
UCLA
UCLA Electronic Theses and Dissertations

Title
Logic Synthesis for FPGA Reliability

Permalink
https://escholarship.org/uc/item/7w7602f5

Author
Feng, Zhe

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w7602f5
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Logic Synthesis for FPGA Reliability

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Zhe Feng

2013

c© Copyright by

Zhe Feng

2013

Abstract of the Dissertation

Logic Synthesis for FPGA Reliability

by

Zhe Feng

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2013

Professor Lei He, Chair

Logic synthesis is one of the key stages in the computer-aided design (CAD) flow

for a field programmable gate array (FPGA) based design. It usually consists

of a series of optimization iterations to improve the quality of results (QoR) of

the design. Besides the traditional optimization objectives (e.g., performance,

area, power), the reliability is becoming a main concern as modern FPGAs have

advanced to 20nm technology, due to reduction in core voltage, decrease in tran-

sistor geometry, and increase in switching speed. However, existing techniques for

enhancing the reliability of FPGA based designs fall behind industrial needs in

terms of cost (e.g., area and power overhead), CAD flow, runtime, and the FPGA

architecture.

To address the problems, this dissertation proposes several novel logic synthesis

algorithms. The first algorithm seeks a formal method to improve the reliability

of FPGA based designs while incurring minimal area and power overhead. The

algorithm formulates the problem of the FPGA reliability under random faults

as a stochastic satisfiability (SSAT) based Boolean matching, and employs ro-

bust templates to rewrite the look-up table (LUT) based netlist, to maximize

the stochastic yield rate. To ensure not breaking the current CAD flow, a logic

synthesis algorithm is presented that performs a SAT-based in-place reconfigura-

tion in the LUT to mask soft errors, without changing of the functionality and

ii

topology of the LUT based netlist. In addition, the dissertation proposes three

fast in-place logic synthesis algorithms targeting the modern FPGA architecture

including both LUTs and interconnects, which perform simulation guided netlist

analyses and utilize don’t cares in the netlist to enhance the reliability of the

design. The effectiveness of the proposed algorithms are verified by experimental

results.

iii

The dissertation of Zhe Feng is approved.

Milos D. Ercegovac

Puneet Gupta

Kung Yao

Lei He, Committee Chair

University of California, Los Angeles

2013

iv

To My Family and Friends.

v

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Dissertation Contributions . 3

