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ABSTRACT OF THE THESIS

Toward Ultracold Strontium on Nanophotonics

by

Grady Kestler

Master of Science in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2019

Professor Julio Barreiro Guerrero, Chair

Professor Shayan Mookherjea, Co-Chair

Using matter wave interferometry to perform high precision measurements

is an exciting field of modern day physics and engineering. Physical constants and

anomalies too small to observe with classical devices can be probed and measured

with quantum technology. The ability to control the wave nature of a specific par-

ticle opens up a vast set of methodologies engineered for the given particle. The

most complete toolboxes exist for alkali metals such as rubidium and cesium. The

atomic structure of strontium provides a number of advantages in further devel-

oping these methods and technologies, especially in the resolution of spectroscopic

measurements.

A promising method of matter-wave control utilizes optical waveguides and

atomic properties to trap and guide matter waves. Using laser cooling tech-

niques, atoms are cooled to microkelvin temperatures before being loaded onto

the nanophotonic chip, thus receiving the appropriate name, atom-on-chip devices.

The ability to manufacture the photonic waveguides in a multitude of different ar-

rangements shows promise in being able to develop atomtronic devices which are

equivalent to electronic devices, but utilize matter-waves of neutral atoms instead

ix



of electrons.

The heart of our novel technology is an ultra-high vacuum (UHV) apparatus

with sample loading capabilities. In this thesis, I discuss the design and construc-

tion of the apparatus to provide quick turn over between loading nanophotonic

devices and experimental trapping by separation of the main chamber from a load

lock. The ultimate pressures in both reach 3.8×10−11 and below 1×10−11 Torr and

initial trials were conducted with a 36-48 hour turn over between loading a chip

at atmosphere, and inserting it into the UHV main chamber. These metrics beats

other groups by an order of magnitude in pressure and others week-long loading

time. Continual improvements are being made to further decrease this time.
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Chapter 1

Introduction

Ultracold trapping of neutral atoms has been a fruitful field in understand-

ing fundamental physics and developing new technologies. Quantum emulation

which simulates quantum mechanics of many body systems, is one such example

that has benefited significantly from the field by utilizing many particle systems to

probe fundamental interactions [4]. In a similar vein, atom-photon interactions for

quantum networks and quantum memories of light have also been explored exten-

sively in the context of quantum information and quantum metrology [11, 19, 20].

Interfacing between neutral atoms and nanophotonic chips in atom-on-chip sys-

tems has been constructive with one such system having recently been installed on

the International Space Station [8]. Other atom-on-chip experiments probe funda-

mental physics of Johnson noise [7, 10] and surface interactions [6, 10, 17, 18] near

the boundary of the cold atoms and chip surfaces.

Current experiments of this sort revolve around a single species of atom,

the choice of which defines a majority of the subsequent design and equipment

decisions. Rubidium, cesium, and ytterbium are common choices due to their ease

of cooling on the wide, single valence transitions. Strontium, on the other hand,

is an alkali earth metal with two valence electrons. It has become a more recent

1



interest of ultracold atomic experiments [1, 25] due to its multiple stage cooling

and stable transitions which worked in combination to measured the most accurate

atomic clock [12].

Despite the atomic species of choice, the heart of all ultracold experiments

is the ultra-high vacuum chamber reaching pressures on the order of 1 × 10−11

Torr. As is expected, in order to add components like nanophotonic chips and

other surface elements on which the atomic gases are trapped and probed, the

chamber must be brought to atmospheric pressures and re-pumped to ultra-high

vacuum levels often. The larger the chamber, the longer the re-pumping process.

One solution is to separate a smaller portion of the apparatus to designate as a

load-lock. Through an ultra-high vacuum valve, only the small volume load-lock

is exposed to atmosphere while the chip is loaded. The main chamber remains

at UHV while the load-lock is sealed and re-pumped. The smaller volume pumps

faster and the chip can be loaded into a UHV chamber within 24 to 36 hours after

loading.

The design and construction of such an apparatus is the main contribution

of this thesis. Chapter 2 discusses the theory of atomic cooling and trapping, while

the atomic nature of strontium is covered in Chapter 3. Furthermore, Chapter 4

details the design consideration and procedures followed in construction of the

apparatus and ultimately reaching ultra-high vacuum. Finally, Chapter 5 illus-

trates the plan for future work of this apparatus including measurement of the

Casimir-Polder potential and trapping strontium on an optical nanofiber.
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Chapter 2

Cooling and Trapping Atoms

Here, I discuss the different stages in atomic cooling. In order to cool

and trap 88Sr, the isotope used in our experiments, only two stages are necessary;

Doppler cooling and a Magneto-Optical Trap (MOT). Furthermore, we also employ

far off resonant traps (FORTs) to control the 88Sr near nanophotonic surfaces. The

theory behind these three topics is discussed in this chapter.

2.1 Doppler Cooling

Because atomic thermal energy is proportional to its motion, cooling and

slowing an atomic beam are equivalent. The easiest means of decelerating the

atomic beam is to apply a force in the opposite direction of propagation by em-

ploying the radiative forces of light. As shown in [2], this force can be described

as

Fscattering = (photon absorption)× (scattering rate)

The scattering rate is considered to be Γρ22 where Γ is the two level transition

linewidth and ρ22 is the fraction of atoms in the excited state. This yields a force

Fscattering = ~k
Γ

2

I
Isat

1 + I
Isat

+ 4 δ
2

Γ2

and I is the laser intensity, Isat is the saturation intensity of the transition, and

δ = ω − ω0 + kv is the de-tuning of the laser frequency ω from the transition

3



resonance ω0 with a Doppler shift of kv. Maximizing the cooling force, δ = 0 and

I →∞, we find that Fmax = ~k Γ
2

and the maximum deceleration of an atom with

mass M will be

amax =
Fmax
M

=
~kΓ

2M
=
vr
2τ

The recoil velocity, vr = ~k
M

, is defined to be the velocity change of the atom from

absorption of the photon and τ = 1
Γ

is the lifetime of the excited state.

The recoil of the atom also produces a transfer of heat from the photon to

the atom resulting in a slight heating of the atom which sets a lower limit on the

achievable temperature from Doppler cooling. This minimum temperature occurs

when the heating and cooling energies of the atom are at equilibrium. The kinetic

energy produced by the recoil of the atom is

Er =
1

2
Mv2

r

while the internal thermal energy of the atom by the equipartition theorem is 1
2
kBT

where kB is the Boltzmann constant and T is the atom’s temperature. Setting these

equal yields our lower temperature bound of the atoms at

TDoppler =
~Γ

2kB
(2.1)

where Γ is the natural linewidth of the transition and kB is Boltzmann’s constant.

2.2 Zeeman Slower

The initial speed of the atom v is so large that the photons at frequency

ω0, in the atom frame, are seen to be at a lower wavelength due to a Doppler shift;

ω0−∆. To compensate this affect, we de-tune the laser to a wavelength of ω0 + ∆,

known as red de-tuning since the photons are shifted away from resonance toward

the red end of the spectrum. Alternatively, blue de-tuning shifts the resonant

frequency towards the blue end of the spectrum. By red de-tuning the laser by

the same amount that the photons are blue shifted in the atom frame, the photons

will appear on resonant with the atomic transition.

As the atom velocity decreases by absorbing and emitting photons, the

photons in the atom frame become un-Doppler shifted. In the lab frame, this

4



indicates a need to change the laser de-tuning as a function of position down the

tube. To accomplish this, magnetic fields along the tube induce Zeeman shifts to

counteract the change in Doppler shifts. The varying magnetic field, dubbed a

Zeeman slower, tunes the strength of the magnetic field at every position to keep

the atomic transitions on resonant with a fixed laser frequency.

2.3 Magneto-Optical Trap

Until now, we have only been concerned with atomic beams that are trav-

eling in a single direction. Realistically, the atoms travel in all 3 directions and

thus the Doppler cooling process is applied along 3 orthogonal axes with 2 counter-

propagating, slightly red de-tuned laser beams on each axis. Additionally, we wish

to apply a spatially dependent force in order to constrain the atoms locally in the

experiment. A magnetic field which is zero at the trap center and non-zero away

from the center, provides this additional force using spatially dependent Zeeman

shifts away from the center of the trap.

In a static magnetic field, B, we can define the interaction part of the

Hamiltonian to be

Hint = −µ ·B

= −µB(gLL + gSS) ·B

where µB = e~
2me

is the Bohr magneton, S, and L are the spin and orbital angular

momentum operators respectively, and gS and gL are the corresponding Landé

factors. If we assume the magnetic field is along the z-axis, then

Hint = −µBB0(gLLz + gSSz)

where Sz and Lz are the spin and orbital angular momentum operators along the

z-axis.

