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JOURNAL OF IATEX CLASS FILES

Social Grouping for Multi-target Tracking and
Head Pose Estimation in Video

Zhen Qin and Christian R. Shelton

Abstract—Many computer vision tasks are more difficult when tackled without contextual information. For example, in multi-
camera tracking, pedestrians may look very different in different cameras with varying pose and lighting conditions. Similarly,
head direction estimation in high-angle surveillance video in which human head images are low resolution is challenging. Even
humans can have trouble without contextual information. In this work, we couple novel contextual information, social grouping,
with two important computer vision tasks: multi-target tracking and head pose/direction estimation in surveillance video. These
three components are modeled in a probabilistic formulation and we provide effective solvers. We show that social grouping
effectively helps to mitigate visual ambiguities in multi-camera tracking and head pose estimation. We further notice that in
single-camera multi-target tracking, social grouping provides a natural high-order association cue that avoids existing complex
algorithms for high-order track association. In experiments, we demonstrate improvements with our model over models without
social grouping context and several state-of-art approaches on a number of publicly available datasets on tracking, head pose

estimation, and group discovery.

Index Terms—Multi-target tracking, multi-camera tracking, head pose estimation, social grouping, video analysis, context.

1 INTRODUCTION

T is difficult to achieve satisfactory results purely by
Iusing visual information for many computer vision tasks
due to the inherent visual ambiguities in real-world images
and videos. Take multi-camera tracking as an example.
Pedestrians may look quite different under cameras with
varying conditions. Another example is head pose estima-
tion in high-angle surveillance video. (We focus on yaw
angle estimation in such scenarios.) Human head images
are usually of low resolution, which makes visual evidence
unreliable (see Fig. 1). Thus, contextual information is
needed for these tasks.

We introduce social grouping as one such context. So-
ciology research [29] shows that in natural scenes up
to 70% of people walk in groups, possessing similar
trajectories, speed, and destinations. These factors should
help to disambiguate confusing tracking decisions in both
single-camera (similar trajectories and speed) and multi-
camera tracking (similar destinations). For example, in
multi-camera tracking, the tracker usually finds it difficult to
decide linking or splitting two detections, since one person
usually looks quite different in two cameras. However, if the
two detections are accompanied by another person, linking
is preferred. It is also intuitively clear that when people
form groups, their head directions are correlated, as they
tend to look at each other or the same area of interest.

In this work, we provide a probabilistic framework
with effective solvers to utilize social grouping for visual
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tracking and head pose estimation. The joint optimization
of tracking and social grouping is modeled as a constrained
nonlinear optimization problem, which results in steps
involving standard fast procedures. Head pose estimation
in groups is modeled as a graph labeling problem using
a conditional random field (CRF) that allows exact con-
vex learning and inference, with tractability supported by
sociology research. The generality of our social grouping
model makes it applicable to most existing tracklet linking
and head pose estimation frameworks.

Our experiments show that social context can help in
multi-target tracking and head pose estimation on real-
world datasets. Of particular interest, social grouping pro-
vides a natural high-order cue for the single-camera multi-
target tracking problem, while existing approaches usually
depend on complex solvers to go beyond single-order
association. Furthermore, social grouping is also an output
of the complete system. Our model produces results that
are comparative to or better than state-of-art methods on
benchmark datasets (see Tbl. 1) on all three tasks (tracking,
head pose estimation, and group discovery), though our
model employs only simple motion and visual features.

Preliminary pieces of this work described the coupling of
social grouping with single-camera [36] and multi-camera
tracking [37]. In this paper, we also include head pose esti-
mation and provide a unified view. In addition, we provide
more comprehensive experimental results, including group
discovery performance.

2 RELATED WORK

Head pose estimation, group discovery, and especially
multi-target tracking, have been extensively researched in
the computer vision community. We focus on the literature
that is most related to our work.
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Camera B

Camera A

Fig. 1: (Left) Social grouping behavior not only generally exists in one scene, but also usually persists (with the same
group members) across wide areas. (Right) Given head images alone, it is sometimes difficult for human beings to
correctly identify head pose directions in challenging scenarios. Social context provides strong evidence for this difficult

problem.

T, T2 T2
T
Fig. 2: (Left) Motion dependency problem for order-one
association methods [48]: though 7 — 75 and 75 — 73 can
be reasonably pairwise linked, the full trajectory is not
probable. (Middle, Right) Social context from 74 gives
strong evidence to disambiguate the dependency among

tracks, indicating 71 — 75 — 73 is probable (middle) or not
(right).

Single-camera multi-target tracking. Multi-target track-
ing is a key step in many computer vision tasks, in-
cluding visual surveillance, activity recognition, and scene
understanding. Time-critical approaches usually use particle
filtering algorithms for state estimation [51]. However, it is
very difficult for such systems to handle long-term occlu-
sions and detection failures. Thus recently, data association-
based tracking (DAT, also known as the tracklet-linking
problem) has dominated the research community. With
the help of state-of-art tracklet extraction methods such
as human detector approaches [25], researchers look at
extended time periods and link conservatively extracted
tracklets (short tracks) to recover full tracks. Many focus on
how to obtain more reliable linking probabilities between
tracklets [25][23][21]. To effectively infer the best matching
given the affinity measurements among tracklets, different
optimization methods such as the Hungarian algorithm
[25][41], K-shortest path [4], MWIS [5], set-cover [46],
min-cost flow [6], approximate dynamic programming [34],
and continuous energy minimization [28] have been pro-
posed. Some of them are shown to be equivalent to each
other [19]. Importantly, these methods are mostly order-one
methods, meaning that they optimize only pairwise similar-
ities. This might lead to global inconsistencies. One typical
problem is the motion dependency problem described in
Fig. 2.

Yang et al. [48] employ a CRF model to mitigate the
motion dependency problem for single tracks. Butt and
Collins [6] use a relaxation to the min-cost network flow
framework to explore higher-order smoothness constraints
such as constant velocity. These models involve complex

solvers and still possess limitations as they only address
the motion dependency problem for single tracks: As shown
in Fig. 2, the likelihood of one track with sudden motion
change might depend on whether it is accompanied by a
group member with a similar trajectory. Our model, on
the other hand, models such scenarios by design, can be
built upon simple solvers, and naturally helps higher-order
tracking when coupling with social grouping information
(modeled as a global spatial-temporal clustering procedure).

Multi-camera multi-target tracking. Multi-camera sys-
tems are ubiquitous, and a reliable multi-camera tracking
system allows wide-area scene understanding. Researchers
typically employ spatial-temporal and appearance cues to
handover targets across cameras. For spatial-temporal in-
formation, Javed et al. [20] use a Parzen window density
estimator to jointly model the inter-camera travel time
intervals, locations of exit/entrances, and velocities of ob-
jects. Makris et al. [26] propose an unsupervised learning
method to validate the camera network model. In terms
of appearance similarity, Javed et al. [20] show that the
Brightness Transfer Function (BTF) between cameras lies
in a low dimensional subspace and proposes a method
to learn them with labeled correspondences. A cumulative
brightness transfer function (CBTF) is proposed by Prosser
et al. [35] for mapping color between cameras using sparse
training set. Kuo et al. [22] use Multiple Instance Learning
(MIL) to learn a discriminative appearance affinity model
online. The work by Orazio et al. [15] evaluates several
BTFs and shows that they demonstrate similar behaviors
and limitations. Our work, on the other hand, is the first
to explore social grouping for the multi-camera tracking
problem, which is more robust to changes in camera
characteristics, viewpoints, and illumination conditions.

