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A genome-wide investigation into 
the underlying genetic architecture 
of personality traits and overlap with 
psychopathology

Personality is influenced by both genetic and environmental factors and 
is associated with other psychiatric traits such as anxiety and depression. 
The ‘big five’ personality traits, which include neuroticism, extraversion, 
agreeableness, conscientiousness and openness, are a widely accepted and 
influential framework for understanding and describing human personality. 
Of the big five personality traits, neuroticism has most often been the focus of 
genetic studies and is linked to various mental illnesses, including depression, 
anxiety and schizophrenia. Our knowledge of the genetic architecture of the 
other four personality traits is more limited. Here, utilizing the Million Veteran 
Program cohort, we conducted a genome-wide association study in individuals 
of European and African ancestry. Adding other published data, we performed 
genome-wide association study meta-analysis for each of the five personality 
traits with sample sizes ranging from 237,390 to 682,688. We identified 208, 
14, 3, 2 and 7 independent genome-wide significant loci associated with 
neuroticism, extraversion, agreeableness, conscientiousness and openness, 
respectively. These findings represent 62 novel loci for neuroticism, as 
well as the first genome-wide significant loci discovered for agreeableness. 
Gene-based association testing revealed 254 genes showing significant 
association with at least one of the five personality traits. Transcriptome-wide 
and proteome-wide analysis identified altered expression of genes and 
proteins such as CRHR1, SLC12A5, MAPT and STX4. Pathway enrichment and 
drug perturbation analyses identified complex biology underlying human 
personality traits. We also studied the inter-relationship of personality 
traits with 1,437 other traits in a phenome-wide genetic correlation analysis, 
identifying new associations. Mendelian randomization showed positive 
bidirectional effects between neuroticism and depression and anxiety, while 
a negative bidirectional effect was observed for agreeableness and these 
psychiatric traits. This study improves our comprehensive understanding of 
the genetic architecture underlying personality traits and their relationship to 
other complex human traits.
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so far. To gain insights into the biology of these traits, we performed 
transcriptome-wide association studies (TWAS) and proteome-wide 
association studies (PWAS) followed by pathway and drug perturba-
tion analyses and variant fine-mapping. We also studied the overlap of 
these personality traits with anxiety and other complex traits through 
phenome-wide genetic correlations and conditional analyses. We 
performed drug perturbation analyses with genes associated with 
neuroticism and found convergence on drugs for major depressive 
disorder (MDD). Finally, we conducted Mendelian randomization (MR) 
experiments to investigate the causal relationship of neuroticism and 
agreeableness, the two most genetically divergent traits, with depres-
sion and anxiety.

Results
MVP GWAS
In the EUR GWAS in the MVP cohort, we identified in total 34 unique 
independent genomic loci significantly associated (P value <5 × 10−8) 
with at least one of the five personality traits (Table 1). The highest num-
bers of loci were found for extraversion and neuroticism (11 for each) 
while conscientiousness showed only two loci. In the MVP we identified 
4,036 GWS variants (P < 5 × 10−8) for neuroticism across 7 independent 
genomic loci harbouring genes including MAD1L1, MAP3K14, CRHR1, 
CRHR1-IT1 and VK2 (P < 5 × 10−8). Of these seven loci, two (rs2717043 
and rs4757136) were also reported to be GWS in Nagel et al.13. We identi-
fied 11 GWS loci for extraversion, the largest number of GWS loci to be 
identified for this trait. Associations for extraversion were found near 
several genes, including CRHR1, MAPT and METTL15 (total 90 genes). 
For the two conscientiousness loci, the first locus maps to a region 
near the genes FOXP2, PPP1R3A and MDFIC and the second locus maps 
to the ZNF704 gene, all of which are protein coding genes. For open-
ness, 7 loci were identified spanning over 39 genes, including BRMS1, 
RIN1 and B3GNT1. For agreeableness, 3 loci were identified spanning 
19 genes, including SOX7, PINX1 and FOXP2. The Manhattan plots for 
all five traits are shown in Supplementary Fig. 1.

Two GWS variants were found for agreeableness in the African 
ancestry (AFR) sample. Variants rs2393573 (effect size, −0.106; standard 
error of the mean (s.e.m.), 0.018; 95% confidence interval (CI) −0.071, 
0.141; P = 7.502 × 10−9) and rs112726823 (effect, −0.720; s.e.m., 0.130; 
95% CI 0.465, 0.975; P 3.268 × 10−8) mapped near CCDC6 and ARHGAP24. 
We did not find any GWS variants for any of the other four personality 
traits in the AFR sample; the multiple subthreshold findings from this 
analysis may reach the GWS threshold in a larger sample. A list of lead 
independent SNPs found in the AFR sample for each trait is provided 
in Supplementary Tables 1–5.

Meta-analysis in EUR populations
The meta-analysis for neuroticism showed associations with 208 inde-
pendent GWS loci. The increased power due to the inclusion of MVP data 
resulted in the identification of 79 additional GWS loci, which were not 
significant in the previous study13. Only five loci identified previously 
(rs1763839, rs2295094, rs11184985, rs579017 and rs76923064) were 
no longer significant in our meta-analysis. A total of 17 loci of these 79 
have also been discovered in the polygenic index study (Supplementary 
Table 6). Thus, we found 62 novel loci associated with neuroticism in our 
meta-analysis. SNPs and loci were mapped to genes based on chromo-
somal position, expression quantitative trait loci (eQTL) and chromatic 
interaction15. A total of 231 genes were found significant in the MAGMA 
(Multi-marker Analysis of GenoMic Annotation) gene-based test16. NSF, 
KANSL1, FMNL1, PLEKHM1 and CRHR1 (P < 2.850 × 10−40) were among the 
top significant hits. The largest number of significant loci are located 
on chromosome 11, followed by chromosome 1. The GWS associations 
also include two loci with variants rs7818437 (effect, −0.021; s.e.m., 
0.002; 95% CI −0.017, 0.025; P = 7.599 × 10−17) and rs76761706 (effect, 
−0.035; s.e.m., 0.002; 95% CI −0.031, 0.039; P = 2.850 × 10−40) located 
in inversion regions on chromosome 8 and 17, respectively. Variants 

Personality dimensions influence behaviour, thoughts, feelings and 
reactions to different situations. A valuable construct within the field 
of psychological research has converged on five different dimensions 
to characterize human personality: neuroticism, extraversion, agreea-
bleness, conscientiousness and openness1,2. Personality dimensions 
could be playing an important role in the susceptibility and resilience 
to diagnosis of psychiatric disorders and their relationship with other 
health-related traits and responses to treatment.

The last decade has seen an increasing interest in understanding 
the dimensions of human personality through the lens of genetics. 
Depression is one mental disorder that has been studied with respect 
to its relationship to personality traits, with a large portion of genetic 
risk for depression being captured by neuroticism3. The same study 
found a modest negative association of genetic depression risk with 
conscientiousness, with small contributions from openness, agreeable-
ness and extraversion. Neuroticism is one of the most studied dimen-
sions of the ‘big five’ personality traits and numerous studies have 
found positive correlations with depression, anxiety and other mental 
illnesses3–5. Schizophrenia has also been associated with personality  
traits, especially neuroticism, which has been shown to increase risk 
for diagnosis6. A study using data from the Psychiatric Genomics Con-
sortium (PGC) and personal genomics company 23andMe found two 
genomic loci to be common between neuroticism and schizophre-
nia. This study also reported six loci shared between schizophrenia  
and openness7.

