a sketch of proof before we

proceed to the serious proof.
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Suppose that the abelian variety A, p satisfies f; = sly X sly X sl over Q;. By a theorem
of Pink, there exists a set V' of finite places of F' of density 1 at which the abelian variety
Ap has good ordinary reduction. For v € V, let k, be the residue field of F' at v with
characteristic p = p, and we use A,/,, to denote the reduction of A p at v. If the abelian
variety A,/p comes from a Shimura curve Z < Ay, where Ay, is the Siegel moduli space
of principally polarized 4-dimensional abelian varieties with a suitable level structure, then
Ay /g, gives a closed ordinary point z, of Z. As Z is a Shimura variety of Hodge type, from a
result of Noot ([31]Theorem 4.2), it is formally linear at x,, i.e. the formal completion of Z
at x, is a formal torus of rank 1. Since the abelian variety A, gives a non-torsion point on
this formal torus, this torus can be determined by the Serre-Tate coordinates of the abelian
variety A/p.

Conversely, we start with an abelian variety whose Galois representation is of type (2) and
we try to prove that it comes from a Shimura curve. Let D, (resp. I,) be the decomposition
(resp. inertia) group of Gal(F/F) at v. After choosing a suitable symplectic Z,-basis of the

p-adic Tate module T, A(F'), the local Galois representation is of the shape:

pp: L, — GSpg(Z,)
(@)L, B(o)
0 L,
where I is the 4 x 4 identity matrix, B(o) = (b;;j(0))1<ij<a i a symmetric 4 x 4 matrix

depending on ¢ and x, : I, — Z, is the p-adic cyclotomic character.

In [40], Noot gave a detailed analysis of the isogeny types of the abelian variety A,z
and the local Galois representation p, : I, — GSpg(Z,). He proved that for any Frobenius
element Frob, € D,, the element p,(Frob,) € G,(Q,) generates a maximal torus of G/q,.
Also he got a control on the image p,(1,). This information imposes restrictive conditions on
the 1-cocycles b;;’s. Recall that we have studied the relationship of the Serre-Tate coordinates
of A/p and the local representation p,. Based the results in chapter 3, we get an explicit
description on the Serre-Tate coordinates of A,p. In particular, we show that A,p sits in a

rank 1 formal subtorus of the local deformation moduli space of the abelian variety of A, .
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Finally we consider the torsion points on the formal torus we get in the previous step.
These points correspond to the quasi-canonical CM liftings of the abelian variety A,z in
the sense of [31] Definition 2.9. Given the analysis of the Serre-Tate coordinates explained as
above, we can use the Mumford-Tate groups of these abelian varieties to generate a candidate
of the Mumford-Tate group of A, and then construct a Shimura curve which contains all
these quasi-canonical liftings of A, 5 . Then by formal linearity of Shimura varieties of Hodge

type, we see that A/p comes from this Shimura curve and then we conclude.

6.2 Reductions of abelian varieties with Galois representations of

Mumford’s type

Definition 6.3. Let K be a field of characteristic 0 and fix an algebraic closure K of K. Let
Gk be an algebraic group and let V' be a finite dimensional K -vector space with a faithful
representation of G. We say that the pair (G, V') is of Mumford’s type if the following three

conditions are satisfied:

1. Lie(G) has one dimensional center ¢;
2. Lie(G) g = ¢z ® s

3. Lie(G) g acts on Vi by the tensor product of the standard representations of sly i .

For any semisimple group G, there exist (up to isomorphism) a simply connected group
G (resp. adjoint group G*¥) such that there exists central isogenies G — G (resp. G — G%)

over K.

Let F' be a number field and A,r be a four dimensional abelian variety. Let Gp =
Gal(F'/F) be the Galois group of F and we use v to indicate a finite place of F' and use
Py to denote its residue characteristic. Let F), be the completion of F' at v and Gp, C Gp
be the decomposition group at v. Let k, be the residue field whose cardinality is ¢,. Fix

a Frobenius element Frob, at v. Let [ be any prime number. Recall that we have the
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Galois representation p; : Gp — Autg,(V;) and G, is the Zariski closure of the image of p,
in Autg,(V;). From a result of Serre ([38] Theorem 3.6), replacing I by a finite extension if
necessary, we can assume that the algebraic group G, g, is connected for every prime [ and

it is a reductive group by a result of Faltings ([38] Corollary 5.8).

From [40] Lemma 1.3, we know that if the pair (G;,V}) is of Mumford’s type for one

prime [, then the same is true for all primes, and we have End(A, 7)) ="Z.

Definition 6.4. If the abelian variety A,p has the property that the pair (Gy,V;) is of Mum-
ford’s type for some prime l, we say that A,r is an abelian variety with Galois representation

of Mumford’s type.

From [40] Corollary 2.2, if A/p is an abelian variety with Galois representation of Mum-
ford’s type, it has potentially good reduction at all places of F. Hence replacing F' by a

finite extension, we can assume that A,z has good reduction everywhere.

For any finite place v of F', we choose a semisimple element ¢, € GLg(Q) such that its
characteristic polynomial is equal to the characteristic polynomial of the element p;(Frob,).
By Weil’s theorem, the conjugacy class of element ¢, in GLg(Q) exists and does not depend
onl. Let T, € GLg g be the Zariski closure of the subgroup generated by t,, which is unique

up to conjugation in GLgg. From [38] Theorem 3.7, we have:
Theorem 18. There exists a set Vi of finite places of F of Dirichlet density 1, such that

for all v € V40, we have:

1. the group T, g, is connected and hence a torus;

2. for any l # py, the torus T, g, is conjugate to a mazimal torus of Gyq, under GLs(Qy).