Head pose estimation. Head pose and gaze estimation
is a long-studied area in computer vision and human
computer interaction (HCI). It enables various applications
such as human attention tracking and area or object of
focus detection [27][1]. Most work focuses on head image
classification where images possess reasonable resolutions
and face landmarks are visible. Murphy-Chutorian and
Trivedi [30] give an excellent review on diverse approaches
towards this problem. Recent advances in this area include
using part-based model [53]. In this work, we focus on
head pose estimation in the common high-angle surveil-
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lance video, also known as head direction estimation [10]
and coarse gaze estimation [3]. Compared to traditional
pose estimation work, the visual features of head images
are usually very weak considering their small sizes, thus
methods requiring face landmarks are not applicable. This
problem is usually modeled as a regression problem (though
discretized classes sometimes serve as an intermediate step,
due to the ease of dealing with discrete labels over real-
valued angles [10] [38]. Our work follows this approach),
where angle difference between prediction and annotation,
instead of classification accuracy, is measured, because of
the difficulty of accurate class labeling [13] and the contigu-
ity of nearby classes/angles in the feature space. Most work
still focuses on feature extraction and estimation based
on head images alone: Robertson and Reid [38] explore
skin color feature. Tosato et al. [44] explore covariance
features. The histogram of gradient (HoG) [12] is popular
recently [3][10]. Support Vector Machine (SVM), SVM
Regressor, Neural Networks, Decision Trees, and Nearest
Neighbor classifiers are among classifiers/regressors ap-
plied [44][38][31]. The recent representative work by Ben-
fold and Reid [3] employs structured learning, proposing
a CRF for head pose estimation. Chamveha et al. [9]
employ spectral clustering for scene adaptation. Chen and
Odobez [10] couple head direction estimation with body
pose in a general kernel learning framework. However, all
these existing work only consider individuals. We consider
general social tendency and repellence beyond individuals.

Group discovery. Social discovery has also drawn much
attention in the computer vision community recently
[47][18][8][40]. Ge et al. [18] infer social groups given
a tracking result. By contrast, we perform grouping and
tracking jointly. Chamveha et al. [8] use attention cue to
help discovering groups, while we perform grouping first
to aid head pose estimation. This is because we note that
in challenging scenarios, head pose estimation can be more
difficult than group discovery (Ge et al. [18] also note that
trajectory information alone is enough to yield substantial
agreement with human for the grouping task).

Socially-aware computer vision. Social context has been
explored in a number of computer vision problems. For
tracking, Pirsiavash et al. [32] proposed a more effective
dynamic model based on social information, Pirsiavash et
al. [33] and Yamaguchi et al. [47] infer grouping for better
trajectory prediction and behavior prediction respectively.
Bazzani et al. [2] focuses on tracking groups and Chen et
al. [11] considers local group consistency. Ours is the first
to consider social grouping context for the data association-
based multi-target tracking and head pose estimation prob-
lem.

3 SocliAL GROUPING FOR MULTI-TARGET
TRACKING AND HEAD POSE ESTIMATION

We first introduce our notation and the probabilistic formu-
lation of utilizing social grouping for multi-target tracking
and head pose estimation as two maximum a posteriori
(MAP) problems.

3.1

The input of our system is a set of n tracklets (possibly
including false alarms) 7 = {71, 79, ..., 7, } within a time
interval [0, T, extracted by methods described in Sec. 6.2.
Each tracklet 7; is a sequence of short descriptions of a
single target across the time interval [¢5'%"", tf inish] Such
descriptions include the position and size of target (for
the tracking problem), and the position and size of the
pedestrian head (for the head pose estimation problem).
In particular we let a;(t) be the camera (discrete camera
labels) and [;(t) be the position (discrete pixel coordinates
in the image) of 7; at time ¢. We abuse [;(t) to denote both
pedestrian and head positions.

The task of multi-target tracking is to determine which
tracklets correspond to the same target, which can be
represented as a binary correspondence matrix ¢:

Notation

1 if tracklet j immediately follows tracklet i,
Gij = .
0 otherwise,
(D

with the added constraints that 3, ¢; ; =1 and 3, ¢; ; =
1, indicating each tracklet should only follow and be
followed by one other tracklet (except for the first and last
tracklets of each track, addressed by virtual starting and
ending tracklets in Sec. 4.4.1). We let ® be the set of valid
correspondence matrices.

For social grouping evaluation, we model it as a clus-
tering problem and assume people form K groups, where
K is unknown. Within each group, there is a group mean
trajectory (a sequence of image coordinates) Gy, with G
= {G1,Gs,...,Gk}. ¥ denotes a binary social grouping
assignment matrix:

1 if tracklet ¢ is assigned to group k,
Yik = . (2)
0 otherwise.

Again there is an added constraint that Zk Y, = 1 and
we let U be the set of valid social grouping matrixes.

For group head pose estimation, we will process each
group independently at every time point so we drop the
time stamp here. Let C' denote the number of individuals
in a group, Y denote the head directions of everyone in the
group, T denote the head directions of all head images in
the scene, X denote any existing unary evidence for indi-
viduals (such as image values or walking direction; there
are M such features), and L denote the pedestrians’ head
locations. Let y; and [; be the head direction and location
of the jth person, and x; be the ith unary evidence for
the jth person. Thus Y = {y1,....yc}, L={l1,...,lc},
Xt = {zi,...,25}, and X = {X',..., XM} Informa-
tion of X and L can be extracted from tracklet descriptions.

3.2 The Probabilistic Model Formulation
The inference of tracking, group discovery, and head pose
estimation given inputs can be modeled as two maximum
a posteriori (MAP) problems:

(¢*,¥*,G*) = argmax P(¢,v,G|T) 3)

ped,hev,G
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and
T* = argmaxP(Y|o, ¢, G, 7). 4
T

In our work, the input to the second problem is the output of
the first problem. Thus a single forward filtering of these
two steps would output all desired information (tracking,
group discovery, head pose estimation).

4 COUPLING SocliAL GROUPING WITH
MULTI-TARGET TRACKING

We model the first MAP problem, P(¢, v, G|T), as
P(¢,¢,G|r) < P(¢, 4, G, )
= P(G) P(1,¢|G) P(¢|m,¢,G) (5
= P(G) P(7,9|G) P(|T, ),

assuming group trajectories do not affect tracklet linking
given grouping assignments. Next we explain each compo-
nent of this model and the optimization algorithm.

