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We perform simultaneous, co-planar measurements of velocity and density in solitary
internal waves with trapped cores, as well as viscous numerical simulations. Our setup
comprises a thin stratified layer (approximately 15% of the overall fluid depth) overlaying
a deep, homogeneous layer. We consider waves propagating near a free surface, as well as
near a rigid no-slip lid. In the free-surface case, all trapped-core waves exhibit a strong
shear instability. We propose that Marangoni effects are responsible for this instability,
and use our velocity measurements to perform quantitative calculations supporting this
hypothesis. These surface-tension effects appear to be difficult to avoid at the experimen-
tal scale. By contrast, our experiments with a no-slip lid yield robust waves with large
cores. In order to consider larger-amplitude waves, we complement our experiments with
viscous numerical simulations, employing a longer, virtual tank. Where overlap exists,
our experiments and simulations are in good agreement. In order to provide a robust def-
inition of the trapped core, we propose bounding it as a Lagrangian coherent structure
(instead of using a closed streamline, as has been done traditionally). This construction
is less sensitive to small errors in the velocity field, and to small three-dimensional ef-
fects. In order to retain only flows near equilibrium, we introduce a steadiness criterion,
based on the rate of change of the density in the core. We use this criterion to suc-
cessfully select within our experiments and simulations a family of quasi-steady, robust
flows, which exhibit good collapse in their properties. The core circulation is small (at
most, around 10% of the baroclinic wave circulation). The core density is essentially uni-
form; the standard deviation of the density, in the core region, is less than 4% of the full
density range. We also calculate the circulation, kinetic energy, and available potential
energy of these waves. We find that these results are consistent with predictions from
Dubreil-Jacotin-Long theory for waves with a uniform-density, irrotational core, except
for an offset, which we suggest is associated with viscous effects. Finally, by comput-
ing Richardson number fields, and performing a temporal stability analysis based on
the Taylor-Goldstein equation, we show that our results are consistent with empirical
stability criteria in the literature.

1. Introduction

Solitary internal waves are common in the ocean and atmosphere (e.g. Lien et al. 2012;
Rao et al. 2004). Under appropriate background stratification and shear, solitary internal
waves can develop recirculating regions, known as “trapped cores”; in a two-dimensional
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representation of these waves, such regions are associated with closed streamlines, when
observed in a reference frame moving with the phase velocity (e.g. King et al. 2011).
In this paper our focus is on “mode-1” waves, which can propagate along a relatively
steep stratification against a boundary or free surface (as opposed to the varicose-shaped
“mode-2” waves, which can arise at a stratified layer between two essentially homoge-
neous, deep regions; e.g. Salloum et al. 2012). Trapped-core waves of the mode-1 variety
often form in the coastal oceans, for example, when regular solitary waves (which may
also form in deep water; Akylas et al. 2007, and references therein) break and rearrange
through interaction with the continental shelf (Lamb 2002; Lien et al. 2012). Depending
on the background stratification, waves propagating near the surface or near the bot-
tom are possible (e.g. Scotti & Pineda 2004; Moum et al. 2007b). It has been proposed
that trapped cores may constitute an important vehicle for transporting mass, including
biologically-active matter such as larvae and plankton (Scotti & Pineda 2004). In ad-
dition, near-bottom waves may provide a significant source of sediment transport, and
might carry sewage outflows back towards the near-shore region (Diamessis & Redekopp
2006). These waves can also exert large forces on underwater structures, and their con-
sideration is important in coastal engineering. In the atmosphere, trapped cores may be
formed near the ground in the presence of a thermal inversion, with the wave typically
initiated by a thunderstorm outflow (Doviak & Christie 1989) or by local winds (an iconic
example is provided by the Morning Glory cloud in western Australia; Clarke et al. 1981).

To model trapped-core waves, numerical solutions of the Dubreil-Jacotin-Long (DJL)
equation are traditionally used (Dubreil-Jacotin 1934; Long 1953). The DJL equation
is derived, in essence, by integrating the steady vorticity equation along a streamline
that connects a point in the interior of the wave to an upstream location, which is at
a known, background condition. However, the core constitutes a region whose stream-
lines are closed, and are not connected with the upstream flow. For this reason, models
comprising recirculating regions require assumptions about the density and vorticity
structure in the core. Several different choices can be used to find steady solutions (Davis
& Acrivos 1967; Derzho & Grimshaw 1997; Helfrich & White 2010; King et al. 2011).

Remarkably, inviscid simulations have shown that several radically different core prop-
erties can give robust waves. Lamb (2002) found cores with nonuniform density (more
specifically, having a heavy core), and with circulation of sign opposite to the wave’s
baroclinic vorticity (which, in our study, is defined as positive; see e.g. figure 4 further
below). Helfrich & White (2010) found that sufficiently long computational runs eventu-
ally yielded cores with uniform density and negligible circulation. King et al. (2011) found
DJL solutions whose cores have strongly positive circulations; their inviscid simulations
showed that these solutions are robust.

The choice of core density and circulation is of significant importance, as it impacts the
dispersion curves for the resulting family of waves (Helfrich & White 2010), as well as their
stability properties (King et al. 2011). In a flow involving small but finite viscosity, it is
reasonable to expect that, over a sufficiently long time, viscous effects may select a single
set of core properties (in accordance with a baroclinic version of the Batchelor theorem;
see Batchelor 1956; Grimshaw 1969). Several field observations have yielded descriptions
of core properties (e.g. Lien et al. 2012); however, it is difficult to establish whether
these waves have indeed reached a quasi-steady state. To the best of our knowledge,
no experimental studies to date have reported any core properties for mode-1 waves
(including volume, density, and circulation).