In the case of a non-zero total angular momentum, J = L + S 6= 0, we can

calculate the energy shifts of the atom using first order perturbation theory to find

∆E = µBgJmJB(z) (2.2)
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which is a position dependent energy shift.

Consider an atom moving away from the trap center along the z axis in

the z > 0 direction and the magnetic field be linear near the trap center such

that B(z) ∝ z near z = 0 (Figure 2.1). Taking the Landé factor to be ≈ 1, the

energy shift is negative, lowering the resonance of the transition between the J = 0

and J = 1 states (Figure 2.1) to the frequency of the red-detuning the laser field.

Additionally, by the transition selection rules for a ∆mJ = −1, the photon needs to

be left-hand circularly polarized σ− in order to drive the transition. The radiation

pressure from the photon absorption provides a restoring force back towards z = 0.

In the other direction, z < 0, we find the Zeeman splitting for the mJ = +1

to be on resonance with the red de-tuned laser field and thus requires a σ+ polarized

photon to drive the transition. By combining counter propagating beams along the

z-axis, with σ± polarization, a restoring force proportional to z keeps the atoms

trapped in the center.

J = 1 mJ = 0

mJ = −1

mJ = +1

J = 0

σ+ σ−

ω0
ω

z

Figure 2.1: Single axis MOT cooling. A quadropole magnetic field splits the J = 1

state. When z > 0, the mJ = −1 becomes resonant with the σ− polarized, red

de-tuned laser field. When z < 0, the mJ = +1 becomes resonant with the σ+,

red de-tuned laser field.
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Again, following the treatment in [2], we can derive the MOT force as

FMOT = F σ+

scattering(ω − kv − (ω0 + βz)) + F σ−

scatterint(ω + kv − (ω0 − βz))

= −αv − αβ

k
z (2.3)

with

α = 4~k
I

Isat

−2 δ
Γ

(1 + (2δ
Γ

)2
)2 βz =

gµB
~

dB

dz
z

The first term of 2.3 provides additional cooling of the atoms and the second term

provides the restoring force to confine the atoms to the trap center.

2.4 Far Off Resonant Traps

Once the atoms reach ultracold temperatures, the difficulties shift to trap-

ping on or near a nanophotonic chip. Far off resonant traps are a result of far

de-tuned laser fields interacting with a two level atom. These traps generate a

force whose sign depends on whether the laser is red de-tuned or blue de-tuned

providing a method for ’pushing’ and ’pulling’ the atoms from the surface of a

photonic device.

Two Level atom in a Laser Field

Based on [24], we start with the Hamiltonian derived in Appendix B

H̃ = −~∆ |e〉〈e|+ ~
2

(Ωa+ Ω∗a†) (2.4)

where a = |g〉〈e| and a† = |e〉〈g| are the atomic raising and lowering operators, and

Ω = − 〈g|ε̂·d|e〉E0

~ is the Rabi frequency. In a resonant laser field (∆ = 0), we find

the dynamics of the states by solving Schrodinger’s equation for the probability

amplitudes (cg, ce) of the ground and excited states.

cg(t) = cg(0) cos
Ω

2
t− ice(0) sin

Ω

2
t

ce(t) = ce(0) cos
Ω

2
t− icg(0) sin

Ω

2
t
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From these coupled dynamics, we can see that in the monochromatic laser field,

the probability of finding the atom in the ground or excited state, oscillates with

frequency Ω
2
. The Rabi frequency can also be thought of as a coupling constant

between the two states in that a larger value for Ω makes it easier to transition

between them while a smaller value makes it more difficult.

Given the relationship I = 2ε0c|E0|2 where I is the laser intensity and E0 is

the magnitude of the electric field, we see that Ω2 ∝ I. However, for a population

of atoms initially in the ground state, increasing I does not guarantee a larger

population of atoms in the excited state; as more atoms are excited, there are less

atoms to absorb the resonant photons. The lifetime τ = 1
Γ

of the excited state

dictates when the atoms return to the ground state again and thus when saturation

affects begin to take place. The saturation intensity, denoted as Isat, is related to

the Rabi frequency by

2|Ω|2τ 2 =
2|Ω|2

Γ2
=

I

Isat
To examine the affect of a de-tuned laser, we add a kinetic energy term

giving a center-of-mass Hamiltonian

H̃ =
p2

2m
− ~∆ |e〉〈e|+ ~

2
(Ωa+ Ω∗a†)

with dynamics

i~
∂ce
∂t

=
p2

2m
+

~Ω

2
cg − ~∆ce

i~
∂cg
∂t

=
p2

2m
+

~Ω∗

2
ce

Here, we can make use of a few assumptions about the system to simplify the

mathematics. Since the laser field is far de-tuned from resonance, if the population

of atoms is initially in the ground state, then excitation will likely not occure and

we can take ∂ce
∂t

= 0 giving us a relationship between ce and cg.

(~∆− p2

2m
)ce ≈

~Ω

2
cg

Furthermore, the kinetic energy for ultracold atoms is much smaller than the de-

tunings ( p
2

2m
<< ~∆) and thus ce is eliminated from the equation and

i~
∂cg
∂t

= (
p2

2m
+

~|Ω|2

4∆
)cg

8



The effective Hamiltonian that generates these dynamics is

H =
p2

2m
+ Udip

where Udip = ~|Ω|2
4∆

is the potential induced by the field on the atom. From, 2Ω2

Γ2 =

I
Isat

, we find the dipole force felt by the atom to be

Udip =
~Γ2

8∆

I

Isat

Fdip = −∇Udip = − ~Γ2

8∆Isat
∇I (2.5)

Clearly the force in proportional to the sign of the laser de-tuning. For a red

de-tuned laser, ∆ = ω − ω0 > 0 gives an attractive force while a blue de-tuned

laser, ∆ < 0 gives a repulsive force. This dipole force is often used in evaporative

cooling, but in the context of atom-on-chip trapping, it more promising as a means

to control the trapping distance from the chip.

AC Stark Shifts

From the Hamiltonian from Eq 2.4

H̃ =

[
−~∆ ~

2
Ω

~
2
Ω∗ 0

]

the ground and excited states of the original atom are no longer eigenstates. We can

find new energy eigenstates with energies E± = −~∆
2
± ~Ω̃

2
where Ω̃ =

√
|Ω|2 + ∆2

is the generalized Rabi frequency. The new states corresponding to these energies

are called dressed states and are denoted by |±〉. For an atom placed in a far, red

de-tuned Gassian beam, the energy shift varies based on the intensity where the

ground state sees a potential well and the excited state sees an equal and opposite

potential barrier (Figure 2.2). The energy shift based on the potential well is

−~Ω̃

2
≈ ~∆

2
+

~|Ω|2

4∆

For two level atoms, this shift is always opposite and equal for the ground

and excited state, but due to more complex features of actual atomic structure, it

9



is possible to find de-tunings such that the ground and excited states are actually

shifted equally (both in sign and magnitude) [24]. These wavelengths are called

magic wavelengths and are important when trapping on nanophotonics.

|+〉

|e〉 |e〉

|−〉

|g〉 |g〉

Position

Figure 2.2: AC Stark shifts of ground and excited state of a two level atom in a red

de-tuned laser field. As we vary position through the Gaussian beam, the excited

and ground state shift into the dressed states, |±〉, at the highest intensity. In a

blue de-tuned field, the shift is inverted.

The quantum mechanical derivation for the dipole force and AC Stark shifts

assumes we are dealing with a two level atom. Since we are interested in cancelling

the AC Stark shifts for a real atom, a more general form of the dipole potential in

the rotating wave approximation is [5]

Udip = − 1

2ε0c
Re(α)I (2.6)

where α is the atomic polarization; a measure of how easily the atom is polarized

in the electric field. Calculating the magic wavelengths that cancel the AC Stark

shifts of two states is equivalent to finding a wavelength that results in both the

ground and excited state have the same polarizability [1].
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Chapter 3

Strontium

There are four stable isotopes of strontium, only one of which, 87Sr, is

Fermionic with a nuclear spin of 9
2
. Of the remaining Bosonic isotopes, 88Sr, is the

most abundant followed by 86Sr and lastly 84Sr. Each of the Bosonic species has

similar electronic properties, but vary significantly in the s-wave scattering length,

a; a measure of the interaction. Table 3.1 summarizes these properties of each

isotope.