The past 15 years have seen an explosion in the use of the 
genome-wide association study (GWAS). In 2010, Marleen de moor 
et al. from the Genetics of Personality Consortium (GPC) published a 
GWAS of the ‘big five’ personality traits conducted with 17,375 adults 
from 15 different samples of European ancestry (EUR)8. This study 
found two genome-wide significant (GWS) variants near the RASA1 gene 
on 5q14.3 for openness and one near KATNAL2 on 18q21.1 for conscien-
tiousness but no significant associations for other personality traits. 
GPC then conducted studies on extraversion and neuroticism in their 
second phase and meta-analyses were performed. A GWAS of neuroti-
cism that was conducted on approximately 73,000 subjects identified 
rs35855737 in the MAG1 gene as a GWS variant9. Although the sample 
size was increased substantially to 63,030 subjects in phase II, no GWS 
variants were detected for extraversion in that study10. In 2016, Lo et al. 
identified six loci associated with different personality traits, includ-
ing loci for extraversion11. A paper that investigated neuroticism along 
with subjective well-being and depressive symptoms leveraging the UK 
Biobank (UKB) and other published data12 was published this same year. 
A more detailed picture of neuroticism genetics was presented by Nagel 
et al. 201813, where the authors collected neuroticism genotype data of 
372,903 individuals from the UKB and performed a meta-analysis by 
combining the summary statistics from this UKB sample, 23andMe and 
GPC phase 1 samples, increasing the total sample size to 449,484. They 
identified a total of 136 loci and 599 genes showing GWS associations to 
neuroticism. In 2021, Becker et al. conducted a polygenic index study 
and created a resource with GWAS meta-analysis summary statistics 
combining different data cohorts for a large number of traits, includ-
ing neuroticism, thus increasing the total sample size of neuroticism 
meta-analysis to 484,560 and increasing the number of novel GWS loci 
(although this was not the focus of this work)14. They also identified six 
genomic loci for extraversion.

In this work, we conducted GWAS of each of the ‘big five’ person-
ality traits in a sample of ~224,000 individuals with genotype data 
available from the Million Veteran Program (MVP). Using linkage dise-
quilibrium score regression (LDSC), we estimated the single-nucleotide 
polymorphism (SNP)-based heritability of each of the five personality 
traits. We then combined the MVP data with other sources of person-
ality GWAS summary statistics from GPC and UKB and performed 
meta-analyses for each of the five personality traits, including as many 
as ~680,000 participants for the largest meta-analysis of neuroticism 
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in these two inversion regions were also previously reported to be 
significantly associated with neuroticism in the study by Okbay et al.12.

For extraversion, after meta-analysing the MVP and GPC data, 
the number of significant loci increased to 14. The lead signals were 
located on chromosomes 1–6,11,12, 17 and 19. The most significant 
locus harbours genes in/near WSCD2 (P < 3.449 × 10−11) located on 
chromosome 12.

Chromosome 11 contains significant variant associations from 
three traits, namely neuroticism, extraversion and agreeableness, 
with neuroticism and extraversion both having findings near the ‘basic 

helix-loop-helix ARNT like 1’ (ARNTL1, also known as BMAL1) gene, 
with opposing and significant direction of effect at common variants. 
Complete information of all identified significant loci for each of the 
five traits with full statistics is provided in Supplementary Tables 6–10. 
The cohorts used in meta-analysis are depicted in Fig. 1a. Manhattan 
plots for meta-analyses of each of the five traits are depicted in Fig. 2.

Trans-ancestry analysis
We performed trans-ancestry meta-analysis of the five personality  
traits combining EUR and AFR GWAS for each of the five traits 

Table 1 | Genomic loci identified in the MVP cohort for the five personality traits

Lead SNP Position Effect size s.e.m. P Gene

Neuroticism

rs4129585 8:143312933:C:A −0.05241 0.006589 1.80027 × 10−15 TSNARE1

rs574307253 17:43667635:G:A 0.059817 0.007909 3.95325 × 10−14 –

rs116956554 17:44699851:A:G 0.057427 0.008282 4.09437 × 10−12 NSF

rs2001433 8:10903475:A:T 0.046409 0.006702 4.38959 × 10−12 XKR6

rs7396943 11:13328979:C:G 0.046283 0.006822 1.16916 × 10−11 BMAL1

rs7825636 8:8578229:G:C 0.04446 0.006712 3.49922 × 10−11 –

rs6948912 7:2076701:T:C −0.04524 0.007191 3.14987 × 10−10 MAD1L1

rs2139053 2:58156539:C:T 0.042452 0.006905 7.86894 × 10−10 –

rs615632 8:9796321:T:C 0.040914 0.00673 1.20538 × 10−9 –

rs117713019 8:143444050:T:C 0.08952 0.015421 6.4366 × 10−9 TSNARE1

rs6498809 16:61833811:T:C 0.03672 0.006642 3.23728 × 10−8 CDH8

Extraversion

rs35424804 11:13248730:T:C 0.037166 0.005994 5.6352 × 10−10 –

rs17688916 17:43778680:A:T −0.04406 0.007384 2.41754 × 10−9 –

rs12971383 19:31876692:C:A 0.054198 0.009231 4.33065 × 10−9 –

rs3764002 12:108618630:T:C −0.03928 0.006717 4.97048 × 10−9 WSCD2

rs1011501 5:93008722:C:T −0.03858 0.006619 5.60839 × 10−9 FAM172A

rs35918640 17:79452756:AT:A 0.034989 0.006064 7.93604 × 10−9 –

rs5831479 2:58167698:G:GA −0.03516 0.006154 1.10698 × 10−8 –

rs11209774 1:71834574:G:T −0.03406 0.005964 1.12553 × 10−8 –

rs7606514 2:185130889:G:A −0.04297 0.007632 1.79308 × 10−8 –

rs7739331 6:92315317:T:G −0.03211 0.005872 4.5495 × 10−8 −

rs1444978 4:85363489:C:T 0.036666 0.0067175 4.81211 × 10−8 −

Agreeableness

rs17137124 7:114210814:C:T −0.03273 0.005234 3.99629 × 10−10 FOXP2

rs7833945 8:10700266:G:T −0.03161 0.005375 4.05674 × 10−9 −

rs7240986 18:53195249:A:G −0.0307 0.005464 1.92256 × 10−8 TCF4

Conscientiousness

rs78446248 8:81443461:A:G −0.08581 0.014907 8.61644 × 10−9 −

rs936145 7:114297180:A:G −0.0331 0.005848 1.50791 × 10−8 FOXP2

Openness

rs7570 11:66610645:C:G −0.04711 0.006439 2.54365 × 10−13 C11orf80

rs117890891 6:135928772:G:T 0.145052 0.023233 4.28749 × 10−10 −

rs919013 4:152945667:C:T 0.033444 0.005625 2.7658 × 10−9 −

rs6996198 8:65463442:T:C −0.04602 0.007788 3.43929 × 10−9 −

rs6725323 2:29377923:T:A −0.03361 0.005991 2.03021 × 10−8 CLIP4

rs61689447 9:35777442:G:G:TT −0.03312 0.005946 2.55878 × 10−8 −

rs11996715 8:141647291:A:C 0.030703 0.005588 3.91526 × 10−8 −

http://www.nature.com/nathumbehav
https://www.ncbi.nlm.nih.gov/snp/?term=rs4129585
https://www.ncbi.nlm.nih.gov/snp/?term=rs574307253
https://www.ncbi.nlm.nih.gov/snp/?term=rs116956554
https://www.ncbi.nlm.nih.gov/snp/?term=rs2001433
https://www.ncbi.nlm.nih.gov/snp/?term=rs7396943
https://www.ncbi.nlm.nih.gov/snp/?term=rs7825636
https://www.ncbi.nlm.nih.gov/snp/?term=rs6948912
https://www.ncbi.nlm.nih.gov/snp/?term=rs2139053
https://www.ncbi.nlm.nih.gov/snp/?term=rs615632
https://www.ncbi.nlm.nih.gov/snp/?term=rs117713019
https://www.ncbi.nlm.nih.gov/snp/?term=rs6498809
https://www.ncbi.nlm.nih.gov/snp/?term=rs35424804
https://www.ncbi.nlm.nih.gov/snp/?term=rs17688916
https://www.ncbi.nlm.nih.gov/snp/?term=rs12971383
https://www.ncbi.nlm.nih.gov/snp/?term=rs3764002
https://www.ncbi.nlm.nih.gov/snp/?term=rs1011501
https://www.ncbi.nlm.nih.gov/snp/?term=rs35918640
https://www.ncbi.nlm.nih.gov/snp/?term=rs5831479
https://www.ncbi.nlm.nih.gov/snp/?term=rs11209774
https://www.ncbi.nlm.nih.gov/snp/?term=rs7606514
https://www.ncbi.nlm.nih.gov/snp/?term=rs7739331
https://www.ncbi.nlm.nih.gov/snp/?term=rs1444978
https://www.ncbi.nlm.nih.gov/snp/?term=rs17137124
https://www.ncbi.nlm.nih.gov/snp/?term=rs7833945
https://www.ncbi.nlm.nih.gov/snp/?term=rs7240986
https://www.ncbi.nlm.nih.gov/snp/?term=rs78446248
https://www.ncbi.nlm.nih.gov/snp/?term=rs936145
https://www.ncbi.nlm.nih.gov/snp/?term=rs7570
https://www.ncbi.nlm.nih.gov/snp/?term=rs117890891
https://www.ncbi.nlm.nih.gov/snp/?term=rs919013
https://www.ncbi.nlm.nih.gov/snp/?term=rs6996198
https://www.ncbi.nlm.nih.gov/snp/?term=rs6725323
https://www.ncbi.nlm.nih.gov/snp/?term=rs61689447
https://www.ncbi.nlm.nih.gov/snp/?term=rs11996715