4.1

P(7,%|G) is the data likelihood function of the probabilis-
tic interpretation of clustering algorithms such as K-means
clustering. We have

P(7,9|G)

Social Grouping as K-means Clustering

II PG, (6)

i, k|ir=1

assuming trajectories for each individual are independent
from each other given group mean trajectories (a similar as-
sumption is made in general K-means clustering). P(7;|Gy,)
is the likelihood that tracklet ¢ comes from group &, which
we decompose across time as

tfinish

H P al |Gk

t= t@t(n‘f

P(7i|Gk) = P(li(t)|ai(t), Gk). (7)

P(a;(t)|Gy) is the probability that group k appears at
camera a;(t), a parameter of the model for group k& which
we denote as by, o(t). P(l;(t)]|a;(t), Gg) is the probability
that at time ¢, a member of the group in camera a;(t) will
appear at position [;(¢), which we model as a Gaussian
centered around the mean uy, ,(t), the position for group &
in camera a at time ¢, also a parameter of the model for
group k. We use a fixed variance for all such Gaussians.

Notice that here we provide a general formulation for the
multi-camera scenario. When it is the single-camera case,
Eq. 7 can be significantly simplified (P(a;(t)|G) can be
dropped).

4.2 Socially Constrained Multi-target Tracking

P(¢|7,v) measures the probability of tracklet linking (or
track handover in the multi-camera case) given the social
group information. Compared to traditional tracking meth-
ods, this adds a group constraint that if two tracklets are

linked (they are the same person), they belong to the same
group (one group per person):

(ZS‘T QZ} H Pznzt 7—7, H Pterm Tj
1|V, ¢, i =0 JIVm,¢;, m=0
. {lek(z',j) if Y ik = ke
o otherwise.
.4l i =1
(3)

where Pip;+(7;) is the likelihood of 7; being an initial
tracklet, and P, (7;) the likelihood of 7; being the last
tracklet. P,k (7,J) is the likelihood that tracklet j is the
first instance following tracklet . These probabilities are
the affinity model; any standard cues from the literature
can be used (see Sec. 6.3).

4.3 A Simple Social Group Model
We model the probability of social groups as

P(G) x e HIG1 9)

penalizing large numbers of social groups to avoid over-
fitting (such as placing each person in a separate group).
Note that other heuristics are also applicable. Our choice
is intuitive and results in a simple linear penalty in the
optimization space, with its effectiveness validated in ex-
periments.

4.4 Joint Optimization of Social Grouping and
Multi-target Tracking

This section introduces the joint optimization of tracking
and social grouping (P(G), P(7,9|G), and P(&|,%) in
Eq. 5) as a constrained nonlinear optimization framework,
which we call SGB (Social Grouping Behavior) algorithm.

We first reformulate the joint optimization of social
grouping and multi-target tracking in the negative log space
and achieve clean formulations. Then we introduce an
effective optimization framework that can result in simple
existing methods.

4.4.1 Optimization Reformulation

We perform the joint optimization of tracking and social
grouping in the negative log-likelihood space (a mini-
mization problem). Ignoring an additive constant from the
proportionality in Eq. 9,

—In P(G) = k|G]|. (10)

This term is in charge of selecting the number of groups
and serves as the outer loop of optimization. Ignoring a
similar additive constant, for P(7,1¢|G) (Eq. 6), we have

~In P(1,9|G) = 2, 4y D(7i, Gi) =

tfinish

Z Z —alnbyg g,

i,k =1 t=t5tert

2
— Upa, 1) (1))

Y
from Eq. 7 where « and 3 are weights relating to the vari-
ance of the Gaussian. For simplicity, we define D(7;, G},)

(t) + BlL:(t)
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to be the “distance” of tracklet ¢ from group k as above. In
the single-camera case, the distribution by, ,(¢) is degenerate
and drops out of the equation.

P(¢|7,v) (Eq. 8) can be transformed to an assignment
problem by defining a 2n x 2n tracklet linking matrix

it | iy
i (g en) o

with H“J"k = —ln Pyni(i,j), Hm“ = —InPyu(n),
H™ = —In Pyeppm(7i) and 1nﬁn1ty (—In0) elsewhere
(mcludmg all diagonal elements). The virtual tracklets are
introduced to handle track initializations and terminations.
Eq. 8 is 0 if any assignments violate the constraint that
linked tracklets must be in the same social group. Therefore,
if we add this as a constraint: Vi, j, k ¢; ; (¢ x — ;%) =0
the resulting equation can be written in terms of H:

~InP(¢|7,¢) = Z@j ij (13)

Our optimization’s outer loop tries different numbers of
social groups (P(G)). Inside (optimizing P(7,|G) and
P(¢|1,)), we can drop Eq. 10 and minimize the sum of
Eq. 13 and Eq. 11 with the above constraint:

Z¢i,jHi,j + Zwi,kD(Tia Gy)
i ik

st Vi gk ¢ii(Yik — k) = 0.
We call Eq. 14 the primal problem.

min
PP YeW,G (14)

4.4.2 A Two-stage Alternating Minimization Algorithm

We use a two-stage iterative alternative optimization al-
gorithm to solve the constrained nonlinear optimization
problem in Eq. 14. The Lagrangian is

L(6,Gopr) =D i Hig + sz #D(7:, Gy)

,J

+ Z i,k Pij ( dh',k —Yjk),

0,4,k

15)

where the pus are the Lagrange multipliers. The dual of this
problem is

s q(s)
16
whee (0= _min 160G

The resulting correspondence ¢ of the optimization is the
output of the method. For a fixed p, let

(¢, 9", G") = argmin L(¢,9, G, p).
Pe,

YeY,G

A7)

To solve Eq. 16, we use a quasi-Newton strategy with
limited-memory BFGS updates and Wolfe line search con-
ditions guided by the subgradient [39]:

9| _ ey
Opti gk |, BINTLE

— ). (18)

To calculate the subgradient, we use a two-stage block
coordinate-minimization algorithm to solve Eq. 17. The first

stage minimizes over ¢ (the tracklet correspondence result)
from Eq. 15 with ¢ and G fixed:

o = ar(%erginz Gij[Hij+ > phijr (Wi = Vjk)]-
’ (19)

This amounts to adding a penalty term to the matrix scores
(compare with Eq. 13). So Eq. 19 is a standard assignment
problem and can be efficiently solved by the Hungarian
algorithm (or any algorithm designed for tracklet linking).

The second stage minimizes Eq. 15 over ¥ and G, with
¢ fixed: (pH,G*) =

arg min Z i k[D

YeY,G

(75, Gr) + Z(Mz‘,j,k¢i,j — ik ®5i)]-
J

(20)
This amounts to a standard /K -means clustering problem. If
the “centers,” GG, are fixed, the assignments, 1), are made to
minimize the augmented distance. When the assignments
are fixed, the centers can be placed to minimize their dis-
tances to the captured points. Several initial group assign-
ments are tried, as K -means converges to local minimum.
The output of the one with the minimum value for Eq. 16
for one specific |G| is maintained. At the end, we add the
linear penalty of |G| indicated by Eq. 10 and the outer loop
(over |G]) selects the solution with the minimal negative
log-likelihood score. See Alg. 1 for details.