Table 3.1: Abundance and nuclear spin of different isotopes of strontium. s-wave

scattering lengths are given in units of a0. Values taken from [25]

Isotope Abundance Nuclear Spin Like-species Scattering Length

84Sr .56% 0 124

86Sr 9.86% 0 830

87Sr 7.00% 9/2 97

88Sr 82.58% 0 -1

The nuclear spin of the Fermionic isotope, 87Sr, generates a number of chal-

lenges in cooling and trapping. There are 10 possible internal states, 9
2
, 7

2
, ...,−7

2
,−9

2
,

and thus 10 states to simultaneously cool and trap. This is due to the nuclear spin

interacting with the electronic spin (spin-spin coupling) generating what is known

as the hyper-fine splitting of the electronic states. This makes it difficult to use

8787, and any other Fermionic matter, to be employed for atom-on-chip purposes.
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Of the remaining isotopes, we consider the purposes and future of this

work surrounding precision metrology and the affect of scattering lengths. When

trying to reach quantum degeneracy, evaporative cooling is often a final step in

the process and longer scattering lengths become quite useful. This is because

evaporative cooling works like shaking a cup of ping-pong balls. As the balls

interact with each other, the faster moving ones are ejected from the cup leaving

only the slower, colder balls. If the ping-pong balls did not interact with each

other, no amount of shaking would eject the hotter balls. On the other hand,

when performing matter-wave interferometry for precision measurements, we do

not want the atomic populations to interact with each other. Strong interactions,

in this case, will affect the interference patterns disrupting the measurement. For

this work, we will be using 88Sr isotope due to its small scatter length and high

natural abundance.

Laser Cooling

The spherically symmetric ground state (L = 0) of strontium provides a

series of optical transitions useful in cooling and trapping 88Sr. Three of these

transitions are shown in Figure 3.1 and all occur in the visible spectrum. The

linewidth measurement , Γ, is related to the lifetime of the excited state, τ , by

Γ = 1
τ
. Thus a broader transition has a smaller lifetime.

The broadest transition we are concerned about is the 1S0 → 1P1. It’s

lifetime of 5 ns produces a corresponding linewidth of Γ = 2π × 30.5 MHz and it

occurs at 461 nm. This transition is utilized during the Zeeman slowing and first

MOT stage. Since the wavelength falls in the blue region of the visible spectrum,

this stage of cooling strontium is called the blue MOT in most literature. The

Doppler temperature (Eq 2.1), for this transition produces a lower limit of cooling

at approximately 1 mK.

There is a small chance, (1:50,000), that excited atoms in the 1P1 state decay

into the 3P2 states instead of the ground state. Since the 3P2 state is considered

metastable in that the lifetime is much longer than the 1S0 → 1P1 transition, and

thus will not decay back to the ground state for some time. It is necessary to re-
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Figure 3.1: Selection of strontium energy levels. Relative energy levels to the

5s5s1S0 can be found in [16]. Not shown is the sub-millihertz clock transition

(5s5s1S0 →5s5p3P0).

pump these atoms from the 5s5p3P2 state into the 5p5p3P2 state which will decay

into the 5s5p3P1 and eventually back to the ground state.

The 1S0 → 3P1 transition happens to be a narrower linewidth than the

461 nm transition at Γ = 2π × 7.4 kHz and occurs at 689 nm. From the blue

MOT, atoms are loaded into this red MOT which has a significantly lower Doppler

temperature near 1 µK. Unfortunately, the trapping velocity in the red MOT is

too low to efficiently trap the strontium atoms after the Zeeman slower. Working

in combination, the blue MOT traps and cools the strontium after the Zeeman

slower then transfers the mK atoms to a red MOT. Reaching quantum degeneracy

can be achieved through a final stage of evaporative cooling using a far off resonant

optical dipole trap. In this work, there is no need for quantum degeneracy and

thus the blue and red MOT stages reach cold enough temperatures.

The last important transition for this work is not pictured since it is not

used in atom cooling. The benefit to using strontium in matter-wave interferometry

on nanophotonics is its ultra narrow, 1S0 → 3P0 transition with Γ = 2π × 1 mHz,

’clock’ transition. This transition can be used for high resolution spectroscopic

measurements such as measuring the Casimir-Polder force described in section

5.1.
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Figure 3.2: Atomic polarizabilities of strontium’s 1S0 and 3P1 states. The two

wavelengths we propose using are 436 nm and 473 nm wavelengths for the repulsive

and attractive FORTs.

Far Off Resonant Trapping

After the blue and red MOT stages, it is possible to tune the distance of

the atoms from the nanophotonic chip using far off resonant traps. Light emanat-

ing from the photonic structure will have a maximum intensity near the surface

and attenuate farther away. The de-tuning dependent force in Eq 2.5 defines the

attractive and repulsive nature as well as the magnitude based on intensity. In

reality, however, strontium is not a two level system and we need to take into ac-

count all atomic transitions when considering the forces that will play a part (Eq

2.6). Since the trap is to be loaded from the red MOT, it is beneficial to cancel

the AC Stark shift for the 1S0 and 3P1 states with magic wavelengths where the

atomic polarizability is equal for each state.

The wavelength dependent polarizability for the 1S0 and 3P1 states is plot-

ted in Figure 3.2. The 436 nm and 473 nm crossings indicate wavelengths that

will cancel the AC Stark shifts of each state. We propose using these wavelengths

to trap strontium on nanophotonic structures.
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Chapter 4

Apparatus

The main contribution of this work have been the design and construction of

an ultra-high vacuum (UHV) apparatus capable of quickly loading photonic chips

and trapping strontium. The necessity for such low pressures arises from statistical

mechanics. At the micro Kelvin temperatures we are attempting to produce with

strontium, any interaction with hotter atoms will transfer energy and limit the

cooling process. UHV pressures on the order of 1 × 10−11 or 1 × 10−10 Torr give

a mean free path of a particle to be hundreds to thousands of kilometers. By

definition of the mean free path, this implies a remaining particle in the chamber

will collide with the chamber walls many times before colliding with another atom

and the transfer of energy to the cold atoms is minimized.

The main source of residual gasses come from leaks, virtual leaks, or out-

gassing. Leaks, as the name implies, occur at poorly secured junctions or at

complex parts like valves and windows. Virtual leaks occur when a small pocket

of trapped gasses fails to pump and slowly releases the gasses even after UHV

pressures are reached. Lastly, out-gassing is an inherent property in all materials

similar to virtual leaks. Gasses in the material escape slowly over time. The pur-

pose of using stainless steel is that Hydrogen is the largest out-gassing component

and can be easily pumped using highly reactive non evaporable getters (NEGs).

Additionally, in the event that Hydrogen is not pumped by the NEGs, the H2

molecules carry relatively low kinetic energy due to their small mass, and thus will

not heat the cold atoms as much as heavier molecules.
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Until now, the constraints discussed above relate to the physical necessity

of the vacuum chamber. Furthermore, we added two additional constraints in that

the chamber should be compact and modular; able to load and trap relatively

quickly. Lastly, the apparatus was designed to be structurally sound in order to

accommodate our move between laboratories as well as testing for quantum sensor

design. Given these choices, we settled on a design incorporated three distinct

sections; the strontium oven, the main chamber, and the load lock.

4.1 Strontium Oven

The strontium oven can be considered a source for the experiment. Here,

the strontium is heated to vaporizing temperatures and directed in small micro

tubules toward the main chamber. Zeeman magnets line the axial tubing and a

window at the far end of the system is utilized by the Zeeman laser. In Figure 4.1,

the strontium oven is angled upwards and connects to the main chamber through

small 5mm tube. The optics on top of the oven, in addition to the Zeeman slower,

allow two, 2 dimensional MOT beams to cool and compress the atomic beam.

The second 2D mot is off axis from the Zeeman slower, but inline with the 5mm

tube connecting the oven with the main chamber. The combination of the Zeeman

slower and 2D MOT, help the atomic beam reach velocities below the trapping

velocity of the blue MOT. This entire section is purchased from a commercial,

atomic source design company known as AOSense. Typical Zeeman slowers are

closer to 1m in length and need a substantially larger housing apparatus. The

compactness of the AOSense to fit within a 6L volume is far more ideal.

4.2 Main Chamber

The magic happens, or will happen, in the main chamber of the appara-

tus. Here, the strontium and photonic chips will be married in a fruitful wedding

of experimental physics and engineering. Reaching UHV pressures in the main

chamber was the first step towards this ideal future. The methods and procedures
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Figure 4.1: 3D rendering of the experiment. The strontium oven, Zeeman slower,

and 2D MOT optics are on the left hand side. The main chamber with the 3D

MOT coils is in the center and the load lock is on the right hand side.

followed here were also performed during construction of the load lock.

Parts

The chamber itself is an 8” double octagon from Kimball Physics connected

to a vast number of standard vacuum components (tees, nipples, canonical reduc-

ers, etc) mostly from the Kurt J. Lesker company. Due to space constraints in

the load lock section, we had to use close couplers which are extremely difficult

to install and even harder to find screws for. ’The Great Screw Debacle of 2018’

occurred during my first month of construction when I realized the close couplers

were designed in America while the main gate valve was purchased in Europe.

