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ABSTRACT Switchgrass (Panicum virgatum L.) is considered a sustainable biofuel 
feedstock, given its fast-impact growth, low input requirements, and high biomass 
yields. Improvements in bioenergy conversion efficiency of switchgrass could be 
made by reducing its lignin content. Engineered switchgrass that expresses a bacte­
rial 3-dehydroshikimate dehydratase (QsuB) has reduced lignin content and improved 
biomass saccharification due to the rerouting of the shikimate pathway towards the 
simple aromatic protocatechuate at the expense of lignin biosynthesis. However, the 
impacts of this QsuB trait on switchgrass microbiome structure and function remain 
unclear. To address this, wild-type and QsuB-engineered switchgrass were grown in 
switchgrass field soils, and samples were collected from inflorescences, leaves, roots, 
rhizospheres, and bulk soils for microbiome analysis. We investigated how QsuB 
expression influenced switchgrass-associated fungal and bacterial communities using 
high-throughput Illumina MiSeq amplicon sequencing of ITS and 16S rDNA. Compared 
to wild-type, QsuB-engineered switchgrass hosted different microbial communities in 
roots, rhizosphere, and leaves. Specifically, QsuB-engineered plants had a lower relative 
abundance of arbuscular mycorrhizal fungi (AMF). Additionally, QsuB-engineered plants 
had fewer Actinobacteriota in root and rhizosphere samples. These findings may indicate 
that changes in the plant metabolism impact both AMF and Actinobacteriota similarly or 
potential interactions between AMF and the bacterial community. This study enhances 
understanding of plant-microbiome interactions by providing baseline microbial data for 
developing beneficial bioengineering strategies and by assessing nontarget impacts of 
engineered plant traits on the plant microbiome.

IMPORTANCE Bioenergy crops provide an important strategy for mitigating climate 
change. Reducing the lignin in bioenergy crops could improve fermentable sugar yields 
for more efficient conversion into bioenergy and bioproducts. In this study, we assessed 
how switchgrass engineered for low lignin impacted aboveground and belowground 
switchgrass microbiome. Our results show unexpected reductions in mycorrhizas and 
actinobacteria in belowground tissues, raising questions on the resilience and function 
of genetically engineered plants in agricultural systems.

KEYWORDS fungal and bacterial communities, bioenergy crops, genetic engineering, 
mycorrhizal fungi, actinobacteria

T he biofuel industry has developed significantly over the past two decades given the 
impending need to replace fossil fuels and mitigate climate change (1, 2). Switch­

grass (Panicum virgatum L.) is a perennial grass with C4 photosynthesis, an adaptation 
that anatomically separates the assimilation and reduction of CO2, thereby reducing 
photorespiration. Switchgrass is also a flagship sustainable biofuel feedstock species 
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in North America given its wide native range, fast growth, high cellulose content, and 
relatively low requirements for water, nutrients, and pesticides (3–5). Lignocellulosic 
material is the cheapest feedstock to produce biofuels (6), and nearly 80% of switchgrass 
dry-weight biomass is composed of cellulose, hemicellulose, and lignin (7).

Lignin is a major plant cell wall component and in grasses is composed of large 
branched and oxygenated polyaromatic compounds consisting of monomer units of 
coniferyl, sinapyl, and p-coumaryl alcohols (6, 8). Since lignin contributes to biomass 
recalcitrance to deconstruction, reducing lignin content in feedstocks facilitates cellulose 
and hemicellulose hydrolysis, thus, increasing fermentable sugar yields from biomass 
and improving its conversion efficiency to bioenergy and advanced bioproducts (4, 9, 
10).

Several genetic engineering techniques have been used to reduce lignin content in 
plants (11). These include the silencing of genes encoding lignin biosynthetic enzymes 
such as 4-coumarate: CoA ligase (10) and caffeate O-methyltransferase (12). Another 
promising strategy for reducing lignin in bioenergy crops involves the expression of 
bacterial 3-dehydroshikimate dehydratase (QsuB), which reduces the pool of precursors 
necessary for lignification (13). In the shikimate pathway, 3-dehydroshikimate is the 
precursor of shikimate and phenylalanine, which are key metabolites involved in lignin 
biosynthesis (14). QsuB converts 3-dehydroshikimate into protocatechuate and thereby 
limits lignin biosynthesis. Such genetic modifications have been shown to improve the 
saccharification of biomass compared to wild-type plants (13, 15). For example, the 
expression of QsuB in switchgrass resulted in a 12%–21% reduction in lignin content 
and 5%–30% increase in saccharification efficiency, as well as greater bioaccumulation of 
protocatechuate (16).

Plant-associated microbiomes are composed of populations of diverse bacteria and 
fungi that colonize internal and external plant tissues and may include beneficial, 
commensal, and pathogenic organisms. Microbiomes have been shown to be important 
for maintaining plant health and can be leveraged to increase biomass yield (17, 18), 
enhance plant nutrient availability (19), improve drought tolerance (20), and further 
provide other ecosystem services related to soil structure, water retention, and carbon 
storage (21, 22). For example, switchgrass plants inoculated with Serendipita vermifera 
(originally Sebacina) produced as much as 75% and 113% more shoot biomass at 
2-month and 3.5-month harvests, respectively (17).