Nature Human Behaviour | Volume 8 | November 2024 | 2235–2249 2238

Article https://doi.org/10.1038/s41562-024-01951-3

a

c

b

–1

1
Agreeableness

(4.1%) 
Extraversion

(5.1%)
Openness

(4.7%)
Conscientiousness

(4.7%)

Neuroticism
(7.8%) –0.51 –0.25 0.01 –0.12

Agreeableness 0.16 0.06 0.21

Extraversion 0.26 0.12

Openness 0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Low High

Conscientiousness–agreeableness
Openness–agreeableness
Conscientiousness–extraversion
Extraversion–agreeableness
Extraversion–openness
Neuroticism–conscientiousness
Neuroticism–agreeableness
Neuroticism–extraversion

Chromosome

GPC

Neuroticism
N = 682,688

Agreeableness
N = 252,749

Extraversion
N = 298,772

Openness
N = 237,390

Conscientiousness
N = 252,253

GPC  phase I
N = 17,375
Marleen de Moor et al., 2010,
Mol. Psychiatry 

GPC phase II
N = 63,030
Stephanie Berg et al., 2016,
Behav. Genet. 

N = ~240,000 
M. Nagel et al. 2018,

Nat. Genet.
N = ~449,484

+

Fig. 1 | Personality GWAS meta-analysis and genetic correlations among the 
five personality traits. a, Data collection of the five personality traits. b, Genetic 
correlation matrix among the five personality traits (meta-data). The heritability 

value of the respective trait is written in parenthesis. c, A karyogram showing 
the regions with significant local genetic correlation (rG > 0.3) between different 
personality traits.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 8 | November 2024 | 2235–2249 2239

Article https://doi.org/10.1038/s41562-024-01951-3

Neuroticism

Extraversion

Agreeableness

Conscientiousness

Openness

1 2
0

10

20

30

40

3 4 5 6 7 8

Chromosome

–l
og

10
(P

)
–l

og
10

(P
)

9 10 11 12 13 14 15 17 19 21

1 2 3 4 5 6 7 8

Chromosome
9 10 11 12 13 14 15 17 19 21

1 2 3 4 5 6 7 8

Chromosome
9 10 11 12 13 14 15 17 19 21

1 2 3 4 5 6 7 8

Chromosome
9 10 11 12 13 14 15 17 19 21

1 2 3 4 5 6 7 8

Chromosome
9 10 11 12 13 14 15 17 19 21

0

2

4

6

8

10

12

14

–l
og

10
(P

)

0

2

4

6

8

10

12

14

–l
og

10
(P

)

0

2

4

6

8

10

12

14

–l
og

10
(P

)

0

2

4

6

8

10

12

14

Fig. 2 | Meta-analysis data GWAS Manhattan plots of the five personality traits. The GWS variants in light-green colour. Reported P values are two-sided and not 
corrected for multiple testing. GWS threshold (P = 5 × 10−8) is used to define significant variants and depicted by red line.
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using inverse variance weighing in METAL17. For neuroticism, the 
trans-ancestry analysis identified a total of 216 GWS loci, of which 16 
are novel, that is, they were not GWS in the EUR meta-analysis (Supple-
mentary Tables 11–15). Of the 208 GWS loci for neuroticism in the EUR 
meta-analysis, 200 remained GWS in trans-ancestry analysis, while the 
remaining 8 showed a marginally higher P value and thus do not pass 
the threshold for being GWS in trans-ancestry. For agreeableness and 
conscientiousness, in addition to the loci that were shown to be GWS in 
their respective EUR meta-analysis, two more novel loci (rs140242735 
located on chromosome 8 and rs10864876 located on chromosome 2 
for agreeableness and conscientiousness, respectively) were identified 
as GWS in the trans-ancestry analysis. In case of openness, two loci 
out of the three that identified as GWS in EUR remained GWS in the 
trans-ancestry analysis. For extraversion, in total 13 were identified as 
GWS in the trans-ancestry analysis, of which 10 were also GWS in the 
EUR meta-analysis and 3 were newly identified.

TWAS
We performed TWAS for each of the ‘big five’ personality traits in EUR 
(meta-analysis) using FUSION18 and the GWAS summary statistics. 
We performed a multi-tissue TWAS in 13 different brain subtissues 
and blood using their respective expression profiles from Genotype 
Tissue-Expression project (GTEx v8)19. From a total 10,386 genes tested, 
we identified a total 175, 24, 5, 1 and 11 genes showing significant gene–
trait associations across the 13 subtissues in neuroticism, extraversion, 
agreeableness, conscientiousness and openness, respectively, after 
Bonferroni correction for 135,018 tests (10,386 genes across 13 tissues) 
(Fig. 3a). Figure 3a shows the distribution of associations found across 
the 13 tissues for each trait. The highest number of gene–trait associa-
tions were found in brain caudate basal ganglia, cerebellum, cerebral 
hemisphere and frontal cortex regions for neuroticism and extraver-
sion, while fewer TWAS gene–trait associations were identified for the 
other three personality traits, presumably owing to the comparatively 
lower power of their respective GWAS datasets.

CRHR1, KANSLI1-AS1 and MAP-IT1 are among the top TWAS gene 
associations (P < 1.32 × 10−23) for neuroticism (Fig. 3b). The strong 
association of CRHR1 (encoding corticotropic-releasing hormone 
receptor), which in some prior work has been shown to be associated 
with treatment response to depression20, may suggest some common 
underlying elements regulating both neuroticism and depression. 
Extraversion also shows strong gene–trait associations with CRHR1, 
KANSL1-AS1 and MAPT-IT1 but with an opposite direction of effect to 
neuroticism. This may indicate some common genetic components 
whose differential behaviour regulates neuroticism and extraversion. 
There are nine such genes showing opposite direction of effect in neu-
roticism and extraversion (Supplementary Table 3).

LOC10271024064 and LRFN4 showed the strongest associations 
with openness and LINCR-0001 and FAM167A showed the strong 
associations with agreeableness, while only one gene, AP1G1, showed 
association with conscientiousness in the 13 tissues considered. The 
complete list of all GWS TWAS gene hits for the five personality traits 
is provided in Supplementary Table 22.

PWAS
We investigated the association of personality traits with protein 
expression using PWAS. Based on the availability of protein profiles 
and the observed TWAS signal, dorsolateral prefrontal cortex brain 
protein profiles were chosen for the PWAS analysis. The PWAS identi-
fied 47 proteins to be significantly associated with neuroticism. Next, 
we checked the colocalization signal for these PWAS lead genes. Out 
of 47 PWAS lead genes, 35 genes showed a colocalization signal (H4 
probability >0.5).

Five, two, two and four proteins were discovered for extraversion, 
agreeableness, conscientiousness and openness, respectively (Fig. 4). A 
complete list of all PWAS lead genes is provided in Supplementary Table 23.

LDSC
We first used LDSC to calculate SNP-based heritability of each of the 
five personality traits within the MVP EUR cohort. The intercepts of the 
LDSC indicated no evidence for population stratification, with observed 
values of 1.01, 1.02, 0.99, 1.02 and 1.00 for neuroticism, extraversion, 
agreeableness, conscientiousness and openness, respectively. The 
SNP heritability ranges from 4% to 7% (Supplementary Fig. 2), with 
extraversion showing the highest heritability point estimate of all traits 
(neuroticism h2 = 0.0655; s.e.m., 0.004; 95% CI 0.058, 0.073; agreea-
bleness h2 = 0.042; s.e.m., 0.003; 95% CI 0.036, 0.048; extraversion 
h2 = 0.071; s.e.m., 0.003; 95% CI 0.065, 0.077; openness h2 = 0.048; 
s.e.m., 0.003; 95% CI 0.042, 0.054; and conscientiousness h2 = 0.047; 
s.e.m., 0.003; 95% CI 0.041, 0.053).