Not only that, but the close couplers were specifically designed for a certain screw

head, only found on imperial screws. In a classic case of international engineering

politics, I negotiated my way to a mediated agreement, though not without a few

weeks of frantic screw searching.
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Table 4.1: Non standard vacuum parts used in the apparatus.

Description Company Part Number

8” main vacuum chamber Kimball Physics MCF600-DblSphOct-F2C16

2.75” × .7” close coupler Kimball Physics MCF275-ClsCplr-C2-700

2.75” × 1.4” close coupler Kimball Physics MCF275-ClsCplr-C2-1400

2.75” optical viewports, fused

silica, anti-reflective coating

MPF A5802-1-CF

6” reentrant optical viewport,

fused silica, anti-reflective

coating

MPS Custom

350mm reach wobble stick

with flag in line toggle

UHV Design WS40-350-FT

Series 010 mini UHV gate

valve

VAT 01032-CE01

Series 481 main UHV gate

valve

VAT 48132-CE01

Series 590 variable leak valve VAT 59024-GE01

Series 541 right angle valve VAT 54132-GE02

45 l/s ion pump Gamma Vacuum 45S-CV-2V-SC-N-N

5 l/s ion pump : 200 l/s NEG

combo

Gamma Vacuum 5N-DI-2V-SC-N-N2

200 l/s NEG Gamma Vacuum N200

300 l/s NEG Gamma Vacuum N300
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In addition to the standard parts purchased from Kimball physics and the

Kurt J. Lesker company, we had a number of specialized parts as well (see Table

4.1. Separating the load lock section from the main chamber uses a VAT Series 481

All-metal gate valve with a leak rate of 1e-10 Torr L/s. This allows opening the

load lock section to atmosphere while keeping the main chamber at UHV in order

to load the photonic chips. We also employ a Mini UHV gate valve from VAT to

isolate the ion pump and non-evaporable getter (NEG) when venting the load lock

section. VAT right angle valves are found on the main chamber and the load lock

section to allow independent connections to turbo molecular pumps during pump

down of either section. The wobble stick is magnetically stabilized with 350mm

of travel. The end of the wobble stick has a flag in line toggle for holding sample

holders purchased from Ferrovac.

The main chamber also has 3 non-evaporable getters (NEGs) and a 45L/s

ion pump both from Gamma Vacuum. Two of the NEGs have a pumping speed

of 300L/s and the third has a pumping speed of 200L/s. Unfortunately, during

the NEG activation, the heater element burned out in one of the 300L/s NEGs.

It was returned to Gamma for reconstruction, which has taken approximately 2.5

months to fix. Therefore, we temporarily replaced the third NEG with a blank and

are only using 2 NEGs as of right now. In the load lock, we installed a NEG/ion

pump combination from Gamma Vacuum. The NEG is equivalent to the 200L/s

NEG on the main chamber and the ion pump has a 5L/s pumping speed.

We also installed a number of optical viewports for the MOT beams and

imaging beams. Since both the blue and red MOT stages need 6 view ports (2 per

each axis), the red and blue MOT optics were designed to share windows. The

windows were purchased from MPF with anti reflection coating from 400 nm to

700 nm. Four of the MOT viewports are on the lower layer of the main chamber at

the locations depicted in Figure 4.2 while the remaining two are vertical (show into

and out of the page in Figure 4.2). The viewport on the underside of the chamber

is a re-entrant window, inserted into the chamber .75 inches. Future work requires

an objective lens in order to image individual atoms. Additionally, the objective

lens will be used to focus the laser towards grated fiber couplings on nanophotonic
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Figure 4.2: Locations of the optical viewports for the blue and red MOT beams

in the horizontal plane. An additional pair of beams is going into and out of the

paper. The atomic beam approaches from the left while the chip loading is on the

right.

chips circumventing the need for in vacuum fiber optics. The specifications of the

objective require precise vacuum and air distances for the beam to travel before

focusing on the grating couplers, thus, we needed a re-entrant window to meet

these needs.

Custom parts were also designed for the interior of the chamber in order

to hold the chips close to the atomic beam. The chip holder, Figure 4.3, is a

custom steel plate that uses Kimball groove grabbers to mount inside the chamber

and Ferrovac SHOM holders to lock the chip in place. It was manufactured at

Protolabs and had to be iteratively machined in the Physics machine shop. All

custom parts were manufactured out of 304 stainless steel to comply with the rest

of the standard vacuum chamber parts.

Cleaning

Despite the care in packaging and shipping vacuum parts, contaminants

easily deposit on the stainless steel during the process. Before constructing the
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Figure 4.3: Custom chip mount. The Kimball groove grabbers on either end hold

the mount inside the main chamber

chamber, every part was cleaned with the following procedure.

1. Sonicate the part in a distilled water and alconox solution at 60◦ C for 25

minutes.

2. Rinse the part with distilled water over a sink.

3. Let the water-alconox solution cool.

4. Submerge the part in a beaker of methanol.

5. Cover the beaker with plastic wrap and poke holes to allow methanol fumes

to escape.

6. Place the beaker in the cooled water-alconox solution.

7. Sonicate for 15 minutes.

21



8. Drain the methanol and remove the part. Wrap in UHV foil.

Multiple parts were cleaned at the same time in a single beaker with extra care so

the knife edges were not damaged. Even after the sonication, additional cleaning

of the knife edges with methanol, using lens tissue or something similar, was per-

formed once more when constructing the chamber. There are a number of parts

that should not be cleaned, including bellows and gaskets as well as many special-

ized parts like the wobble stick, valves, and optical or electrical feedthroughs.

Ideally, the custom parts used in the chamber should be produced at a

clean room specification, but due to cost and time, they were manufactured at

Protolabs and in the Physics machine shop. A substantial amount of oil is needed

when machining and these parts had to be soaked for 5-10 minutes in acetone

then wiped with methanol prior to the cleaning procedure described above. This

cleaning method was highly effective given we reach pressures of 3.8× 10−11 Torr

with the parts inside the chamber.

Construction

Over the past few decades, iterative development of vacuum chambers has

led to a fairly robust method of sealing parts in order to maintain low pressures

known as Conflat seals. Each part contains a fin metal ridge, called a knife edge.

A thin, copper gasket is placed between the two knife edges and vacuum screws

are tightened digging the edges into the copper gasket forming a seal from the

external atmosphere.

Throughout the entire construction process, it is crucial to wear latex gloves

and not to touch any part that will be inside the vacuum, especially the knife

edges. Contamination of any part means re-cleaning it following the method above.

Additionally, any defect in a knife edges will surely limit your vacuum pressures.

Conflat flanges come in a variety of sizes including 1.33”, 2.75”, 4.5”, and

6” which are used extensively on this apparatus. Depending on the Conflat size,

different number of screws are used to tighten the gasket in the knife edges. 1.33”

and 2.75” Conflats have 6 holes while 4.5” flanges have 8 holes and 6” flanges have

16 holes. In order to maintain even torque, the flange screws are tightened, first by
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hand, then in a star like pattern (see Figure 4.4). The joints should be tightened

evenly and are typically stopped with a paper width of space between the two

parts.

There are also a number of copper gaskets of which we used; plain copper,

annealed copper, silver plated, and annealed silver plated. The silver plating is

important to increase the maximum temperature of the gaskets which is impor-

tant near places of the chamber that will reach high temperatures like the NEGs,

but not necessary in most locations. Since we originally constructed the chamber

sans optical viewports and valves, we anticipated a high temperature bake thus

installing, almost exclusively, silver plated gaskets. Annealed gaskets are softened

through the manufacturing process and are used on fragile components or compo-

nents with feedthroughs like NEGs, ion gauges, or viewports. The ease of assembly

between the plain and annealed copper gaskets is noticeable when assembling the

joints and, if given the chance, would only use annealed gaskets in the future. Un-

fortunately, silver plated annealed copper gaskets are more rarely available in the

commercial world and had to be ordered from Vacom in Germany in advance due

to the large lead time.

In addition to copper gaskets, screw choice is another important criteria in

assembling the chamber. At such high torques, anti-locking lubricant is necessary

for each screw used. Unfortunately, oil compounds and vacuum do not mix well

and any accidental oil contamination inside the vacuum chamber will hinder the

low pressure limits of the chamber. Instead, we used silver plated screws which

provided a clean lubricant for the construction at high torques. Screw length will

vary significantly depending on the components being joined together. Some parts,

like short nipples and close couplers, limit the screw access to the through holes

while spacers in between two parts require longer screws. Mixing of the two is

dangerous since it is likely to need a screw longer than the space available to put

the screw in.
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Figure 4.4: Bolt tightening patterns for the different sized flanges. 1.33/2.75, 4.5,

and 6 inches from left to right.