Grue et al. (2000), in the context of a broader study involving waves without trapped
cores, reported the occurrence of a recirculating region in a few of their experiments.
Carr et al. (2008), in a seminal work, performed an experimental study of instability in
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solitary internal waves of large amplitude. They considered waves propagating near a
free surface, as well as near a no-slip boundary. They found that all of their trapped-core
waves near a free-surface were unstable; furthermore, many of the waves near a no-slip
boundary also showed instability. They proposed that free-surface deformations may be
responsible for these and other differences between the two cases. These results of Carr
et al. (2008) raise the deeper issue of whether a robust steady state may even be possible,
for solitary internal waves with trapped core of moderate amplitude, in an experimental
context. Carr et al. (2008) reported measurements of phase velocity and amplitude; to
the best of our knowledge, other wave properties (such as energy) remain to be measured
experimentally, for trapped-core waves.

We consider here also two further outstanding questions. The first involves the accuracy
with which a DJL model can capture global properties of the waves, such as kinetic
energy, and available potential energy. The second question involves testing commonly
used empirical stability criteria for long internal waves (Troy & Koseff 2005; Fructus
et al. 2009), and establishing whether they accurately predict the onset of instability for
trapped-core waves.

Summarising the outstanding points discussed above, this paper aims to address the
following questions, for experimentally realized waves:

(a) Do trapped-core waves eventually settle to a family of quasi-equilibria? If so:
(b) What is the core circulation?
(c) What is the core density structure?
(d) What is the kinetic and available potential energy of trapped-core waves?
(e) Are commonly used empirical stability criteria also valid for trapped-core waves?

The rest of the paper is organized as follows. The experimental setup is briefly described
in § 2.1. We initially performed experiments involving waves propagating near a free
surface; these results are reported in § 3. We also examined waves propagating near a
no-slip boundary; this data is described in § 4. We found it valuable to complement our
experimental observations with numerical simulations, as reported in § 2.2. The combined
data set is discussed in § 4.2. The stability properties of these waves are assessed in § 6.
Conclusions follow in § 7. To ease discussion of these flows, we propose referring to a
“solitary internal wave with a trapped core” simply as a “solicore” (in this choice, we
were of course inspired by the commonly used contraction“solibore”).

2. Experimental and computational setup

2.1. Experimental apparatus and procedure

The experiments were performed using the solitary internal wave tank in the Geophysical
Fluid Dynamics Laboratory at the Woods Hole Oceanographic Institution. This facility
is described in detail in a separate forthcoming paper; here we provide a brief overview
of its key characteristics.

The overall tank length, width and height are 8 m × 0.4 m × 0.5 m, respectively. In all
experiments, a deep and uniform layer of saltwater was covered with a shallow stratified
layer of height h, yielding an overall depth H. An approximately linear stratification
was produced using the two-bucket method (e.g. Economidou & Hunt 2008), using mix-
tures of freshwater and filtered seawater. The background profile was measured using
a conductivity-temperature probe (from Precision Measurement Engineering, see Head
1983); density was calculated using the Seawater library, version 3.3. A typical normal-
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Figure 1. Typical normalized experimental background density profile (continuous line), and
best-fit used for initializing the simulations shown later in § 2.2 (dashed line). The two curves
are nearly indistinguishable.

ized density profile is shown in figure 1. The density ρ is normalized using the densities at
the top and bottom of the profile (i.e. ρtop, ρbot), such that ρ∗ = (ρ−ρtop)/(ρbot−ρtop).

In all experiments reported here, h/H ' 0.15. In nearly all experiments, the total
depth H ' 0.35 m; a few experiments (yielding the largest normalized-amplitude wave
in § 4) were performed with H ' 0.14 m. The typical internal buoyancy frequency, in the
stratified layer, is N0 ' 1.5 s−1. While experimental Reynolds numbers in the literature
are often based on overall depth H, for small h/H the most important length scale is
arguably h. For a wave with phase velocity c, we therefore define a Reynolds number
Reh = ch/ν, where ν is the dynamic viscosity. In our experiments, Reh ' 4, 000.

Waves are produced using a classic lock-release arrangement (e.g. Grue et al. 2000;
Sutherland et al. 2013) at one end of the tank. Once the background stratification has
been set up, a gate is introduced (approximately 0.3 m from one end of the tank), and
additional liquid (closely matching the surface density) is added. Removing the gate
generates a surface-propagating gravity current, whose head radiates long internal waves.

We image two downstream regions, located approximately 3.2 m and 6.2 m from the
end of the tank. We acquire velocity data in a single plane by means of a particle im-
age velocimetry (PIV) setup, comprising a Nd:Yag pulsed laser and CCD cameras with
resolution 2048 x 2048 (LaVision). The field of view is approximately 0.35 m wide, and
is located in a plane that is about 0.07 m away from the side of the tank, to minimize
end effects while avoiding unacceptable optical distortion. The flow is seeded with 15µm
Vestosint particles; a relatively high seeding density is used, thus enabling calculation of
independent velocity vectors over a length scale of about 3 × 10−3m. The typical data
acquisition rate is 7 Hz; velocity fields are calculated using DaVis 7.2.

To also measure density fields that are co-planar with the velocity data, we developed
a planar laser-induced-fluorescence technique that makes possible the acquisition of ac-
curate scalar concentration data even while using pulsed lasers (which are well-known to
exhibit large fluctuations in power output; e.g. Melton & Lipp 2003) and in the presence
of PIV particles (which can scatter light, and thereby change local dye illumination and
fluorescence; e.g. Law & Wang 2000). The details of this technique are reported in a
forthcoming paper. This methodology has enabled us to perform the first measurements
of core density and Richardson number in these flows, as reported below in § 4.

We perform experiments with a free surface, as well as with a no-slip boundary at



Experiments and simulations for solitary waves with trapped cores 5

the top. The latter is introduced shortly after the tank has been filled, using styrofoam
panels whose width matches precisely that of the tank. We were careful to ensure that
the panels had no seams or joins at least 1 m upstream and downstream of each imaging
window, and covered the entirety of the tank, without appreciable gaps. A small opening
was cut for the conductivity-temperature probe. The panels were lowered carefully until
fully wetted, and were held in place rigidly.