As Ap is an abelian variety with Galois representation of Mumford’s type, for each
prime [, the root system of the simple factors of G, g, has type A;. In particular, the abelian
variety A,p satisfies the hypothesis in [38] Theorem 7.1 and it follows that there exists a
subset Vyooq € Vinas of finite places of F' with Dirichlet density 1 such that A, has ordinary

reduction at v for all v € Vigeq.
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Fix a place v € Vigq. First we want to study the isogeny type of the reduction A,/ of
A/r at v. From [40] Lemma 1.3, there exist infinitely many primes [’s such that the derived

group G of Gy is Q-simple. We fix such a prime [ # p,. Then we have:

Proposition 6.5. Let k, be an algebraic closure of k,. Then the reduction Ay i, 18 either
simple or isogenous to a product of an elliptic curve and a simple abelian threefold. In

particular, the eigenvalues of the Frobenius Frob, on V) are all distinct.

The above proposition is an immediate consequence of [40] Proposition 4.1. But to

establish notations used in our later argument, we give a sketchy proof here.

Proof. Let p,; : G, — G(Qy) be the local l-adic Galois representation attached to V;. From
the proof of [40] Proposition 4.1, replacing F' by a finite extension if necessary, we can assume

the following conditions:
1. the cardinality g, of the residue field k, is a perfect square;
2. for any o € Gf,, we have the congruence p, (o) = Ig (mod ) in G{(Z,);
3. all the simple factors of A, ; are defined over k.

Recall that Gl/@; is the simply connected group with a central isogeny G; — G;. From
the second assumption above, the representation p,; : Gp, — Gi(Z;) lifts uniquely to a

representation p,; : Gp, — él(Zl).

Now set ™ = p,(Frob,) € G(Q;), and let T be the Zariski closure of the subgroup of
G(Q,) generated by 7, which is a connected torus. We can assume that the residue field
k, has even degree over its prime field and hence its cardinality ¢, is a perfect square. Set
a = \/% € G(Ql) and let T” be the Zariski closure of the subgroup of G(Ql) generated by
a. Then T = G,, g, x T" for some torus 1" of the derived subgroup G% of G. Let Tg, be a

maximal torus of G%" containing 7".

As the pair (Gy, V) is of Mumford’s type, from the above construction, the torus T)q, has

rank 3 and we have an isomorphism X (T) = Z3 such that the weights of the representation of
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T)q on V; correspond to (+1,+1,41) € Z*. The evaluation at the element a € T(Q;) gives
an additive map ev : X(T) — (Q;)*. As T" is a subtorus of T, the restriction gives a natural
surjection X (T') — X (T"), whose kernel is the same as the kernel of the map ev. Hence we
have an injective map ev’ : X(T") — (Q;)*. By construction, the values ev((£1, £1,£1)) are
exactly the eigenvalues of a on Vj, and hence they are all in Q and have absolute value 1. The
injection X (T") — (Q)* gives an action of Gal(Q/Q) which extends the Gal(Q;/Q,)-action.
It follows that actually the torus 7” is defined over @ and the map ev’ : X(T") — (Q)*
takes values in (Q)* and is Gal(Q/Q)-equivariant. The decomposition group Gg, acts on the
character group X (7) = Z? through the group {£1}® x S5 and similarly the Galois group

Gg acts on the character group X (T") in a similar way.

We fix an embedding i,, : Q — Q,, which induces a p,-adic valuation v,, on Q, normal-
ized by vp,(g,) = 1 and define p, = v,, o ev’ : X(T") — Q, which is Z-linear.

When the reduction A, ;, is ordinary, from the argument in [40] Proposition 4.1, we see
that ker(ev) is trivial, i.e. X(T) = X(1") and hence T = T". Under the isomorphism X (T) =
X(T") = 73, the Galois action of Gal(Q/Q) on X (I”) permutes the set {(£1,41,+1)} and

induces a group homomorphism
hy : Gal(Q/Q) — {1} x S5 = Aut(X(T")).

As the derived group Gld/e@l is assumed to be Q;-simple, the image of the Galois group
Gal(Q;/Q;) under h, contains a cycle in Sy of length 3. Hence the Galois group Gal(Q/Q)
acts transitively on the set {(1,1,—1),(1,—1,1),(=1,1,1)} € X(7”). On the other hand,
any complex conjugation in Gal(Q/Q) acts on X (7”) by multiplication by —1. So we have

the following possibilities:

1. the action of Gal(Q/Q) on the set {ev((£1,%1,+£1))} C Q is transitive. In this case,
the abelian variety A,z is simple and ev((1,1,1)) € Q generates a CM field of degree
8 over Q;

2. the action of Gal(Q/Q) on the set {ev((£1,£1,+1))} C Q has two orbits:
{61)((17 17 1)a GU((—l, _17 _1))} and
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{ev((1,1,—-1)),ev((1,—1,1)),ev((—=1,1,1)),ev((1,—1,—1)),ev((—1,1,—1)),ev((—1,—1,1))}.
In this case the abelian variety A, ; is isogenous to a product of an elliptic curve and

a simple abelian threefold. The element ev((1,1,1)) € Q generates a quadratic field

over Q and ev((1,1,—1)) € Q generates a CM field of degree 6 over Q.