Our method can be viewed as approximate max-product
on the graph G — 1 — ¢ (in which the constraint forms
the potential between v and ¢). Direct variable elimi-
nation does not work, as it would require transmitting
a distribution over all tracklet-tracklet-group triples. Dual
decomposition [42] also results from a Lagrangian formu-
lation, but is different from ours. We employ combinatorial
optimization methods inside of max-product (our K-means
and Hungarian algorithms) which has been explored in
other max-product formulations [16].

Algorithm 1: SGB Algorithm
Data: Tracklet set 7
Result: Tracking ¢ ripnqi, Grouping Vg nql

1 for K + 1 to K,,, do
for : < 1 to N do
w0, oK1 0
initialize 1" and G** randomly
while Not local maximum for Eq. 16 do
W < subgradient ascent: Eqs. 17 and 18
while % or 15 changes do
Update ¢*%: Eq. 19
while v changes do
Update /% Eq. 20
Update G¥# according to ¢
12 Cost™" < primal cost (¢%F, 0t GKP):
Eq. 14
13 (K*,i*) + argming,; Cost®® + BK
14 ¢Final — ¢K*’i*» wFinal <~ wK*J*

R -E S B Y N e ]

—_
-
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5 SOCIALLY-AWARE HEAD POSE ESTIMA-
TION

This section introduces the estimation of head poses given
grouping information and tracking result (P(Y|¢, v, G, T)).
We formulate this problem as inference in a Conditional
Random Field (CRF), discuss how we build the social
interaction factor, and provide exact convex learning and
inference procedures.

5.1 A Conditional Random Field Formulation

P(Y|¢,%,G, 1) is the probability of head pose labeling in
the video. In this work, we model the head poses of a group
as a generative graph labeling! problem for each group at
each time instance:

P(Y|¢,¥,G, ) = P(Y|¢, v, 7) = [ [ P(Vi| X, L),
k

(2D
assuming group mean trajectories do not affect head pose
estimation given grouping assignments. Concentrating on
a single group (one P(Yy|Xy, Ly) term), we drop the k
subscript. By assuming a uniform prior on head poses, each
evidence source is independent given the head pose, and
each unary evidence («) only depends on the person’s head
pose (y), we have

1 )
PYIX. D) = P L) TIT[Pwils). @2
i

with Z being a normalization constant. We model pairwise
social tendencies in the group for P(Y, L). This problem
can be modeled as a CRF as shown in Fig. 3. By using a
log-linear model and ignoring the normalization constant,
we get:

In P(Y[X,L) oy (w}, A{(X",Y)) + (wa, Ap(Y, L))

i

= (w,A(X,Y, L)),
(23)
where ' _ o
A(XLY) =D A, ), (24)
J
and
A2(KL) = Z >‘2(yj17yj2alj1alj2)' (25)

J1=<J2

< is an ordering: we enumerate all unique pairs in a group.
The subscript in Ay denotes a pairwise term. \o(-) is the
feature vector for a pair of people that jointly models head
pose labeling Y and locations L, with details described
in Sec. 5.2, ws is the weight vector for these features,
and (-,-) is the dot product. Evidence from unary factors
(i.e. A1 and Aq) is represented similarly. A(X,Y, L) is the
feature vector composed of features from Ay and A} for all
i (from 1 to M). w is a vector of parameters to be estimated
(composed of the weights from wy and w? for all 4). This
formulation allows exact convex learning and inference.

1. We use label and head pose direction interchangeably.

Fig. 3: A factor graph showing how variables and cliques
interact in the CRF. A graph of three head images and
only two unary features are shown for simplicity. If there
are more people in a group or more unary features, this
graph can be straight-forwardly augmented.

2

é

./; .a\ ?a=0
T B=0 BN P ./[; ‘B
Y § ¥ § §
-180 -90 0 +90 +180

Fig. 4: Structure-aware head pose angle difference. Nodes
are head images and dark blue arrows are head directions.
Relative positions within group members are considered.
The difference is simply S — «. A positive number implies
social attraction.

5.2 Building Group Interaction Models

We study the pairwise head pose interaction patterns in
social groups for Eq. 25, which is key for using social
grouping information to improve head pose estimation
performance. We define the structure-aware head pose angle
difference as illustrated in Fig. 4. We will use SA(j1, j2),
short for SA(y;,,¥j,, 15, ;,), to denote this angle between
the head directions of person j; and jo. This angle takes
into account the relative positions of the two people. Using
structure information allows us to differentiate between
social attraction and divergence when the absolute angle
difference is the same. Given social groups, we collect
such angle differences from only 200 pedestrian pairs from
training data (the model data), identify two modes by
thresholding velocity (a dataset dependent parameter in
pixel/frames similar to that in Chamveha et al. [9]), and
build the histograms shown in Fig. 5.

The resulting histograms are intuitive: (1) As shown in
Fig. 5 (left), when people walk, they tend to look in the
same direction (where they are heading generally or where
an object of interest is), but there is more social attraction
than divergence, as people tend to make eye contact with
each other. We choose to model it with two exponential
distributions on both sides of zero degrees. (2) As shown
in Fig. 5 (right), when people are relatively stationary, they
tend to look directly at each other (angle difference around
+180 degree), or be attracted to common objects of interest
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Frequency
Frequency

5

o
o
4
2|
0 0!
S0 % -0 50 0 s 100 10 200 %
Structure-aware head pose angle difference

200 -150 -100 -50 0 150 200
Structure-aware head pose angle difference

Fig. 5: Two social interaction modes with structure-aware
head direction angle difference. Left: dynamical social
interaction mode, fitted with two exponentials on either side
of 0 degree. Right: static social interaction mode, fitted with
two Gaussians on either side of 90 degrees. The specific
distributions (exponential and Gaussian) are chosen due to
their expressive power in this application and simplicity to
express in the negative log space. The fitted distributions are
rescaled and are for illustration only; their actual parameters
are learned from training data.

(around O degrees, for example, when people scan shop
windows). Though this is arguably a mixture of Gaussian,
we model it with two Gaussians, separating at 90 degrees,
for simplicity. The goal of learning is then to learn the rates
of the exponentials and variances of Gaussians (feature
weights in the negative log space).

These general forms can be converted into features so
that the weights in Eq. 25 correspond to the rates and
variances above. Given the group head pose interaction
models, the feature vector of dynamical interaction mode
for two head images (two exponentials on either side of 0
degree) is A5 (y;,, Yins s Ljn) =

|SA(j1,J2)| 1[SA(j1, 52) = 0] (26)
[SA(j1, J2)| 1[SA(j1, j2) < 0]

I[-] is the indicator function indicating the submode of
social interaction for the pair j; — jo. If the mode is off,
the corresponding feature is 0.