Once a set of images is acquired, and the laboratory-frame velocity u = (u,w) and
density ρ are calculated, the phase velocity c is measured by tracking the x-location of
the wave trough. To achieve this, we follow the horizontal motion, at fixed depth, of the
point at which w(x, z = z0) = 0. Due to the ease and relative accuracy with which c
can be found, we choose to plot all data as a function of phase velocity, in this paper
(for the experiments with a no-slip lid, the uncertainty in c is typically less than 1%).
The amplitude ηpycno is defined as the displacement of the isopycnal at the lower end of
the stratification, and is measured either by first computing streamlines in the moving
frame (for small-amplitude waves, without instabilities or trapped cores) or by tracing
the appropriate isopycnal in the density field.

To compute global wave properties (such as kinetic energy), we construct composite
views of the waves, by shifting successive images horizontally by a distance c∆t (where
∆t is the time between images). We calculated the Boussinesq kinetic energy T and
available potential energy V , per unit span, as:

T =
ρbot

2

∫
|u|2 dA (2.1)

V = g

∫ [∫ ρ

ρ̄(z)

(z − ẑ(s)) ds
]
dA (2.2)

where g is the acceleration due to gravity, ρ is the wave density, ρ̄ denotes the background
profile, and ẑ(ρ) is the inverse of ρ̄(z) (for a definition of the available potential energy,
see e.g. Lamb & Nguyen 2009).

We found it convenient to separate positive and negative contributions to the cir-
culation, as this enabled distinguishing between circulation associated essentially with
baroclinic vorticity (Γ+) and circulation associated with the boundary layer against a
no-slip boundary (Γ−):

Γ+ =

∫
ζ>0

ζ dA (2.3)

Γ− =

∫
ζ<0

ζ dA, (2.4)

where the vorticity is ζ = ∂u/∂z−∂w/∂x. We found it impractical to image the complete
depth H, and only recorded data over a vertical distance hview (typically around 4h);
below this depth, there is of course no change in density and vorticity, but there is non-
negligible motion. This does not affect V and Γ (which can be accurately calculated
by taking integrals only over −hview < z < 0. However, T must be computed by first
separating the integral

2

ρbot
T =

∫
z>−hview

|u|2 dA+

∫
z<−hview

|u|2 dA (2.5)

For z < −hview, the flow is essentially two-dimensional (even for turbulent waves). In-
troducing a streamfunction ψ such that (u,w) = (∂ψ/∂z,−∂ψ/∂x), and ∇2ψ = ζ,
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performing integration by parts, and using the divergence theorem:

2

ρbot
Tz<−hview =

∫
|∇ψ|2 =

∮
ψ∇ψ · n d`+

∫
ζψ dA, (2.6)

where d` is an element of contour length, n is the unit outward-pointing normal to the
contour, and we have omitted the integration bounds in order to ease readability.

The only region with nonzero ζ is the bottom boundary layer. Without loss of gen-
erality, we define ψ such that ψ = 0 on the boundary, and the area integral is assumed
to be negligible. This also causes the bottom segment of the contour integral to vanish.
Since the vertical ends of the contour also make no contribution (as ∇ψ is negligible for
large |x/h|), we have

Tz<−hview
= −ρbot

2

∫ X

−X
(ψu)z=−hview

dx, (2.7)

where X � h. Hence T can be fully evaluated using only information from the z > −hview

region.
The procedure to measure the properties of the core geometry is described in section

§ 4.2. To help nondimensionalize the results, we calculate the linear long-wave phase
velocity c0 by solving the linearised DJL equation, using the experimentally measured
background N2 (a discussion of the linearised DJL equation can be found, for example,
in King et al. 2011).

Unless otherwise noted, all remaining quantities are nondimensionalised by using c0,
h, and ρbot as the velocity, length, and density scales, to yield the starred variables
T ∗, V ∗,Γ∗, and so on (note that ρ∗ is an exception, and is defined earlier in this section).

2.2. Numerical simulations

Two-dimensional simulations were performed using the IAMR package, which consists
of an algorithm for modeling incompressible viscous flows (Almgren et al. 1998). The
tank length used was at least 24H (tanks as long as 48H were used for larger waves).
No-slip conditions were used on the tank boundaries. The diffusivity, for the scalar equa-
tion modeling the density, is set to zero. While the code can employ an adaptive mesh
refinement procedure, all runs were performed with a uniform cartesian mesh. Most sim-
ulations were two-dimensional, and employed a mesh size ∆x = ∆z = H/256; runs at
twice the resolution showed no appreciable differences in the results.

Selected runs were repeated in three dimensions, with periodic boundary conditions
and an extent of H/4 ' 1.7h in the spanwise direction. These three-dimensional runs
exhibited a different initial stage, but eventually settled to two-dimensional quasi-steady
states that were indistinguishable from those obtained from two-dimensional simulations.
For convenience, we encoded a typical nondimensionalised experimental density profile
by means of the function:

ρ̂∗ =
s(z)− s(1)

1− s(1)
(2.8)

s(z) = 1− a1 + a3

2
z − a2 − a1

2λ1
ln

cosh(λ1(z − z1))

cosh(λ1z1)

− (a3 − a2)

2λ2
ln

cosh(λ2(z − z2))

cosh(λ2z2)
(2.9)

where the parameters are a1 = −0.0215, a2 = −59.0, a3 = −0.00185, λ1 = 35.0,
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Figure 2. Normalized amplitude versus phase velocity for waves propagating near a free surface.
Waves with and without trapped cores are denoted by open and closed symbols, respectively. A
range of DJL solutions is shown for comparison.

λ2 = 101, z1 = 0.859, and z2 = 0.988. The original and encoded profiles are shown by the
continuous and dashed lines displayed earlier in figure 1, and are nearly indistinguishable.

The results from the simulations were processed in essentially the same manner as
those from the experiments, with the notable exception that it was not necessary to
construct a composite view to compute integrals such as T and V , and an instantaneous
field was used instead (as for the experiments, care was taken in defining the x-extent
for integration, to avoid including any following, smaller waves in the calculation).