Plant genotype has been shown to be a factor involved in structuring plant micro­
biome, as was found for bacterial communities in the switchgrass rhizosphere, as well 
as aboveground and belowground fungal and bacterial microbiomes of switchgrass (23–
25). Similar results were found for switchgrass phyllosphere microbiomes in the field 
(26). Changes in microbial community between highly productive and less productive 
switchgrass cultivars can be linked to the greater and lower microbial nitrogenase 
activity, respectively, which suggested a possible linkage between microbiomes and 
cultivar yields (27, 28).

Genetic engineering can improve plant biomass yield and chemical properties, but 
it may also have unexpected impacts on plant-microbe interactions. For example, 
the silencing of cinnamoyl-CoA reductase gene reduced lignin in poplar trees but 
also significantly changed the bacterial community in roots, stems, and leaves (29). 
Similarly, poplar trees downregulated in genes encoding for the lignin biosynthetic 
enzymes caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, cinnamoyl-
CoA reductase, and cinnamyl alcohol dehydrogenase all displayed a lower mycorrhizal 
colonization in vitro (30). DeBruyn et al. (31) reported that lower lignin lines of COMT 
(caffeic acid O-methyltransferase)-downregulated switchgrass plants had no effects on 
bacterial diversity, richness, or community composition of soil samples, but they did 
not investigate the fungal community and other plant compartments. Thus, although 
growing engineered switchgrass with reduced lignin could have obvious industrial 
advantages regarding deconstruction and conversion processes, with no phenotypic 
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differences noted, the impact of the engineered trait on the structure and functioning of 
the plant microbiome needs to be evaluated.

In this study, we assessed the impact of QsuB-engineered switchgrass plants on 
the microbiome across plant compartments. We accomplished this by characterizing 
both fungal and bacterial communities, within bulk soil, rhizosphere, root, leaf, and 
inflorescence of QsuB and wild-type Cave-in-Rock switchgrass. We hypothesized that 
QsuB-engineered traits would alter the structure of fungal and bacterial microbiomes 
by reducing species richness and evenness, particularly in belowground samples that 
support high amounts of microbial diversity.

MATERIALS AND METHODS

Plant growth and transplant

The transgenic switchgrass line pZmCesa10: QsuB-5 and parental wild-type (cultivar 
Alamo-A4) used in this study have been described previously (16). Three transgenic 
and three wild-type plants reared from tissue culture were raised in axenic conditions 
for 3 months and were then planted in sterile potting mix (Sure Mix, Michigan Grower 
Products Inc., Galesburg, MI, U.S.) and grown vegetatively (16 hr light and 8 hr dark 
at 23°C) for 6 months to establish sufficient biomass to allow each plant to be split 
into three genetically identical individuals. Deionized water was applied every other 
day, and 1:10 Hoagland fertilizer was applied every other week to prevent nutrient 
deficiency under potting condition. Splitting was done by excising each plant at the 
crown into three at approximately equal crown size with a sterilized scissor. The senesced 
aboveground tissues and old structural roots were trimmed off to only retain green 
aboveground tissue and minimum non-lignified young roots.

After splitting, switchgrass plants were planted into new pots with sand blended 
in with field soil, to provide a diverse microbiome inoculum. Field soil was collected 
from the top 20 cm of a switchgrass field in the long-term ecological research station 
for bioenergy cropping systems in Hickory Corner, MI, in August 2021 and was sieved 
through a 1-cm hardware cloth to homogenize and remove root fragments and organic 
debris before mixing with sterile sand. Homogenized sieved field soil was then mixed 
with double-autoclaved play sand 50/50 (vol/vol) to provide proper drainage of water 
in the pots. For microbiome analyses, nine biological replicates were used for both the 
wild-type and QsuB genotypes. Split plants were raised under the same conditions as 
described and used prior to splitting. After 3 months, the final microbiome sampling was 
conducted, and the experiment was terminated.

Sample collection and processing

Sampling of above and belowground switchgrass-associated microbiomes was carried 
out at two separate occasions: after splitting prior to planting in field soil (as pre-trans­
plant sampling status) and 3 months after splitting and planting in the field soil (as 
post-transplant sampling status). Samples were collected from two soil niches (i.e., 
bulk, rhizosphere) and four plant niches (root endosphere, leaf, inflorescence, senesced 
leaves). Bulk soil from triplicate plant splits was collected with a sterile spatula avoiding 
root zones. Rhizosphere soil was sampled from each replicate by collecting three young 
lateral roots up to 3 cm in length with root hairs included from each plant. Roots 
were vigorously agitated by hand to detach the loosely attached soil prior to washing 
roots. The roots were then collected in 2-mL Eppendorf tubes, filling 1/3 of the volume, 
and vortexed in ddH2O containing 0.05% Tween 20 for 20 min to dislodge the tightly 
attached soil. These root washes were kept as rhizosphere soil samples, which contained 
both rhizosphere and rhizoplane communities. Washed roots were then surface sterilized 
in 6% hydrogen peroxide solution for 30 s, rinsed twice with sterile ddH2O, and kept as 
root endophytic samples. Expanded young healthy leaves of each plant were sampled at 
splitting. Other aboveground tissues including inflorescence and senesced leaves were 
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also sampled from each plant at the end of the experiment by using sterile scissors. All 
aboveground tissues were sampled at 5 cm below the tips for approximately 1 cm from 
three randomly picked tissue objects.

