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The Disappearing “Advantages of Abstract Examples in Learning Math”  
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Abstract 
When introducing a novel mathematical idea, should we 
present learners with abstract or concrete examples of this 
idea? Considerable efforts have been made over the last decade 
to settle this question in favor of either abstract or concrete 
representations. We contribute to this discussion through a 
critical replication and extension of a well-known study in this 
area. Whereas the target article argues for the general 
superiority of abstract representations, we demonstrate that 
seemingly minor modifications of the study design indicate 
otherwise. Our results suggest that the previously reported 
“advantage of abstract examples” manifested not because 
abstract examples are advantageous in general, but because the 
earlier studies utilized concrete examples that are 
pedagogically suboptimal. 

Keywords: mathematics education; examples; abstract versus 
concrete; transfer of learning; replication 

Introduction 
The use of abstract or concrete representations during 

mathematics and science instruction has been called a 
“longstanding controversy” (Fyfe, McNeil, Son, & 
Goldstone, 2014), and with good reason. Conceptually, we 
might argue that concrete representations have the advantage 
of connecting to students’ existing knowledge. On the other 
hand, abstract representations have the advantage of 
eliminating potentially extraneous perceptual elements. But 
the elimination of these “extraneous” elements may also 
reduce the degree to which students can ground a particular 
representation in their prior knowledge. An advantage of 
abstract representations is thus at odds with an advantage of 
concrete representations. Which is better? A review of 
literature suggests that the answer depends on who asks the 
question: both pro-concrete and pro-abstract advocates are 
able to cite research where concrete or abstract 
representations are more, or less, effective (see, e.g., 
Koedinger, Alibali, & Nathan, 2008; Schalk, Saalbach, & 
Stern 2016, for examples). 

In this paper, we contribute to the debate through a 
replication and extension of a well-known and unique study 
in this area, in particular the central experiment discussed in 
Kaminski, Sloutsky, and Heckler (2008), “The Advantage of 
Abstract Examples in Learning Math.” 

Compared to other papers on the topic, Kaminski et al. is 
unique in that it makes a universal argument in favor of 
abstract representations. In particular, the authors argue that 

“Instantiating an abstract concept in a concrete, 
contextualized manner… obstructs knowledge transfer. At 
the same time, learning a generic instantiation allows for 
transfer” (p. 455). In their study, abstract representations are 
in general superior to concrete representations.  

Being a rare mathematics education article published in 
Science, the study caught the attention of not only other 
scholars, but found recognition in the popular media circuit 
as well. In a New York Times science column, Chang (2008) 
praised the article, criticized other education researchers for 
failing to conduct proper research (i.e., “randomized, 
controlled experiments”) and made an even stronger 
recommendation: “let the apples, oranges and locomotives 
stay in the real world and… focus on abstract equations.” 
Similar articles appeared in Le Monde, De Standaard, and 
elsewhere. 

Various elements of the study were criticized over the next 
few years (see De Bock, Deprez, Dooren, Roelens, & 
Verschaffel, 2011, for a summary). These criticisms 
frequently took the form of conceptual disagreements 
published in math education journals. Despite these 
conceptual critiques, or perhaps because of them, Kaminski 
et al. remains steadily cited over the last decade. 

The core of the present text is an empirical argument for a 
more critical re-interpretation of Kaminski et al. In our 
critical iteration of the experiment, we made relatively minor 
modifications to the design that nonetheless appear to have 
had a large impact on the results. We also extended the design 
to include additional transfer domains, including transfer to a 
formal mathematical context. The accelerated development 
of formal knowledge is, after all, a key motivation behind 
using examples in a math classroom. Our results do not 
support the hypothesized advantage of abstract examples; on 
the contrary, they favor the concrete example. 

In order to contextualize our own critical replication and 
extension, we first discuss the central experiment reported by 
Kaminski et al. (2008), as well as De Bock et al.’s (2011) 
replication, the first to empirically challenge the original. 