]

We keep the notation as in the above proof. Since the abelian variety A, /x, is ordinary, its
slopes are 0 and 1, each of which has multiplicity 4. On the other hand, the slopes of A, i,
are given by the values {v,, (\/@) - wo((£1,£1,%1))}. Hence the set {p,((£1,£1,%1))}
takes values in the set {3}. Then we can choose an isomorphism X (7) 2 Z* such that

¢u((1,1,1)) = 1. As the map ¢, : T = X(7") is additive, we have

2o((1,1,-1)) + @o(1,—1,1)) + ¢((=1,1,1)) = %

It follows that one of the three numbers ¢,((1,1, —1)), ¢,((1,=1,1)), ¢, ((—1,1,1)) is —3 and

the other two are 3. Without loss of generality, we can assume that ¢,((1,1,-1)) = —1.

Then 9011((17070)) = % and @v((Ov 170)) = @v((oaov 1)) =0.

Now consider the composition:
hy : Gal(Q/Q) 25 {£1}% % S5 — S,

where the second map the the natural projection. Define a number field K(v) in Q as the
fixed field of the group H, = h;'({id, (23)}) C Gal(Q/Q) (H, is the subgroup of Gal(Q/Q)
which fixes the first component of X (1) = Z3). As the image of h,, contains a cycle of length
3 in S3, K(v) is a cubic field. Since the image of any complex conjugation in Gal(Q/Q)
under h, is ((—1,—1,—1),id) € {£1}3 % S, the field K (v) is necessarily totally real.

If we consider another place v' € V404, We can get another totally real cubic field K (v')
by the same construction as above. The fields K(v) and K(v') are isomorphic. In fact,
from the proof of 6.5, we see that T/Qz C él/(@l is a maximal torus and we can consider

the associated reduced root system W. As the torus T can be defined over Q, we have the
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continuous group homomorphism A, : Gal(Q/Q) — Aut(¥) = {£1}® x S3. If we consider
another place v' € V404, we have another maximal torus TN;Ql - él /g, Which can be defined
over Q. As the tori T and 7" are conjugate over Q inside é’l(@l), it induces an isomorphism
between the root data associated to these two tori. Such an isomorphism is unique up
to conjugation by elements in the Weyl group W (¥) of . Let Out(¥V) = Aut(¥)/W(¥)
be the outer automorphism group of ¥, which is isomorphic to S3. Then the composite
h, - Gal(Q/Q) — Out(¥) does not depend on the choice of the maximal torus 7. Hence h,
is independent of v and so is the cubic field K (v). In the following, we just denote this field
by K.

Set H'(v) = hy'({1,%1,£1} x {id, (23)}) C Gal(Q/Q), and let L(v) be the fixed field
of H'(v) inside Q. Then L(v)/K is necessarily a quadratic extension. Moreover, as any
complex conjugation in Gal(Q/Q) acts on X (T') = Z? by inversion, one can check that L(v)
is a CM field by direct calculation.

As the torus T = G, X T" = G,, x T is generated by 7 = pui(Frob,), from the above
construction, we see that T/Qz = T//Qz = Ti(v) o and T/@z = G g X Ti )/ Here Ti ©)/Q is
a torus defined over Q such that 77 ,,(Q) = {2 € L*|Normp,)/x(z) = 1}.

Since the subset V4,4 of finite places has Dirichlet density 1, we can find a place v € Vjp0q
over a rational prime p = p, such that p splits completely in the cubic totally real field K
and for simplicity we write L = L(v). So there are three different places v = vy, vy, v3 of
K lying over p. Since we fix an embedding i, = i,, : Q — Q,, we have three embeddings
©1, 02,03 : K — Q such that ¢; induces the place v; for i = 1,2,3. As L/K is a totally
imaginary quadratic extension, we can denote the embeddings of L to Q by w;,¢; : L —

Q,i = 1,2,3 such that 1);,1; extend the embedding ; for i = 1,2, 3.

Now recall that in the proof of Proposition 6.5 we considered the element o = \/’;7 €
T'(Q) = T} (Q) C L*, which satisfies:

vp(Y1(a)) = %,vp(¢1(a)) - _=
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and

vp(¥i(@)) = v,(vi(a)) = 0
for i = 2,3. This implies that the place v = v, of K splits into two different places wy,w; of
L. Since p splits in K, we see that the wi-adic (resp. w;-adic) completion of L is isomorphic
to Q,. We keep the choice of the place v and the above property will be used in later

argument.

6.3 Linear relations of the Serre-Tate coordinates

Fix the place v as in the preceding section and set p = p,. We then have the Galois

representation attached to the p-adic Tate module of A/p:
by Gal(F/F) — G, — Autg, (V,).
In this section we want to study the local Galois representation
pup i Dy = Gal(F,/F,) — G, — Autg, (1))

and its restriction to the inertia group I, C D,. As the abelian variety A,r has good

reduction at v, the representation p,, is crystalline with Hodge-Tate weight 0 and 1.

6.3.0.3 Filtered modules and Newton cocharacters

First we recall the notions of filtered modules and Newton cocharacters.

Let Repp, be the tannakian category of all finite dimensional continuous representation
of the decomposition group D, over Q, and let ((V,)) be the full tannakian subcategory of
Repp, generated by V,. Let Vecg, be the category of finite dimensional Q,-vector spaces,
and we have the forgetful functor wy, : ((V,)) — Vecg,, which is a fiber functor of the
tannakian categories. The automorphism group Hy, = Aut®(wy,) of the fiber functor wy,

can be identified with the Zariski closure of the image of the local Galois representation p, .