For the MVP AFR cohort, cov-LDSC was utilized to estimate per-
sonality heritabilities (Methods)21. Relative to the MVP EUR cohort, 
neuroticism and extraversion showed lower heritability (4.47% and 
3.30%, respectively) in the AFR cohort, while for agreeableness, 
the heritability was similar (4.24%) (Supplementary Table 1). The 
values were not significant for conscientiousness and openness  
in AFR.

Before combining the MVP cohort-derived summary statis-
tics with other data sources, we calculated the genetic correlation 
between the MVP personality summary statistics and other respective 
sources (Supplementary Table 2). A correlation coefficient value of 
0.80 (s.e.m., 0.02) observed for the neuroticism summary statistics 
from the MVP cohort and Nagel et al. study13 suggests that there is 
limited heterogeneity between the two datasets and supports their 
use in a meta-analysis. As shown in Supplementary Table 2, the genetic 
correlations were high for all other four traits across data sources  
as well.

LDSC was used to estimate SNP-based heritability in the EUR  
participants for each personality trait in the meta-analysis. The SNP 
heritability values in the meta-analyses were similar to what was 
observed in the MVP-only cohort for the different traits in the EUR, 
with a decrease in heritability of extraversion from 7.1% to 5.1% (Fig. 1b).

Genetic correlation estimates were also obtained between the 
meta-analysis summary statistics for the five personality traits. We 
found a significant degree of varying genetic overlap among the five 
personality traits. The genetic correlations are presented in Fig. 1b. The 
highest correlation is observed between neuroticism and agreeable-
ness with a rG = −0.51 (s.e.m., 0.030; P = 3.813 × 10−64).

Next, we estimated the genetic correlations of 1,437 traits listed 
in the Complex Traits Genetics Virtual Lab22 summary statistics record 
to find other traits related to the five personality traits (Supplemen-
tary Tables 16–20). A total of 325 traits showed significant genetic 
correlation following multiple testing correction to one or more per-
sonality traits. We found MDD and anxiety showed varying degrees 
of significant correlations to different personality traits as shown in 
Fig. 5. The highest genetic correlation is between neuroticism and 
anxiety (rG = 0.80). Neuroticism and agreeableness both show high 
genetic correlations to these traits, but in opposite directions with MDD 
(neuroticism rG = 0.68; s.em. 0.02; P < 5.00 × 10−100 and agreeableness 
rG = −0.35; s.e.m. 0.04; P = 1.53 × 10−22), manic behaviour (neuroticism 
rG = 0.44; s.e.m. 0.08; 95% CI 0.641, 0.719; P = 1.11 × 10−8 and agreeable-
ness rG = −0.35; s.e.m. 0.11; 95% CI −0.134, 0.566; P = 1.556 × 10−3), anxiety 
(neuroticism rG = 0.80; s.e.m. 0.06; 95% CI 0.682, 0.918; P = 1.54×10−46 
and agreeableness rG = −0.32; s.e.m. 0.08; 95% CI −0.163, 0.477; 
P = 7.28 × 10−5) and irritability (neuroticism rG = 0.70; s.e.m. 0.02; 95% 
CI 0.661; 0.739, P < 5.00 × 10−100 and agreeableness rG = −0.62; s.e.m. 
0.04; 95% CI −0.542, 0.698; P = 9.76 × 10−61).

Local genetic correlations
Global genetic correlations use the average squared signal over the 
entire genome, which may sometimes mask opposing local correlations 
in different genomic regions. To counter that, we also calculated the 
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local genetic correlations among the five personality trait pairs using 
Local Analysis of [co]Variant Association (LAVA)23. All personality pairs 
showed varying degree of correlation in different genomic regions 
except for the neuroticism–openness pair, which showed negligible 

global (rG = −0.01) and no local genetic correlation between the two. 
The highest number of correlated genomic chunks were found for 
neuroticism–extraversion and neuroticism–openness pairs (Fig. 1c 
and Supplementary Table 21).

Tissue
Blood
Brain amygdala
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Fig. 3 | Transcriptome wide association study. a, A bar chart showing the 
number of significant TWAS genes per transcripts found of four personality traits 
with significant findings in respective subtissues. Scatter plots of neuroticism 
(b), agreeableness (c), extraversion (d) and openness (e) with TWAS z-scores 
of each gene transcript plotted on the y axis and its respective chromosomal 

location plotted on the x axis. The significant hits are shown in red circles with 
mapped gene names as labels. The blue horizontal line indicates the significance 
threshold of the z-score corresponding to the Bonferroni-corrected, two-sided  
P value. Conscientiousness data is reported in Supplementary Table 22.
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Variant fine-mapping
To identify well-supported possible causal variants from the large 
list of SNPs showing associations with the personality traits, we per-
formed genome-wide variant fine-mapping using PolyFun24. In total, 
166 unique variants were fine-mapped across the five personality traits. 
The number of variants fine-mapped for neuroticism, extraversion, 
agreeableness, conscientiousness and openness were 155, 8, 4, 7 and 
3, respectively. The complete list of variants fine-mapped for each of 
the personality traits is provided in the Supplementary Tables 24–28.

Relationship between personality and psychiatric disorders
We performed additional analyses to help understand the signifi-
cant differential genetic correlation observed between neuroticism 
and agreeableness with different psychiatric disorders such as MDD  
and anxiety.

Conditional analysis
Because the genetic correlation between anxiety and neuroticism 
was so high, we performed multi-trait-based conditional and joint 
analysis of neuroticism summary statistics conditioned on anxiety and 
MDD summary statistics individually. The anxiety and MDD summary 

statistic used is based on data from UKB, MVP and PGC with individu-
als of EUR ancestry (see Methods for details). We performed a similar 
analysis with agreeableness, which had a negative correlation with 
both MDD and anxiety, as a negative control.

After conditioning on MDD, the SNP heritability of the conditioned 
neuroticism summary statistic reduced significantly from 7.8% to 3% 
(Table 2). Out of the original 208 GWS leads, only 42 remained signifi-
cant after conditioning, indicating there is substantial genetic overlap 
between neuroticism and MDD, which gets removed after conditioning. 
In case of conditioning on anxiety, again there is a decrease in neu-
roticism heritability, but to a lesser extent (Table 2). On conditioning 
agreeableness on MDD and anxiety, no significant reduction in herit-
ability was observed. However, loss of one genomic locus, rs7240986 
(18:53195249:A:G), was observed after conditioning on either anxiety 
or MDD for agreeableness.

Drug perturbation analysis
We performed a drug perturbation analysis to find drug candidates for 
neuroticism-enriched genes using gene2drug software25. Gene2drug 
utilizes the Connectivity Map transcriptomics data of ~13,000 cell 
lines exposed to different drugs, and based on these gene expression 
profiles and then pathway expression profiles (PEPs), it first matches 
the query gene to its pathway and then to its potential candidate drug. 
This analysis predicted 298 unique drugs to correspond to the 231 
significantly associated neuroticism genes. The top-scoring drug was 
found to be desipramine, which is a tricylic antidepressant. Some of 
the other drugs predicted are flupenthixol (anti-psychotic), tetryzoline 
(α-adrenergic agonist), doxorubicin (anthracycline/chemotherapy) and 
digitoxigenin (cardenolide). Based on these results, we repeated the 
drug perturbation analysis with depression-enriched genes. While there 
were only 51 genes common between neuroticism and depression gene 
sets, there was a convergence on drugs in the perturbation analysis. 
Out of 286 and 298 drugs predicted for depression and neuroticism, 
respectively, 167 drugs were common to both. The complete list of 
drugs is presented in Supplementary Tables 29 and 30.

MR
After establishing genetic overlap of neuroticism with MDD and anxi-
ety, we carried out an MR analysis to explore the possibility of a causal 
relationship between genetic risk for neuroticism and MDD or anxiety. 
The results of the MR analysis using different methods are presented 
in Table 3. The results of MR indicate a bidirectional causal effect, with 
the exposure of MDD on neuroticism outcome showing an inverse 
variance weighting (IVW) effect value of 0.429 at a significant P value 
(2.072 × 10−85). The exposure of neuroticism on MDD shows a higher 
causal effect value of 0.834 with a significant P value (6.413 × 10−103). 
We performed sensitivity analysis of MR using MRlap, which corrects 
for different sources of bias, including sample overlap, because there 
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are overlapping participants between the exposure and outcome  
datasets26. With MRlap, we observe similar results with positive sig-
nificant corrected β values in MRlap performed between MDD and 
neuroticism in both directions (Supplementary Table 4).