Kaminski, Sloutsky, and Heckler (2008) 
Kaminski et al. reported a number of experiments drawn 

from Kaminski’s (2006) dissertation. In this paper, we focus 
on the central experiment, as it forms the foundation of their 
argument. Here we summarize this experiment, and refer the 
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reader to Kaminski et al. online supplemental materials for a 
more extensive description.1 

The experiment consisted of two phases. In the learning 
phase, undergraduate students (Ohio, USA) were introduced 
to a mathematical concept, that of an abstract group of order 
3 via rules and examples of these rules. (Briefly, an abstract 
group of order 3 is a set of three elements and a binary 
operation that satisfies certain abstract rules—closure, 
associativity, identity, and inverse. As a consequence of these 
rules, all mathematical groups of order 3 are isomorphic to 
each other.) The manipulated variable in the study was 
whether students were introduced to this mathematical 
concept via more concrete or more abstract representations. 

In the concrete representations condition, participants were 
provided with three icons of a cup—1/3 full, 2/3 full, and 3/3 
full—and rules for combining these cups. In the abstract 
representations condition, participants were provided with 
three generic shapes—a flag, a square, and a circle—and 
rules for combining these shapes. Unbeknownst to the 
participants, adherence to these rules (in either condition) is 
mathematically equivalent to operating in an abstract group 
of order 3. 

At the end of the learning phase, a multiple-choice test was 
administered. The second phase—transfer phase—began 
immediately after completing this test. There, participants 
were presented with new, seemingly arbitrary icons of real-
world objects (e.g., a vase). Unlike in the learning phase, 
participants received no explicit training in the transfer 
domain; they were, however, told that these icons combine in 
ways structurally identical to the rules they just learned, and 
provided four examples. Then they answered a series of 
questions structurally identical to the ones they encountered 
in the learning phase. The training and the tests were 
accomplished individually via a computer terminal. 
 
Table 1: Average scores (SD), as a percentage. A indicates 

that the learning phase was conducted with abstract 
instantiations, C with concrete ones. 

 

Condition Learning Transfer 

A 
(N = 18) 

80 
(13.7) 

76 
(21.6) 

C 
(N = 20) 

76 
(17.8) 

44 
(16.0) 

 
See Table 1, above, for a descriptive summary of their 

results. For now, we note that the “abstract representations” 
learning condition drastically outperformed the concrete 
condition on the transfer test: 76% to 44%. This difference is 
remarkable, all the more so as there were apparently no 
differences in learning scores or learning times. 

                                                        
1 The experiments presented are easier to grasp visually. See 

http://www.sciencemag.org/cgi/content/full/320/5875/454/DC1 

De Bock et al. (2011) 
In their replication of Kaminski et al., De Bock et al. argued 

that the transfer domain used by Kaminski et al. is better 
interpreted as an “abstract transfer” (a terminology we will 
also use), because it satisfies Kaminski et al.’s own definition 
of an abstract instantiation. De Bock et al. made the 
reasonable prediction that, while learning with abstract 
instantiations may transfer better to an abstract domain, 
concrete instantiations may transfer better to a concrete 
domain. 

To test this hypothesis, undergraduate students (Belgium) 
were randomly assigned to one of four conditions:  

§ AA, abstract learning then abstract transfer 
§ AC, abstract learning then concrete transfer 
§ CA, concrete learning then abstract transfer 
§ CC, concrete learning then concrete transfer. 

That is, De Bock et al. kept the two-phase format of the 
original study, but expanded it to include a transfer to a more 
concrete domain. 

For abstract and concrete learning, and abstract transfer, De 
Bock et al. used identical materials to Kaminski et al. For 
concrete transfer, they repurposed one of the alternate 
concrete learning conditions in the original study—that of a 
pizza divided in thirds. 
 

Table 2: Average scores (SD), as a percentage. See text, 
above, for a description of the four conditions. 