The feature vector of the static interaction mode is

Ay Y Lo L) =

(SA(j1, j2) — 180)2
(SA(j1,72))?

T[S A(j1,j2) < 90]
Similar to the feature vector in Eq. 26, these two features
indicate which Gaussian submode is active and the corre-
sponding feature value.

The dynamical interaction feature and static interaction
feature can be unified as Aa(y;,, Yj,, Ly, L) =

)\gnm’mg(y]l,yjz,l i1 1j,) I[moving]

; . (28)

A (Y515 Yz Ly s L) I[not moving]
For example, if people are moving (estimated from tracking
result), the dynamical interaction (moving) mode is on, and
all features in A3**¢ become 0.

5.3 CRF Parameter Learning

Our CRF modeling allows exact convex discriminative
learning. Note that we are interested in a regression prob-
lem, as the loss function models angle difference. However,
using discrete and fine (32 bins) class labels make exact
learning possible.

Let X (™) denote all unary features, L) denote head lo-
cations, and Y (™) denote the ground-truth labeling of group
instance m. Further, let A (Y) = A(X(™))Y, L(™);
thus A (Ym) = A(X0) Yy () L0m) indicates a
ground-truth feature-label configuration from training data.
We conduct discriminative learning [43] of P(Y|X, L) in
the negative log space. Given N training examples, each of
which is a graph labeling and related features, the objective
function of training is g(w) =

(m)|X(m) L(m)) 2 ’

PG

where [(+;

(29)
-) is the loss function for a group:

Zl (m)’yj

I'(-) € [0,180] is the absolute difference between two di-
rections. ¥ ||w||? is a regularization term to avoid overfitting
(7 is achieved via cross-validation in training).

After we apply Eq. 23, the objective function becomes

1 & .
w) = Nﬂ;m;ﬂ N(Y) +

(m) Y (30)

G

where T(™) () = (¥ ") = (w. A (V™) —AD ()
(32)
Eq. 31 is convex with gradient
L S MOAOE®) - ANw) )
N~ 2y TW(Y) '

Since the objective function and gradient are explicit, mini-
mization can be done exactly with any convex programming
package, and we again use the one from Schmidt [39].

The complexity is O(Q®), where @ is the number of
quantized head pose directions and C' is the number of
people in a group. Sociology research [29] shows that in
natural scenes, people generally form groups of fewer than
6 people. This is also validated in the dataset we use. If the
scene is really crowded (such as a Marathon event), large
groups can be divided into smaller ones, or our model is
not suitable since social interaction can be quite noisy in
such cases. Running time is discussed in Sec. 7.5.

5.4 Head Pose Estimation Inference

Given model parameters (feature weights learned in the pre-
vious section), we perform head pose estimation inference
by outputting

max (w,A(X,Y, L)) , (34)
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which is the maximization of the log of P(Y|X, L).

We use a brute-force approach to try all combinations of
head directions for exact inference. The complexity is the
same as learning, with tractability discussed above.

6 DETAILS ON LOWER-LEVEL TASKS

Our framework is general in that it can be built upon dif-
ferent choices of lower-level components, such as tracklet
extraction methods, features to build the tracklet affinity
matrix, and unary features used for head pose estimation.
We give details of our choices for implementation.

6.1

Parameters for tracking and group discovery include the
feature weights for tracking, and « for group number
selection. They are estimated by a coarse grid search in the
first time window in each dataset, and are fixed afterwards.
In practice, feature weights are first selected for tracking
without social grouping. Then & is selected by a simple
binary search after adding the social grouping term.

Parameter Estimation for Tracking

6.2 Tracklet Extraction

Our framework only requires the tracklet extraction method
employed to be reliable (commonly assumed in the liter-
ature). Namely there should be few within tracklet iden-
tity switches. In order to perform comparative experimen-
tal evaluation, when tracklets from authors of published
work are available, we use them. Otherwise we build
our tracklet extraction framework based on human detec-
tion responses, combining nearest neighbor association and
template matching to extract conservative tracklets. Given
detection responses, we link detection response pairs only
at consecutive frames which have very similar color, size
and position. Additionally, the newly added detection must
be similar to the first detection in the tracklet, thus avoiding
within-tracklet ID switches caused by gradual changes. We
find this simple strategy produces almost zero ID switches
within tracklets and good recall performance.

6.3 Basic Affinity Model

Social grouping behavior regularizes the tracking solution
and alleviates the need for a highly tuned affinity model.
However, the basic affinity model must produce reasonable
measurements, H; ;. For both single-camera and multi-
camera tracking, we build the basic affinity model using
appearance (app) cues and spatial-temporal (st, usually
referred as motion in single-camera tracking) cues:

—In Bink(i,j) = - lnp;‘lg‘p -

In pffj (35)

For single-camera tracking, we use the Bhattacharyya
distance between the average color histograms within the
tracklets [41]. We employ the HSV color space and get
a 24-element feature vector after concatenating 8 bins for
each channel. The motion model is a simple linear motion

smoothness measure [25].

For multi-camera tracking, we use the BTF model and
the Parzen window technique for spatial-temporal informa-
tion in Javed et al. [20]. P;,,;(T;) and Py, (T;) are set to
be a single constant (from training) for simplicity. There is
also the time constraint that tracklet linking is only possible
when tracklet j takes place later than tracklet ¢ and within
a maximum allowed frame gap t,,,4-

6.4 Spatial-temporal K-means Clustering

We describe how to implement the two steps of K-means
clustering: group update (with group assignments given)
and tracklet assignment (with group parameters given).

Recall that we modeled the group mean trajectory for
G}, as, at each time ¢, a distribution over which camera
a member of the group appears in, by .(t), and a mean
position within each camera a that a group member would
appear, uy o(t). Track assignment (finding ¢ given a fixed
G) is simple: for each tracklet 7;, compute D(7;, G}) from
Eq. 11 for each group G, and select the one that minimizes
the negative log-likelihood.

For the update of Gj, with the assignment ¢ fixed, we
must find the parameter assignments to by . and uy . that
maximize the likelihood. The log-likelihood is a sum across
time, so the maximization can be done independently at
each time point. by o(t) is a multinomial parameter and
therefore its maximum likelihood estimate is proportional
to the number of tracklets that are assigned to group k at
time ¢ in camera a.

Uk, (t) is the conditional mean for group k at time ¢ in
camera a. Therefore, its maximum likelihood parameter is
the average position of all tracks assigned to group k at
time ¢ in camera a. If at any point there are no tracklets
for group k and camera a, we use linear interpolation or
extrapolation to generate a mean. If no tracklets in camera
a are ever assigned to group k, we place ug q(t) in the
middle of the image for all ¢.