We also investigated the casual relationship of neuroticism with 
anxiety. On performing MR with anxiety exposure on neuroticism, we 
found a β value of 0.179 (P = 1.248 × 10−15) and a corrected β value with 
MRlap of 0.531 (P = 7.781 × 10−14) showing evidence of causality. On 
reversing the direction, the causality effect was stronger as seen by 
higher β value of 0.70 (P = 5.767 × 10−61) with MR and corrected β value of 
0.548 (P = 1.129 × 10−40) with MRlap. This suggests that there is stronger 
evidence of causal effect of neuroticism on anxiety as compared with 
the reverse based on the genetic susceptibility. GWAS of anxiety and 
anxiety disorders are still relatively underpowered compared with 
neuroticism, limiting the number of available genetic instruments 
available for testing as exposures.

We investigated the causal effect of agreeableness on MDD and 
anxiety and vice versa. In the case of MR of MDD exposure on agreea-
bleness outcome, a β value of −0.284 (P = 5.775 × 10−13) was observed 
indicating negative causal effect of MDD on agreeableness (Table 3 
and Supplementary Table 4). The causal effect is bidirectional with 
similar values observed in the opposite direction as well. The results 
are consistent with genetic correlation findings where negative cor-
relation was observed between agreeableness and MDD. MR analysis 
of agreeableness and anxiety also indicated bidirectional causal effect. 
However, here both the traits have limited instruments available.

Out-sample polygenic risk score prediction
We conducted polygenic prediction analysis to validate our findings 
using the Yale–Penn cohort27, which had NEO Personality Inventory 
(NEO PI-R) scores and genotype information available for 4,532 EUR 
individuals, and used those data to predict PRS for each of the big five 
personality traits (Methods). We found modest but significant r2 values 
in line with previous reports for all personality traits14: neuroticism 
of 2%, extraversion of 2%, openness of 2%, agreeableness of 3% and 
conscientiousness of 1%.

Discussion
We conducted a GWAS meta-analysis study of each of the ‘big five’ 
personality traits in a sample size of up to 682,688 participants. 
We combined original GWAS results from the MVP (available for 
all five traits) with summary statistics from the UKB (neuroticism 
only) and GPC (all traits except neuroticism) cohorts to perform a 
well-powered meta-analysis for EUR GWAS in each trait. We identi-
fied 468 independent significant SNPs associations mapping to 208 
independent genomic loci, of which one-third are novel. We identified 
231 significant gene associations with neuroticism in the gene-based 
analysis. The current study was also successful in identifying 23 sig-
nificant genomic locus associations for the four other personality 
traits studied, for which prior knowledge in the literature was very 
limited. In AFR, we found lower heritabilities for neuroticism and 
extraversion and no significant results for conscientiousness and 
openness. We identified two GWS variants for agreeableness in AFR. 
This is probably a reflection of low power and underlines the critical 

need to increase recruitment in underrepresented groups. Our work 
provides new data to inform the underlying genetic architecture of  
personality traits.

Neuroticism, the trait with the largest available sample size in this 
study, is characterized by emotional instability, increased anxiousness 
and low resilience to stressful events. As such, it has been the focus of 
previous efforts in GWAS. As seen previously, neuroticism overlaps 
substantially with psychopathology, where it is usually viewed as a 
precursor or risk factor for depressive and anxiety symptoms. Extraver-
sion had the second largest sample size and had the highest SNP-based 
heritability in the MVP. In our data, scoring high on extraversion was 
genetically correlated with risk-taking behaviours and had the second 
strongest negative genetic correlation with neuroticism. Agreeable-
ness assays show how someone relates with other people, that is, how 
trusting one is or how likely to find fault in others. This trait was the 
most negatively correlated with neuroticism and irritability as well as 
MDD, anxiety and manic symptoms. Conscientiousness items relate 
to discipline and thoroughness, with specific questions being ‘are you 
lazy’ and ‘does a thorough job’. This trait was most closely associated 
with ‘types of physical activity in last 4 weeks: ‘heavy do-it-yourself 
(DIY)’. Finally, openness 10-item Big Five Inventory (BFI-10) items assay 
imagination and artistic interest. Openness was positively associated 
with extraversion and risk taking in our data. Educational attainment 
was positively correlated with openness and negatively associated 
with neuroticism, while the other three personality traits showed 
essentially no such overlap (Fig. 5). Since these are self-reported items, 
they naturally reflect one’s own assessment of one’s personality traits, 
which might filter actual traits and behaviour through a lens of how one 
wishes to appear or be perceived.

Using these GWAS summary statistics, with excellent power for 
neuroticism and moderate power for the other traits, we investigated 
the heritability of the different personality traits and studied genetic 
correlations among them using LDSC. SNP-based heritability for all 
five personality traits in EUR were statistically significant. Out of all 
the personality pairs studied, the strongest relationship was a negative 
genetic correlation observed between neuroticism and agreeable-
ness (rG = −0.51, Fig. 1b). Examining the genetic correlations of the 
five personality traits with 1,437 external traits including depression 
(neuroticism rG = 0.68 and agreeableness rG = −0.35), manic behaviour 
(neuroticism rG = 0.44 and agreeableness rG = −0.35), anxiety (neuroti-
cism rG = 080 and agreeableness rG = −0.33) and irritability (neuroticism 
rG = 0.70 and agreeableness rG = −0.62) further reflected a pattern of 
opposing relationships between these traits (Fig. 5 and Supplementary 
Tables 16–20). We also calculated local genetic correlations between 
personality pairs using LAVA, which helped in identifying the genomic 
regions playing roles in differential overlap in the genetic architecture 
of personality. This analysis identified several regions where the effect 
direction differed from the whole genome genetic correlation.

The MVP, our discovery dataset, is one of the world’s largest 
biobanks and is a valuable resource for genetic studies. Some previ-
ously published personality trait studies had significant contribution 
from UKB data. It is important to quantify the heterogeneity in these 
independent cohorts and the different definitions of personality  
phenotype within each. We investigated the genetic correlation 

Table 2 | Conditional analysis

Primary trait Trait conditioned 
on

h2 (s.e.m.) No. of GWS loci 
before conditioning

h2 (s.e.m.) after 
conditioning

Z-difference P value No. of GWS loci after 
conditioning

Neuroticism Anxiety 0.078 (0.003) 208 0.05 (0.001) 8.85* 8.41e-19 96

Agreeableness Anxiety 0.041 (0.003) 3 0.034 (0.003) 1.65 0.01 2

Neuroticism MDD 0.078 (0.003) 208 0.03 (0.002) 13.31* 1.95e-40 42

Agreeableness MDD 0.041 (0.003) 3 0.036 (0.003) 1.18 0.24 2
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between traits defined on the basis of different inventories (BFI-
10, EPQ-RS and NEO-FFI) of personality ascertainment with differ-
ent cohorts, namely MVP, UKB (part of Nagel et al. study) and GPC, 
respectively. For neuroticism, Nagel et al. and MVP studies showed a 
high rG value of 0.80 making these two independent cohorts suitable 
for meta-analysis (Supplementary Table 1). Similarly, for extraver-
sion, NEO-FFI and two-item inventories showed high rG of 0.89 in the 
extraversion data of GPC and MVP studies. While for agreeableness, 

openness and conscientiousness, the rGs between MVP and GPC 
cohort were lower (0.63–0.72); this may be due to the small size of the 
GPC dataset for these traits and the correspondingly large standard 
errors around the point estimate. The point estimate is not necessarily 
biased in any particular direction, we only mean there is uncertainty. 
This limitation will be addressed by future GPC studies with larger 
sample sizes. No novel loci were identified in the meta-analysis with 
GPC for these traits.