 

Condition Learning Transfer  

AA  
(N = 23) 

71 
(16.3) 

75 
(15.8) 

AC 
(N = 30) 

64 
(14.6) 

73 
(17.5) 

CA 
(N = 28) 

77 
(12.1) 

50 
(17.9) 

CC 
(N = 24) 

76 
(14.6) 

84 
(10.0) 

 
See Table 2, above, for a descriptive summary. In brief, the 

results confirmed the original findings, as well as De Bock’s 
own hypothesis. In their words: “if transfer to a new abstract 
domain is targeted, abstract instantiations are indeed more 
advantageous than concrete instantiations” (p. 120). They 
continue, “However… the opposite holds as well: Transfer to 
a new concrete domain is more enhanced by a concrete 
learning domain than by an abstract one” (p. 120). While not 
contradicting the original study, De Bock et al. demonstrated 
that there is more there than meets the eye. 
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Present Study 
We questioned whether the observed “advantage of 

abstract examples” was due—at least in part—to certain 
pedagogically suboptimal aspects of the design, which we 
detail below. To the best of our knowledge, neither De Bock 
et al., nor anyone else using Kaminski et al.’s materials (e.g., 
Kaminski, Sloutsky, & Hecker, 2013; McNeil & Fyfe, 2012), 
attempted to improve the materials (as a teacher might). In 
addition to these pedagogical modification, we also extended 
the study beyond the original transfer task, as detailed below. 

Design modifications and justifications 
We identified two aspects of the original materials for 

improvement. First, the  concrete representations used in the 
main study—those of 1/3, 2/3, and 3/3 liquid-filled cups2— 
caught our attention. The cover story for this instantiation 
involved combining two or more cups, and trying to 
determine the “left-over.” For instance, 2/3 + 2/3 = 1/3 left-
over. Why did Kaminski et al. use the full cup (3/3) as the 
identity element? The authors presumably used this scheme 
because it matches our everyday intuition that 1/3 + 2/3 = 3/3. 
There are at least two issues with this. First, it leads to 
unintuitive calculations, such as 3/3 + 3/3 = 3/3. More 
critically, 1/3 + 2/3 = 3/3 is precisely the wrong intuition for 
mod 3 arithmetic (arithmetic of groups of order 3), because 
there 1 + 2 does not equal 3, but 0. 

To us, this suggested that Kaminski’s study was not 
optimized for learning in the concrete condition. An 
introductory example, we hold, should align not mismatch 
the superficial concrete elements with the target 
mathematical structure. Consequently, the concrete 
representations of cups filled with varying quantities of liquid 
were modified from 1/3, 2/3, and a full cup (3/3) to 1/3, 2/3 
and an empty cup (0/3). This leads to initially surprising but 
more structurally appropriate 1/3 + 2/3 = 0/3. 

Our second concern had to do with the “cover stories” for 
each of the instantiations. Across these, participants were put 
into drastically different roles, some believable, others not. 
These cover stories are as follows (drawn from Kaminski et 
al. supplementary materials, and Kaminski, 2006):  

Abstract instantiation: an archeologist trying to make sense 
of symbolic combinations left by an ancient civilization. 

Concrete (main): an employee at a detergent company 
calculating the left-over after quantities of liquid are 
combined. 

Concrete (alternative): a pizzeria owner discussing the 
chef who systemically and persistently burns predetermined 
portions of every pizza. 

Concrete (alternative): an employee at a tennis ball factory 
dealing with malfunctioning machines producing incorrect 
quantities of balls. 

Transfer: an anthropologist trying to understand a 
“children’s game from another country.” 

                                                        
2 Again, we invite the reader to consult the supplementary online 

materials from the original study. These can be found at:  
http://www.sciencemag.org/cgi/content/full/320/5875/454/DC1 

While university students are surely capable of handling 
nonsense cover stories, such as the one where “the cook 
systematically burns a portion of each group order,” we had 
concerns about their uneven, varying quality. Specifically, 
we felt that—pedagogically speaking—the concrete 
instantiations cover stories were poor in quality, while the 
generic and transfer narratives impressed us as reasonable. 
We conjectured that this matters, because a “reasonable” 
story may be more likely to connect to and activate relevant 
prior knowledge without also being overly distracting. In 
contrast, a cover story concerning a pizzeria where “the cook 
systematically burns a portion of each group order” is at odds 
with any prior knowledge one might have concerning 
pizzerias, cooking, or business profitability. 

A closely related concern has to do with our general sense 
that the framing of the generic instantiation (an archeological 
discovery) and the transfer instantiation (a game from another 
country) had more to do with each other than the concrete 
instantiations (all of which had to do with odd work). 