6.5 Unary Terms in CRF

Features from existing work can be used to construct unary
features in our head pose estimation framework. We use
two unary features. First, walking direction is shown to be
effective in some datasets. As proposed by Benfold and
Reid [3] and validated in our work, head pose direction is
distributed approximately as a Gaussian with the walking
direction as the mean. Thus in our negative log-likelihood
framework, the unary feature of walking direction is

_ walking

walking
)\1 (]a 7

walki
)= (y; — Lj ng)Q-
We also build a two-level HoG vector to model visual
features of head images, following Chen and Odobez [10].
Then we train a multi-class SVM with probability estimates
[45]. Besides predicting labels, this allows us to estimate
the probability of a visual vector belonging to each class.
In this way, we have

M g, 2 f1°%) = —log P(y; |z} ).

HoG

where —log P(y;|z;'°“) can be directly obtained from the

output of an SVM classifier with probability estimates.

(36)

(37)
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TABLE 1: Datasets used for each task in the experiments.

Task Datasets
Multi-target Tracking PETS 2009, CAVIAR, TUD
Multi-camera Tracking | VideoWeb

Head Pose Estimation PETS 2009, CAVIAR, TownCentre
Group Discovery PETS 2009, PSUHub, TownCentre

TABLE 2: Comparison of the tracking result on the
CAVIAR dataset: 75 ground truth (GT) tracks.

Building

Door

BT Camera 1

Open area Camera 3

7 EXPERIMENT

We conduct comparative experiments with recent related
methods on publicly available datasets for tracking, head
pose estimation, and group discovery. Experimental results
clearly show the benefits of utilizing social grouping con-
text. The datasets we use is summarized in Tbl. 1

7.1

We first evaluate how modeling social grouping behavior
helps to improve single-camera multi-person tracking on
the CAVIAR Test Case Scenarios dataset [7]. We use the
videos selected by Song et al. [41], consisting of 12,308
frames for about 500 seconds. We retrieve tracklets from
the same authors and use the same evaluation metrics by
Li et al. [25]: the number of ground truth trajectories (GT),
mostly tracked trajectories (MT), mostly lost trajectories
(ML), fragments (Frag), ID switches (IDS), and recall
and precision for detections. A comparison with several
published results under the same configuration is shown
in Tbl. 2. Our basic affinity model achieves reasonable
results, while better results than competing methods can
be achieved by employing our social grouping model with
the simple affinity model.

Fig. 6 shows representative cases of the strong grouping
information that allows us to improve tracking performance.

We further compare our model on the popular PETS
2009 and TUD-Stadtmitte datasets against a number of
state-of-the-art methods using the same evaluation metrics.
We obtained the publicly available detection results, ground
truth data, and automatic evaluation tool from the authors
of [50]. In addition to the former metrics, we also report the
false alarm rate (FAF) for detections, and partially tracked
trajectory ratio (PT) from the evaluation tool. In Tbl. 3
and Tbl. 4 we can see that our model outperforms several
state-of-art methods, even though our model is built upon
a simple basic affinity model. On the other hand, compet-
ing methods either solve complex optimization problems
(Milan et al. [28] introduce six types of jumps in the
optimization space) or build sophisticated affinity models
(Kuo and Nevatia [21] use appearance features from the
person identification literature). Of particular interest, for
the PETS 2009 dataset, pedestrians were asked to travel
across the scene multiple times. Even in such a scenario
they formed groups and made social interactions, which

Single-camera Tracking Evaluation

Method Recall Prec. MT ML | Frag | IDS

Particle filter | 55.7% | 60.4% | 53.3% | 10.7% 15 19 Building Doorf] ‘}SHUH Building

Basic affinity | 81.1% | 82.7% | 77.3% | 6.7% 9 12 Passageway - ICamera 2 Passageway

MCMC[41] | 84.5% | 90.7% | 84.0% | 4.0% 6 8 Buikding

SBM[52] - — 85.3% | 4.0% 7 7

Our SGB 90.1% [ 95.1% | 88.0% | 2.6% 5 6 Fig. 7: Topology of the cameras in the experiments.

is utilized by our model to help tracking. An example is
shown in Fig. 8.

7.2 Multi-camera Tracking Evaluation

We test our method using two sets of videos on the pub-
licly available VideoWeb dataset [14]. We choose Cam?27,
Cam20, Cam36 and part of Cam21 (indexed by 1-4)
to establish the desired non-overlapping topology, shown
in Fig. 7. Multi-camera tracking in this setting is very
challenging for the following reasons. (1) We use 4 cam-
eras, unlike most prior work that use 2-3. (2) This is an
outdoor dataset with a cluttered environment and severe
within-camera illumination change, which makes traditional
methods that establish one single transformation between
each camera pairs, such as BTFs, much less reliable.
(3) Since this dataset is mainly designed for complex real-
world activity recognition, there exist heavy interactions
among individuals, unlike “designed” tracking datasets (for
example the one in the work of Javed et el. [20]).

We compare our proposed multi-camera social grouping
behavior tracking (MulSGB) to directly using the Bhat-
tacharyya distance between RGB color histograms, Parzen
window estimation for spatial-temporal information and the
original color histogram for appearance (Parzen Window)
and the BTF plus Parzen window estimation framework
(Parzen Window + BTF) in the work of Javed et al. [20].

We gather 9 videos using all 4 cameras and 4 videos with
camera 1-3. We use 5 videos from the first set for training
and all the other videos for testing (note the second set
of videos contains a subset of cameras of the first set so
no additional training is needed). All other videos in the
dataset either had no inter-camera motion or were missing
data for more cameras. The data used have roughly 40,000
frames (25fps) for each of the four cameras for training and
80,000 frames for each camera for testing. For detection,
we use a state-of-art pedestrian detector [17] to get de-
tection responses and generate reliable intra-camera tracks
using our introduced single-camera tracking framework.
The same set of tracks are used for all comparing methods.
We hand-labeled ground truth and measure the percentage
of correctly linked pairs for the eight testing scenes (which
consist of 244 single-camera tracks in total). Fig. 9 and
Fig. 10 show the results for each set of videos.

We have the following observations. (1) Given the
poor color histogram result, especially for the four-camera
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Frame 890 Frame 950 Frame 980 Frame 1010
(a) Even under heavy occlu51ons and interactions, the usual 1dent1ty sw1tch of 2 and 10 is aV01ded

Frame 510 Frame 1245 Frame 1650 Frame 1682
(b) Long-term tracking of the couple (20,21) is possible under challenging conditions:
small target, illumination change (frame 510), and false detection (frame 1245).
Fig. 6: Some representative tracking results for CAVIAR dataset.

Frame 477 Frame 483 Frame 489 Frame 509
Though there are heavy interactions between 10 and 15, social context from 2 helps to recover an ID switch.
Fig. 8: One representative tracking result for PETS dataset.

TABLE 3: Comparison of the tracking result on the PETS 2009 dataset.