Table 3 | Outcome of MR experiments performed using MR

Trait Two sample 
method

Exposure Outcome No. of 
instruments

β P Pleiotropy Heterogeneity

Neuroticism

IVW MDD Neuroticism 71 0.429 2.072 × 10−85 3.48 × 10−4 248.350

MR Egger 0.416 2.704 × 10−5 248.274

Weighed mean 0.363 4.585 × 10−68

Simple mode 0.351 3.102 × 10−9

Weighed mode 0.336 3.427 × 10−12

IVW Neuroticism MDD 114 0.834 6.413 × 10−103 2.55 × 10−5 369.516

MR Egger 0.791 7.795 × 10−5 369.340

Weighed mean 0.734 3.418 × 10−66

Simple mode 0.748 1.729 × 10−6

Weighed mode 0.704 3.772 × 10−6

IVW Anxiety Neuroticism 75 0.179 1.248 × 10−15 0.007 389.419

MR Egger −0.002 9.585 × 10−1 307.410

Weighed mean 0.101 1.182 × 10−9

Simple mode 0.081 9.700 × 10−4

Weighed mode 0.081 3.227 × 10−3

IVW Neuroticism Anxiety 126 0.700 5.767 × 10−61 −1.17 × 10−3 209.008

MR Egger 0.766 3.174 × 10−5 208.767

Weighed mean 0.706 8.209 × 10−40

Simple mode 0.821 2.764 × 10−6

Weighed mode 0.854 1.101 × 10−7

Agreeableness

IVW MDD Agreeableness 66 −0.284 5.775 × 10−13 9.31 × 10−4 118.501

MR Egger −0.273 1.181 × 10−1 118.492

Weighed mean −0.281 5.703 × 10−13

Simple mode −0.376 5.529 × 10−3

Weighed mode −0.376 3.823 × 10−3

IVW Agreeableness MDD 32 −0.221 4.164 × 10−6 −1.17 × 10−2 133.267

MR Egger 0.127 3.521 × 10−1 106.341

Weighed mean −0.172 6.621 × 10−5

Simple mode −0.261 2.316 × 10−2

Weighed mode −0.234 9.338 × 10−4

IVW Anxiety Agreeableness 68 −0.241 7.734 × 10−16 −5.40 × 10−3 102.166

MR Egger −0.112 1.135 × 10−1 96.094

Weighed mean −0.191 4.077 × 10−7

Simple mode −0.155 7.727 × 10−2

Weighed mode −0.172 4.346 × 10−2

IVW Agreeableness Anxiety 42 −0.224 1.157 × 10−8 −5.07 × 10−3 52.159

MR Egger −0.068 6.059 × 10−1 50.235

Weighed mean −0.198 1.436 × 10−4

Simple mode −0.188 1.395 × 10−1

Weighed mode −0.192 1.260 × 10−1
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TWAS revealed common genes with changes in gene expression 
but with opposite direction of effect for some personality traits. A study 
by Ward et al. in 2020 reported five of these genes (Supplementary 
Table 3) as eQTLs showing significant associations with mood instabil-
ity28. This is further supported by the local genetic correlation studies 
(Supplementary Sheet 5) where we found genomic region 45883902-
47516224 on chromosome 17, which harbours genes KANSL1-AS1, MAPT 
and MAPT-IT1, showing negative local genetic correlation between 
neuroticism and extraversion with a ρ value of −0.57 and r2 value of 0.32.

rs1876829, which maps to CRHR-Intronic Transcript 1, emerged 
as the lead SNP (P = 7.872 × 10−39) for neuroticism in the GWAS analysis. 
We also found multiple eQTL SNPs in this genomic region (rs8072451, 
rs17689471, rs173365 and rs11012) for the CRHR1 gene to be significantly 
associated (P value ranging from 1 × 10−5 to 1 × 10−37). The TWAS analysis 
showed significant association of this gene with neuroticism in nervous 
system tissues including caudate basal ganglia, frontal cortex, hippo-
campus and spinal cord cervical region. CRHR1 encodes the receptor 
of corticotropin-releasing hormone family, which are major regulators 
of the hypothalamic–pituitary–adrenal pathway29. Genetic variation in 
the corticotropin-releasing hormone system has been linked to several 
psychiatric illnesses30. Another study reported hypermethylation at 
corticotropin-releasing hormone-associated CpG site, cg19035496, in 
individuals with high general psychiatric risk score for disorders such as 
depression, anxiety, post-traumatic stress disorder and obsessive com-
pulsive disorder31. Further, a study by Gelernter et al. found that CRHR1 
significantly associated with re-experiencing post-traaumatic stress 
disorder symptoms32 and also maximum habitual alcohol intake33. This 
gene is also involved in hippocampal neurogenesis30, while reduced 
hippocampal activation is associated with elevated neuroticism34. This 
makes CRHR1 a good lead candidate to be followed in future studies to 
understand the molecular processes impacted by genetic variation 
underlying a range of psychiatric traits including neuroticism.

While gene expression associations give a wide array of informa-
tion on the involvement of different genes regulating the different 
biological processes underlying the biology of traits, searching protein 
expression associations confers several advantages, as proteins are 
the final implementers in the functioning of all cells for many biologi-
cal processes. Through PWAS studies, we found 47 proteins showing 
significant association with neuroticism in the dorsolateral prefron-
tal cortex. The PWAS analysis also identified leucine-rich repeat and 
fibronectin type III domain-containing 5 (LRFN5) protein association 
with neuroticism, and this protein is also involved in synapse formation. 
This protein has shown higher levels in patients with MDD and has been 
suggested as a potential MDD biomarker35.

Examples of genes for which we found converging evidence in 
neuroticism for transcript and protein-level associations with neuroti-
cism include low-density lipoprotein receptor-related protein 4 (LRP4), 
syntaxin 4 (STX4) and metabolism of cobalamin associated B (MMAB) 
(Supplementary Table 31). LRP4 has diverse roles in neuromuscular 
junctions and in disorders of the nervous system, including Alzheimer’s 
disease and amyotrophic lateral sclerosis36, STX4 is implicated in syn-
aptic growth and plasticity37, and MMAB, which catalyses the final step 
in the conversion of cobalamin (vitamin B12) into adenosylcobalamin 
(biologically active coenzyme B12), all of which have broad implica-
tions for brain function, including those in relation to methylmalonic 
acidaemia38. Low levels of plasma vitamin B12 have been found to be 
associated with higher depression cases in multiple studies39.

We investigated the relationship of these personality traits with 
other psychiatric traits, cognitive functions and disorders in a broad 
phenome-wide scan of genetic correlations with 1,437 traits. A total of 
325 traits showed significant genetic correlations with at least one of 
the five personality traits following multiple testing correction. Two 
important traits that had some of the strongest associations were MDD 
and anxiety. Whereas the association of neuroticism with depression 
and anxiety has been previously considered4,13, our analysis revealed that 

another personality trait, agreeableness, is also strongly associated with 
both anxiety and depression but in the opposite direction to neuroti-
cism, showing a potential protective relationship. MR indicated a strong 
bidirectional causal relationship between neuroticism with anxiety and 
depression, while showing a bidirectional protective relationship for 
agreeableness for both traits. Variance explained for neuroticism was 
attenuated upon conditioning for MDD but remained significant, indicat-
ing some independent genetic component for neuroticism despite the 
strong overlap. Similar, but with a less strong effect, was seen of anxiety 
on neuroticism, which may be partly due to lower power of available anxi-
ety summary statistics. Larger studies of anxiety disorders are needed to 
better understand this relationship. Conversely, when we conditioned 
on agreeableness, for MDD and anxiety we observed a nominal but 
non-significant change in SNP-based heritability. We conducted MR to 
further discern these patterns and it showed bidirectional causal effects 
with neuroticism, confirming a high degree of inter-relatedness between 
the traits. Given the high degree of genetic overlap between trait neuroti-
cism and the expectation of personality trait expression preceding age of 
onset for MDD, a high trait neuroticism may be considered an early risk 
factor for anxiety, depressive and related psychopathology. Indeed, stud-
ies have shown persistent elevated neuroticism through adolescence 
is a risk factor for later susceptibility to anxiety and MDD diagnosis40.

Personality phenotyping in The MVP sample were done using 
self-report for the short BFI-10 inventory. As such, data are relatively 
sparse compared with more robust instruments and do not have more 
in-depth features such as facets found in the NEO inventory. The nature of 
large biobank studies such as the MVP comes with a crucial advantage in 
recruitment and sample size, but comes with the sacrifice of deep pheno-
typing. Future studies that compare findings from more deeply pheno-
typed samples to more sparse phenotyping used by the MVP would be 
valuable to address this limitation. Additionally, while we greatly expand 
on the amount of data available for agreeableness, conscientiousness, 
openness and extraversion, they still lag behind what has been accom-
plished for neuroticism. This means genetic instruments defined for the 
other four traits may lack the precision available for neuroticism. Larger 
samples still need to be collected to better understand these other traits.