In response, we made the following modification to the 
study: every cover story was changed to “a children’s game 
from another country.” We generally accept that children 
play all kinds of games, and recognize that games can involve 
more concrete instantiations (e.g., combining cups of liquid), 
or more abstract instantiations (e.g., combining symbols). In 
other words, this particular cover story was chosen because it 
naturally accommodates concrete as well as abstract 
representations. 

Because the students in our study would be asked to solve 
multiple transfer tests rather than one, a compromise was 
made to remove 4 items from the multiple-choice tests (same 
4 from each test); this reduced the number of items on each 
of the tests from 24 to 20. Specifically, the items removed 
were 5, 8, 13, and 17 from the original abstract learning 
instantiation, and all the corresponding items from the other 
tests. (Of those, items 5 and 8 were chosen for elimination 
because they were basic and replicated across other 
questions. Items 13 and 17 were chosen because they used 
noticeably more text than the other items, a pattern we 
worried would become apparent across the phases.) 

In addition to these modifications to the original study, we 
extended the study by introducing two additional transfer 
phases. Similar to De Bock et al.’s study, and for the same 
reason, we employed a concrete transfer task structurally 
identical to the original abstract transfer task. While De Bock 
et al. repurposed the alternative pizza concrete instantiation 
for this phase, we repurposed the tennis ball factory concrete 
instantiation. 

Finally, we introduced a formal transfer phase, a group of 
order 5 and consisting of 0, 1, 2, 3, and 4. That is, addition 
mod 5, formally presented, where 2 + 2 = 4, yet 4 + 2 = 1, 4 
+ 3 = 2, and so on. We introduced this transfer test to evaluate 
a particular claim by Kaminski et al., namely that abstract 
representations lead to superior transfer because they support 
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a deeper understanding of underlying mathematics. But, if 
students indeed developed a “deep understanding” of groups 
(or, at least, modular arithmetic), then it stands to reason that 
they should be able to transfer this knowledge to a formal 
instantiation of a group of order 5, which shares many 
similarities with a group of order 3. In this phase, just as in 
the other transfer phases, participants were not explicitly 
instructed on the rules, but provided with a few examples and 
told that the rules of this system are similar to the rules of the 
previous systems. This phase contained only 11 multiple 
choice items, focusing on deeper understanding of underlying 
principles, for example each element having an inverse. 

Method 
Undergraduate students attending a public university in 

Switzerland were randomly assigned to one of the (concrete 
or abstract) learning conditions (38 each; a priori power 
analysis informed by the original studies indicated that this 
number was sufficient).3 Students majoring in mathematics 
or a computer science field were excluded. Training included 
explicit training in the rules, with accompanying examples 
(as in the original study). After this learning phase was 
completed, participants completed three more transfer phases 
in the following order: abstract, concrete, and formal. 
Transfer phases did not include explicit training, but did 
provide a few examples and inform participants that the rules 
are “the same” as in the previous tasks (again, as in the 
original study). To (partially) account for order effects, half 
the participants in each condition instead completed the 
phases in the following order: learning, concrete, abstract, 
formal (formal transfer was always last). No order effects 
were observed, and the orders are combined for this analysis. 

As an illustration, this is what the cover stories and 
representations looked like for each phase: 
 
Learning, abstract:  
In another country, children play a game that involves three 
symbols:  ,  , and  . 
 
Learning, concrete:  
In another country, children play a game by combining cups 
with different quantities of water: , , and .  
 
Transfer, abstract:  
In another country, children play a game that involves these 
three objects: 

 (a ladybug) 

 (a vase) 

 (and a book).  
 

                                                        
3 A third condition, a modification of the abstract learning 

instantiation, was also investigated in the study. As it has no bearing 
on our current discussion, it is omitted from the analysis. 

Transfer, concrete:  
In another country, children play a game that involves these 
three objects: 

 - a container with two tennis balls 
 - a container with one tennis ball 
 - a container with zero tennis balls. 

 
The final phase, formal transfer, did not use a cover story. 

There, participants were told that they will work with “a 
number system” and provided with examples of that system. 