1.3 Dissertation Outline . 5

2 Technology Background . 6

2.1 FPGA Architecture . 6

2.2 CAD Flow . 7

2.3 Review of Techniques for FPGA Reliability 8

2.3.1 Hard Errors Mitigation Algorithms 8

2.3.2 Soft Errors Mitigation Algorithms 10

3 ROSE: Stochastic Resynthesis for FPGA Reliability 13

3.1 Introduction . 13

3.2 Motivation . 16

3.3 Preliminaries . 19

3.3.1 Boolean Network . 19

3.3.2 Boolean Matching . 20

3.3.3 Fault Model and FTBM 22

3.3.4 Resynthesis for Fault Tolerance 23

3.4 Robust Resynthesis . 24

3.4.1 Overall Algorithm of ROSE 24

3.4.2 Robustness of PLB Templates 25

vi

3.5 FTBM Algorithms . 27

3.5.1 Fault Rate Calculation . 28

3.5.2 Reduction to Deterministic SAT 30

3.6 Experimental Results . 32

3.6.1 Evaluation Based on Boolean Functions 32

3.6.2 Evaluation Based on Benchmark Circuits 33

3.6.3 Estimation of MTBF . 35

3.7 Conclusions and Future Work . 36

4 IPR: In-Place Reconfiguration for FPGA Reliability 42

4.1 Introduction . 42

4.2 Preliminaries . 45

4.2.1 In-place Resynthesis . 45

4.2.2 Circuit Representation . 45

4.2.3 Fault Model . 46

4.2.4 ODC Mask and Node Criticality 46

4.3 IPR Algorithm . 47

4.3.1 Motivation . 48

4.3.2 Algorithm Overview . 49

4.3.3 Criticality for Configuration Bit 50

4.3.4 Cone Construction . 51

4.3.5 In-place Boolean Matching 51

4.4 Robust Logic Resynthesis . 53

4.4.1 Overall Algorithm . 53

4.4.2 Localize Update . 54

vii

4.5 Experimental Results . 55

4.6 Conclusions and Future Work . 58

5 IPF: In-Place X-Filling Algorithms for the Reliability of Modern

FPGAs . 59

5.1 Introduction . 59

5.2 Preliminaries . 62

5.2.1 Design Representation . 62

5.2.2 Failure Rate and Don’t Care 63

5.3 Problem Formulation . 64

5.4 In-place X-Filling Algorithms . 65

5.4.1 IPF Algorithm Framework 65

5.4.2 LUT Analysis Based IPF Algorithms 66

5.4.3 LUT and Interconnect Analyses based IPF Algorithm . . . 71

5.4.4 Complexity Analysis . 73

5.5 Experimental Results . 74

5.5.1 Evaluation of X-Filling Algorithms for SEUs on LUTs . . . 76

5.5.2 Evaluation of the IPF Algorithms for SEUs on Interconnects 77

5.5.3 Evaluation of Synthesis based SEU Mitigation Techniques

on the Circuit Level . 79

5.5.4 Runtime Comparison of SEU Mitigation Techniques on the

Circuit Level . 80

5.6 Conclusions and Future Work . 81

6 Conclusions and Future Work . 88

viii

References . 90

ix

List of Figures

1.1 Soft errors vs. SRAM scaling trend. 2

1.2 Alpha particle is striking on a SRAM cell and flipping the bit. . . 3

2.1 Island-style FPGA architecture 7

2.2 Generic CAD flow for FPGA based designs 8

3.1 Yield loss vs. area (the number of LUT) for the MCNC application

“t481” with 18 different logic synthesis options (1-bit defect rate:

0.01%) . 17

3.2 Yield loss vs. area (the number of LUT) for the MCNC application

“ttt2” with 18 different logic synthesis options (1-bit defect rate:

0.01%) . 18

3.3 Illustration of FPGA Boolean matching 21

3.4 Propagation of faults in ROSE, where input faults of LB2 are re-

sulted from the output fault in LB1. 25

3.5 Area efficient PLB templates (a),(b) and (c), and the proposed

robust template (d) . 26

3.6 Examples of logic masking in R-PLB. 27

3.7 Comparison between template R-PLB and template A-PLB2 . . . 38

4.1 A simplified synthesis flow for FPGAs 44

4.2 Motivation of the in-place reconfiguration algorithm 49

4.3 The flow of robust logic resynthesis 54

4.4 Experimental flows . 56

x

5.1 Given the same functionality and topology, different implementa-

tions yield different failure rates due to the assignment of the SDC

bit. 83

5.2 An illustration of the IPF algorithm framework 84

5.3 An illustration of the two LUT analysis based IPF algorithms (a)

Critical configuration bit based (b) Critical output based 85

5.4 An overview of the LUT and interconnect analyses based IPF al-

gorithm . 85

5.5 An example of the SDC bit preference for masking errors introduced

by SEUs on LUTs . 86

5.6 The failure rate comparison of synthesis based SEU mitigation tech-

niques on the circuit level for the 6-LUT mapping. 86

5.7 The runtime comparison of SEU mitigation techniques on the cir-

cuit level for the 6-LUT mapping. 87

xi

List of Tables

3.1 Comparison of fault tolerance between ABC and ROSE using ro-

bust and area-efficient PLB templates 39

3.2 Comparisons of area and runtime between ABC and ROSE using

robust and area-efficient PLB templates 40

3.3 MTBF (mean time between failures) 41

4.1 Comparison of fault tolerance among ABC, IPR, and IPR + ROSE

flow . 57

5.1 The ratio of don’t cares to utilized LUT configuration bits. *SDC

refers to satisfiability don’t care. 62

5.2 The failure rate comparison of X-Filling algorithms for SEUs on

LUTs for the 6-LUT mapping . 74

5.3 The failure rate comparison of X-Filling algorithms for SEUs on

LUTs for the 4-LUT mapping . 75

5.4 The failure rate comparison of the IPF algorithms for SEUs on

interconnects for the 6-LUT mapping 77

5.5 The failure rate comparison of the IPF algorithms for SEUs on

interconnects for the 4-LUT mapping 78

xii

Acknowledgments

During the development of the dissertation, I have received support and encour-

agement from a great number of individuals. I’d like to acknowledge them here,

with my full gratitude.