Personality traits are known to have complex interactions with 
other human behaviours. In this work we have conducted comprehen-
sive genomic studies of personality traits. We performed a GWAS in the 
MVP sample, the largest and most diverse biobank in the world, in both 
EUR and AFR to better understand genetic factors underlying person-
ality traits. We combined this information with previously published 
results in a large meta-analysis, identifying novel genetic associations 
with five personality traits studied. We identified interactions in a 
phenome-wide genetic correlation analysis, finding novel relation-
ships between complex traits. We used in silico analysis techniques to 
identify genetic overlap and causal relationships with depression and 
anxiety disorders. We also characterized underlying biology using 
predicted changes in gene and protein expression, biological pathway 
enrichment and drug perturbation analysis. These results substantially 
enhance our knowledge of the genetic basis of personality traits and 
their relationship to psychopathology.

Methods
Inclusion and ethics statement
This research was not restricted or prohibited in the setting of any of the 
included researchers. All studies were approved by local institutional 
research boards and ethics review committees. MVP was approved 
by the Veterans Affairs central institutional research board. We do 
not believe our results will result in stigmatization, incrimination, 
discrimination or personal risk to participants.

Cohort and phenotype
We used data release version 4 of the MVP41. The BFI-10 was included 
as part of a self-report Lifestyle survey provided to MVP participants, 
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with two items for each of the personality traits (Supplementary Fig. 3). 
For the MVP EUR participants, the mean age was ~65.5 years for each of 
the five traits and 8% of the sample was female. For MVP AFR, the mean 
age was ~60.6 years for each trait while 14.0% of the sample was female.

Genotyping and imputation
Genotyping and imputation of MVP subjects has been described 
previously41,42. A customized Affymetrix Axiom Array was used for 
genotyping. MVP genotype data for biallelic SNPs were imputed using 
Minimac443 and a reference panel from the African Genome Resources 
panel by the Sanger Institute. Indels and complex variants were imputed 
independently using the 1000 Genomes phase 3 panel44 and merged in 
an approach similar to that employed by the UKB. Ancestry group assign-
ment within the MVP has been previously described45. Briefly, designation 
of broad ancestries was based on genetic assignment with comparison to 
1000 Genomes reference panels44. Principal components to be used as 
covariates were generated within each assigned broad ancestral group.

GWAS and meta-analysis
We performed individual GWAS for each of the five personality traits 
in the MVP cohort41. The personality information along with genotype 
data were available for a total of 270,000 individuals with 240,000 EUR 
and 30,000 AFR. The GWAS was performed separately for each of the 
traits in the EUR and AFR datasets and the effect values were computed 
using linear regression.

MVP GWAS was conducted using linear regression in PLINK 2.0 
using the first ten principal components, sex and age as covariates46. 
Variants were excluded if call missingness in the best-guess genotype 
exceeded 20%. Alleles with minor allele frequency (MAF) <0.1% were 
excluded. Additionally, only variants with an imputation accuracy 
of ≥0.6 were retained. After applying all filters, genotype data from 
233,204, 235,742, 235,374, 234,880 and 220,015 participants were 
included for neuroticism, extraversion, agreeableness, conscientious-
ness and openness, respectively.

For meta-analysis, summary statistics generated in this study 
(referred to as MVP study) were combined using METAL17 with that from 
Nagel et al. and GPC phase I and II studies (Fig. 1a) based on the avail-
ability of data for respective traits. The z-scores of variants provided 
in the summary statistics were converted into β scores47. The inverse 
variance weighing scheme of METAL was applied to weight the effect 
sizes of SNPs from the different source studies. For neuroticism, sum-
mary statistics from MVP and Nagel et al. studies13 (excluding 23 and 
Me) were combined, increasing the total sample size to 682,688. For 
extraversion, summary statistics from MVP and GPC phase II study10 
were combined, while summary statistics from MVP and GPC phase I 
study8 were combined for the respective meta-analysis of agreeable-
ness, openness and conscientiousness. GPC data were already included 
in the neuroticism meta-analysis of Nagel et al.

The independent GWS loci for each of the personality traits were 
identified by clumping all SNPs using PLINK v1.9 software48. P value 
cut-off of 5 × 10−8, MAF >0.0001, distance cut-off of 1 MB and r2 < 0.1 
were used to define the lead SNPs using the 1000 Genomes phase 3 
European reference panel44. The genes are mapped for the identified 
lead SNPs using biomaRt package in R49. The same parameters were 
used to define novel independent loci for comparison from the Nagel 
et al.13 and Becker et al.14 summary statistics (excluding 23 and Me).

Trans-ancestry analysis
Trans-ancestry analysis for each of the five personality phenotypes 
was performed by combining their respective summary statistics 
from AFR and EUR analyses using METAL17. As with the EUR-only 
meta-analysis, the inverse variance weighing scheme of METAL was 
applied to weight the effect sizes of SNPs from the two ancestries. We 
identified independent SNPs in the same manner as described above 
for the ancestry-stratified GWAS.

LDSC and SNP heritability
LDSC was performed based on the linkage disequilibrium reference 
from the 1000 Genomes data for all EUR cohorts and SNP heritability 
for each of the five personality traits was calculated50. To investigate 
the relation among the different personality traits, the LDSC-based 
correlation was also calculated between each pair of traits51. LDSC 
was also used to calculate genetic correlation of the personality traits 
with multiple other phenotypes (1,437 traits) with the Complex Traits 
Genetics Virtual Lab webtool22. A P value cut-off of 6.9 × 10−6 (0.05/
(1437 × 5)) was applied to filter the significant correlating pair of traits 
after multiple test correction.

For MVP AFR, linkage disequilibrium scores were computed from 
the approximately 123,000 AFR individuals’ genotype data in the MVP 
cohort using covariant LDSC software21. This linkage disequilibrium 
reference panel was then utilized to calculate SNP heritability in the 
MVP AFR cohort using LDSC.

Local genetic correlations
We used LAVA23 to calculate local heritability for the five personality 
traits and local genetic correlations for each pair. The genome was 
divided into 2,495 genomic chunks/loci to attain minimum linkage dis-
equilibrium between them and maintain an approximate equal size of 
around 1 MB. The local heritability of each of the five personality traits 
was calculated for each of the 2,495 loci. For a given personality trait 
pair, local genetic correlations were calculated only for pairs that had 
significant local heritability (Bonferroni-corrected P value at 5% false 
discovery rate (FDR)) for both traits of the pair. Bonferroni multiple 
testing correction was also applied to genetic correlated P value to 
consider significant correlated pairs.

TWAS
FUSION software18 was used to perform TWAS. FUSION first estimates 
the SNP heritability of steady-state gene and uses the nominally signifi-
cant (P < 0.05) genes for training the predictive models. The predictive 
model with significant out-of-sample R2 (>0.01) and nominal P < 0.05 
in the five-fold cross-validation was then used for the predictions in 
the GWAS data. The process is performed for all five personality EUR 
GWAS data with 10,386 unique genes spanning over the 13 selected 
tissues. The expression weight panels for 13 a priori selected tissues 
were taken from GTEx v819. We selected the different available brain 
tissues and whole blood as the tissues of interest, where Bonferroni 
corrections at FDR <0.05 were applied with the 10,386 genes test for 
the 13 tissues to find the genes with significant hits (P < 3.703 × 10−7).

PWAS
We performed PWAS to test the association between genetically  
regulated protein expression and different personality traits individu-
ally using FUSION software18. The weights for genetic effect on protein 
expression for the PWAS were from the Wingo et al. study52. In the PWAS, 
we integrated the protein weights with the summary statistics from the 
GWAS of each of the personality traits, respectively. Next, to decrease 
the probability of linkage contributing to the significant association 
in the PWAS, we performed colocalization analysis using COLOC53. In 
COLOC, we determined if the genetic variants that regulate protein 
expression colocalize with the GWAS variants for the personality trait. 
Significant proteins in the PWAS that also have COLOC posterior prob-
ability of hypothesis 4 (PP4) >50% have a higher probability of being 
consistent with a causal role in the personality trait of interest.

