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Rationale 

 The creation of a global HIV vaccine is currently blocked due in part its viral diversity. 

Its reverse transcriptase frequently generates mutations, allowing different strains of HIV to be 

created in an individual and cause further immune escape. The difference between strains of HIV 

from multiple infected individuals makes the genome difficult to study as each viral strain 

provides new information in its evolution of escaping certain drug resistance. The complexity of 

HIV evolution makes it challenging to understand how different mutations affect the virus, and 

how to limit its ability to escape from the immune system or drug treatment. In most cases, 

complete viral genome data may not even be available to study, giving only certain parts of the 

genome such as the Env region, the viral gene that encodes the protein responsible for viral 

entry. Expression of this gene allows for HIV to target and attach onto CD4+ T cells (T helper 

cells), in order to enter the target cell and replicate. 

Literature Review 

HIV causes the immune system disfunction that leads to AIDS, which leads to 

opportunistic infections of the immune system. HIV is dangerous because it infects the CD4+ T 

cells, which are important for defending against infectious viruses and diseases. The article The 

T-Cell Response to HIV by Bruce Walker and Andrew McMichael talks more in depth for the 

functions of the CD4+ and CD8+ T cells in HIV infection and potential counter measures to the 

virus. They layout a view of the pathogenesis HIV with clear signals in how the CD8+ T cells 

initially try to control the virus, but the effects of HIV still render the cell functions 

dysfunctional. In the case of CD4+ T cell, HIV actively infects CD4+ T cells and eliminates 

them from the body directly, rendering it useless. Bruce Walker and Andrew McMichael also 

explore the effects of mutations on the viral fitness. They look at the relationship between the 
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viral load and the class I restricted cytotoxic T lymphocytes (CTLs), since they were viewed as a 

major cause for the virus progression. It was observed that viral escape from CTL response was 

done through multiple mechanisms and mutations. The rate of CTL efficacy was impacted by the 

mutations induced during viral replication. It was shown that “responses to Env, which readily 

tolerates mutations without affecting the viral fitness, is associated with higher viral loads.”  

Evidence has shown that HIV can escape recognition from CD8+ T cells which can kill 

infected cells. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape by 

Michael K.P. Liu and others examined aspects of T cell functions such as immunodominance, 

which is “the magnitude of the response relative to the total response within each patient at a 

given time point (Liu, 2012, p. 4),” and their effects on virus control. The studies done have 

shown data on how certain factors of the T-cells such as functionality, exhaustion, and receptor 

responses have each played separate roles in how HIV responds to T cell pressures. One data set 

explored the effects of the HLA B*5801-restricted T cell response from different patients on the 

Gag 240 – 249 epitopes, showing that some patients had a faster escape compared to others. An 

explanation for time differences was that there were “upstream Gag mutations, H219Q and 

I223V that occurred and facilitated a more rapid escape.” This shows that the viral sequence 

background can affect escape dynamics. 

The viral sequencing data I collected compares the analysis between methods of looking 

at the 3 prime half-genomes of HIV versus only the envelope region of the virus through the 

usage of the selection coefficients, which quantify how efficiently the virus can replicate. The 

article Resolving genetic linkage reveals patters of selection in HIV-1 evolution” by Muhammad 

S. Sohail, Raymond H.Y. Louie, Matthew R. McKay, and John P. Barton talks about using 

Marginal Path Likelihood (MPL) as a method of investigating patterns of selection in HIV-1 
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evolution through the usage of genetic time series data. Through statistical physics, a probable 

evolutionary path of the virus could be obtained through looking at the “probability of changes in 

the mutant allele frequencies between successive generations.” This method of study was used in 

my research to compare the selection coefficients between the 3’-half-genome and envelope 

region. 

Methods 

Gathering Experimental Data. For this experiment, we obtained fourteen different 

patient’s viral genome data from the hiv.lanl.gov website. We chose these specific patients 

because the regions of the virus targeted by T cells were experimentally determined in Vertical T 

cell immunodominance and epitope entropy determine HIV-1 escape, which in principle would 

allow us to better understand how the virus evolves to escape T cell responses. We obtained two 

sets of viral data, one containing a larger breadth of sequencing (3’ half-genome) and the other 

containing the envelope region. The viral sequencing data of each patient contains the nucleotide 

sequences and the label composing of the name, sampling year, days from first sample or days 

from seroconversion (the development of detectable antibodies in the blood and officially 

becoming HIV-positive), and the HXB2 Reference Sequence. The days from first sample 

represents the number of days between the first sample received to the current sample while the 

days from seroconversion represents the number of days between the patient’s seroconversion 

and the day that the sample was taken.  