DNA extraction and Illumina MiSeq sequencing

Samples were flash frozen in liquid nitrogen within 1 hr after collecting. Samples were 
then freeze-dried with a SpeedVac (Thermo Fisher, Waltham, MA, U.S.), placed in 2-mL 
centrifuge tubes together with three metal beads in each tube, and ground to a powder 
with a TissueLyser II (Qiagen, Hilden, Germany) at maximum speed for 40 s. Microbial 
DNA was extracted from soil samples with a MagAttract PowerSoil DNA kit (Qiagen, 
Hilden, Germany) and from plant samples with E.Z.N.A. Plant DNA kit (Omega Bio-Tek, 
Norcross, GA, U.S.). Libraries were prepared as previously described, including black 
samples as negative controls (24) with some modifications. Briefly, extracted DNA was 
amplified with primer sets 515 f and 806 r for bacterial communities targeting the 16S 
rDNA V4 region and primers 5.8 f and ITS4r for fungal communities targeting ITS2 rDNA 
(32, 33). Following the initial amplification, amplicons were PCR-ligated onto Illumina 
sequencing adapters and customized barcodes and normalized with a Norgen DNA 
purification kit (Norgen Biotek Corp., Thorold, ON, Canada). Pooled barcoded amplicons 
were then purified and concentrated with Amicon centrifugal units (Sigma-Aldrich, St. 
Louis, MO, U.S.) and further purified with a HighPrep PCR Clean-up System (MAGBIO 
Genomics, Gaithersburg, MD, U.S.). Sequencing was conducted at the Michigan State 
University RTSF Genomic Cores (East Lansing, MI, U.S.) with a v3 kit on an Illumina MiSeq 
sequencer. The raw sequences were demultiplexed with default setting in bcl2fastq, 
filtered, and clustered into amplicon sequence variants (ASVs) using DADA2 (34) in R 
4.0.2. ASV taxonomic annotations were generated using CONSTAX2 v2.0.18 (35) with 
SILVA v138 (36) for the 16S and UNITE 9.0 (37) for the ITS regions, respectively. Raw 16S 
and ITS sequences data were deposited in NCBI under BioProject ID PRJNA1002602 and 
PRJNA1002603, respectively.

Statistical analysis and data visualization

Microbial 16S and ITS rRNA amplicon sequence variant (ASV) tables, taxonomy tables, 
and metadata were imported into the R software for statistical computing and graphics. 
We removed ITS sequences with BLAST identity and coverage of ≤60% to the UNITE 
fungal database v 9.0 (38). Pre-transplant leaf samples and post-transplant senescence 
leaf samples were dominated by plant organelles (e.g., mitochondria, chloroplast) with 
a very low number of fungal and bacterial sequences; therefore, we removed these 
samples from our analysis (Fig. S1 and S2). Mitochondria and chloroplast sequences 
were also removed from the overall 16S data set. Sequence distributions allowed for 
the detection and removal of outlier samples, one post-transplant non-QsuB leaf sample 
and one post-transplant non-QsuB root sample, having low fungal read counts (Fig. S3 
and S4). Samples with low number of reads (i.e., distribution outliers) were removed by 
adopting rarefaction cutoffs of 2,948 and 12,126 sequence reads per sample for fungi 
and bacteria, respectively. Rarefaction curves were calculated in the vegan package (39) 
and plotted in the ggplot2 package (40). Rarefaction curves showed that most samples 
recover the whole diversity present in each sample, and rarefaction only marginally 
affected the total number of ASV detected across the entire data sets (Fig. S5).

Rarefied ASV richness and Shannon diversity index were calculated in vegan. 
Beta-diversity Bray-Curtis distance matrices were assessed to illustrate the commun­
ity structures between samples and sample groups. We used nonmetric multidi­
mensional scaling (NMDS) and principal coordinate analysis (PCoA) ordinations to 
visualize beta-diversity. Permutational multivariate analysis of variance (PERMANOVA) 
was performed to test the statistical differences of beta-diversity between sample 
groups. We tested the interaction between Niche and Treatment, Status and Treatment, 
and Status and Niche while controlling for Status, Niche, and Treatment, respectively. 
Since PERMANOVA (“adons2”, vegan R package) does not allow specifying random 
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effects, we took advantage of the sequential nature of the function in calculating the 
sums of squares and specified the fix/random factor as first term in the model. To assess 
differences in dispersion between groups (i.e., multivariate heteroscedasticity) that can 
contribute to the group difference detected with adonis2, a multivariate dispersion 
analysis was used as implemented in the R function “betadisper”. To compare alpha 
diversity measures between groups (i.e., ASV richness and Shannon index), we used a 
nonparametric Wilcoxon signed-rank test with P values corrected for multiple compari­
sons using the Benjamin-Hochberg method. Stacked bar charts were generated to show 
the relative abundance of lineage-level bacteria and fungi in sample groups. To identify 
differentially abundant ASV across sample groups, we used a pairwise Wilcoxon test and 
DESeq2 in the stats (41) and DESeq2 (42) R packages, respectively. All analysis and figures 
were generated in R (41), and the R code to reproduce the analysis is available here: 
https://github.com/Gian77/Scientific-Papers-R-Code/.