As in the original study and De Bock’s replication, the 
study was completed individually, on a computer terminal, 
and there were no breaks during the study. The majority of 
participants completed the study within an hour, with no one 
taking more than 75 minutes. The study was conducted by 
assistants blind to the study expectations. 

Reliability analysis for the learning, abstract transfer, 
concrete transfer, and formal transfer tests yielded 
McDonald’s ω of 0.893, 0.857, 0.888, and 0.856, 
respectively. 

Analysis 
No participants were excluded from our analysis. The 

significance of this is addressed in the Discussion. 
For inferential tests (JASP, 2018), Mann-Whitney U test 

was used as the data were not normally distributed. As is 
commonplace in education research, we report Cohen’s d; 
however, we prioritize the rank-biserial correlation rB as a 
more appropriate, unbiased effect size measure. 

Results 
Table 3, below, provides descriptive statistics for the 

present study. There were no significant differences in time 
for completion. 
 
Table 3: Average scores (SD), as a percentage. A indicates 

that the learning phase was conducted with abstract 
instantiations, C with concrete ones. (Note that “Transfer 

Abstract” in this study corresponds to “Transfer” in 
previous studies reported in Table 1 and Table 2.) 

 

 Learning Transfer 
Abstract 

Transfer 
Concrete 

Transfer 
Formal 

A 
(N = 38) 

70 
(24.8) 

78 
(18.3) 

90 
(14.3) 

70 
(24.9) 

C 
(N = 38) 

95 
(12.1) 

73 
(25.9) 

95 
(10.7) 

78 
(27.7) 

 
Comparing concrete to abstract learning conditions, we 

found a significant difference between the learning scores in 
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favor of the concrete learning condition, Mann-Whitney U = 
1167.5, p < .001, rank-biserial correlation rB = 0.617 with 
95% CI [.429, .754] (Cohen’s d = 1.276). On abstract 
transfer, we found no difference on performance, U = 701.5, 
p = 0.835, and a very small effect size, rB = -0.028 with 95% 
CI [-.282, .229] (Cohen’s d = -0.176). On concrete transfer, 
we found evidence in favor of the concrete condition, U = 
913.5, p = .033, and a small-to-moderate effect, rB = 0.265 
with 95% CI [.010, .488] (Cohen’s d = 0.396). Finally, formal 
transfer favored the concrete condition, but this difference 
was not significant, U = 877, p = .103, rB = 0.215 with 95% 
CI [-.043, .446] (Cohen’s d = 0.304). 

To check for the influence of outliers, we excluded all 
participants who scored more than two standard deviations 
from the mean on any of the tests (same criterion used by 
Kaminski et al. and de Bock et al.). Three participants were 
excluded from each condition. Two results were affected. 
First, the difference on concrete transfer changed from 
significant to trending in favor of the concrete learning 
condition, U = 758.5, p = .064. Second, the differences on 
formal transfer reached significance, U = 777, p = .048, and 
a small-to-moderate effect in favor of the concrete learning 
condition, rB = 0.269 with 95% CI [0.003, 0.499] (Cohen’s d 
= 0.408). 

Discussion 
We aimed to critically replicate and extend an influential 

study that argued for the advantage of abstract 
representations in learning mathematics. We made two 
modification to the original study: (1) using an icon of an 
empty cup rather than a full cup in the concrete learning 
condition, and (2) keeping the “cover stories” similar to each 
other across the tasks. These modifications were made with 
the intent of removing pedagogically suboptimal elements 
present in the original design. We also extended the study by 
included a more concrete transfer task and a formal transfer 
task. Overall, our results put into question the previously 
reported advantage of abstract examples. 

Whereas Kaminski et al. found no difference in the 
learning scores, and De Bock’s study found a small 
difference in favor of the concrete instantiation, we found a 
significant and very large effect in favor of the concrete 
instantiation. How is it that the concrete instantiation 
condition in our study performed much higher than 
participants in the original, and even De Bock’s study, on 
both learning and abstract transfer? In the original study, 
concrete learning to abstract transfer showed 44%, compared 
to 76% for abstract learning to abstract transfer. In De Bock’s 
study, students fared slightly better, at 50% vs. 75%. In the 
present study: 73% vs. 78%. 