Aligning Experimental Data. The viral sequencing data obtained from the hiv.lanl.gov 

website was unordered, requiring re-organization of the data through the coding language, 

Python. Through CHAVI.py, the viral data was time ordered based on a combination of the days 

from seroconversion and days from first sample. While the days from seroconversion allows 
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tracking of the genome when there is HIV-positivity, not all sequences are paired with this 

information. In order to use as much of the viral data as possible, the time information found in 

viral data containing “Days from Infection” and “Fiebig stage” were used to infer the time 

information. For example, for patient CH040, viral data CH40E-N14 contained both time 

information however, viral data CH40E_TF6 only contained “Fiebig stage” information. Since 

the Fiebig stage and Days from Seroconversion matched with CH40E-N14, the “Days form 

Infection” is inferred and able to incorporate this data into the time ordering. Once both the 

complete genome viral data and envelope region data were time ordered, the data needed to be 

converted into MPL analysis format. 

Setting Data for MPL Analysis. MPL looks at how mutations on certain sites would affect 

the overall fitness of the sequence or the protein. MPL analysis needs the sequences to be time 

ordered and for the mutant alleles to be identified and represented in a numerical format. This 

was done for the ordered genome data of the full genome and only envelope. Afterwards, the 

newly formatted data was sent to Professor Barton to be analyzed through MPL to receive a new 

data set containing the epitope, frequency, s_MPL (selection coefficients via MPL method), and 

s_Sl (the selection coefficients at the Single Locus).  

Comparing Envelope only data vs. Full Genome data. The s_MPL (selection 

coefficients) of each patient allows for interactions of a specific region of the genome against the 

rest of the genome sites. Python was used to compare difference in s_MPL between the envelope 

only genomic data against the full (or majority) genomic data. The selection coefficients of the 

data sets were categorized as deleterious (s ≤ -.003), neutral (-.003 ≤ s ≤ .003), and beneficial (s 

> .003). Only selection coefficients with matching HXB2 tags between the two data sets were 

taken for analysis. The selection coefficients of the envelope and half-genome were compared to 
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view changes in mutation category as well as taking the difference between the two selection 

coefficients. Data points containing large changes in selection coefficients (≥ .01) and mutation 

categorial changes were taken into account for further data analysis. To view the differences in 

data, a scatter plot was made using Matlab to compare the selection coefficients between the two 

data sets. Data points deviating from the line of best fit were used for analysis. Selected data 

points were then manually checked from the MPL data.  

Further analysis of Data Comparison. Using Matlab and Python, the difference in 

selection coefficient data analyzed. This was done by checking the average difference in 

selection coefficients for each patient, creating a histogram of the data based on the selection 

coefficients and absolute value selection coefficients. Frequency trajectories of the data were 

also taken to check whether the number of time points influenced selection coefficient 

differences. 

Results 

Envelope Mutation 
Dynamic  

Three Prime Mutation 
Dynamic MPL Envelope MPL ThreePrime MPL Difference 

-1 1 -0.01052526 0.009328968 -0.019854228 

0 0 0 0 0 

-1 -1 -0.0059675 -0.00275255 -0.00321495 

0 0 0 0 0 

-1 0 -0.00362858 -0.000374273 -0.00325431 

0 0 0 0 0 

-1 -1 -0.00681777 -0.001655903 -0.005161866 

… … … … … 
 Table 1. Patient 040 early selection coefficient data. The MPL of the ThreePrime and Envelope 

are compared and are labeled as either deleterious (-1), 0 (neutral), or (1) beneficial. Differences between 
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the selection coefficients were taken. Large selection coefficients were noted as well if there were 

differences in the two data sets’ mutation dynamics. One large difference in selection was noticed with 

Envelope being deleterious while Three-Prime being beneficial, with a difference of 0.19854228.  