Pumping

After the chamber is constructed, we begin pumping through a turbo molec-

ular pump (TMP). TMP’s consists of a precisely aligned rotor blade, spinning close

to 1000 Hz, followed by a set of stationary blades below. The rotor blade transfers

mechanical momentum to the molecules and due to the relative angle between the

rotor and stationary blade, molecules are forced into the exhaust. A dry roughing

pump connects the exhaust to atmosphere.

A residual gas analyzer (RGA) is used to monitor what gasses remain in

the chamber as we pump down. While it is possible to reach UHV pressures with

just a TMP, it may take an extremely long time. A large portion of the gasses

are due to water condensing on the chamber’s inside walls, and slowly evaporating

over time; a virtual leak. To remove the residual contaminants more quickly, the

chamber is heated an baked at 200C while still connected to the TMP (see Section

4.2).

Once the water peak is no longer decreasing, we cool the chamber and

activate the non-evaporable getters (NEGs) and ion pumps. The mechanical na-

ture of the TMP allows it to pump more massive molecules easily while struggling

with lighter molecules. Unfortunately, Hydrogen is out-gassed from steel and is not

pumped well by the TMP. Instead, the NEGs employ chemisorption and physisorp-

tion to pump the residual Hydrogen. The NEGs are activated at temperatures close
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to 500C for an hour then, once cooled, the NEG material is reactive to a number

of molecules including O2, H2, H2O, CO2, and N2. After activation, the NEG

will continue to pump these molecules until it becomes saturated. At pressures of

1e-10 Torr, the NEG will reach a saturation of N2 in 7 years. If a NEG is exposed

to atmosphere, it generates a protective coating around the reactive material in a

chemical reaction with large quantities of atmospheric gasses. It only needs to be

need to be re-activated to begin pumping again.

Finally, the ion pumps are turned on. Ion pumps work through electron

bombardment. Encaged in a strong magnet, the ion pump ionizes remaining

gas molecules which become attracted to the enshrouding magnet. The ionized

molecules are then chemisorbed and physisorbed into an inner surface of the ion

pump. In order to maitain UHV pressures, the ion pumps and NEGs remain active

until needing replacement.

Bakeout

Baking the chamber by heating it to 200 C (also known as the bakeout),

is necessary to speed up the process of reaching UHV pressures in the vacuum

chamber. However, the process is not without risk. A common problem during

baking vacuum chambers is large thermal gradients across the Conflat seals. Un-

even thermal expansion may cause two parts to expand differently affecting the

knife edges and, in turn, the gasket seal. Often, the expansion causes a leak. Ad-

ditionally, the windows cannot exceed a temperature of 180C while most of the

valves report a maximum temperature of 250C and should be kept well under these

reported values. Naturally, there are also safety concerns with heating a massive,

steel apparatus to 200 C.

In order to closely and carefully monitor the chamber temperature, ther-

mocouples are taped using high temperature Kapton tape at a variety of loca-

tions on the chamber. These thermocouples, controlled by a beaglebone microcon-

troller, report the local temperature value of the chamber which is displayed on

custom software. Once all thermocouples are placed, a layer of aluminum foil is

wrapped around the entire apparatus. To protect the optical viewports from being
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scratched, protective mesh coverings are cut and placed over them. The purpose

behind this later of foil is that steel is a poor thermal conductor leads to large

thermal gradients across the chamber. The foil acts as a better thermal conductor

to spread the heat more evenly. Band and ribbon heaters then envelope the foil

covered chamber. Finally, we wrap an additional two layers of aluminum foil to

keep the heat close to the chamber during the baking process. The entire wrapping

process is akin to making a 5-layer dip; thermocouples, foil, heater, foil, foil.

Tape heaters are simple resistors that generate heat when a high voltage is

applied, typically from a 120V. Like the thermal gradients, heating too quickly will

give rise to rapid thermal expansion, causing shifting of the knife edges and gaskets,

or other issues in the more complex gate valves. Most components are designed to

withstand a heating rate of 1 C per minute. In order to control the heating rate

of the chamber, each heater is connected to a solid state relay (SSR). The SSRs

are all controlled though another beaglebone microcontroller which generates a

pulse width modulation (PWM), switching the SSR on only for the duration of

the PWM width. For example, a 100% PWM will cause the SSR to be always

on, essentially the same as plugging the heater into the wall. Alternatively, a 0%

PWM means the heater is off. This allows fine control in heating the chamber at

a decided rate to a specific temperature.

The heaters are then grouped together (to avoid any of the circuit break-

ing) and run through emergency kill switches that are controlled by yet another

beaglebone. These are emergency use only and can be switched off remotely in

case of a problem. In total, the final setup consists of three individual beaglebones,

a thermocouple controller, a pwm controller, and a kill switch controller, as well

as custom software to monitor the thermocouple readings, the PWM widths of the

heaters, and where everything is located on the chamber. The software also moni-

tors the pressure in both the main chamber and load lock as well as an RGA scan

to monitor the partial pressures. Finally, an emergency panic script is running

which contacts me, or another lab member, in case of a rapid temperature change

or an over heated thermocouple. The complete setup is shown in Figure 4.5.

Figure 4.6 shows the partial pressures of pertinent gasses over the time of
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Figure 4.5: Photo of the bakeout setup. The rack contains all three beaglebones

as well as the PWM and thermocouple breakouts. The CAT6 cables are each

connected to a thermocouple and the heaters are run through the IEC cables. The

laptop in the lefthand corner is running the monitoring and control software.
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the bake. The first bake was performed on the first constructed chamber (installed

with blanks instead of windows). During the first day, temperatures close to 90 C

were reached and the NEGs were placed in conditioning mode; set at a temperature

around 160 C in order to evaporate any residual water. Over the next 10 days or

so, we noticed the partial pressures of components in atmospheric air (Oxygen,

Nitrogen, and Argon) were not decreasing. Due to the correlation, we originally

had thought it might be caused by the NEG conditioning, but after cooling, I found

a large leak in the load lock section near the fourth NEG. Most likely, raising the

temperature of this NEG caused thermal expansion in the nearby flanges resulting

in a leak.

After tightening the flanges and replacing the blanks with MPF optically

coated windows, we resumed baking at the beginning of March. Figure 4.7 plots

the partial pressures of a well performed bake with no leaks. We decided to end

the bake once the partial pressure of water reached 1e-10 Torr. Before cooling,

the ion pumps, RGA, and ion gauges were degassed by applying a higher voltage

to quickly evaporate any contaminants remaining on the filaments from the bake.

After cooling the system for 24 hours, we activated the NEGs and opened the valve

to the AOSense oven reaching a final pressure of 3.8× 10−11 Torr.

Leak Checking

Leak checking is an important step during the entire process of reaching

UHV pressures. The idea is to monitor partial pressure of a specific gas, usually

Helium, inside the chamber while spraying the same gas at the Conflat seals outside

the chamber. If a leak is detected, the partial pressure of He will rise at a given

slope correlated to the leak rate.

The procedure below describes a method of leak checking that can take

place as soon as the pressures are below the threshold of the gas analyzer. The

SRS 100 gas analyzer can be turned on at pressures starting at 1e-4 Torr.

1. Place the RGA in leak checking mode which will present a graph of He partial

pressure vs Time.
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Figure 4.6: Pressure vs time of important gasses during the first bake. The peaks

in the beginning were caused by condition the NEGs since they were exposed to

atmosphere and were contaminated with a variety of gasses. Unknowingly, a leak

was introduced into the system after the NEG conditioning and is distinguishable

by the slow rise of Nitrogen, Oxygen, and Argon.
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Figure 4.7: Pressure vs time of important gasses during the second bake. Again, we

see the NEG conditioning, but this time, all gas pressure decreased as we continued

pumping.

2. Record about 5 minutes of a baseline reading making sure the He levels are

not too high and do not vary too much inside the chamber.

3. For the chosen Conflat and spray He around the seal. The flow of He from

the canister should be very low, just enough to hear whistling at the end of

the tubing.

4. Wait approximately 1-3 minutes for the He to register at the RGA head.

Based on the pumping speed and proximity of the RGA to the pump, a He

peak may not be visible despite there being a leak. In this case, close off the

pumps and leak checking again.

5. If a leak is present, tighten the Conflat and leak check again. If the problem

is not solved, break vacuum, clean the knife edges and replace the gasket.
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6. If a leak is not present, move on to the next Conflat seal.

There are more robust methods for leak checking such as purchasing a

Helium Leak Checker or inverting the procedure; pumping He into the chamber

and monitoring the atmospheric side for any He rise. The method presented here

has proven to work in our lab, though the leak checking is more often an art than

a science. One substantial benefit in locating where leaks are, is to have enough

valves to close off certain sections from the RGA. This will slowly guarantee where

leaks are not.

Since the art is dependent on the artist, here are some hints and tips when

leak checking a chamber.