Method Recall | Precision | FAF GT | MT PT ML Frag | IDS
KSP [4] 83.8% | 96.3% 0.160 | 23 | 739% | 17.4% | 87% | 22 13
Energy Minimization [28] | 92.4% | 98.4% 0.070 | 23 913% | 4.4% 44% | 6 11
Online CRF [50] 93.0% | 95.3% 0.268 | 19 | 89.5% | 10.5% | 0.0% | 13 0
Nonlinear Motion [49] 91.8% | 90.0% 0.053 [ 19 | 89.5% | 10.5% | 0.0% | 9 0
Our SGB model 97.2% | 98.6% 0.077 | 19 | 947% | 5.3% 0.0% | 4 2
TABLE 4: Comparison of the tracking result on the TUD-Stadtmitte dataset.
Method Recall | Precision | FAF GT | MT PT ML Frag | IDS
KSP [4] 63.1% | 79.2% 0.650 | 9 11.1% | 77.8% | 11.1% | 15 5
Energy Minimization [28] | 84.7% | 86.7% 0.510 | 9 778% | 222% | 0.0% 3 4
PRIMPT [21] 81.0% | 99.5% 0.028 | 10 60.0% | 30.0% | 10.0% | O 1
Online CRF [50] 87.0% | 96.7% 0.184 | 10 70.0% | 30.0% | 0.0% 1 0
Our SGB model 95.2% | 98.5% 0.085 | 10 | 90.0% | 10.0% | 0.0% 4 3
100 100 T T T T
T T L I Color
gl = o] B o |
sl El}::‘ﬁgg;‘lmdow +BTF| | | . sen

Percentage of correctly linked pairs
Percentage of correctly linked pairs

Videot Video2 Video3 Video4 Total
Videol Video2 Video3 Videod Total

Fig. 10: P t f tly linked pai the f
Fig. 9: Percentage of correctly linked pairs on the four video 2 ereemtage O correctly Anked paus on the Tour
ith f The vid i<t of 27. 5 video sequences with three cameras. The videos consist of
sequences with tour cameras. 1he videos consist o > 17, 24, 9 and 14 (64 in total) ground truth linked pairs

5 and 23 (60 in total) ground truth linked pairs respectively. respectively
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Frame 5809 (Cam 3) Frame 6222 (Cam 3)

Frame 6689 (Cam 2)

Frame 6295 (Cam 2)

Fig. 11: Example tracking result with our model, where G indicates group number. Because people form groups and
show proximity to group members, social grouping provides powerful contextual information to improve multi-camera
tracking. Other methods tend to identify a new person (Frame 6295 target 1) and output an identity switch (target 3 and
5) on this sequence, because traditional evidences are unreliable.

setting (demonstrating the difficulty of the dataset), the
overall performance is good, as our MulSGB model indeed
improves tracking performance over competing methods.
(2) The example in Fig. 11 shows a representative example
where social grouping helps tracking, while other meth-
ods fail under this challenging sequence. (3) Since our
social grouping model serves as a regularizer, the basic
affinity model upon which we built social grouping model
is sometimes a bottleneck. For example, we observe no
improvement upon the baseline model for two sequences
in Fig. 10. We observed that in such cases, although the
optimization usually heads toward a good solution, it could
not recover wrong links since the basic model provides very
unlikely handover possibility between the correct pairs. For
example, when the illumination condition changes between
the testing set and training set, the learned BTF may even
hurt the performance comparing to pure color histogram
comparison, as is the case for videol in Fig. 10.

7.3 Head Pose Estimation Evaluation

We evaluate how social interaction improves head pose esti-
mation in challenging videos, using the TownCentre dataset
[3], CAVIAR, and PETS 2009. We use mean absolute angle
difference (MAAD) stated in degrees as the evaluation
metric, as is commonly done in related work. We quantized
head pose into 32 directions, which is finer than most
existing work (such as 8 directions [10][38]). This helps
alleviating errors from coarse quantization when comparing
angles. Competing methods that require discretization use
the same setting.

We compare our method with models using visual fea-
tures only (HoGSVM) and walking direction only (Walk-
ing). We also compare our method with a model with both
visual and motion features. We call this model the BR (Ben-
fold and Reid) setting [3]. Our implemented BR baseline
does not incorporate temporal information. However, the
resulting CRF can be solved exactly. We feel these two
factors largely compensate each other as we get compara-
ble results as those by Benfold and Reid [3]. Temporal
information might be incorporated in our framework if
approximate inference algorithms were applied. We also
compare with two state-of-the-art methods: Orozco et al.
[31] build a mean image for each class and represent each
image as a distance map to these references. We use our
own implementation with KL-Divergence as the distance

TABLE 5: Comparison of the head pose estimation results
on the TownCentre, CAVIAR and PETS 2009 dataset.
Numbers are reported on MAAD.

Method TownCentre = CAVIAR  PETS
HoGSVM 31.20 28.80 32.64
Walking 23.89 72.01 58.28
DisMap [31] 33.12 30.20 31.54
WARCO [44] 31.12 25.70 28.65
BR Setting [3] 22.87 27.00 31.85
Ours 21.83 24.65 28.78

measure (best reported measure in the paper). Tosato et
al. [44] design a new visual feature and have publicly
available implementation. Note that the small-sized head
images make the comparison to landmark detection based
work (e.g. [53]) impossible.

We use head images from people that are not in groups
to train the multi-class SVM. Note we only report results
for people identified in groups. For people that are not
identified in groups, our model would output exactly the
same result by using individual features alone. For the
TownCentre dataset, about 30% of the people are identified
in groups. For PETS 2009, over 40% of the people are in
social groups. For the CAVIAR dataset over 60% are in
groups.

We first use the TownCentre dataset to test our proposed
method. This dataset has been used in several recent papers.
It involves people traveling in a shopping mall. Though this
dataset is treated as high-resolution video in the tracking
literature, head images are small due to the high camera
angle. We use the result of head tracking from Benfold and
Reid [3] and use our spatial-temporal clustering procedure
in Sec. 6.4 to determine groups. We manually label head
directions for every 15 frames. Due to annotation differ-
ences, the angle differences are not directly comparable.
But the performance we get from our BR setting baseline
implementation is comparable to that of Benfold and Reid
[3], which reports an MAAD of 23.90.

We gather 270 pairs of head images for this dataset.
Whenever training is involved, 100 pairs are used for
training and the others are used for testing. Since cam-
era parameters are available for this dataset, we evaluate
performance on the ground-plane. The results for different
methods are shown in Tbl. 5.

As stated by Benfold and Reid [3], we also observe
that walking direction provides a very good baseline in
this dataset since most people are walking in the shopping
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Walking

HoG+Walking Social+HoG+Walking

(a) Our model provides finer head direction estimate even when walking direction is reliable.

(b) Our model helps to correct head direction estimations in social groups with multiple people.
Fig. 12: Representative head direction estimation results for TownCentre. Red lines indicate human-labeled head direction.

Walking

HoG+Walking Social+HoG+Walking

(b) One case that our model is not able to fully recover false estimations.
Fig. 13: Some representative head direction estimation result for CAVIAR dataset.

mall. It can generate a better result than using only visual
features. But even in such scenario, our model improves
upon the best non-social method. As people walk together,
their head directions tend to be attracted by other group
members. Using social information regularizes out outliers
that do not conform to such social constraints. Note that the
performance gain from our social model is as large as the
gain from combining two non-social information sources
(comparing to using walking direction alone). We show two
qualitative examples in Fig. 12.