 
Envelope Mutation 
Dynamic 

ThreePrime Mutation 
Dynamic MPL Envelope MPL ThreePrime MPL Difference 

0 0 0 0 0 
0 0 0.014043778 0.018143939 -0.004100161 
0 0 0 0 0 

-1 -1 -0.016387756 -0.003719948 -0.012667808 
0 0 0 0 0 
0 0 0.002426757 0.011574301 -0.009147544 
0 0 0 0 0 

… … … … … 
Table 2. Patient 077 early selection coefficient data. The MPL of the Three Prime and Envelope 

are compared and are labeled as either deleterious (-1), 0 (neutral), or (1) beneficial. Differences between 

the selection coefficients were taken. Large selection coefficients were noted as well if there were 

differences in the two data sets’ mutation dynamics. No changes in the mutation dynamic can be seen in 

the early data sets for Patient 077. 

 

          Figure 1. Patient 040 and 077 Histogram. Figure A. Patient 040 Histogram. Figure B. Patient 077 

Histogram. Compares the number of selection coefficients that are similar or different in the selection 

A B 
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coefficient range. Results show large similarities and amounts of selection coefficient that are overlapping 

around the -0.01 – 0.02 range in Figure A. Highest peak was 250 selection coefficients around the 0.00 

selection coefficient number in Figure A. In Figure B, results show large similarities and amounts of 

selection coefficient that are overlapping around the 0.00 – 0.02 range. Highest peak was 77 selection 

coefficients around the 0.00 selection coefficient number in Figure B. Displays how similar the same 

selection coefficients are between the two data sets.  

 Figure 2. Patient 040 and 077 Scatterplot. Figure A. Patient 040 Scatterplot. Figure B. Patient 

077 Scatterplot. Comparing the data between the selection coefficients found between the two data sets. 

The line of best fit represented how closely similar the selection coefficients were to each other. Points 

deviating far from the line of best fit correlated to large selection coefficient differences and potentially 

differences in mutation dynamics. At least four points per patient were noted off and recorded to see if 

they were in T- cell epitopes. In Figure A., later amounts of differences were found deviating more from 

the envelope selection coefficient compared to its Three Prime counterpart. In Figure B., only one major 

point was found to be an indicator for large selection coefficient differences. 

Patient ID s_MPL Envelope s_MPL 3' Prime HXB2 Epitope 
40 0.056 0.021 7204 N/A 
40 0.053 0.0329 6659 N/A 
40 -0.024 -0.0088 6408 N/A 
40 -0.019 -0.0027 6491 N/A 

A B 
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58 0.0650658 0.00347789 8463 N/A 
58 0.0401 0.019 8733 N/A 
58 -0.016 -0.004 6507 N/A 
58 0.022 0.005 6918 N/A 

     
77 0.1516 0.1204 7285 QF - RNKTIVF 
77 0.033 0.0082 8722 DRVIEELQR 
77 0.012 0.0317 7978 N/A 

     
470 0.0266 0.06 8462 N/A 
470 0.0447 0.028 7035 N/A 
470 0.029 0.015 7971 N/A 
470 -0.01 0.006 8262 N/A 

     
607  N/A N/A N/A N/A 

 Table 3. Table for Patient 040,058,077, and 470. From the scatterplots (Figure V and VI), the 

data points with large differences in selection coefficients were noted. These points were then looked up 

in the raw data to find for their HXB2 tag number and if they were in any T-cell epitopes. Patient 40,58, 

and 470 were not found to be in any T-cell epitopes but Patient 77 had mutations that were found in two 

epitopes, QF-RNKTIVF and BDRVIEELQR) 

 
Patient ID s_MPL Envelope s_MPL 3' Prime HXB2 Epitope 

131 0.095 0.0667 7227 N/A 

131 -0.0114 0.022 8075 N/A 

131 -0.002 -0.018 6278 N/A 

131 0.074 0.093 7458 N/A 

     
159 0.092 0.05 7136 N/A 

159 0.048 0.0157 6494 N/A 

159 -0.00758 0.025 7619 N/A 

159 -0.03 -0.01 6478 N/A 

159 0.01 -0.01 6539 N/A 

     
256 0.059 0.04 8443 N/A 

256 0.047 0.03 8446 N/A 

256 0.024 0.035 6356 N/A 
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256 0.02 0.01 8456 RMRSIRLVN 

     
42 -0.036 -0.0137 7112 N/A 

42 -0.003 0.02 6710 N/A 

42 0.00086 0.02 6356 N/A 

42 -0.0299 -0.008 6422 N/A 
 Table 4. Table for Patients 131, 159, 256, and 42. Same measurement used in Table 3. It was 

shown that Patient 131, 159, and 42 were not found to be in any T-cell epitopes. However, Patient 256 

was found to have a nucleotide in T-cell epitope RMRSIRLVN. 