Let 0 : F, — F, be the Frobenius automorphism. By p-adic Hodge theory, one can
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associate a filtered module M, to the crystalline representation V,,. The filtered module M,
is a finite dimensional F,-vector space with a o-linear automorphism Fry, : M, — M,.
Let MFE, be the tannakian category of weakly admissible filtered modules over F},, and let
((M,)) be the full tannakian subcategory of MFpg, generated by M,. Then we have the
forgetful functor wyy, : ((M,)) — Vecp,, which is a fiber functor of the tannakian categories.
Let Hy, = Aut®(wy,) C Autp, (M,) be the automorphism group of the fiber functor wyy,
defined over F,. Then from [8] Theorem 3.2, the algebraic group Hyy, is an inner form of
Hy, xq, F,. Hence we can identify (HMP)@;D with (HVp)Qp'

Let m, = [F, : Q,]. Then the morphism Eryp « My, — M, is Fy-linear, and it gives a

Q-grading

M, = P M,,,

i€Q

such that the eigenvalues of F 7"]\"}; on M, ; has valuation m,i (the valuation on Q, is nor-
malized so that the valuation of p is 1). Then we can define the Newton cocharacter of
M,

M, Fy o Gm,Fv - HMp,Fv,

such that G,, r, acts on M,; by (-)™".

6.3.0.4 Application to the study of local Galois representations

As mentioned above, the algebraic group Hyy, r, is an inner form of Hy, Xq, I}, the cochar-

acter fiy, @, = UM, F, XF, @p gives a cocharacter
/’L : va(@p - HVp»@p - Gpv(@p‘

As we have the central isogenies G, g, = G,, 5, X (SLyg,)* — G, qg,, there exists a positive

integer k such that u* : Gp,g, — Gpa, can be lifted to a homomorphism:
ﬂ = ([LO, /11, ﬂ27 IEL3) : Gm,@p - Gp,@p7

where fg @ G, g, — Gig, and i : Gn g, — SLyg,, ¢ = 1,2,3 are homomorphism of

algebraic groups.
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Hence there exists ng, n1,n2, n3 € Q, such that the slopes of M, are given by the numbers

ng+ny £ns+ns. From the argument in the proof of Proposition 3.2 in [40], we have ng = 3.
Moreover, when A,r has good ordinary reduction at v, i.e. the Newton polygon of M), is
4 x 0,4 x 1, we have that one of the three numbers ny, ny, ns is % and the other two are 0.

Without loss of generality, we can assume that n; = % and ny = n3 = 0.

On the other hand, by a theorem of Katz-Messing ([26] 1.3.5) we have the following:

Theorem 19. The characteristic polynomial of Fry’ on M, is equal to the characteristic
P

polynomial of p;(Frob,) for any | # p.

First we assume that all the eigenvalues of p;(F'rob,) are in Z,. In this case we have an
explicit expression for the Serre-Tate coordinates of A,r. By this assumption and our choice
of the place v together with the above theorem, we see that the 8 eigenvalues of F 7‘7}’; on
M,, are all distinct and lie in Z,. As the reduction of A,r at v is ordinary, we can choose

a symplectic basis {v{,v3,v5, vg, v, V5t v§h v§'} of the p-adic Tate module T,A(Q), under

which the local Galois represenation is of the shape:

pop: D, = Gal(F,/F,) — GSpg(Z,),
T B
N CERETAY
0 TQ(J)

where B(0) = (bij(0))1<ij<4 is a matrix in Myx4(Z,) depending on o, and T1(0), T>(0) are

diagonal matrices of the shapes:

(Xpw(:le))(U) 0 0 0

Ti(o) = 0 (XP@Z)(_fll,l,ﬂ))(U) 1 0 0 |
! 0 (Xpw(_—l,—l,l))(a) 0
’ ! 0 PRy [ ()
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and

Y 111)(0) 0 0 0

N e 0
0 0 b-1,-11)(0) 0

0 0 0 Y1 1-1)(0)

Here x, : D, — Z, is the p-adic cyclotomic character and ¢; jx) : D, — Z,; is the unramified
character which sends F'rob, to the element /g -ev(i, j, k) for (4, j, k) € {£1, 41, £1} defined

in section 6.2.

Now we consider the Hodge cocharacter pupr : Gy, c, — Gpc, associated to the Galois
representation V,. From Sen’s theory ([44] Theorem 2), the Zariski closure of the image of
paT in Gy over Q, is equal to the Zariski closure of p,,(I,) inside G q,, which is denoted

!
by Hy, /g,

Consider the representation

ped I, 20 GL(Q,) — GA4Qy).

From [40] Proposition 3.5, the representation p% projects I, nontrivially to exactly one of
the Q,-simple factor of nglQp, which is denoted by ngl /- From [40] Proposition 3.6, when

A/ has good ordinary reduction at v, we have an isomorphism (Ggfll)@p = PSL,g,. Hence

the root system of Hy, o is (+2,0, 0) € X(T) under the isomorphism X (T) = Z* defined

in the previous section.