RESULTS

Data summary and overview

In total, we obtained 17,811,594 ITS and 30,086,564 16S raw sequence reads, respec­
tively, from the 198 sample libraries. After removing nontarget ASVs, including non-fun­
gal eukaryotes, chloroplasts, and mitochondria , a total of 13,403,151 ITS and 24,577,163 
16S reads remained, respectively. These accounted for 8,089 and 33,853 ASVs for the 
ITS (fungal) and 16S (bacterial) communities, respectively, distributed across 144 total 
samples. On average, each sample had 93,077.44 (± 41,537.25 standard deviation) ITS 
sequence reads and 170,674.7 (± 110,850 standard deviation) 16S sequence reads. No 
sequences remained in negative control samples.

The three experimental variables in our design were (1) status (pre-transplant and 
post-transplant to field soil), (2) niche (bulk soils, rhizosphere soils, roots, leaves, and 
inflorescences), and (3) genotype (QsuB and non-QsuB wild-type). In the nonmetric 
multidimensional scaling analyses of fungal and bacterial data sets, samples from the 
same niche clustered together, especially in bacterial communities, when plotting on 
two dimensions (Fig. S6). Bulk soil and rhizosphere fungal and bacterial communities 
clustered with each other but apart from root and aboveground communities. Bacterial 
communities of belowground samples (roots, rhizosphere, and bulk soils) were distinct 
from those of aboveground samples (leaf and inflorescence) prominently. Pre- and 
post-transplant samples were also clearly separated in ordination space (Fig. S6).

Sampling status and sampling niches had obvious influences on both fungal and 
bacterial communities. Therefore, to investigate the influence of the genotype on 
microbial communities, we split our data sets by sampling niches and status in the 
following analysis.

QsuB leaf and pre-transplant root samples had higher bacterial richness and 
diversity

In general, soil and rhizosphere samples had significantly higher richness than inflores-
cence and leaf samples (Wilcoxon test, P < 0.05) (Fig. 1). The QsuB genotype had no 
significant influence on the fungal richness in any plant niches of pre-transplant or 
post-transplant samples (Fig. 1A and B). However, QsuB plants had significantly greater 
bacterial richness in post-transplant leaf and pre-transplant root samples, but not in 
post-transplant root samples (Fig. 1C and D).

Fungal communities in root samples had significantly lower Shannon diversity 
compared to soil, rhizosphere, and aboveground tissues. The QsuB genotype had no 
significant influence on the fungal Shannon diversity indices across sampling niches for 
both pre-transplant and post-transplant samples (Fig. 2A and B). For bacterial communi­
ties, soil samples (soil and rhizosphere) had significantly greater diversity than plant 
samples (root, inflorescence, and leaf ) (Fig. 2). The QsuB plants had significantly greater 
bacterial Shannon indices in post-transplant inflorescence, leaf, and pre-transplant root 
samples, but not in post-transplant root samples (Fig. 2C and D).
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Additionally, it is worth noting that, for the same sampling niches, post-transplant 
samples always had greater bacterial and fungal richness and Shannon indices than 
those of corresponding pre-transplant samples (Fig. 1 and 2).

QsuB significantly influenced root and leaf fungal community beta-diversity

We used principal coordinate analysis ordinations to improve the visualization of beta-
diversity results (Fig. 3A) and statistically examined the treatment effects on the beta-
diversity. The QsuB traits significantly influenced the fungal community structures in the 
root (P = 0.002) and post-transplant leaf (P = 0.041) samples according to PERMANOVA 
(Table S1). In root samples, genotype, status, and the interaction between them were all 
significant factors of the fungal community structures. The QsuB genotype explained the 
most variance with the highest R2 of 23.09% (P = 0.002), followed by status (R2 = 17.68%, 
P = 0.002) and the interaction (R2 = 6.47%, P = 0.003) (Table S1). However, we also 
detected differences in multivariate variances between the groups we analyzed with 
PERMANOVA, i.e., the fungal community in root samples (Table S2).