• When you’re not spraying He on the Conflat seal, stop the flow of He. If the

background He levels in the atmosphere are too high and a leak is present,

it will be exceedingly difficult to find exactly where the leak is coming from.

This is also why the flow should not be too strong.

• Sometimes it is useful to cover the Conflat seal in a plastic bag and fill the

bag with He instead of spraying around the seal.

• Compare the leak rate meaured with the specifications of the parts. For

example, if a valve or window has a specified leak rate of 1e-9 Torr and

you’re getting something similar, the part may need to be replaced.

The final step of leak checking for the entire chamber is to perform a rate-of-

rise (ROR) test. Depending on when the ROR test is performed, the total pressure

rise may not yield a reliable result due to out-gassing from the chamber walls or

virtual leaks. Instead, I chose to monitor the partial pressure of Argon which is

not out-gassed and is typically pumped out quickly from the TMP due to its large

mass, 39 AMU. Argon is roughly .97% of the atmosphere and thus, any Argon rise

in the chamber will be from a leak from atmosphere into the chamber.
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4.3 Load Lock

The most crucial design element of the apparatus is its ability to load pho-

tonic chips to trap strontium on. Atoms on chips are a developed technology for

Rubidium atoms, but have yet to be as thoroughly explored with strontium or

other alkali earth metals. The load lock section of the chamber enables quick

loading of samples and pump down back to 1× 10−11 Torr within 36-48 hours.

The load lock itself consists of two chambers. The first is where samples

are loaded into the wobble stick by removal of a conflat flange. The section also

has atmospheric access through a right-angle valve and an additional leak valve for

controlled venting of the system. The second section houses the NEG/Ion Pump

combination. This part is separated by a VAT UHV Mini gate valve to preserve

the lifetime of the NEG. The procedure for loading a new sample are discussed

below.

1. Close the mini gate valve to the NEG/Ion Pump section of the load lock. It

is crucial not to vent this part of the chamber.

2. Eventually, a blank will be removed exposing the load lock to atmosphere.

For larger samples, it may be necessary to open the load lock at the wobble

stick, but most likely, the loading can be done by the flange on the side of

the cube (Figure 4.8 B). Seal the selected flange in a clean room glove-box

or bag.

3. Flood the exterior containment continually with Argon. Fill and empty the

containment device multiple times before turning on a continual flow of Ar-

gon.

4. Vent the load lock by filtering Argon gas through a sieve. Depending on

the experiment, such as the optical nanofibers, it may be necessary to vent

through the leak valve to ensure slow pressurizing of the vacuum chamber. If

this is not necessary, it is easier to vent through the main right angle valve.

5. Closely monitor the inside pressure of the load lock. Once the load lock is at
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Figure 4.8: Rendering of the load lock section. Points A, B, and C are referenced

in the loading procedure.

33



atmospheric pressure, remove the selected blank and load the chip into the

wobble stick.

6. Replace the blank and begin pumping down the load lock section.

7. As the pump down reaches pressures on the the order of 1e-9 Torr, the mini

gate valve can be opened to allow the NEG/Ion Pump to help with the pump

down.

8. Open the gate valve (Figure 4.8 A) to the main chamber and use the wobble

stick (Figure 4.8 C) to transport and lock the sample in the main chamber.

The wobble stick is retracted back to the load lock and the main gate valve

is closed.

The chip holder in Figure 4.3 and the wobble stick, were designed to work

with Ferrovac flag end SHOMs. The wobble stick locks the flag toggle when loading,

then unlocks it and retracts once the chip is securely in the mount. One of the

proposed experiments involves trapping strontium on a tapered optical fiber. Since

the taper must be performed adiabatically, a longer holding plate was necessary.

The custom design is modelled on the Ferrovac SHOM design, but is extended

in length (Figure 4.9). This also explains why the mount plate is designed with

two Ferrovac holders to accommodate the extended sample holder and avoid any

unnecessary sagging of the fiber mount.

4.4 MOT Coils

Having achieved UHV vacuum pressure, the project quickly turned to MOT

magnets and optics. The MOT uses two magnetic coils in the anti-Helmholtz

configuration to achieve a quadropole magnetic field with a linear gradient along

each axis. We follow convention by taking the z-axis to be through the axis of the

two coils. From radial symmetry of the field and Maxwell’s equation ∇ ·B = 0, we

have that dB
dx

= dB
dy

= −1
2
dB
dz

and thus, will also form the appropriate magnetic field

gradient along the x and y axis. Using the Biot-Savart law, we find the magnetic
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Figure 4.9: Rendering of the tapered optical fiber and custom mounting device.

The fiber will be glued to the small pedestals on the chip so the center is aligned

with the atomic beam. The center hole allows the vertical MOT beams to trap

the atoms on the chip.

field of a single coil with radius r, current I and a number of turns, N , to be

B(z) =
µ0NIr

2

2(z2 + r2)
3
2

To force the magnetic field to be 0 at z = 0, we place two identical coils at ±a
apart with currents ±I. The total magnetic field of both coils is then

BAH(z) =
µ0NIr

2

2((z − a)2 + r2)
3
2

− µ0NIr
2

2((z + a)2 + r2)
3
2

Deciding on a and r distills down to an optimization problem. In the typical anti-

Helmholtz configuration, the desire is to minimize the non-uniformity of the field

setting ∂2BAH
∂z2
|z=0 = 0 which yields r = 2a.

Our apparatus has a minimum distance from the atoms, a = 11 cm, which

equates to r = 22 cm; much too large for the chamber. The MOT size, however,

is limited by the size of the beam waist, designed to be close to 8mm for both the

blue and red MOT. This means we only need to minimize non-uniformity of the

field gradient within ±4 mm from z = 0.

Since we could not achieve the anti-Helmholtz condition, we designed the

coils to maximize the field gradient for a given atom distance. Solving ∂
∂r

∂BAH
∂z
|z=0 =

0 for r gives r =
√

2
3
a ≈ 9 cm. In reality, the magnetic wire of the coils will have
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non-zero width and thus this value is ideally the average radius of the coils. How-

ever, because the geometry does not allow smaller coils without separating the

coils further, we set this to be the minimum radius.

Further constraints of a field gradient of 50 G/cm and commercial power

supplies ranging to 15kW, informed the final design. In order to generate a larger

magnetic field gradient, we could increase the number of turns in each coil. How-

ever, increasing the number of turns increases the voltage required to generate the

same amount of current. Furthermore, adding layers to the coil radially or axially

required increased current to generate the same magnetic field gradient since we

were farther from the trap center. Ultimately, we decided on 60 turns per coil; 6

axial layers and 10 radial turns per layer. Based on initial calculations and mea-

surement of the coil resistance, running at 280A would produce a field gradient of

50G/cm. The 80m total length of the coils would require a 51V potential across

both to reaching about 14.5kW of power from the supply.

Winding

The choice in coil wire was largely influenced by [9, 23]. Using a square,

hollow, copper wire in order to water cool through the center of the wire. It was

orderd from Small Tube Products with OD of .1875”× .1875” and wall thickness

of .035” inches and insulated by S&W wire.

The winding machine for the coils also pays homage to [23, 3] from David

Weld’s group at UCSB. The frame is built from left-over 80/20 scattered through-

out the lab while the remaining parts were purchased from McMaster Carr and

machined in house.

The coil holder on which the coils are wound, is designed with a few con-

straints in mind. First, the amount of force needed to turn the winder should not

deform the coil radially. Additionally, the inner radius of the coils should be as

close as possible to the calculations above. Even a quarter inch deviation has a

large effect on the magnetic field gradient. Lastly, the coil must be constrained

axially while the epoxy cures overnight. To account for the first and second is-

sues, a center support of the coil holder made from a 2 inch thick acetol disk is
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sandwiched between two aluminum winding plates. In order to control the radius,

3D printed parts are placed along the outside to reach the appropriate thickness.

When winding is complete, the coil can easily be removed from the holder without

breaking the apparatus.

To hold axial tension in the coils, 3D printed ’clamp blocks’ are positioned

equally around one side of the coil holder. Screws are inserted into the clamp

blocks and tightened during winding to clamp the coil against the far side of the

holder. Cotronics NM-25 high temperature, non-magnetic epoxy was used to glue

the coils together and the clamps were left in for 24 hours to let the epoxy harden

before starting the next layer of winding. The full setup is shown in Figure 4.10

Figure 4.10: MOT coil winding setup. The clamp blocks keep axial tension as the

coil is wound.
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Cooling

Running 280A through these coils generates significant heating of the copper

which is controlled through water cooling. Issues arise when trying to attach

circular tubing to square wire. The solution performed by is to solder the square

wire inside copper tubing whose ID is equal to the hollow wire’s OD which is our

current plan and the next step in the apparatus construction. It is necessary to take

safety precautions in case the chilled water is not running. Safety interlocks are

being designed using thermocouples between each coil layer as well as a flow meter

for the water. If water is not flowing or the coils reach too high of temperatures,

it will trigger a shutdown of the power supply.
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Chapter 5

Future Work

Having reached ultracold vacuum, the next step is to begin focusing on ex-

perimental physics. Here, I present two future experiments that are being planned

using this apparatus. The first is in collaboration with Dan Steck’s group at the

University of Oregon and the second with Arno Rauschenbeutel in Vienna.