Fix a Frobenius element Frob, in D,. As we explain above, the eigenvalues of the
matrix p,,(Frob,) are all distinct and lie in ZX. So we can modify the basis of T,A(Q)
if necessary and assume that the matrix p, ,(Frob,) is diagonal. As p,,(Frob,) generates
a maximal torus in G/q,, by the explicit calculation of the conjugation on p,,(1,) by the
matrix p, ,(Frob,), we see that the entries b;5_; : I, — Z,, i = 1,2, 3,4 of B give the weight
(2,0,0) € X(T), and no entry of B gives the weight (—2,0,0). Hence b;; =0 : I, — Z, if
i+j # 5 ,and the set {(b14(0), bas(0), bsa(0), bs1(0))|o € I, } spans a 1-dimensional Q, vector

space inside Q.
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Now from the discussion in chapter 3, we see that the Serre-Tate coordinates ¢(A/p,; —) :
Sym(T, A, (k) ®z, TpA(k)) — G (W (k)) satisfies the following properties: there exists
(A1, A2) € Z2\ {(0,0)}, such that

g @ ug)™ = q(ug @ u)M = q(us ® uz)™ = qlus ® us)™?,

and

q(u; ®uj) =0 fori+j#5.

Let 4Ly be the formal torus Homz, (Sym*(T,A4,(k)), G,.). The Zy-basis {uy, ug, us, ug}
of T,A,(k), we get a Z,-basis {u; ® u;|1 <i < j < 4} of Sym*(T,A,(k)). Under this basis,
we have ten coordinates ¢;;, 1 < i < j < 4 on Upypy. Set T = t;; — 1, for 1 <7 < j < 4,

and then we have an isomorphism of formal tori over W (k):
U — Spf(W(R)[[T;;]l1<i<j<a)

Now we define a rank one formal subtorus 3w ) of 4w ), such that 3 corresponds to
the formal torus Spf(W (k))[[Ti;lh<i<j<a/ (Tir, Toz, Ts3, Taa, Tho, Ths, Toa, Toa, (1+Tia)™ — (1 +
Ty3)*2) under the above isomorphism. From the discussion in this section, we see that the

abelian variety A/ p sits on the subtorus 3w &) of 4w ).

In general, we do not assume that all the eigenvalues of p;(F'rob,) are in Z,. Then we can

choose a symplectic basis {vf, v, vs, vg, v, V5t v§h, v§'} of the p-adic Tate module T,A(Q)

such that the local Galois representation is of the shape:

pop: D, = Gal(F,/F,) — GSpg(Z,),
T B
N CERETAY
0 TQ(U)

where y, is again the p-adic cyclotomic character, B : D, — Myx4(Z,) is a map valued
in 4 x 4 symmetric matrices, and A(-) (resp. A7'(-)): D, — GL4(Z,) is an unramified
homomorphism which send any Frobenius Frob, € D, to a matrix A € GL4(Z,) (resp.

A~ € GL4(Z,)). From the discussion in section 6.2, there exists a Galois extension M/Q,
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with degree at most 4, such that all the eigenvalues of p;(Frob,) are in M. Then we can find
a matrix W € GL4(Ojy) such that

Y_11,)(Frob,) 0 0 .

WAW ™ = 0 Y(-1,1,-1)(Frob,) 0 0
0 0 YP(-1,-1,1)(Froby) 0

’ ’ 0 Y(-1,-1,-1)(Froby)

where T} : D, — GL4(O)y) is an unramified homomorphism sending (any) Frobenius element
to the matrix WAW_l, and Tll = Xp (TQI)_l, and B’ = (b;j)lgi’jg4 . Dv — M4><4(OM> is a

map.

Take another conjugation if necessary, we can assume that p;p(F rob,) is diagonal for
some Frobenius element Frob, € D,. As p), (Frob,) generates a maximal torus of Gy,
we can again apply Noot’s results to conclude that b}, = 0 if i + j # 5 and the set
{0 ,(0), bhs(0), by (), b1 (0)|o € I,} spans a 1-dimensional M-vector space inside M*. For
each pair 1 <4,j < 4, the map b); : I, — Oy is an Opy-linear combination of the maps
by : Iy — Zp, 1 <k, < 4. From Theorem 8 and Remark 3.2, the entries by’s determines
the Serre-Tate coordinates of Ay ). Hence the above restrictive conditions on the entries
bj;’s can be translated to the restrictive conditions on the Serre-Tate coordinates of Ay (1.
It may not be obvious from this observation that we get a rank 1 formal subtorus of Uy (1),

but we will use this observation in next section.

To see that the above restrictive conditions define a rank 1 formal subtorus of Uy 1), we

use our special choice of the finite place v at the end of section 6.2. Replacing the number
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field by a finite extension if necessary, we can assume that the representation p,, : D, —
G,(Q,) can be lifted to the semisimple group p,, : Dy, — G,(Q,). Consider the element
pop(Frob,) € G,(Q,) € G,(Q,). By our assumption on the algebraic group G,, we know
that over Q,, we have an isomorphism:

GP/QP = Gm/@p X (SLZ@P)g'

By our choice of the place v, the projection of p,,(Frob,) to the first factor of (SLQQP)S
actually sits inside SL2(Q,) and hence generates a torus over Q,. On the other hand, from
the previous discussion, the conjugation action of the maximal torus T/Qp generated by
pup(Frob,) on the group p(I,) can only gives the root (2,0,0) € X(T). From the general
theory of reduction groups (see [49]), the Lie algebra of G, on which the maximal torus
T acts through the root (2,0,0) € X(T) has dimension 1 over Q,. This mean that the
set {bij(0)|1 <i,j < 4,0 € I,} lies in a 1-dimensional Q, vector space of Q.°. Again from

Theorem 8 and Remark 3.2, we see that the above conditions define a rank 1 formal subtorus

3 Of U/W(k)-

6.4 Conclusion

In this section, we prove the main result Theorem (17 in this chapter. It is enough to prove

the following:

Theorem 20. Let I' be a numbe field. If A;p is an abelian variety with Galois representation
of Mumford’s type, then A;p come from a Shimura curve constructed by Mumford in [34)].