QsuB significantly influenced root and rhizosphere bacterial community 
beta-diversity

The root bacterial community of QsuB genotype and wild-type switchgrass separated 
from each other on two-dimension PCoA (Fig. 3B) and the visual observation was 
supported by the PERMANOVA. QsuB genotype significantly influenced the bacterial 
community structures in root (P = 0.003) and rhizosphere (P = 0.029) samples (Table S1). 
In both root and rhizosphere samples, genotype, status, and the interaction between 

FIG 1 Boxplot of observed ASV richness for post-transplant fungi (A), pre-transplant fungi (B), post-transplant bacteria (C), and pre-transplant bacteria 

(D) grouped by sampling niches (inflorescence, leaf, rhizosphere, root, and soil). Letters represent pairwise Wilcoxon tests among groups (P ≤ 0.05 after 

Bonferroni adjustment).
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them were all significant factors of the bacterial community structures. In root samples, 
the status explained the most variance with R2 of 20.56% (P = 0.003), followed by QsuB 
genotype (R2 = 5.67%, P = 0.003) and their interaction (R2 = 4.35%, P = 0.019) (Table S1). 
In rhizosphere samples, the status also explained the most variance with R2 of 21.31% (P 
= 0.003), followed by QsuB genotype (R2 = 4.15%, P = 0.029) and their interaction (R2 = 
3.83%, P = 0.029) (Table S1). However, we did not detect differences in multivariate 
variances between the groups we analyzed with PERMANOVA in bacterial community 
(Table S2).

For both root and rhizosphere samples, the influence from the QsuB genotype was 
only manifested in pre-transplant samples in the PCoA plots, not in post-transplant 
samples (Fig. 3B). To focus on the impact of the QsuB genotype and eliminate interfer­
ence from different status, we assessed beta-diversity on the post-transplant root and 
rhizosphere samples. This approach revealed that the QsuB genotype had significant 
influence on the bacterial community of post-transplant root (P = 0.001) and rhizosphere 
(P = 0.003) samples (Fig. S7; Table S1).

Fungal composition

Overall, sixteen fungal lineages were detected in our sample. Ascomycota, Glomeromyco­
tina, and Basidiomycota are predominant and have average relative abundance of 
80.63%, 8.57%, and 7.97%, respectively (Fig. S8). Most Glomeromycotina were detected in 
root samples, and the majority of Basidiomycota were detected in post-transplant bulk 
soil and rhizosphere samples (Fig. S8). The above beta-diversity analyses showed that the 
QsuB genotype significantly influenced the fungal community of root and leaf samples. 
Nearly 94.00% of leaf fungi were Ascomycota (Fig. S8).

FIG 2 Boxplot of Shannon indices for post-transplant fungi (A), pre-transplant fungi (B), post-transplant bacteria (C), and pre-transplant bacteria (D) grouped by 

sampling niches (inflorescence, leaf, rhizosphere, root, and soil). Letters represent pairwise Wilcoxon tests among groups (P ≤ 0.05 after Bonferroni adjustment).
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The significant effects of QsuB genotype on root fungal communities were likely 
explained by relatively more Ascomycota and relatively fewer Glomeromycotina in QsuB 
plants (Fig. S8). In post-transplant root samples, QsuB plants had 62.52% Ascomycota and 
32.86% Glomeromycotina, while non-QsuB wild-type had 50.74% Ascomycota and 47.76% 
Glomeromycotina. Statistical analysis on lineage-level relative abundance data showed 
that only Ascomycota (P < 0.001) were significantly influenced by QsuB genotype in post-
transplant root samples. However, in pre-transplant root samples, both Ascomycota (P = 
0.009) and Glomeromycotina (P = 0.033) were significantly influenced by QsuB genotype. 
In pre-transplant root samples, QsuB plants had 78.35% Ascomycota and 18.57% 
Glomeromycotina, while non-QsuB wild-type had 67.63% Ascomycota and 27.71% 
Glomeromycotina (Fig. S8).

To further investigate the QsuB genotype effects, we visualized the relative abun­
dance of fungi at order level. We present the top 10 orders (by relative abundance), with 
the remaining orders detected represented as “Others” (Fig. 4). In pre-transplant root 
samples, three of top 10 orders were significantly influenced by QsuB genotype, and they 
are all from class Sordariomycetes. QsuB plants had significantly more Hypocreales (P = 
0.021) and Sordariales (P = 0.010), but less Myrmecridiales (P = 0.005). Similarly, much 
more Sordariales and less Myrmecridiales in QsuB plants were also observed in post-trans­
plant root samples. In pre-transplant samples, the relative abundance of Glomerales 
decreased from 27% in non-QsuB to 18% in QsuB, while in post-transplant samples, it 
decreased from 47% to 32% (Fig. 4).

FIG 3 Principal coordinate analysis ordinations of fungal (A) and bacterial (B) communities sampled from soil, rhizosphere, root, leaf, and inflorescence niches 

at pre-transplant and post-transplant. Permutational multivariate analysis of variance was performed to test the statistical differences of beta-diversity. Less than 

0.05 of P values on the graph indicated the significant influence of QsuB traits on communities between sample groups.
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Bacterial composition

Overall, 47 bacterial lineages were detected in our samples, and the sum of top 10 most 
abundant lineages accounted for an average relative abundance of 95.64% among all 
samples. Proteobacteria and Actinobacteria were predominant bacterial lineages in our 
samples, with the average relative abundance of 45.47% and 17.53%, respectively (Fig. 5).