3. Solicores near a free surface

At the beginning of our investigation, we performed a set of experiments with free-
surface conditions; the resulting plot of phase velocity and amplitude is shown in figure 2.
For comparison, a family of DJL solutions with h/H = 0.15 is shown by the dashed line.
To provide an appreciation for the effect of changes in h/H, in this and other figures, the
region spanned by DJL solutions with h/H = 0.15 ± 20% has been shaded. These DJL
solutions have irrotational, uniform-density cores.

It is immediately apparent that, while our measurements are never very distant from
the DJL curve, there is appreciable scatter in the data. Another remarkable feature of
these results is that trapped cores are first observed for c∗ ' 1.4, well below the DJL value
of c∗ = 1.64. Furthermore, while this is not apparent from this data set, all these solicores
exhibit shear instabilities, as shown later in figure 3a. Our vorticity measurements, shown
in figure 3a, show a strong shear layer forming ahead of the wave, and being subducted
at the front of the core.

As briefly noted in § 1, the effect of a free-surface boundary condition (as compared to
a no-slip boundary) has been previously considered by Carr et al. (2008), who reported
that free-surface conditions were more likely to yield instability, and produced smaller-
amplitude waves, for given phase velocity. Carr et al. proposed that surface deformation
may play an essential role in this problem. They tested this hypothesis by introducing
surfactants (thereby enabling greater surface deformations), which were found to lead
to smaller amplitudes, and stronger instabilities, in their free-surface experiments. We
initially sought to employ this hypothesis to explain the presence of this shear layer,
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but could not find a quantitatively viable mechanism that would produce shear through
surface deformation.

To gain further insight into this problem, we constructed a large composite image, for
a single experiment, as shown in figure 3a. This reveals that, remarkably, the shear layer
extends forward at least up to x ' 4H ' 27h, thereby suggesting a phenomenon capable
of long-range effects. Here we propose considering the tangential force balance at the
surface, namely:

∂γ

∂x
= µ

∂u

∂z
(3.1)

where µ is the dynamic viscosity, and γ is the surface tension. This suggests that the
wave may be producing a surface tension gradient, which, in turn, is capable of producing
shear. At the front of the core, fluid converges at the surface (towards a stagnation point),
before being transported below the core. It is therefore plausible that this would locally
increase the concentration of any surfactant present on the surface, thus reducing the
local value of the surface tension, and driving a Marangoni flow.

While we cannot directly measure surfactant concentration or surface tension in our
experiment, we may test our hypothesis quantitatively as follows. We use equations
describing conservation of momentum and conservation of surfactant to estimate, from
our velocity measurements, the surface tension γ and surfactant concentration φ. We can
then check whether these two quantities vary together in a manner that is consistent
with the classical surfactant-surface tension relation provided by the appropriate Gibbs
isotherm (Leal 2007).

To find the change in surface tension relative to the background value, we inte-
grate (3.1):

γ(x)− γ∞ = −µ
∫ ∞
x

∂u

∂z
dx, (3.2)

where γ∞ denotes the background value of γ, ahead of the wave. The curve calculated
from (3.2) is shown by the continuous line in figure 3b. To estimate the relative change
in surfactant concentration at the surface, we assume that adsorption and desorption are
negligible, such that the total amount of surfactant at the surface is conserved. Assuming
also that the flow is steady in a frame of reference moving with the wave, and the motion
along the spanwise direction is negligible at the surface:

d[(u− c)φ]

dx
= 0 (3.3)

which can be integrated to give φ as a fraction of its background value φ∞

φ(x)

φ∞
=

c

c− u, (3.4)

The value of φ/φ∞ calculated according to (3.4) is shown by the dashed line in fig-
ure 3(c). Sufficiently close to the wave, desorption may become significant, and the flow
will be three-dimensional. Therefore the region with x/H < 1.5 has been grayed out in
figures 3(b) and (c).

The range of surface concentrations and surface tension variations calculated by (3.2)
and (3.4) suggest that the relationship between γ and φ should be accurately modelled
by the linear approximation (Leal 2007):

γ − γ∞ = RT φ∞

(
1− φ

φ∞

)
, (3.5)

where R is the universal gas constant, and T is the absolute temperature. We use (3.5) to
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determine empirically φ∞ from our calculated γ−γ∞ and φ/φ∞; a least-square procedure
for x/H > 1.5 yields φ∞

.
= 1.96 × 10−6 mol m−2. In practical situations, for surfactants

that are below the micellar concentration, φ∞ is typically in the range 1−4×10−6 mol m−2

(Rosen & Kunjappu 2012). The fact that the value of φ∞ estimated from our experi-
ment falls within this range strongly suggests that surface tension gradients (driving a
Marangoni flow) are indeed responsible for setting up the strong shear layer observed in
free-surface experiments.

In oceanic contexts, Marangoni effects associated with internal waves have long been
known to affect surface wave patterns (e.g. Kropfli et al. 1999). However, our finding is
that, at the laboratory scale, Marangoni effects can also affect the interior of the fluid.
The mechanism by which this occurs may be summarized as follows:

(a) The wave sets up a Marangoni flow, extending several wavelengths ahead;
(b) The Marangoni flow is associated with a strong surface shear layer;
(c) In interacting with the trapped core, the shear layer is subducted, becoming a free

shear layer in the interior;
(d) This free shear layer exhibits a strong Kelvin-Helmholtz instability.
Of course, these Marangoni effects have a negligible impact on the interior of full-

scale oceanic waves. Unfortunately, it is exceedingly difficult to perform experiments
completely free of surfactants, without resorting to the use of a clean room and distilled
water, which is not practically feasible in this case (for an example of the challenges
associated with such experiments, in the context of studying rising bubbles, see Wu &
Gharib 2002). We therefore set aside free-surface experiments, and focus the rest of this
paper on waves near a no-slip boundary.

4. Solicores near a no-slip boundary

4.1. Experiments

Introducing the rigid-lid setup described in § 2.1, and running the experiments again,
we are able to observe stable waves with trapped cores. Figure 4 shows the vorticity and
density fields for three selected waves of progressively larger amplitude. The right-hand
panels show sections of vorticity and density through the trough of each wave. In all
of these flows, a strong boundary layer (corresponding to a region of negative vorticity)
develops at the no-slip surface. However, this boundary layer remains attached to the
surface, and does not give rise to a free shear layer (as was the case in the free-surface
experiments).