In particular, the Mumford-Tate conjecture holds for A,p.

Replacing I’ by a finite extension if necessary, we can assume that A, has a principal
polarization A : A — A" and the algebraic groups Gy/q, are connected for all primes {. For
each integer N > 3, we choose a symplectic level N structure ny of A,r. Then the triple

(A/p, A\, mn) gives an F-valued point = on the Siegel moduli space A; y.

Now recall that we choose a finite place v of F' in section 6.2 at which the abelian variety
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Ajp has good ordinary reduction. Let k, be the residue field of F' at v with characteristic
p = p, and fix an algebraic closure k of k,. The reduction A,;, of A,p at v gives a closed
point z, € A; n(k). As explained in section 4.3, the formal completion Yy () of A; x along

the closed point x, has a formal group structure and is isomorphic to
Homg, (Sym(T, A, (k) @z, TpAu(k), Gon) jw -

In the previous section, we determine a rank 1 formal subtorus 3 of &y ;) on which the
point x lies.

In section 6.3, we fix a basis {05, ..., 05, v, ... v§} of T,A(Q,) such that {v5, ..., v5} is
a basis of szzl\(@p), and {v', ..., v§'} corresponds to a basis {uy,...,us} of T,A,(k) under
the reduction map. Moreover, this basis is symplectic in the sense that under the Weil
pairing Epe : T,A(Q,) x T,A(Q,) — Tpup=(Q,) induced from the polarization A, we have
Epoo(vf,vjt) = (p if i = j and Epoo(vf,vjt) = 1if i # j, where (y~ is a fixed basis of
T (Qp)-

The basis {v},...,v],v{, ..., v} gives a full level structure at p of the abelian variety A,
Ny L, — T,A(Q,) such that ny=(e;) = v¢, for 1 < i < 4, and e (e;) = v¢t, for 5 < i < 8.
The level structure 7, induces an isomorphism W, = L, ®z, Q, — T,A(Q,) ®z, Q, = V,,
which gives an isomorphism of algebraic groups: Autg,(W,) — Autg,(V,). As Gyq, is an
algebraic subgroup of Autg,(V}), we can regard G,/q, as a subgroup of Autg,(W,) under

the above isomorphism.

Now let (Acan/w (k) Acans N,can) be the canonical lifting of x,,, which corresponds to the
identity element in the group U(W(k)). From [31] Lemma 2.8, the abelian variety A.q, has

complex multiplication and hence is defined over some number field F;.

Fix a complex embedding ¢ : Fy < C and set Acpnc = A Xp,, C. Let Hy(Acan/c, Q) =
Vean be the first rational homology group of Au,/c and let MT(Acqn) /o — Autg(Vean) be
the Mumford-Tate group of Ag.,,. On the other hand, fix an algebraic closure £y of F.
Let TpAcan(F1) be the p-adic Tate module of A.,, and set Vi, = TpAcan(F1) ®z, Qp.

By comparison theorem, we have an isomorphism V.q, ®g Qp — Veanp, which induces an
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isomorphism of algebraic groups: Autg(Vean) xg Qp — Autg, (Vean,p)-

Now we give a full level structure at p of Acqn /. Recall that A, w is the canonical
lifting of the ordinary abelian variety A, ;. Then connected-étale exact sequence of Barsotti-
Tate groups

0= Aan = Acan[p™] = TpAu(k) Xz, (Qp/Z,) — 0

splits over W (k). As we have an inclusion from Fj to the fractional field of W (k), it induces
a finite place v; of F} over p. Let I C Gal(F}/F}) be the inertia group at v;. The above
splitting exact sequence of Barsotti-Tate groups gives a splitting of the exact sequence of the

p-adic Tate modules as /-modules:
0— Tpgcan(@p) - TpAcan(@p) — TpAy(k) — 0.

Under the Weil pairing on TpAcan(@p) induced from the polarization A, of Acen, we

can choose a symplectic basis {05 .uns - - s V3 cans Uteans - - - » Vieant Of TpAean(Q,) such that
o o : : n N et et :
{05 cans -+ Vi can} 18 @ basis of TpAcn(Qp), and {vi',,, - -, v{,} corresponds to the basis

{uy, ..., us} of TyA, (k) under the splitting of the above exact sequence. This symplectic basis

allows us to endow A.q,/r, With a full level structure at p 7eapn pe : Ly, — TpAcan(Q,) such that

et
i,can’

(o]

Neanp> (€i) = V5 cqn, for 1 < i < 4, and Neanpos (€5) = v for 5 <17 < 8. By inverting p, the

level structure 7¢gn pe gives an isomorphism W, = L, ®z, Q, — TpAcan(Qp) ®z, Qp = Vp.can-

Then we define an embedding of algebraic groups over Q,:

ican . MT(Acan) XQ Qp — AUtQ(V;an) X@ Qp — Athp (‘/p,can) — Athp(Wp).