Bacterial communities of root and rhizosphere were significantly influenced by 
QsuB genotype. The only consistent trend associated with bacterial community was 
that QsuB plants had relatively fewer Actinobacteria compared to wild-type: 20.38% 
vs 28.72% (pre-transplant root), 10.93% vs 20.45% (post-transplant root), 10.90% vs 
15.41% (pre-transplant rhizosphere), and 30.80% vs 36.56% (post-transplant rhizosphere) 
(Fig. 5). In pre-transplant rhizosphere and root samples, we observed a greater relative 
abundance of Myxococcota in QsuB than wild-type, but this trend was not shown in 
post-transplant samples. In post-transplant rhizosphere and root samples, we observed 
relatively more Proteobacteria in QsuB than wild-type, but this trend was not shown in 
pre-transplant samples (Fig. 5). These trends were not statistically significant.

The bacterial relative abundance of the top 10 orders is shown in Fig. S9. Some 
trends are numerically evident: compared to wild-type, QsuB plants had relatively more 
Pseudonocardiales in roots and more Burkholderiales in rhizosphere (Fig. S9). The greater 
alpha-diversity (richness and Shannon index) in QsuB plants than wild-type was likely 
explained by relatively more “Others” in pre-transplant root samples (28.90% in QsuB vs 
14.02% in wild-type), in post-transplant inflorescence samples (45.27% in QsuB vs 37.30% 
in wild-type), and in post-transplant leaf sample (30.21% in QsuB vs 27.71% in wild-type) 
(Fig. S9).

FIG 4 Order-level fungal taxonomic distribution of samples from inflorescence, leaf, rhizosphere, root, and bulk soil niches of post-transplant and pre-transplant.
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Indicator ASVs

We used differential abundance measurements between QsuB genotype and wild-type 
switchgrass to identify indicator ASVs. Consistent with our results, the Wilcoxon test 
commonly outputs a high number of significant ASVs compared to DESeq2 since the 
former is less stringent (43, 44). DESeq2 identified 14 and 15 bacterial biomarkers in 
pre- and post-transplant root samples, respectively, while Wilcoxon test identified 99 and 
307 significant ASVs in those metadata subgroups. No indicator ASVs were detected 
in leaf fungal, while three (two in pre-transplant and one in post-transplant) were 
detected for rhizosphere bacterial samples by DESeq2, even though those samples’ 
microbial communities were significantly influenced by QsuB genotype (Fig. 3). Root 
sample “niche” was the only group that significantly influenced both fungal and bacterial 
communities (Fig. 3), so we focused on the fungal and bacterial indicator ASVs of 
root samples. Most indicator ASVs identified with DESeq2 were also identified with the 
Wilcoxon test.

Thirty-one and thirty-two fungal indicator ASVs were identified in the pre- and 
post-transplant root samples, respectively. The majority of these (14 of 31 from pre-
transplant and 20 of 32 from post-transplant) were Glomeromycotina (Fig. S10 and Fig. 
6). All of the identified Glomeromycotina belonged to the arbuscular mycorrhizal fungi 
(AMF) family Glomeraceae. Four Funneliformis (AMF) indicator ASVs were identified in 
post-transplant roots but not in pre-transplant root samples.

Fifteen fungal indicator ASVs were detected both in pre- and post-transplant root 
samples. Six of them were associated with the QsuB genotype: ASV_27 (Zopfiella), 
ASV_35 (Chaetomiaceae), and ASV_112, 184, 189, 273 (Rhizophagus). Nine of them 
were associated with the wild-type switchgrass: ASV_21 (Myrmecridium), ASV_22, 34 
(Glomeraceae), and ASV_26, 36, 44, 61, 99, 126 (Rhizophagus) (Fig. S10 and Fig. 6).

FIG 5 Lineage-level bacterial taxonomic distribution of samples from inflorescence, leaf, rhizosphere, root, and bulk soil niches of post-transplant and 

pre-transplant.
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Fewer bacterial indicator ASVs were identified by DESeq2 compared to the fungal 
indicator ASVs. Bacterial indicator ASVs were dominated by Proteobacteria and Actino­
bacteriota in pre- and post-transplant root samples, respectively. In pre-transplant root 
samples, Lentzea aerocolonigenes (ASV_191 and 244) were associated with the QsuB 
plants, while Amycolatopsis mediterranei (ASV_46 and 69) were associated with non-QsuB 
wild-type plants (Fig. S11). Both species belong to Pseudonocardiales. In post-transplant 
root samples, Streptomyces (ASV_101) was the only Actinobacteria indicator associated 
with the QsuB plants (Fig. S12).