5.1 Casimir-Polder Force

The Casimir-Polder force is an inherently attractive force that arises from

the quantization of the elctromagnetic field. Just as two boats in water are at-

tracted to each other if they are left too close together, the Casimir-Polder force

attracts two bodies in the vacuum.

An intuitive derivation of the Casimir-Polder force is given in [30] for a

scalar boson field instead of the electromagnetic field. We consider three infinitely

conducting plates parallel to each other; two are separated by a distance d and the

other two are separated by a distance L− d

| ← d→ | ← L− d→ |

The modes in the left cavity are

kn(x) = sinωnx n = 1, 2...
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with ωn = πn
2d

. Calculating the total vacuum energy results from summing all the

modes on the left and the right side. For only the left side, we find

π

2d

∞∑
n=0

n

is infinite due to inclusion of arbitrarily high frequency modes. Using regulariza-

tion, we can correct this by imposing the physical constraint that arbitrarily high

energy modes are filtered by the parallel plates. Then

π

2d

∞∑
n=0

ne−
an
d =

π

2d

e
a
d

(e
a
d − 1)2

where a is an arbitrary parameter. In the limit that a → 0, we find total energy

due to the left hand space is

πd

2a2
− π

24d
+

πa2

480d2
+O(

a4

d3
)

Finally, the force is derived from the energy by varying the distance d and observing

the result.

F = −∂E
∂d

= − ∂

∂d
(
πd

2a2
− π

24d
+ ...)− ∂

∂(L− d)
(
π(L− d)

2a2
− π

24(L− d)
+ ...)

a→0 = − π

24
(

1

d2
− 1

(L− d)2
)

L>>d = − π

24d2

We see a significant result. There exists a non-zero vacuum energy produc-

ing an attractive force between the two plates and is a direct consequence of the

quantization of the field. For the quantization of the electromagnetic field, Casimir

found the result to be ∝ 1
d3

. While this method regularizes the high energy modes

in between the plates, we can also consider what happens to the low energy modes.

Between the plates, the fundamental mode occurs at frequency ~c
d

while outside the

plates, arbitrarily low frequencies can exist. The imbalance between the radiative

pressure from the internal and external field modes push the plates together.

An alternative, more thorough method in understanding the Casimir-Polder

potential is explored in [13] in which the potential is considered to be an interac-

tion mediated by virtual photons. Considering a spherically symmetric atom near
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a parallel conducting plate, the Casimir-Polder potential can be viewed as fluctua-

tions in the atomic dipole as opposed to fluctuations in the vacuum (Figure . The

resolution of spectroscopic measurements of dipole fluctuations is often limited by

the broad atomic transition linewidth.

5p�3P1,oomo=o_1
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Figure 5.1: Differential level shifts of 88Sr in the 3P1 state as a function of position

from the surface.

Previous experiments have been performed to measure the Casimir-Polder

force [6], but a reliable spectroscopic method has yet to be shown. Strontium’s

sub-millihertz clock transition holds promise in being able to detect different level

shifts caused by the surface-atom distance. [13] from Dan Steck’s lab, proposes

using strontium in an optical lattice for fine control of this distance and then

performing spectroscopic measurements on the the clock transition.

5.2 Tapered Optical Fibers

Optical nanofibers and ultracold atoms are a strong focus of the atomic

physics community. The devices have been used to create optical interfaces be-

tween light and matter [28], and probing fundamental atomic physics [21, 14, 15].

As opposed to the typical alkali atoms used in these experiments, once again,

strontium’s physical properties make it a viable option for further probing of fun-

damental physics.

Untapered optical fibers have been used in telecommunication and a variety

of other applications due to their ability to propagate optical signals with low
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loss. This is achieved through a core-cladding design in which each section has a

different index of refraction allowing total internal reflection to propagate the light

wave through the fiber efficiently. Due to the difference in the index of refraction,

a portion of the light leaks out radially from the core into the cladding producing

a fairly strong evanescent wave. To counteract this phenomenon, a rather thick

cladding is necessary; usually about 10 or 30 times as thick as the core.

a

z

r

ψ

Figure 5.2: Optical fiber schematic (not to scale) with core of radius a. Positions

along the fiber are noted in cylindrical coordinates.

Propagation of the light through the core, like all other electromagnetic

phenomenon, is governed by Maxwell’s equations. Solving these equations given

the boundary condition that the fields must be continuous at the core-cladding

boundaries, generates a discrete set of possible propagation modes each with its

own axial propagation constant defined as β such that Ez ∝ ei(ωt−βz). In general,

if the core has index of refraction n1 and the surrounding medium n2, then the

solutions to Maxwell’s equations will have two distinct sets; one for r < a and

another for r > a. This restricts the propagation constant to lie between n2k0 ≤
β ≤ n1k0 where k0 is the vacuum wave vector of the electromagnetic field. Applying

boundary conditions at the core-cladding boundary, the details of which can be

found in [27, 22], results in an eigenvalue equation for each discrete β(
Jl(ha)

haJl
+

K ′l(qa)

qaKl(qa)

)(
n2

1J
′
l (ha)

haJl(ha)
+
n2

2K
′
l(qa)

qaKl(qa)

)
= l2

[(
1

ha

)2

+

(
1

qa

)2]2(
β

k0

)2

(5.1)

Here, Jl and Kl are Bessel functions of the first and second kind, a is the radius of

the core, and l is an integer value corresponding to the discrete set of propagating

modes. The variables

h2 = k2 − β2
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q2 = β2 − k2

are introduced depending on whether the mode is propagating in the core (h) or

surrounding medium (q) where the former characterizes the rate of oscillation of

the mode inside the core as a function of r and the latter is a decay rate in the

cladding medium. For example, a larger h corresponds to quicker oscillations in

the core while larger q means faster decay and less penetration into the cladding

medium [22].

Utilizing the recursive property of Bessel function derivatives, we can rear-

range Eq 5.1 to find

Jl−1(ha)

haJl(ha)
=

(
n2

1 + n2
2

2n2
1

)
Kl−1(qa) +Kl+1(qa)

2qaKl(qa)
+

l

(ha)2
±[(

n2
1 − n2

2

2n2
1

)2(
Kl−1(qa) +Kl+1(qa)

2qaKl(qa)

)2

+

(
lβ

n1k0

)2(
1

(qa)2
+

1

(ha)2

)2] 1
2

(5.2)

The ± represents two sets of solutions for β; one set corresponds to solutions

in which the Ez component is contributes more to the propagation than the Hz

component (EH modes) and vice-versa (HE) modes. These equations have no

analytical solution and thus must be solved numerically. Since we are interested

in modes propagating in the core, the propagation constants will take the form of

β =

√
n2

1k
2
0 −

(ha)×
a

where (ha)× represent intersections of the left and right hand sides. For each

integer value of l, there exists a number of crossings which are denoted by m and

the modes are named following the convention HElm or EHlm.

Here we define a new parameter, V , based on normalized values of h̃ = ha

and q̃ = qa such that

V 2 = (ha)2 + (qa)2 = k2
0a

2(n2
1 − n2

2)

and V is recognized as the well known fiber parameter

V = k0a
√

(n2
1 − n2

2)

43



The HE11 mode can be shown to have the lowest cut-off value while the

next propagating mode has a cut-off at V ≈ 2.405, which can be taken to be

the cut-off to transmit a single mode. The necessary fiber radius in order to

produce a single mode taper depends on the wavelength in question, k0. Trapping

ultracold atoms on optical nanofibers has been primarily done Rubidium [29, 15]

and Cesium [15, 28] which utilize electronic transitions in the 700 and 800 nm

range. Unfortunately, strontium’s blue transition at 461 nm produces a necessary

fiber diameter of ≈ 400 nm. In order to reach such extreme diameters, a precise

method for pulling the tapered fibers has been developed in [26]. Here the authors

employ a flame pulling technique which induces an adiabatic transition between

the multi-mode fiber and the single-mode tapered section transforming the LP01

propagating mode into the HE11 single fiber mode, and back again, resulting in

high transmission through the pulled section.