Similarly, for each p-th power root of unity ¢ € @p, let ¢ = (A¢/r, Ac, ve) € 3(¢) be any
nontrivial torsion point on the rank 1 formal torus 3 where R is a finite flat W (k)-algebra.
From [31] Lemma 2.8 and Definition 2.9, the abelian scheme A/ is a quasi-canonical lifting
of A,/ and has complex multiplication. In particular A¢ is defined over some number field

As before, let V. = Hi(A¢/c,Q) be the first rational homology group of A. and let
MT(A¢) o — Autg(Ve) be its Mumford-Tate group. As Az is a lifting of the ordinary
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abelian variety A,, we can choose a symplectic basis {v] ..., v§ ., v, ..., v{’:} with re-
spect to the Weil pairing induced from the polarization A\; such that {v{’.,... v{ .} corre-
sponds to the basis {uy, ..., us} of T, A, (k) under the reduction map. This basis gives a full
level structure at p of A which induces an isomorphism W, — T,A4:(Q,) Rz, Qp = Vpe.

Similarly, we define an embedding of algebraic groups over Q,:

ic : MT(A¢) xq Qp — Autg(Ve) xg @ — Autg, (Vyc) — Autg, (Wp).

From the above construction we have:

Lemma 6.6. The embeddings ican and ic’s factor through Gy q,.

Proof. As the canonical lifting can also be regarded as a quasi-canonical lifting, we only
prove that ¢¢ factors through G, /q,. Recall that the quasi-canonical lifting A¢/z has complex
multiplication and hence is defined over some number field F’. Fix an algebraic closure £ of
F'. Under the symplectic basis {05, ..., v, v, ..., v5} of T,Ac(F"), we can consider the
Galois representation p; : Gal(F'/F') — GSpg(Z,). Let G¢q, be the Zariski closure of the
image of p¢ inside GSpg . As the Mumford-Tate conjecture is known to be true for abelian
varieties with complex multiplication, from the construction of the embedding i¢, the image
of i¢ is nothing but G¢(Q,).

As we have an embedding from F’ to the quotient field of R, it induces a p-adic place
v of F'. Let D,y C Gal(F'/F") (vesp. I, C Gal(F'/F")) be the decomposition group (resp.

inertia group) at v'. The local Galois representation p¢.» = p¢|p,, is of the shape:

,0(,1;’: Dv/ —>GSp8(Zp),
Ti(o) Bc(o)

Dv/ > o — )
0 TQ(O’)

where T, T, have the same meaning as the previous section, and B¢(0) € Myx4(Z,) is a

matrix depending on o. Since the quasi-canonical lifting A, comes from the rank 1 formal

100



subtorus 3w k), we see that if we consider the conjugation of p¢ . :

) |44 0 W=t 0
pc’v/ = pcmr . Dv — GSp8<OM)7
0 (whHt 0o wt
T/(c) Bl(o
s o [T B@)

0 Tio)
then we have b, ;; = 0 if i+j # 5 and the set {b; 14(0), 0} 23(0), b 30(7), b 41 (0)|o € I,,} lies in
the same 1-dimensional vector space in M* as in the previous section. Here Bl = (U ij)1<ij<a

are the entries of the matrix Bé. In particular,we see that the local Galois representation

pcw factors through G,(Q,).

On the other hand, from the analysis in Section 6.2, the special fiber A,/ is either a
product of an elliptic curve and a simple abelian threefold, or s simple abelian fourfold.
From the analysis of the isogeny type of A,/ in section 6.2, the Mumford-Tate group of
A¢ is contained in the torus G,,q x 17} Q) which is a rank 4 torus (here recall that 77 /0 is
a torus such that 77(Q) = {z € L*|Normp,x(x) = 1}). But from the calculation in [32]
Section 7, the Mumford-Tate group of A. is either a rank 4 torus or a rank 5 torus. Hence
we must have the equality MT(A¢) = G,,0 x T}, sp- On the Galois side, we see that the
algebraic group G¢(Q,) is the Zariski closure of the image of the local representation p¢ .

and is generated by p¢ ./ (F'rob,) for any Frobenius element in D,y .

Combining the above facts together, we see that the embedding i, factors through G,(Q,).
O

We fix a compatible sequence ((,),>1 of p-th power roots of unity in the sense that ¢, is

a primitive p™-th root of unity and (¥ = (,—; for each n.

As the above construction is valid for any integer N prime to p, we have Q-valued point

Tean = limy, N)=1(Acan, Acans N cans Neanp) € Sh(Q) (corresponding to the canonical lifting
of x,) and x¢, = limn)=1(Ac,, Acy, N Tewp) € SH(Q) (corresponding to the quasi-
canonical liftings of x,). As the abelian variety A, g is the canonical lifting of the ordinary

abelian variety A, it has complex multiplication by a CM-algebra M = End°®(A,;) =
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End(A,/x) ®z Q. From the reciprocity law at special points ([20] section 7.2.2), we have
an embedding of groups: Ty = Resy;/0Gn(Q) — GSpg(A)) which acts on the Shimura

variety Sh,g which stabilizes the point @, and acts transitively on the set {z¢,[n > 1}.

As Ty is a Q-torus, the closure of {z¢ |n > 1} in Sh(C) under the complex topology is
contained in a set 2 homeomorphic to (S')" for some n > 1, where S* = {z € C||z| = 1}
is the unit circle in the complex place. As the set {z, |n > 1} is countable, we can find a

simply connected open subset 2" C ) containing {z,,|[n > 1}.