I would like to express the deepest appreciation to my advisor, my committee

chair, Professor Lei He, for his generous help over the years. His continuous

guidance and encouragement foster an environment of academic excellence that

helps me develop the problem analysing and solving skills, and eventually grow

into an independent researcher. This dissertation should not have come to its

completion without his tremendous support.

I would like to thank my doctoral committee members, Professor Kung Yao,

Professor Puneet Gupta, and Professor Milos Ercegovac for their suggestions to

improve this work. Their time and effort are greatly appreciated.

I am indebted to Professor Rupak Majumdar for his feedback as a formal ver-

ification expert. My special thanks to Dr. Paul Fang for his mentoring during

my internship at Synopsys, Inc. Professor Jason Cong and Professor Zhiru Zhang

earn my thanks as my mentors and collaborators when I was an intern at Au-

toESL Design Technology, Inc. My thanks to Dr. Babette van Antwerpen for her

guidance during my stay in Altera, Inc.

My sincere thanks to Dr. Yu Hu, who helped on the part of algorithm develop-

ment in Chapter 3, Dr. Naifeng Jing, who helped on the part of the experiments

in Chapter 5.

I treasure the opportunity that I have worked with a group of wonderful and

brilliant people at the UCLA Design Automation Lab. In particular, I thank Dr.

Yan Lin, Dr. Lerong Cheng, Dr. Yiyu Shi, Dr. Wei Yao, Mr. Ju-Yueh Lee, Dr.

Fang Gong, Mr. Wenyao Xu, Dr. Victor Shih, Mr. Zhen Cao for being around

with helpful hands.

xiii

Last, and most of all, I am grateful to my family. I thank my wife Han Wang

in particular. This dissertation becomes so humble compared to her continuous

support and love.

xiv

Vita

2000-2004 B.S., Department of Computer Science, Northeastern Univer-

sity, Shenyang, China.

2004-2007 M.S., Department of Computer Science, Tsinghua University,

Beijing, China.

2007–present Teaching Assistant, Graduate Student Researcher, Department

of Electrical Engineering, University of California, Los Angeles,

California, USA.

2008 Intern, Synopsys, Inc., 700 E Middlefield Rd, Mountain View,

CA, USA

2010 Intern, AutoESL Design Technology, Inc., 11835 W Olympic

Blvd, Los Angeles, CA, USA

2011 Intern, Altera, Inc., 101 Innovation Dr, San Jose, CA, USA

Publications

Zhe Feng, Naifeng Jing, and Lei He, “IPF: In-Place X-Filling Algorithm for the

Reliability of Modern FPGAs”, IEEE Transactions on Very Large Scale Integra-

tion Systems (TVLSI), under second review, 2013.

Naifeng Jing, Ju-Yueh Lee, Zhe Feng, Weifeng He, Zhigang Mao, and Lei He,

“SEU Fault Evaluation and Characteristics for SRAM-based FPGA Architec-

xv

tures and Synthesis Algorithms”, ACM Transactions on Design Automation of

Electronic Systems (TODAES), 2012.

Zhen Cao, Tom Tong Jing, Jinjun Xiong, Yu Hu, Zhe Feng, Lei He, and Xianlong

Hong, “Fashion: A Fast and Accurate Solution to Global Routing Problem”,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 2008.

Zhe Feng, Naifeng Jing, Yu Hu, and Lei He, “IPF: In-place X-Filing to Mit-

igate Soft Errors in SRAM-based FPGAs”, International Conference on Field

Programmable Logic and Applications (FPL), 2011.