Another small feature of these flows stands out. In all of our experiments, the baroclinic
vorticity exhibited “bands”; these are visible both in the fields and in the vertical cross-
sections. We initially considered that these may be due to experimental errors. However,
we found that, when differentiating the (seemingly smooth) background ρ, corresponding
bumps appeared in the resulting N2. We tested this link by using the measured N2 to
compute DJL solutions, which did indeed display similar vorticity bands. In retrospect,
we found that such vorticity bands appear also in previous PIV measurements of long
internal waves, although they appear to have been treated as PIV errors (e.g. figures 10-12
in Grue et al. 2000); nevertheless, it is not clear how one might avoid these imperfections
when setting up the background stratification.

As explained in § 1, a crucial goal of our investigation involves measuring core prop-
erties such as volume, circulation, and density structure. To achieve this, we need to
first delimit the core boundary for each wave. While this has never been done from ex-
perimental data (to the best of our knowledge), oceanic and atmospheric observations
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typically resort to using streamlines, in a frame of reference moving with the wave (e.g.
Lien et al. 2012). However, we found that, in the wave interior, even relatively weak
three-dimensional effects (of the order ∂u/∂x+∂w/∂z ∼ 0.1N0) were sufficient to create
considerable uncertainties in the streamlines, and therefore in the core properties.

To compute a more robust definition of the core boundary, here we introduce to this
problem the use of Lagrangian Coherent Structures (LCS). We employed the traditional
definition, for an LCS, as the intersection between forward- and backward-time ridges of
the Finite-Time Lyapunov Exponent (FTLE) field (for a general discussion of FTLEs,
see e.g. Haller 2005; Shadden et al. 2006).

Examples of the core regions bounded by the LCS procedure are shown in figure 4(b)
and (c), by means of thin black lines that have been overlaid on the vorticity and density
fields. Note that the core regions align well with the edges of the baroclinic vorticity
in the waves; this lends further confidence to our use of an LCS procedure to identify
trapped cores. The panels on the right-hand side of figure 4 show vertical slices of vorticity
and density at the wave trough; the extent of the core is also marked in these plots. The
interior of each core has relatively little vorticity (by comparison to the baroclinic vorticity
below the core), and approximately uniform density. Our findings therefore support the
use of models with uniform core density and zero core circulation, to model these waves.

Incidentally, we found that sometimes two trapped-core waves with similar c∗ exhib-
ited different stability properties, as well as different core geometries. We hypothesize
that these differences may be attributable mainly to transient effects associated with
the details of the wave generation process, and the initial evolution. For example, we
measured the fluid density behind the lock gate, and realized that much of this fluid
was slightly less dense than the lightest fluid in the main portion of the tank; typically
min(ρ∗lock) ' −0.05. In this particular circumstance, this density structure can be shown
to be the result of the use of the two-bucket method. Once we had completed filling
the background stratification, the valve connecting the two buckets was shut, thus fixing
the value of the density in the “heavier fluid” bucket. However, since this bucket was
connected to the wave tank by a finite length of hose, a small density mismatch was set
up between the fluid at the end of the hose (and at the top of the tank stratification) and
the fluid in the bucket. This meant that relatively light fluid from the lock could initially
become entrained in the core, contributing to sharp density gradients, and therefore to
instabilities that might be seen as spurious in our experimental setup (however, such
entrainment mechanics can occur in natural settings; see e.g. Lamb & Farmer 2011). It
would be interesting to explore more efficient mechanisms for producing long internal
waves, with shorter transient effects (for example, in the spirit of the “new wave” appa-
ratus, for generating internal wave beams, developed by Mercier et al. 2010). However,
this is beyond the scope of our present study.

In order to control for this and other transient effects, we introduce a measure of
unsteadiness, for solicores, defined as:

〈ρ∗τ 〉 ≡
∫
A∗

core

∣∣∣∣∂ρ∗∂τ∗

∣∣∣∣ dA∗ (4.1)

where ∂
∂τ = ∂

∂t + c ∂∂x is the time derivative in the frame of reference moving with the
wave. We found that, by restricting our results to cases meeting 〈ρ∗τ 〉 < 0.06, we could
retain robust waves for relatively large amplitudes, as shown by the circles in figure 5.
The scatter in wave properties was also considerably reduced, and became consistent
with the estimated measurement uncertainties.

An adverse effect of conditionally sampling our results in this manner is that a smaller
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data set is retained. In order to complement these results, and examine robust waves with
very large amplitudes, we performed a set of viscous numerical simulations (information
about the numerical setup is reported earlier in § 2.2).

4.2. The combined experimental and numerical data set

As noted earlier, the velocity-amplitude plot is shown in figure 5, with circles and squares
denoting our experimental and numerical results, respectively. Open and closed symbols
correspond to waves with and without trapped cores. The overall trend is emphasized by
the black continuous line fit to the data, whereas (following the same notation introduced
earlier in figure 2) the DJL solution is shown by the dashed line. These DJL solutions
were computed with a revised version of the code of Helfrich & White (2010), which
is unaffected by the minimum value of Richardson number in the flow (such that the
code can also compute solutions that may be susceptible to shear instability, or other
instabilities). This method enables the computation of waves approaching the limiting
(conjugate) state.

Several significant observations can be made from this plot. Firstly, the experiments
and simulations are in remarkably close agreement. This agreement includes the value of
c∗ demarcating the emergence of a trapped core, which the combined dataset yields as
c∗core = 1.52± 0.01.

Secondly, for any value of c∗, the amplitude of our waves is larger than for the DJL
solution; this is not explained by possible small differences in h/H between theory and
experiment/simulation, as these only have an appreciable effect at larger c∗. Instead, it
seems plausible to suggest that the increase in amplitude may be due to viscous effects.
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More specifically, the viscous boundary layer in these waves (corresponding to the nega-
tive vorticity in figure 4) displaces the flow away from the boundary, therefore enhancing
the downward displacement of the isopycnals. Measurements from experiments and sim-
ulations indicate that the boundary layer displacement thickness is indeed of the order
δ/h ∼ 0.2, which is consistent with the observed gap between our values of η∗pycno and
those from DJL theory (see figure 5).