Patient ID s_MPL Envelope s_MPL 3' Prime HXB2 Epitope 
162 0.052 0.085 6924 N/A 
162 0.028 0.0016 8699 N/A 
162 0.032 0.012 6716 N/A 

     
185 -0.007 0.0186 7071 N/A 
185 0.0146 -0.00769 7072 N/A 
185 -0.0299 -0.0128 8253 N/A 

     
198 0.0348 0.00375 7048 N/A 
198 0.068 0.048 7600 N/A 
198 0.011 0.02 6513 N/A 

     
164 0.0658 0.0406 6238 N/A 
164 0.00548 0.0346 7686 N/A 
164 0.056 0.032 6237 N/A 
164 0.034 0.014 7239 N/A 
164 0.000858 0.0194 7423 N/A 

 Table 5. Table for Patients 162, 185, 198, and 164. Same measurement used in Table 3 and 4. It 

was shown that all the patients in this list had no nucleotides in any T-cell epitopes. 

Patient ID s_MPL Envelope Mean s_MPL ThreePrime Mean 
40 0.001695242 0.001400572 
58 0.004740439 0.005625471 
77 0.004285821 0.004151239 

470 0.000116129 -0.000252279 
607 0.000730688 0.000586915 
131 0.000847309 0.000687304 
159 0.002353156 0.002310948 
256 0.00075123 0.000635126 

42 -0.000481474 -0.00036323 
162 0.00113357 0.000468066 
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185 0.000812725 0.000826896 
198 0.001865285 0.0013399 
164 0.000504414 0.000574074 

 Table 6. Average Selection Coefficients of Patients. Data showed that between the Envelope and 

Three-Prime, the mean selection coefficients were very similar to each other. This shows that 

measurements either taken from the Envelope or Three-Prime would not have a drastic difference.  

Figure 3. Frequency Trajectories for Patient 040. Frequency trajectories were measured to view 

whether time measurement influenced the selection coefficient differences. Patient 040 had uneven time 

measurements for two data sets as the envelope data had more time measurements compared to the Three-

Prime data set. In HXB2 6408 and 6491, the Three Prime data points were found to have x8 increase in 
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frequency at time 300 and 500 respectively compared to the envelope frequency. However, overall the 

shape of the envelope and Three-Prime frequencies were very similar, meaning that they both had the 

same trend. Results showed that even though the time measurements were different between the two data 

sets, the overall trend of frequency was kept, meaning that time difference was not a cause for selection 

coefficient differences. 

Figure 4. Frequency Trajectories for Patient 77 and 256 HXB2 tags found to be in T-cell 

epitopes. Frequency trajectories were measured to view whether time measurement influenced the 

selection coefficient differences. For Patient 77 and 256, envelope and Three-Prime time measurements 

were measured at the same time points. Patient 77 was found to have HXB2 tag 7285 and 8722 to be in 

T-cell epitopes. HXB2-tag 7285 was found to have identical frequency trajectories for the Three-Prime 
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and Envelope. HXB2-tag 8722 had a deviation at time 100 but had an overall similar shape. Patient 77 

HXB2-7978 was found to be in T-cell epitopes and was found to also have identical frequency trajectories 

for the two data sets. Patient 256 HXB2-tag 8456 was found to be in a T-cell epitope as well. However, it 

was shown to have identical frequency trajectories for the two data sets and no deviations in points as 

well. Patient 77 and 256’s HXB2-tag 7285 and 8456 respectively showed that being in T-cell epitopes 

showed no change in frequency trajectories but Patient 77 HXB2-tag 8722 deviation at time 100 is 

unknown. Further studies must be conducted to understand if the deviation at the time point is due to 

being in a T-cell epitope or other reasons. 

Discussion  

The 3-prime-half-genome and envelope-specific region data represents two different 

views of the same evolutionary process. The envelope-specific region represents nucleotides 

found in the envelope region while the 3-prime-half genome data contained both the envelope 

nucleotides and other viral nucleotides as well. When comparing the selection coefficients 

between the patient’s 3’-half-genome data and the envelope-specific region, some selection 

coefficients’ large differences. Patient 040 in Table 1 can be seen having one nucleotide inferred 

to be deleterious in the envelope while the same nucleotide in the three-prime data was inferred 

to be beneficial.  Patient 077 (Table 2) showed no changes in mutation dynamics in the early 

parts of the data.  