We also compare performances on the CAVIAR dataset
and PETS 2009 dataset. We annotate 5 video sequences?
in CAVIAR and the entire PETS dataset at every 5 frames
for head locations and head direction manually to focus on
head pose estimation. For CAVIAR we gather 241 pairs of
data, 100 of which are used for training and the others
for testing. For PETS we gather 194 pairs of data and
use half of them for training. Note for these two datasets
we directly assign person ID and group ID based on our

2. FightChase, MeetSplit3rdGuy, FightOneManDown, MeetWalkTo-
getherl, FightRunAway1

tracking model. That is, we do not assume ground truth
identity or group member labeling and we evaluate head
pose estimation performance in the complete system.

Compared to the TownCentre dataset, head images in
these two datasets are of lower resolutions but possess lower
variance because there are fewer people. CAVIAR involves
more people standing still; the static mode of our social
interaction model is more frequently activated and walking
directions can be very noisy. People in PETS also show
more freedom while walking so walking direction is again
not as reliable as that in TownCentre. For these two datasets,
we evaluate performance on the image plane.

We summarize the results in Tbl. 5. The performance
gains by incorporating social context are more significant
on these two datasets. They are much larger than the gain
from combining the two non-social information sources
(comparing to using visual feature alone.) This is because
walking direction is often no longer a reliable feature
and visual features are still weak. Yet, when people are
relatively static, they tend to make more social contacts so
our model helps more. Also, when walking, pedestrians’
head direction severely deviates from walking direction,
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such deviations are usually motivated by group members
or objects of interest, which is modeled in our formulation.
We note that the reference-set based approach [31] does
not perform very well due to its classification (instead of
regression) formulation and the sparsity of training data.
Our model performs comparatively with or better than the
state-of-the-art method [44]. Some examples are shown in
Fig. 13. We also show a case where our social model
is not able to recover from false head pose estimations:
Fig. 13(b). This is because our social model can be viewed
as a regularizer, and it will not help much when the baseline
model provides very bad evidence (for example, assigning
very low probability to the true label).

7.4 Group Discovery Evaluation

Group discovery is provided by the group assignment
matrix of our model. The simple spatial-temporal clustering
approach is robust as a global consistency measure, while
existing methods typically use features such as velocity,
which can be unreliable with noisy detections or standing-
still people. We show that our group discovery component
can produce reasonable result compared to other designed
approaches. The fact that our group discovery model is
coupled with the tracking process (while other methods
typically assume and are built upon perfect tracking result)
makes our grouping approach more practical. When trajec-
tories are available, the spatial-temporal clustering approach
can be directly applied. We evaluate both cases.

Following Ge et al. [18], we use the following evaluation
method: Each pedestrian is coded into one of two cate-
gories: alone or in a group. This is called the dichotomous
coding scheme. A trichotomous coding scheme classifies
each pedestrian into alone, in a group of two, or in a group
of three or more. Match rate indicates the percentage of
persons that are classified correctly. Furthermore, to test the
statistical significance of the agreement between the human
annotations and the output of the algorithm, Cohen’s Kappa
test [24] is used. Kappa score ranges from —1 to 1, and
Landis and Koch [24] characterize values smaller than 0
as indicating no agreement and (0,0.2] as slight, (0.2, 0.4]
as fair, (0.4, 0.6] as moderate, (0.6, 0.8] as substantial, and
(0.8, 1] as almost perfect agreement.

Since we are not aware of group discovery results or an-
notations on the datasets we conduct tracking experiments
on, or any available implementations of relating work, we
are not able to conduct comparative experiments on these
datasets. We thus annotate grouping in the PETS 2009
dataset. Our method produces 87% matching rate and a
x value of 0.75 for both dichotomous and trichotomous
coding scheme (there are no trichotomous groups in the
ground truth.) 55 trajectories are identified in time windows
of 100 frames. (The same person in different time windows
are treated as different persons [18].) We can achieve
substantial agreement with human annotator on this dataset.
If we focus on predicted pairs of people in social groups,
for the 11 groundtruth pairs, our system achieves 91% recall
and 71% precision.

13

TABLE 6: Comparison of the group discovery result on the
PSUHub dataset.

Match Rate K

dichotomous [18] 84% 0.74
trichotomous [18] 75% 0.63
dichotomous [ours] 83% 0.58
trichotomous [ours] 76% 0.49

We also compare our method with Chamveha et al [8]
on the Towncentre dataset. Since their implementation is
not available, we report the same measure, group accuracy
(whether two people are in a group or not, compared with
human annotation), as reported in the paper on the same
dataset. We achieve an accuracy of 78.2% while they report
81.8%. The results are comparable and their method is
based on the ground truth trajectories.

We further test our spatial-temporal clustering method
against Ge et al. [18] on their publicly available PSUHub
dataset and compare with their results. The dataset provides
2476 pedestrian trajectories in 177 time windows without
images. We show the results in Tbl. 6.

We achieve comparative matching rates to a method
designed solely for group discovery. Our model is inferior
in terms of Kappa test, but we still get moderate agreement
with ground truth. Note that our model is very simple to
implement with only one parameter (weight for group size
penalization, which is fixed across each dataset), while
we are aware of at least four free parameters in Ge et
al. [18]. Also, our method tends to group strangers that
follow common path. Such pragmatic social groups still
help tracking and head pose estimation. (Strangers may
still follow common path, look at where they are heading
to, or look at common object of interest.) Furthermore, the
coupling of our clustering method with tracking makes it
more practical when full trajectories are not available.

7.5 Running Time

We use a standard desktop and all our code is implemented
in Matlab without specific optimization or parallelization.
For the tracking problem, given tracklets and the affinity
matrix H, the running time of our optimization depends
on the implementation of the second-order gradient based
method and scales with the number of tracklets. For the
datasets in this paper, it takes 1 to 10 seconds to converge
to a local maximum for each run on a time window.
Though multiple runs with different random initializations
are necessary to find a better optimum, our optimization is
trivial to parallelize for each run. For head pose estimation,
our implementation for training takes about one minute to
converge to the global optimum with 100 pairs of data.
Testing typically takes fewer than 5 seconds to finish (since
no gradient descent is involved). Group discovery given full
trajectories takes less than one second for each time window
for the PSUHub dataset.

8 CONCLUSION

We show a general framework of coupling the novel social
grouping context with important computer vision tasks
including multi-target tracking and head pose estimation.
Certain sub-components in our framework are naturally
coupled and thus can be joint optimized. We then provide
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effective solvers for those components based on nonlinear
optimization and conditional random field. We conduct
extensive experiments to show that social grouping con-
text helps tracking and head pose estimation. Our social
grouping model alone can also produce reasonable results.
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