Thirdly, we remark that it is possible to produce very small waves that are slower than
the (inviscid) linear phase velocity, i.e. c∗ < 1, suggesting that at least part of the effect
of a viscous boundary layer involves reducing the wave propagation velocity, relative to
an inviscid wave.

Figure 5 also shows results from Carr et al. (2008) for h/H ' 0.13 and 0.18, with a
no-slip lid (they also performed measurements for h/H ' 0.09 and 0.27, but these are
not shown here, as results are sensitive to the value of h/H, making a direct comparison
difficult). The experiments of Grue et al. (2000) focused on a fractional stratification
depth of h/H ' 0.24; since our experiments involve waves with an h/H that is approxi-
mately 60% smaller, the two data sets are not directly comparable. For the data of Carr
et al. (2008), an offset from the DJL solution, similar to that displayed by our results,
is also visible; this may be expected, as the ranges of Reynolds numbers in the two sets
of experiments are very similar (it appears that Carr et al. 2008, did not discuss viscous
effects in their work).

Key properties describing core geometries are reported in figure 6: panels (a), (b) and
(c) show the cross-sectional area Acore, height hcore, and length Lcore of the LCS region
bounding the core (as shown earlier in figures 4b and c). The collapse in these quantities is
remarkable, given the relative difficulty associated with performing these measurements.
Apart from a clear offset, these core measurements seem to parallel closely DJL theory.
A feature worth mentioning here is that, shortly after the core first emerges at phase
velocity c∗ = 1.52, this data suggests that hcore and Lcore are well approximated by a
fit of the type (c∗ − c∗core)1/2, such that A∗core ∝ (c∗ − c∗core), as indeed seems to be the
case from figure 6(a). To the best of our knowledge, these results constitute the first
laboratory measurements of trapped-core volume.

Note that, in figures 6 (a) and (c), Acore and Lcore appear to exhibit vertical asymp-
totes, suggesting that the limiting phase velocity (for this h/H and Reh) has essentially
been reached. In other words, these results suggest that the full range of available c∗, for
these experimental conditions, is spanned by our combined experimental and numerical
data set.

We now come to addressing in a precise manner questions (b) and (c) that were raised in
§ 1, namely, what are the core density and circulation? We previously showed density and
vorticity fields, together with one-dimensional profiles at the wave troughs, which sug-
gested that the core would have negligible circulation and density variation (see figure 4).
Figure 7(a) shows the core circulation, plotted as a fraction of the positive (baroclinic)
wave circulation Γ+. No discernible trend seems to emerge, and |Γcore/Γ+| always seems
to be less than about 0.1. To help establish whether this small value of circulation should
be accounted for in DJL models, here we also consider a DJL theory, which has a nomi-
nally irrotational core (this theory is described in detail in § 6 of Helfrich & White 2010).
Instead of handling the core region as perfectly irrotational, this model lets N2 reach a
constant value through a rapid but smooth transition of the algebraic type. Therefore,
even in such a nominally irrotational core model, a thin band of vorticity at the core
edge can yield a nonzero Γcore (using an exponential transition, as done by King et al.
2011, might be expected to reduce the value of Γcore). This theoretical value of Γcore is of
the same order as the one observed experimentally, suggesting that available DJL models
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core. This is a measure of wave steadiness. For comparison, properties for a DJL model with
a nominally irrotational, uniform-density core are also shown. These results suggest that the
uniform-density, irrotational core assumption constitutes a reasonable approximation.

(with nominally irrotational cores) are indeed suitable to describe these waves, and that
this small value of core circulation is likely to be dynamically negligible.

To provide a quantitative measure of the core density structure, we computed the
standard deviation of ρ∗ inside the core (i.e. stdev(ρ∗)core ), as shown in figure 7(b). The
largest value found is about stdev(ρ∗)core ' 0.04, which indicates that the core is, to a
very good approximation, uniform. (For completeness, we also computed stdev(ρ∗)core

for a family of DJL solutions with a nominally irrotational core; this is shown by the
dashed line in the figure.) For reference, panel (c) in figure 7 also shows the unsteadiness
measure 〈ρ∗τ 〉 for our waves.
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We next consider wave circulation, which is reported in figure 8. The red symbols
show the circulation associated with the baroclinically produced vorticity Γ+ (which has
positive sign, and is displayed in red in the vorticity contour maps of figure 4). The
corresponding value of the circulation from the DJL model is shown by the red dashed
line (once again, with bounds for h/H = 0.15±20% shown in gray). The absolute value of
the circulation Γ− associated with the viscous boundary layer above the wave is shown by
the blue symbols in figure 8 (of course, since the DJL model is inviscid, it does not yield
a prediction for this quantity). Incidentally, note that the presence of no-slip conditions
implies that the total circulation in the domain must be zero at all times. This fact allows
one to use figure 8 to also calculate the circulation associated with the bottom boundary
layer, simply as |Γ−| − |Γ+|.

Figure 9(a) and (b) show the kinetic energy T ∗ and available potential energy V ∗.
Figure 9(c) shows their ratio T ∗/V ∗. There is still some scatter in the experimental data,
although this is consistent with the magnitude of the uncertainty shown in the figure.
The simulations (after enforcing the steadiness requirement 〈ρ∗τ 〉 < 0.06) collapse to form
a distinct curve, which is emphasized by the black line. A key finding, from this plot,
is that for low phase velocities, waves with T ∗ < V ∗ are possible. Overall, the observed
T ∗/V ∗ is slightly lower than predicted by DJL theory, and takes a maximum value of
about 1.2 around c∗ ' 1.7, whereas the maximum value of T ∗/V ∗ from experiments is
approximately 1.5.
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5. Boundary layer effects in full-scale waves

As noted in the previous section, while our results show good collapse, they exhibit a
persistent offset from the DJL solutions, which we attribute to the presence of appreciably
thick boundary layers in our experiments and simulations. For oceanic-scale waves, one
might expect viscous effects to be negligible. Nevertheless, for solitary waves propagating
along the bottom of the coastal ocean, or for atmospheric waves, a turbulent boundary
layer does develop beneath the wave. It therefore seems interesting to try to estimate the
thickness of these turbulent boundary layers, to assess whether in some instances they
might be comparable to those encountered in our results.