Like other nanophotonic trapping experiments, we plan to utilize two far

off resonant traps on strontium’s blue transition. The frequency of these traps

is decided by the magic wavelengths calculated from the atomic polarizability of

strontium following the method in [1]. The red de-tuned magic wavelength is 473

nm while the blue de-tuned magic wavelength is 436 nm. Additionally, the 473

nm will be passed in either side of the fiber generating a optical lattice in the ±y
direction as shown in Figure 5.3. The calculations also include an estimated van

der Waal’s potential (another version of the Casimir-Polder potential described

above) which creates an attractive force for the atoms as the approach the surface

of the optical nanofibers. The red and blue de-tuned FORT powers were tuned

in order to counteract this attraction and still maintain low power for reasons

described below.

Concerns about the fragility of the TOF have been raised and addressed in

these calculations. First, high laser power generates a large radiative force which

has broken nanofibers in other experiments. To avoid this, the total laser power

from both the 436 and 473 nm wavelenghts is kept under 15 mW. Additionally,

with regards to loading and pumping with the nanofiber, a number of important

changes must be made. To avoid significant air flow disruptions when exposing the
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fiber to air, we are designing a laminar flow glove box that will be filled with Argon

from which the TOF and mount will be loaded into the chamber. Furthermore,

the initial pumping, by turning on the dry roughing pump, produces a significant

amount of turbulence which is likely to break the fiber. Counteracting this involves

redesigning the load-lock pump down section to utilize the precise, variable leak

valve. After pressures on the order of 10−2 Torr are reached, a series of valves will

be switched to allow pumping on the TMP. Lastly, the glue used to attach the

fibers to the mount cannot exceed temperatures of 70 C meaning we will not be

able to bake the load-lock after loading the mount. The filling the laminar flow

glove box with Argon while simultaneously venting Argon in the interior will help

to avoid water and atmospheric gasses from entering the chamber. We have done

this previously with a Sigma Aldrich clean room bag with promising results.

Figure 5.3: Calculated trapping potentials of 88Sr near a tapered optical fiber with

a diameter of 230 nm. The red de-tuned laser is at 2× .1 mW power and the blue

de-tuned laser is at 2 mW. These parameters give us a trap depth minimum of

24.6 µK at 250 nm from the surface of the fiber.
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Chapter 6

Conclusion

In this work, I have presented my proccess in designing and constructing

an ultra-high vacuum apparatus for experiments in trapping ultracold strontium

over nanophotonic devices. The system reached an ultimate pressure of 3.8×10−11

Torr, well within the necessary pressures for ultracold strontium experiments. The

combination of a compact AOSense oven, main chamber, and load-lock allow the

apparatus to fit within a < 1 m3 volume. Additionally, the small volume load-lock

chamber allows for relatively quick (36-48 hours) loading and unloading to and

from the main chamber avoiding the necessary venting and pumping process for

the entire system. With the addition of a dry Argon glove box sealed to the load

lock, we believe it is possible to decrease this time in the future.

The proposed use of the system is also discussed in the form of two collab-

orative projects. The first, with Dan Steck at the University of Oregon, involves

measuring the Casimir-Polder potential which manifests as adipole fluctuations

thanks to strontium’s spherically symmetric ground state. We propose trapping

strontium in a tightly confined optical lattice in order to control the distance from

a dielectric surface. High-resolution clock spectroscopy can be used to observe the

CP-induced different level shifts as a function of the distance from the surface.

The second experiment, in collaboration with Arno Rauschenbeutel, in-

volves trapping strontium around a tapered optical nanofiber. I discuss the tran-

sition from a multi-mode fiber to a single mode fiber whose radius is determined

from the well known V parameter. Two magic wavelengths of strontium’s 1S0 and
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3P1 states (436 nm and 473 nm), generate the attractive and repulsive dipole forces

resulting in a potential minima. The intensity balance between the two controls

the distance of the atoms from the nanofiber surface. Additionally, the lesser of

the two constrains the maximum fiber radius for a single mode fiber (≈ 210 nm).

Using linearly polarized light and passing the 473-nm beam from both sides of the

optical nanofiber, we hope to generate a standing wave optical lattice in which

strontium atoms will be confined.

This work, and proposed experiments, are the initial steps in developing

matter-wave interferometry with strontium over nanophotonic waveguides. Stron-

tium’s atomic structure, two-stage MOT cooling and the clock transition, have

already been used in high precision measurements. Using these properties in

matter-wave interferometry will open new doors to quantum-enhanced metrology.
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Appendix A

Quantum Mechanics Overview

To start, we can define two possible states of a stationary atom which form

an orthogonal basis for the energies of the system

|α〉 =

[
1

0

]
|β〉 =

[
0

1

]

Energies of the system are expressed as an operator, H, known as the Hamiltonian.

Hatom = Eα |α〉 〈α|+ Eβ |β〉 〈β| =

[
Eα 0

0 Eβ

]

whose expectation value of the energy for state |α〉 can be denoted as

〈α|Hatom |α〉 = Eα

The atom could also be in a superposition of these two states such that

ψ = cα |α〉+ cβ |β〉

where cα and cβ represent complex probability amplitudes such that

c∗αcα + c∗βcβ = 1

and the probability of finding the atom in the state |α〉 is denoted as

| 〈α|ψ〉 |2 = c∗αcα
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Similarly to the expectation value of the energy of state |α〉, the expectation of the

energy of state |ψ〉 is

〈ψ|Hatom |ψ〉 = c∗αcαEα + c∗βcβEβ

Furthermore, the time evolution of an eigenstate can be found using Schrodinger’s

equation.

i~
∂

∂t
|α〉 = Hatom |α〉 = Eα |α〉

⇒ |α; t〉 = e−iEαt |α〉

The same differential equation can be solved for an arbitrary state, |ψ〉 to give a

time evolution in terms of the energy eigenstates.

|ψ; t〉 = cαe
−iEαt |α〉+ cβe

−iEβt |β〉

This is a pretty boring system given there is no interaction between the

states, |α〉 and |β〉. Another way of saying this is that given the Hamiltonian

described above, there is no way to prepare the atom in a state |ψ〉; the atom

will forever live in either state |α〉 or |β〉. To better model reality, we introduce

interactions in the Hamiltonian. Following the 2-level system described above, we

define Hint to house the off-diagonal interaction terms.

Hint = V21 |α〉 〈β|+ V12 |β〉 〈α| =

[
0 V12

V21 0

]

and

Htotal = Hatom + Hint
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Appendix B

Atom in a Laser Field

To investigate properties of the atom in a laser field, let’s make a change

to our atomic Hamiltonian. We want our orthogonal basis to be representative

of the electronic structure of the atom and redefine our eigenstates to be |g〉 and

|e〉 representing the ground and excited states of the atom, respectively. We can

arbitrarily set the zero energy to be at the ground-state changing our Hamiltonian

as

Hatom = ~ω0 |e〉 〈e|

where ~ω0 is the energy of the excited state relative to the ground state. Addi-

tionally, this sets the time evolution of the ground state to be stationary since

Eg = 0⇒ e−iEgt = 1.

The interaction term is then

Hint = −d · E

where d is the dipole operator, d = qrelectron, and E is the operator for the electric

field which can be written in terms of positive and negative frequencies, ±ω, field

polarization vector, ε̂, and the field magnitude, E0

E(t) = ε̂
E0

2
(eiωt + e−iωt) (B.1)

= E+(t) + E−(t) (B.2)

In [24], it is shown that the dipole operator can be written in terms of atomic
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raising and lowering operators σ := |g〉〈e| and σ† := |e〉〈g| as

d = 〈g|d |e〉 · E(σ + σ†)

If we evaluate the expectation energy or σ = |g〉〈e| in an arbitrary state, |ψ〉 =

cg |g〉+cee−iω0t |e〉, we find only an unperturbed time evolution dependence in terms

of the positive frequency. Likewise,
〈
σ†
〉
∝ eiω0t. This allows a decomposition of

d = d+ + d− and the interaction Hamiltonian becomes

Hint = −(d+ + d−) · (E+ + E−)

The two like terms, d± · E± yield an oscillating dependence on e±i(ω+ω0)t

while the others depend on e±i(ω−ω0)t. In the rotating-wave approximation, we can

take |ω− ω0| << ω + ω0 and ignore the like terms and expand out the interaction

Hamiltonian to find that

Hint =
~
2

(Ωσeiωt + Ω∗σ†e−iωt)

and Ω = − 〈g|ε̂·d|e〉E0

~ is the Rabi frequency.

We can eliminate the time dependence by rotating the entire Hamiltonian

into the rotating frame redefining

H̃ = UHU† + i~(
∂U

∂t
)U†

where U is a Unitary operator defined here as

U = exp(iωt |e〉〈e|)

This produces a new Hamiltonian

H̃ = −~∆ |e〉〈e|+ ~
2

(Ωσ + Ω∗σ†)

where ∆ := ω − ω0 is the de-tuning of the laser from resonance of the atomic

transition.
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