Naifeng Jing, Ju-Yueh Lee, Zhe Feng, Weifeng He, Zhigang Mao, Shi-Jie Wen,

Rick Won, and Lei He, “Quantitative SEU Fault Evaluation for SRAM-Based

FPGA Architectures and Synthesis Algorithms”, International Conference on

Field Programmable Logic and Applications (FPL), 2011.

Lintao Cui, Jing Chen, Yu Hu, Jinjun Xiong, Zhe Feng, and Lei He, “Acceler-

ation of Multi-agent Simulation on FPGAs”, International Conference on Field

Programmable Logic and Applications (FPL), 2011.

Ju-Yueh Lee, Zhe Feng, and Lei He, “In-Place Decomposition for Robustness in

FPGA”, International Conference on Computer-Aided Design (ICCAD), 2010.

Zhe Feng, Yu Hu, Lei He, and Rupak Majumdar, “IPR: In-Place Reconfiguration

for FPGA Fault Tolerance”, International Conference on Computer-Aided Design

(ICCAD), 2009. (Best paper award nomination)

xvi

Yu Hu, Zhe Feng, Lei He, and Rupak Majumdar, “Robust FPGA Resynthe-

sis Based on Fault Tolerant Boolean Matching”, International Conference on

Computer-Aided Design (ICCAD), 2008. (Best paper award nomination)

Zhe Feng, Yu Hu, Rupak Majumdar, and Lei He, “IPR: In-Place Reconfiguration

for FPGA Fault Tolerance”, IEEE International Workshop on Logic and Synthesis

(IWLS), 2009.

Yu Hu, Zhe Feng, Rupak Majumdar, and Lei He, “Templates and Algorithms of

Boolean Matching for Fault Tolerance in FPGAs”, IEEE International Workshop

on Logic and Synthesis (IWLS), 2008.

xvii

CHAPTER 1

Introduction

1.1 Motivation

Due to fast time-to-market, no non-recurring engineering expense (NRE), and

easy long-term maintenance, field programmable gate arrays (FPGAs) have been

increasingly used in many applications, e.g., networking equipment, automotive

systems, medical equipment, aerospace and defense applications. Besides, the

ever-increasing integrated IP modules enable FPGAs surpass application specific

integrated circuits (ASICs) in some aspects in terms of cost and performance.

BDTI, a noted analyst and benchmarking firm, released benchmarks showing that

Xilinx’s FPGA is up to 34×more cost-effective than TI’s DSP in a significant class

of DSP applications [Ber06].

Traditionally, the optimization objectives for FPGA based designs are focused

on performance, area, power, etc. Over the past decade, the reliability has been of

increased interest in both academia and industry. Originally, it received attention

only from mission critical applications in aerospace and defense realms. As modern

FPGAs have advanced to 20nm technology to provide low cost and low power

solutions [XIL13,Meh12,ALT12], they are prone to errors for most applications,

because of reduction in core voltage, decrease in transistor geometry, and increase

in switching speed [XIL12a]. Figure 1.1 [Bau05] shows the soft errors trend along

the SRAM scaling. Although the number of errors on a single SRAM bit is

deceasing, the system-level errors increase exponentially with respect to the SRAM

1

Figure 1.1: Soft errors vs. SRAM scaling trend.

technology. This is because the chip density (bits/system) increases at a faster

speed than the error reduction on a single bit by technology scaling due to higher

system requirements.

The errors can be categorized into hard errors and soft errors. Hard errors are

permanent errors arising from circuit processing. Soft errors, also called single

event upsets (SEUs), are generally caused by high-energy particle strikes, e.g.,

neutrons coming from cosmic rays or alpha particles emitting from trace impurities

in packaging materials and solder bumps [Bid10]. Other reasons causing SEUs

include the power supply disturbance and the electromagnetic interference. As

shown in Figure 1.2 [FML04], SEUs change values of devices, such as SRAM

cells and flip-flops, when charges collected from strikes are larger than the stored

charges in the junctions for a long enough period of time. SEUs not only can

change the values of SRAM cells storing user data, but it also can change the values

of SRAM cells in control logic. Because most logic functions and interconnects in

SRAM-based FPGAs are implemented by SRAM cells, they are more vulnerable

to SEUs compared with ASICs. It implies that the reliability of FPGA based

2

p+

p-

n-

p+ n+ n+
+

- +
- +

- +
-

Sensitive Area

VDD VSS 0 1
alpha+

I

V

R

V=IR

Figure 1.2: Alpha particle is striking on a SRAM cell and flipping the bit.

design cannot be sacrificed for the performance and cost of the system, and it

must be accounted for as one of the optimization objectives during the design

flow.