DISCUSSION

In this research, we set out to assess whether switchgrass engineered for low lignin with 
the QsuB gene would impact the microbiome associated with different aboveground 
and belowground plant organs. As we hypothesized, our results indicate that QsuB-
engineered plants impacted switchgrass-associated microbial community structure. Our 
results showed that the QsuB genotype influenced fungal and bacterial community 
structure. Specifically, QsuB plants had a significant impact on the fungal community in 
root and leaf samples and also a significant impact on belowground bacterial micro­
biomes in the root and rhizosphere. In contrast, we observed little impact of the QsuB 
genotype on inflorescence and bulk soil fungal or bacterial microbiomes.

QsuB plants showed lower relative abundance and diversity of AMF

Arbuscular mycorrhizal fungi are obligate biotrophic plant mutualists that belong to 
Glomeromycotina. These fungi are known to be beneficial to plant nutrition and soil 

FIG 6 Differential expression analysis of fungal post-transplant root samples by DESeq2 displays the fungal amplicon sequence variants that are significantly 

differentially abundant between QsuB and non-QsuB wild-type plants. Different colors represent different phyla each sample belongs to. The ASVs above the 

dashed line (log2FoldChange > 0) are significantly more abundant in the QsuB traits, while the ASVs below the dashed line (log2FoldChange < 0) are significantly 

more abundant in the non-QsuB wild-type.
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health by transporting nutrients (e.g., P and N) and water to plant hosts via their hyphal 
network, while stimulating and stabilizing soil organic matter (45–49). Under nutrient 
limitation, host plants are more dependent on AMF for nutrients (50, 51). In this study, 
we detected lower relative abundance of Glomerales (i.e., the most frequent AMF order 
detected in this study) sequences in the root samples from QsuB plants (both pre- and 
post-transplant).

The expression of QsuB in switchgrass results in the reduction of lignin and the 
accumulation of protocatechuate in biomass and improves biomass saccharification 
efficiency (16). Less lignin and more protocatechuate may have stimulated bacterial 
community activity and increased soil nutrient mineralization and turnover rates (52). 
More available nutrients may reduce the reliance of plants on AMF and may indirectly 
affect AMF colonization. For example, nutrient deficiency could trigger plant signaling, 
such as phenols, flavonoids, and sesquiterpenoids, and promote the growth of AMF 
appressorium (53). Five lower lignin transgenic lines of poplar with downregulated 
genes of monolignol biosynthesis pathway displayed a lower mycorrhizal colonization 
percentage than wild-type, and the authors proposed that the gene modifications in 
monolignol pathway impacted ectomycorrhizal colonization possibly by changing cell 
wall ultrastructure and decreasing the communication efficiency between plants and 
fungi (30).

QsuB roots showed an increase in the relative abundance of Sordariales and 
Hypocreales

In this study, greater relative abundance of Ascomycota (e.g., Sordariales and Hypocreales) 
was detected in the root samples from QsuB plants compared to the wild-type. Previous 
work has identified Sordariales and Hypocreales as dominant decomposers in arable soil 
with long-term organic management practice (54), and we found these orders predom­
inant in our samples. It is known that mycorrhizal and saprotrophic fungi compete 
for niche space and organic substrates (55–57). For example, Cao et al. (58) reported 
that AMF inhibited the population abundance and enzyme activity of saprotrophic 
fungi, possibly by reducing the availability of limiting nutrients. Increased accessibility to 
carbohydrates and soil nutrients may have stimulated Sordariales and Hypocreales, which 
were associated with the QsuB genotype.

Interestingly, in both root and leaf samples, QsuB plants had a higher relative 
abundance of Hypocreales. Six Fusarium (members of Hypocreales) ASVs were identified 
as indicator ASVs whose relative abundances significantly increased in the root and leaf 
samples of QsuB plants compared to the wild-type. This is of interest because many 
Fusarium species are known plant pathogens (59). In root samples, QsuB plants had 
relatively greater Fusarium in their rhizobiome compared to the wild-type: 9.81% vs 
2.82% (pre-transplant) and 7.27% vs 1.97% (post-transplant); however, this trend was not 
obvious in the leaf samples (Fig. S13). The only two leaf Fusarium indicator ASVs were 
identified at the species level: Fusarium oxysporum (ASV_15 and 19), and they were also 
root Fusarium indicator ASVs. Soils are often the source of plant-associated F. oxysporum 
(60), and detached leaf assays showed that F. oxysporum might be benign or beneficial 
in switchgrass, even though other Fusarium species were pathogenic (61). In this study, F. 
oxysporum was the only Fusarium species identified in leaf samples associated with QsuB 
plants. Knowing the diversity of Fusarium species, the complexity of their function, and 
the limits of short amplicon sequencing, the actual roles of the Fusarium spp. in our study 
are difficult to discern (62).