We briefly entertained the (surely self-satisfying) notion 
that our students are more capable. However, this explanation 
is unlikely, because our students scored comparatively 
similar on the other comparable tests, for example across the 
abstract learning condition to abstract transfer (Kaminski: 
80%, De Bock: 75%, present study: 78%). This suggests that 
the concrete instantiation condition performed better because 

of the changes made to the original materials. But those 
changes, as detailed earlier, were minor. Of these, we 
conjecture that using an empty cup rather than a full one may 
have made the largest difference, as this modification better 
aligned the concrete representation with the underlying 
mathematical notion. 

As with De Bock et al., we found evidence in favor of the 
concrete instantiation on the concrete transfer test, although 
in our case this evidence was not robust. 

Furthermore, once outliers were removed, we found 
evidence in favor of concrete instantiations on the formal 
transfer test, as well. 

An additional point on data analysis may be worth 
considering. When analyzing our data, we chose to conduct 
analysis on all the participants, and again after removing 
those participants scoring more than two standard deviations 
from the mean. In contrast, the results reported by Kaminski 
et al. and De Bock et al. (the later following the former), were 
performed after eliminating participants who scored below 
chance on the learning test, for “failing to learn” (as well as 
removing the outliers, as we did). This is an unusual method 
of removing participants in an educational study, and one not 
conceptually justified in previous articles. Note that it biases 
the results in favor of students who found the materials useful 
in the first place. This is an artificial restriction—imagine a 
mathematics professor evaluating her teaching but refusing 
to consider those students who “failed to learn” from her 
lectures, as determined by a learning test immediately 
following the lecture. 

In our data, this “failure to learn” elimination favored the 
abstract learning condition, because only in that condition did 
the students score below chance on the learning test. It did 
not favor it enough to impact the results, but it suggests that 
this particular elimination introduces bias in favor of the 
abstract instantiation. This does not explain the drastic 
differences between our results and those of previous studies, 
but it raises a question as to why this particular method was 
employed in the first place. After all, we researchers are 
unlikely to eliminate data that favors our predictions. 

Limitations 
Because our design makes not one but multiple 

modifications to the original study, further work is needed to 
identify the impact of each modification, as well as to 
investigate the potential mechanisms through which these 
modifications influence the learning process. 

Summary and Implications 
We made a relatively minor change to the concrete learning 

instantiation in Kaminski et al., in addition to making the 
various “cover stories” similar to each other. In turn, we 
observed results that contradict Kaminski et al., and partially 
support De Bock et al. 

Overall, our findings suggest that, if only one instantiation 
is to be used, and for these types of tasks: 
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Concrete representations facilitate the initial learning of a 
mathematical concept better than abstract representations of 
the same idea. 

On an abstract transfer, there is no notable advantage 
between learning via concrete or abstract representations. 

On a concrete transfer, learning via concrete 
representations is preferable, although this difference is 
relatively small. 

When transferring to a formal domain, learning via 
concrete representations may be preferable, although this 
difference is, again, relatively small. 

Can the current study make any pedagogical 
recommendations? De Bock et al. (2011) and Jones (2009) 
caution, and we concur, that brief interventions of this sort 
should not be applied directly and uncritically to mathematics 
classrooms. Seen from that perspective, this study claims no 
more than the following: concrete instantiations may be more 
or less useful, depending on their quality and context. To be 
clear, we do not advocate concrete examples as universally 
advantageous. We agree with Lampinen and McClelland 
(2018), who argue that it is not the static qualities of 
“abstractness” or “concreteness” that are likely to impact 
learning; rather, learning depends on the interactive aspects 
of the learning environment (see Abrahamson & Trninic, 
2015). As such, the existence of universally “ideal” learning 
examples seems unlikely. 

The scholarly value of this study lies instead in its contrast 
to previous work, which found a significant and large effect 
in favor of the abstract learning instantiation. Our results 
provide an alternative explanation for those earlier findings. 
The “advantages of abstract examples” of Kaminski et al. did 
not manifest because “abstract examples” are better in 
general. It was because, in that particular design, the concrete 
learning condition was suboptimal. 
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