We obtain a simple estimate of the boundary layer thickness by proceeding as follows.
We assume that the vertical scale δ of the boundary layer may be approximated by the
classic relation, for fully-developed flow over a flat plate:

δ

x
= ARe−1/n

x , (5.1)

where x is a the downstream distance, Rex is the Reynolds number based on x, and
(A,n) are constants. For a laminar flow, A = 4.91, n = 2 (from the classical Blasius
similarity solution), whereas for turbulent flow the empirical constants A = 0.382, n = 5
are typically used (Schlichting 1979). As noted above, this approximation assumes fully
developed flow, which is typically not the case for long internal waves. Nevertheless, we
might expect (5.1) to provide an estimate of the order of magnitude of δ/h, if we set
x ∼ λ, and use c for the characteristic velocity. Equation (5.1) can then be used to write
δ/h in terms of the more appropriate Reynolds number Reh as:

δ

h
∼ A

(
h

λ

)−n−1
n

Re
−1/n
h , (5.2)

We can test this relation using our computational data. In figure 10, the continuous line
shows a curve fit to our simulation results for the displacement thickness, whereas the
dashed line is relation (5.2), evaluated using fits to the corresponding data for λ, h and
c, and A and n for laminar flows. While the trends are different, the results are within
an O(1) factor of each other, suggesting that (5.2) captures the order of magnitude of
δ/h, for this flow.

We next apply relation (5.2), using (A,n) for turbulent flows, to observational data for
bottom-propagating oceanic waves, using figures reported by Klymak & Moum (2003);
Scotti & Pineda (2004) and Moum et al. (2007a). The resulting estimates of δ/h are shown
by the open symbols in figure 10. Similarly, we also apply (5.2) to atmospheric solitary
wave measurements from Clarke et al. (1981); Shreffler & Binkowski (1981); Doviak
& Christie (1989) and Cheung & Little (1990), shown by the closed symbols. While
there is appreciable scatter, several values of δ/h are of the order of 10−1, and therefore
comparable to our laboratory measurements. This data suggests that boundary-layer
effects could possibly be appreciable also in some full-scale situations involving solitary
internal waves of elevation.

6. Testing empirical stability criteria

Several empirical criteria for stability exist in the literature. In our experiments and
simulations, a variety of unstable waves were observed. However, we are concerned about
the source of these instabilities; more specifically, since the waves are produced using
a lock-release arrangement (as traditionally done also by previous studies), the waves
emerge out of a vigorously unstable initial flow. Our aim, in this section, is therefore to
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find the fastest waves that are stable, and test whether these might violate any of the
available empirical stability criteria.

We used our experimental and numerical fields of velocity and density to compute
fields of Richardson number Ri, defined as

Ri =
N2(
∂u

∂z

)2 (6.1)

We recorded its smallest value (that is, min(Ri)) occurring in the stratified region; if
min(Ri) < 1/4, we also recorded the extent of the surrounding region with Ri < 1/4 .
The interior of the core was excluded from these measurements, since we have established
in the previous section that the core has essentially uniform density. We initially plotted
data for 〈ρ∗τ 〉 < 0.06 (as for the other plots shown so far); for the Richardson number, we
observed considerable scatter in both the experimental and numerical results. For this
reason, we further restricted the displayed data, in this section, to 〈ρ∗τ 〉 < 0.015 (to help
clarify what data meets this requirement, 〈ρ∗τ 〉 for all data in previous plots is shown
earlier in figure 7c). This resulted in a dataset whose size was sufficient to test in detail
DJL predictions.

Figure 11 shows min(Ri), as well as area, height and length for the Ri < 1/4 region.
For min(Ri), the DJL solution provides a reasonable approximation, especially after
the onset of a trapped core. Similarly to other wave properties, the dimensions of the
Ri < 1/4 region follow trends that are quite similar to those of the DJL solution, but
display a nonuniform offset, which is likely due to viscous effects.

We use our results to test empirical stability criteria available in the literature. Troy
& Koseff (2005), in the course of experiments involving two uniform layers with a thin
pycnocline, found that a min(Ri) of around 0.07− 0.08 was necessary in order to obtain
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overturning (through a Kelvin-Helmholtz instability). Recent numerical simulations by
Barad & Fringer (2010) found a similar threshold of min(Ri) = 0.1. Figure 11(a) shows
that (within experimental uncertainty) all our values of min(Ri) are larger than 0.1.

Troy & Koseff (2005) also proposed a more refined stability criterion, based on an
estimate of the fastest growth rate for the temporal stability problem. They used the
Taylor-Goldstein equation for a parallel flow to perform a temporal stability analysis,
and computed the fastest growth rate σ at each x-location in the region Ri < 1/4. They
found an empirical stability boundary as σ̄Tw = 5, where σ̄ is the time-average of σ, and
Tw is the time that a fluid particle spends within the Ri < 1/4 region. Since the stability
criterion of Troy & Koseff (2005) was developed for interfacial waves, it is interesting to
ask whether the same criterion holds for experimentally realized solicores.

We used the Taylor-Goldstein solver of Smyth et al. (2011) to perform a temporal
stability analysis for our experiments and simulations (as well as for the DJL solutions).
The resulting σ̄Tw is shown in figure 12(a). All of the waves in this figure are stable, and
satisfy σ̄Tw < 5, consistently with the stability criterion of Troy & Koseff (2005). For
completeness, we also report σ̄/N0 in figure 12(b). In our experiments and simulations,
we do not observe instabilities originating outside the core. Furthermore, instabilities
originating inside the core appear only in the initial stages of wave propagation, sug-
gesting that transient effects associated with the generation mechanism may be to blame
(leading to a possible density mismatch between the core and ambient fluid; see § 4.1).
For this reason, we cannot test whether unstable waves meet the requirement σ̄Tw > 5.
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Figure 13. Test of the empirical stability boundary proposed by Fructus et al. (2009), requiring
LRi<1/4/λ < 0.86, where λ is the wavelength based on the half-amplitude. This criterion was
formulated on the basis of experimental results for waves without trapped cores. We find that
this stability criterion also holds for our trapped-core waves. Symbols as in figure 11.