In root samples, there were significantly more Sordariales in switchgrass QsuB plants 
than the wild-type, largely accounted for by Zopfiella (Fig. S13). Interestingly, some 
Zopfiella species have the potential to control plant disease by producing antifungal 
compounds and promote plant growth by increasing stress resistance (63, 64).
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QsuB plants hosted a greater richness and diversity of bacteria

We found that QsuB-engineered plants supported a significantly greater richness and 
diversity of bacteria in inflorescence, leaf, and root (pre-transplant) samples. Generally, 
bacteria are efficient at degrading simple substrates, while fungi are better equipped 
at decomposing recalcitrant organic matter, such as lignin (65). Lignin biodegradation 
starts with lignin depolymerization, which is predominantly performed by fungi (66). 
Therefore, compared to lignin, protocatechuate represents a more favorable growth 
substrate for bacteria to utilize, and bacteria are competitive for carbon and energy 
sources. Plants expressing QsuB accumulate inside tissues more protocatechuate that 
may stimulate the activity of the bacterial community. Diverse bacteria are indeed 
known to degrade protocatechuate including those in the order Bacillales, Burkholder­
iales, Sphingomonadales, and Pseudomonadales (67–70).

Fewer Actinobacteria were detected in the root and rhizosphere samples of 
QsuB plants

In this study, the relative abundance of Actinobacteria detected in the root and 
rhizosphere samples of QsuB plants was lower than that of the wild-type. Actinobacte­
ria are an important terrestrial group of detritus decomposers (65), which are able to 
degrade lignin materials (71). Given that QsuB-engineered switchgrass biosynthesizes 
less lignin, it may be expected to host a lower relative abundance of Actinobacteria. In 
post-transplant root samples, all non-QsuB-associated bacterial indicator ASVs showing 
significantly increased relative abundances were Actinobacteria (Fig. S9).

The AMF and bacterial community dynamics may be interlinked

We have described how the QsuB genotype influenced the fungal communities, 
especially AMF, as well as the bacteria communities belowground. We posit that the 
change in the AMF community might be an important driver of the change observed 
in those bacterial communities. Previous studies have found that the AMF commun­
ity composition was a significant contributor to determining the bacterial community 
composition (72), perhaps through changes in the root exudates composition and 
soil structure modification (65, 73). Interestingly, AMF-associated bacterial communities 
have been shown to be structured predominantly by AMF symbiont identity (Glomus 
geosporum or Glomus constrictum), rather than the host plant (Plantago lanceolata or 
Hieracium pilosella) (74). AMF hyphae release a variety of exudates, including carbohy­
drates, polyols, amino acids, amines, nucleic acids, organic acids, etc.; different AMF 
species or the same AMF under different abiotic conditions might have different 
metabolite profiles of hyphal exudates (75, 76). The carbon sources supplied by AMF 
have important roles in bacterial growth and distribution, so it is likely that AMF activity 
has an impact on the surrounding bacterial communities (76–78). AMF hyphae provide 
a scaffold bridging the soil and root microbiomes (79). The addition of protocatechuate 
to the culture medium inhibited primary root growth but increased lateral root numbers 
in Arabidopsis (80). The potential root morphology change may also influence AMF 
development and surrounding bacterial communities.

Some specific bacteria showed the same (positive or negative) response to AMF, even 
under different experimental setups. For example, in this study, root and rhizosphere 
samples from QsuB plants had relatively fewer AMF and Actinobacteria. This positive 
response of Actinobacteria to AMF has also been observed in other studies (76, 81). 
Recent work showed that QsuB switchgrass had no yield penalty compared to the 
wild-type under optimal irrigation in the field (82). However, as AMF and Actinobacteria 
are associated with plant drought resilience, this raises questions into how QsuB plants 
would fare under water-limiting conditions (83, 84).
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Importance of testing microbiome impacts in QsuB-engineered plants

Engineering the biofuel feedstock switchgrass with the QsuB gene is a promising 
strategy for reducing lignin content and improving saccharification. Our work high­
lights the importance of assessing QsuB genotype impact on the plant-associated 
microbiomes. We found that QsuB engineering changed plant physiology and its 
microbiomes, including some important functional microbial groups including AMF 
and Actinobacteria. Unfortunately, we did not obtain chemical data of the roots 
and surrounding rhizosphere, so the lignin and protocatechuate contents of specific 
belowground compartments are unknown. It is possible that the accumulation of 
protocatechuate altered plant cell osmolarity, and might further modify the root 
exudates, which may directly contribute to the microbial community dynamics. A 
longer-term field study of QsuB bioenergy plants with measurements of biomass 
yield, soil properties, and microbiome communities in different locations and climates 
could help confirm the promise and future of QsuB-engineered bioenergy crops under 
real-world agricultural scenarios.

Conclusion

Less lignin content, more fermentable sugar yield, and greater biomass conversion 
efficiency to biofuels made QsuB genotype promising in wide application. As hypothe­
sized, our study found that the QsuB-engineered plants impacted switchgrass-associ­
ated fungal and bacterial communities, especially those associated with the roots 
and rhizosphere. Importantly, the microbiome differences between QsuB plants and 
non-modified wild-type switchgrass did not appear to impact the relative abundances of 
putative switchgrass pathogens. However, the reduction in AMF diversity and relative 
abundance in QsuB plants are noteworthy and raise questions regarding how this 
could further impact plant performance under drought conditions and consequent 
soil physio-chemical properties. By characterizing the microbiome responses to QsuB 
genotype, we provide a baseline for evaluating QsuB and other bioengineered traits on 
plant-microbe interactions.
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