Now let f : A — Shc be the universal abelian scheme, the restriction of the local system
R!f.Q to ' is constant. Hence we can identify all the cohomology groups H'(A.,, Q)’s with

the 8-dimensional Q-vector space W.

Definition 6.7. Define an algebraic group G,q to be the smallest algebraic subgroup of
Autg(W) with the property that the embeddings i, ’s factor through G(Q,) for all n > 1.

From the above definition, the algebraic group G q is an algebraic subgroup of GSp(W, ).

As the algebraic group is defined over Q, for any field automorphism 7 : Q, — @Q,, (which
of course fix Q pointwise), we have the inclusions 7(icen(MT(Acn)(Q,))) € G,(Q,) and
T(ic(MT(A)(Q,))) € Gp(Q,). From our construction, the algebraic group MT(A..,) X
Q, gives a maximal torus of G,/q, under the embedding i.,. On the other hand, the
group generated by ic(MT(A¢)) xg Qp and icen(MT(Acn) X Q,) contains a unipotent
such that the action of 4., (MT(Acrn) X Qp) on this unipotent by conjugation corresponds
to the root (2,0,0) € X(T}) (X(77}) is the character group of the torus 77). From the
analysis in Section 6.2, the absolute Galois group Gal(Q/Q) acts transitively on the set
{(£2,0,0), (0,%£2,0), (0,0, £2)} C X (T7). It follows that the groups 7(Zean(MT (Acan)(Qy))) C
Gp(Qp) and 7(ic(MT(A)(Qp))) € G,(Q,) for all 7 generate the group G,(Q,) and hence we

have:

Lemma 6.8. We have the equality

GXQ@p:Gp
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over Q,. In other words, G g is a Q-form of the algebraic group Gq, .
Now we can give a proof of Theorem 20:

Proof. Replacing the algebraic group G g by the semisimple group G /o if necessary, we can
assume that G /g is semisimple. Since the Lie algebra of G,, is isomorphic to ¢ @ s[5 (where

¢ is the one dimensional center) over an algebraic closure of Q,, we have an isomorphism:
Gr = Gpyr X SLyg x SO3 5.

On the other hand, the morphism G g — GSpg)q gives faithful symplectic representation of

Gq, hence i =1 or i = 3.

Now consider the homomorphism e,y : S = Resg/r — GSpg(R) (resp. he : S = Resg/r —
GSpg(R)) which defines the complex structure of the abelian variety A.q, (resp. A¢). These
homomorphisms factor through G(R) by our construction. Let X be the G(R)-conjugacy
class of hean. Then the pair (Gq,X) is a Shimura datum. From [39] Lemma 3.3, for the
fixed prime p,we can find a integer n prime to p, and a Shimura variety Shg coming from
the Shimura datum (G)q, X) by adding a sufficient deep level structure, such that there is
a closed immersion Shg — A;,. The abelian varieties A, and A¢’s certainly lie on the
Shimura variety Shg by our construction. Their special fiber A, /; gives a closed ordinary
point z, of Shg. From [39] Theorem 3.7 or [31] Theorem 4.2, the formal completion of Shg
along the closed point x, is a union of formal tori. As the canonical lifting A.,, and the quasi-
canonical liftings A¢’s are dense in the rank 1 formal torus 3w ), 3w ) is contained in the
formal completion of Shg along the point x,. As the abelian variety A, p sits on the formal
torus 3w, it is a point of the Shimura variety She. Since the absolute endomorphism

algebra of A/ p is Z, we see that ¢ = 1 and thus
G/R = Gm/R X SLQ/R X SOg/R

This shows that A/p arises from a Shimura curve constructed by Mumford in [34], which is

exactly what we want to prove. O
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Remark 6.9. From the above proof, we see that after constructing the reductive group
G /g, the quasi-canonical lifting A:’s give points on the Shimura variety Shq after choosing a
suitable level structure. In particular, we have an embedding i. : MT(A¢) — G /g for each ¢,
such that i.(MT(A¢)) is a maximal torus of G g, and G g is the smallest algebraic subgroup

of GSpgq containing all these tori.

However, before we construct the group G /g, it might be difficult to find an appropriate
embeddings i¢c : MT(A¢) < GSpgq which factors through G q. In fact, if we add a suitable
level structure ny ¢ : L/NL — A:[N](C) on A¢, the triple (A¢/c, Ac, 1n,¢) gives a point on the
Siegel moduli space Ay y(C) = Hy/T(N), where T(N) = T(N)NGSpg(Q). In this setting the
embedding MT(A¢) — GSpgq is determined up to conjugation in I'(V) as the isomorphism
Hi(A¢/c,Z) — Lis so. Of course not all of these conjugations factor through the group G q,
but it is difficult to tell which embeddings have this property as we have not constructed
the group G g yet. So we consider a base change. After giving a full level structure 7, ¢
at p on A, it allows us to give an embedding i, : MT(A¢) xq Q, — G,. To satisfy the last
condition, we cannot chosse an arbitrary level structure. In fact, if 7y ¢ : L, — TpAg(@p) is
such a level structure constructed in the proof of 6.6, all the other level structures satisfying
the last condition are 7 o g, where g € G,(Q,) N GSpg(Z,). As we see in the proof of 6.6,
the determination of the Serre-Tate coordinates of A,r and the rank 1 formal torus 3w

is crucial to find a desired level structure 7,0 ¢.
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