Nevertheless, it is interesting to note that, as c∗ tends to its asymptotic value for large
waves, σ̄ does not grow particularly rapidly, whereas the increase in Tw (corresponding
to longer waves) accounts for most of the growth in σ̄Tw. This suggests that it should
be possible to encounter the σ̄Tw = 5 boundary, provided one can generate waves with
sufficiently large wavelength.

It is worth briefly noting here that, while the calculation for σ̄ is robust, we found that,
for solicores, the value of Tw is quite sensitive to the details of the calculation. This stems
from the fact that the Ri < 1/4 region is typically contiguous to the core; therefore, at its
upper boundary (near the core) the fluid velocity in the frame of reference moving with
the wave is small, and increases rapidly with distance from the core. This is true also for
the DJL solutions; for a DJL calculation with a vertical resolution of ∆z/H = 6.25×10−3,
the calculated value of Tw fluctuates by about 10% between neighboring solutions. The
DJL results shown in figure 12(a) were filtered to remove these numerical fluctuations,
being careful to preserve the location where σ̄Tw first becomes nonzero. (Due to the
substantial computational cost, we also omitted the usual bounds on the DJL results in
this figure.) Recently, Lamb & Farmer (2011) formulated a similar stability criterion by
solving the spatial stability problem, which offers more robust results for trapped-core
waves. However, this is outside the scope of our current study.

Based on experimental results involving two homogenous layers separated by a sizable
linearly stratified region, Fructus et al. (2009) proposed a simpler instability criterion,
defined by the threshold LRi<1/4/λ = 0.86. Here, LRi<1/4 is the length of the region
outside the core with Ri < 1/4, whereas λ is the wavelength based on the wave’s half-
amplitude (that is, λ is the horizontal extent of the region where the magnitude of the
interface displacement is at least half of its largest value). A plot of LRi<1/4/λ is reported
in figure 13(a). Our results, corresponding to stable waves, are all below 0.86, consistently
with the criterion of Fructus et al. (2009).

Finally, we should briefly note that, for similar values of h/H and c∗, Carr et al. (2008)
found instabilities of varying degree (as summarized by their table 1), whereas all our
results show stable waves. The reason for the discrepancy is not immediately clear. We
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hypothesize that this difference in stability properties might be attributable to some
unsteady effects dependent on the initial conditions. This dependence would have been
substantially mitigated in our results, through the introduction of the steadiness criterion
embodied by (4.1).

7. Conclusions

In this paper, we employed a recently devised experimental technique, enabling si-
multaneous, co-planar measurements of velocity and density using pulsed lasers, and
investigated the structure and stability of solitary internal waves with trapped cores (for
brevity, we refer to these flows as “solicores”).

We first examined waves propagating near a free surface; in this case, all solicores ex-
hibited a strong shear instability. We proposed that Marangoni effects are to blame for
this instability. These effects arise as a consequence of a strong convergent surface flow
associated with the front of the trapped core, thereby locally accumulating surfactant,
leading to strong surface-tension-driven shear on the surface, ahead of the wave. When
this shear layer interacts with the core, it is subducted into the fluid interior, becom-
ing susceptible to Kelvin-Helmholtz instability. We used our velocity data to perform
quantitative calculations that support this hypothesis.

This deduction led us to performing experiments with a no-slip lid, where we observed
robust waves with large cores. For very large amplitudes, we found it useful to complement
our results with viscous numerical simulations, employing a longer virtual tank, which
allowed initial transient effects to dissipate.

We proposed computing the core region as a Lagrangian coherent structure (instead of
using a closed streamline, as had traditionally been done in the literature), as this enables
a more robust core definition. In addition, we introduced a steadiness criterion, based on
the measured core dynamics, and used this condition to select within our experiments a
family of quasi-steady, robust flows, which exhibits good collapse in wave properties.

Our simultaneous velocity and density data enabled us to characterize in detail the
core properties. The core circulation is small (at most, around 10% of the baroclinic wave
circulation) and is therefore expected to be dynamically unimportant. The core density
is essentially uniform (with the density standard deviation in the core region being less
than 4% of the full density range). This constitutes a key finding of this study, and
indicates that models with irrotational, uniform-density cores should be used to study
these waves.

We reported in detail the amplitude, circulation, energetics and core geometric prop-
erties of these waves. We find that these results are consistent with predictions from
Dubreil-Jacotin-Long (DJL) theory, except for an offset that is likely due to viscous
effects.

Finally, we used our results to test the empirical stability criteria of Troy & Koseff
(2005) and of Fructus et al. (2009). To this end, we computed fields of Richardson number,
and performed a temporal stability analysis based on a parallel-flow approximation near
the wave trough, using the Taylor-Goldstein equation. We found that all of our stable
waves are indeed on the “stable” side of each instability threshold, indicating that our
measurements for solicores are consistent with these stability criteria.

A number of interesting directions remain to be pursued. As noted earlier in this
section, DJL predictions and experimental results, while consistent with each other, show
a perceivable offset, which is likely due to finite-Re effects. It would be of interest to repeat
some of these experiments at a larger-scale facility, such as the one described by Grue
et al. (2000). It would also be valuable to develop a refinement of DJL theory that would
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account for this offset, as this would enable a precise comparison between DJL theory
and laboratory data, even for smaller-scale facilities. Furthermore, it would be interesting
to perform a linear stability analysis of the complete, two-dimensional flow, as this would
reveal the detailed structure of each instability that can arise in these waves. We hope
to report our progress on some of these questions in a future paper.
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