Fine-mapping
To identify likely causal variants, we performed variant fine-mapping 
using Polyfun software24. Since the fine-mapping was performed on 
the same EUR data, SNP-specific prior causal probabilities were taken 
directly from the pre-computed causal probabilities of 19 million 
imputed UKB SNPs with MAF >0.01 based on 15 UKB traits analysis. 
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The fine-mapping was performed on the GWAS sumstats for each of 
the five personality traits. SuSiE54 was used to map the posterior causal 
probabilities of the SNPs. The SNPs with posterior inclusion probability 
(PIP) value >0.95 were considered as significant for neuroticism, while 
a more relaxed cut-off of PIP >0.80 was used for other four personality 
traits to avoid loss of causal variant information due to the relatively 
less power in their respective datasets.

Conditional analysis
Conditional analysis was performed to investigate the possible 
mediating effects between depression or anxiety and neuroticism 
or agreeableness. Neuroticism meta-data GWAS summary statistics 
were used and conditioned on MDD and anxiety in individual runs. The 
MDD summary statistics were from Levey et al. study55 and include a 
meta-analysis from the MVP, UKB, PGC and FinnGen. The anxiety sum-
mary statistics were taken from Levey et al. study42. With depression/
anxiety studies as covariate traits, the conditional analysis of neuroti-
cism (target trait) was carried out using multi-trait-based conditional 
and joint analysis utility of genome-wide complex trait analysis56. 
Similarly, the same method was used to perform conditional analysis 
of agreeableness on MDD and anxiety.

Drug perturbation analysis
FUMA was used to carry out the MAGMA-based gene-association tests 
to find significantly associated genes for a trait from its GWAS summary 
data15. Drugs were searched for both neuroticism and MDD individually 
using their respective significantly associated genes derived from neuroti-
cism meta-analysis summary statistics and MDD GWAS summary statistics 
from the Levey et al. summary statistics. To predict drug candidates for 
a given trait, significant genes associated with neuroticism/depression 
were given as input to gene2drug R-package25. Pre-computed Pathway 
Expression Profiles of the Connectivity Map data were taken from Drug 
Set Enrichment Analysis (DSEA) website. For each query gene, a maximum 
of five predicted drugs were predicted. Further, the drugs showing an  
E score >0.5 and a P value less than 1 × 10−6 were considered significant. 
The process was repeated for MDD.

MR
MR was performed to study the causal relationship between four pairs of 
traits: neuroticism and MDD, neuroticism and anxiety, agreeableness and 
MDD, and agreeableness and anxiety. These traits had the highest genetic 
correlation. The summary statistics described previously for conditional 
analysis for all four traits were used for carrying out MR analysis as well. 
TwoSample MR package was used to perform the MR57. For each pair of 
traits, the TwoSample MR was run twice to see the effect of exposure of 
each of the two traits on the outcome of the other. After harmonizing the 
exposure and outcome instruments sets, clumping of SNPs (distance of 
500 kb, r2 = 0.05) was performed before conducting the MR analysis. 
Because some of our samples included in the analysis of personality over-
lap with our outcomes and exposures of interest, and a TwoSample MR is 
not robust to sample overlap, we also performed a sensitivity analysis for 
each trait pair using the MRlap package26. MRlap is specifically designed 
to account for many assumptions of MR, including sample overlap. It first 
calculates observed MR-based effect values and then a corrected effect 
value by using the genetic covariance calculated by LDSC.

Out-sample polygenic risk score prediction
The Yale–Penn cohort includes participants recruited from sites in 
the eastern United States58. A total of 11,705 participants completed 
the 240-item revised NEO PI-R, which assesses the domains of the 
five-factor model of personality: neuroticism, extraversion, openness 
to experience, agreeableness and conscientiousness59. Each domain 
has six facets. For example, the facets of neuroticism are anxiety, angry  
hostility, depression, self-consciousness, impulsiveness and vul-
nerability. Each item is rated on a five-point scale. Of the Yale–Penn 

participants with a NEO score, 4,582 were assigned to the broadly 
defined EUR group using the same methods as in the MVP sample and 
were unrelated. We used PRS-CS, Python software that uses Bayesian 
regression and continuous shrinkage priors, to calculate posterior 
effect sizes per SNP60. The 1000 Genomes linkage disequilibrium ref-
erence panel was used. The training datasets were summary statistics 
from the EUR meta-analysis for each of the five personality factors. The 
target dataset was a PLINK-formatted binary file set containing geno-
type information from the Yale–Penn participants48. Once score per 
SNP was generated by PRS-CS and PLINK was used to generate a score 
for each individual by summing SNP effect48. The lm (linear model) 
function in R was used to regress NEO PI-R scores on PRS, using age, sex 
and the first ten within-ancestry principal components as covariates61.

Ethics oversight
Research involving MVP in general is approved by the Veterans Affairs 
Central institutional research board; the current project was also 
approved by institutional research boards in West Haven, CT.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All MVP summary statistics are made available through dbGAP 
request at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs001672.v11.p1. Meta-analysis summary statistics are 
available through the Levey lab website at https://medicine.yale.edu/
lab/leveylab/data/. Meta-analysis data will also be made available via 
the Complex Trait Genetics Virtual Lab at https://vl.genoma.io/.

Code availability
No custom code was developed for analyses in this manuscript. All 
code used is cited and described in the methods. Software versions are 
accessible via PLINK v1.9 at https://www.cog-genomics.org/plink/1.9/, 
PLINK v2.0 at https://www.cog-genomics.org/plink/2.0/ and Polyfun: 
version 1.0.0 SuSiE package version: 0.11.92.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis PLINK was used for GWAS, METAL was used for meta-analysis, R was used for statistical tests, all R packages are mentioned explicitly in text 
where the package was used.  FUSION software was used to perform TWAS using tissue databases described in text.  GCTA was used for 
conditional analysis.  All software packages used in this analysis are publicly available.  R packages (MRlap) are cited and described in text. 
FUSION does not report a version number.   
Additional software versions: 
PLINK v1.9 (https://www.cog-genomics.org/plink/1.9/), 
PLINK v2.0 (https://www.cog-genomics.org/plink/2.0/), 
Polyfun: Version 1.0.0 
SuSiE package version: 0.11.92 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The GWAS summary statistics generated during and/or analyzed during the current study will be available via dbGAP; the dbGaP accession assigned to the Million 
Veteran Program is phs001672.v1.p. The website is: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v1.p1.  
Meta-analyses will be made available additionally through other means to be cited in text at the time of publication.
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Reporting on sex and gender We have no available information on gender.   Study design was population based -or- based on specific criteria (such as prior 
treatment in the US VA system) and efforts were made to recruit both males and females.  We expect our results to apply to 
both sexes.  The new part of the primary GWAS analysis involved the Million Veteran Program, which provided more than 
half of the total cases.  This cohort is 91.9% male, making a stratification by sex challenging due to power differentials. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

The MVP represents the one of the largest recruitments of non-European ancestries in the world.  African ancestry makes up 
approximately 12% of the MVP sample reported here.

Population characteristics The MVP is made of of veterans receiving care in the VA Healthcare System.  Participants were 64.78 years old on average.  

Recruitment The Million Veteran Program (MVP) represents the majority of the sample. Active users of the Veterans Health 
Administration healthcare system (>8 million 
veterans) learn of MVP via an invitational mailing and/or through MVP staff while receiving clinical care with informed 
consent and HIPAA authorization as the only inclusion criteria. Enrollment involves providing a blood sample for genomic 
analyses, allowing ongoing access to medical records and other administrative health data by authorized MVP staff, and 
completing questionnaires.  

Ethics oversight Research involving MVP in general is approved by the VA Central IRB; the current project was also approved by IRBs in 
West Haven, CT.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size reflected our best efforts to gather all possible participants with genetic data and available phenotypes as described.

Data exclusions All subjects that passed basic quality control, were assigned to either European, African, Admixed American (name is from the reference panel 
which includes several groups collected from Latin American populations) and East Asian ancestry, and had available phenotype information 
were retained. All exclusion criteria were pre-established.

Replication We performed genome-wide genetic correlations between all of the cohorts included in the meta-analysis.  We used leave-one-out analysis to 
replicate previous findings from the field in the independent (and novel for the phenotype) MVP cohort

Randomization Randomization was not applicable to this study. All available participants who responded to the Big Five personality survey items were 
included.

Blinding Data were collected entirely independently of the analysts. There was no need for blinding or randomization.
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Materials & experimental systems
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Methods
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