In order to compare the two data sets’ selection coefficients, a histogram was created to 

visualize the data. Figure 1 displayed patients 040 and 77 histograms and showed that the 

measured selection coefficients overlapped each other, showcasing how similar the data was. In 

both patients the overlap in data can be seen in around the -0.01 to .02 range. Some outliers can 

be seen in the .04 range. The overlapping in selection coefficients noted in the two patients were 

commonly seen in the other patient data sets as well. The average selection coefficients of the 
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two data sets for the patients were also taken (Table 6) and shown to be nearly identical to one 

another with an average difference of .0004. Patient 58 had the largest mean difference of 

.000885 while patient 159 had the lowest mean difference of .00042. 

For Figure 2, the 3’-half-genome selection coefficients on the Y-axis and the envelope 

region selection coefficients were plotted on the X-axis. This created a scatterplot which was 

used for a better visual analysis for the selection coefficient differences. The line of best fit 

represented the how similar the two data sets were to each other. The points deviating far from 

the line of best fit were recorded as the points were nucleotides that had the largest selection 

coefficient difference between the two. At least four points for each patient were recorded and 

were search in the data sets if they were in T cell epitopes. These epitopes are the T cells binding 

to small regions of the viral genome and replaced with a mutated version that would allow for 

escape from immune response. Tables 3,4, and 5 showed the recordings of the Patients with the 

T-cell epitopes. While majority of the patients were not found to be in any T-cell epitopes, 

patient 77 had nucleotides in epitope QF-RNKTIVF and DRVIEELQR and patient 256 had a 

nucleotide in epitope RMRSIRLVN.  

No further study was done to see if there could be linkage effects with an epitope but a 

possible reason for large changes in selection coefficients could be due to genetic hitchhiking. 

This is the phenomena of when a neutral gene will experience a change due to being closely 

linked to a selected gene. It could be plausible as the large changes in selection coefficients could 

have been caused by the variants being close or near a region that contain strong mutations even 

though they possessed no effect on viral fitness. 

 In some data sets, non-identical longitudinal time measurements could have been taken, 

creating unreliable measurements in data. Because of this, we checked to see whether different 
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measured time points influenced the selection coefficient difference. A graph was created with 

the x-axis as the time measurements and the y-axis as the frequency to get a trajectory of the 

frequency movement along the data’s time scale (Figures 3 and 4).  Patient 077, 470, and 256 

half genome and envelope region data were measured at the same time points and showed 

identical frequencies. However, Patient 040 had different time points measured and the 

frequency at 300 days showed an 8x difference but an identical shape. This meant that the 

unequal time measurements of the data did not affect the trendline for the virus in patient 77, 

potentially stating that they reached the same end result. Figure 6 showed the data points of 

patient 77 and 256 that were in the T-cell epitopes. The data showed that there were equal time 

points in both data sets and had identical frequencies and trajectory trends. Patient 77 

HXB2_8722 had a different time point at 300 days for the envelope and three prime frequency, 

but also had similar shapes, correlating to a similar frequency trajectory as well. Since the three 

prime and envelope viral sequencing data came from the same individuals, it is important to note 

that any differences found in the comparison was entirely due to sampling and not any 

underlying genetic cause. 

Results from both studies showed that restricting the range of sequence data that can be 

looked at will not have a dangerous effect on the results. This shows that the depth of sequencing 

data is broadly similar to each other and either cases of looking at a narrow and deep or wide and 

shallow data would potentially produce similar results. Consistency was shown between the 

global and regional scales of the data. This is important because it shows that data can still be 

used for analysis even if the data was not the complete genome. While a check was done to see if 

there were variants in epitopes in the envelope region between measurements, I was unable to 

investigate whether these variants with large differences were strongly linked with escape 
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mutations or not to prove if there was linkage disequilibrium or simply genetic hitchhiking that 

was occurring. Future studies can be done by linking selected mutations from inside the envelope 

with epitopes outside of the envelope to view whether the escape mutation was outside of the 

sequencing region and the neutral variants that had large selection coefficient differences but not 

in T- cell epitopes could be linked to the outside escape mutations. Through a trial and error 

method of manipulating the selection coefficients data to look at different reasons for the large 

selection coefficient differences, a theoretical evolutionary path of the mutations can be created 

to provide further understanding of the fitness landscape of HIV.  
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