1.2 Dissertation Contributions

There are a number of techniques in the literature (listed in Section 2.3) for en-

hancing the reliability of FPGA based designs. However, most existing techniques

fall behind industrial needs in terms of cost (e.g., area and power overhead), CAD

flow, runtime, and FPGA architecture.

To address the problems, this dissertation proposes several novel logic synthesis

algorithms taking the reliability as optimization objective, targeting both hard

errors and soft errors. Specifically, we have made the following contributions,

• Targeting stochastic error rate reduction in the presence of both hard and

soft errors while incurring minimal area and power overhead, we develop

a formal method (i.e., stochastic satisfiability (SSAT)) based fault toler-

ant Boolean matching (FTBM), which exploits the flexibility of the look-

3

up table (LUT) configuration in FPGAs to maximize the stochastic yield

rate for a logic function. Using FTBM, we propose a robust resynthesis

algorithm (ROSE) which maximizes stochastic yield rate for an entire cir-

cuit. Finally, we show that existing programmable logic block (PLB) tem-

plates for area-aware Boolean matching and logic resynthesis are not effec-

tive for fault tolerance, and we propose a new robust template with path

re-convergence. Compared to the state-of-the-art academic technology map-

per Berkeley ABC, ROSE using the proposed robust PLB template reduces

the fault rate by 25% with 1% fewer LUTs, and increases mean time between

failures (MTBF) by 31%, while preserving the optimal logic depth.

• To ensure not breaking the current CAD flow during the reliability opti-

mization, we present a logic synthesis algorithm that performs a satisfiabil-

ity (SAT) based in-place reconfiguration (IPR) in the LUT on FPGAs. IPR

maximizes identical configuration bits for complementary inputs of a LUT to

prevent the error propagation. It preserves the functionality and topology of

the netlist, and therefore, requires no change to the physical design. Com-

pared to the state-of-the-art academic technology mapper Berkeley ABC,

IPR reduces the relative fault rate by 48% and increases MTTF by 1.94×

with the same area and performance. Applying both ROSE and IPR reduces

the relative fault rate by 49% and increases MTTF by 2.40× with 19% less

area but same performance.

• Targeting the modern FPGA architecture including both LUTs and inter-

connects, we propose three synthesis based in-place X-Filling algorithms

by utilizing don’t cares to augment the reliability of FPGA based designs.

Compared with circuit and architecture based solutions, our algorithms are

in place, and do not require area, power, performance, and design time

overheads. Compared with other synthesis based algorithms, we take into

account the widely accepted interconnect architecture besides considering

4

LUTs during optimization. For the ten largest combinational MCNC bench-

mark circuits mapped to 6-LUTs, our approaches achieve up to a 37% greater

failure rate reduction, and up to 150× runtime speedup, compared with the

best known in-place algorithm, the In-Place Decomposition (IPD) algorithm.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows.

Chapter 2 presents the technology background, including FPGA architecture,

CAD flow, and a review of techniques for the FPGA reliability.

Chapter 3 presents an algorithm seeking a formal method to improve the reli-

ability of FPGA based designs while incurring minimal area and power overhead.

The algorithm formulates the problem of the reliability under random faults as

a stochastic satisfiability (SSAT) based Boolean matching, and employs robust

templates to rewrite the netlist, to maximize the stochastic yield rate.

In Chapter 4, to ensure not breaking the current CAD flow, a logic synthesis

algorithm is presented which performs a SAT-based in-place reconfiguration in

the LUT to mask soft errors, without changing the functionality and topology of

the netlist.

Chapter 5 presents three fast in-place logic synthesis algorithms targeting the

modern FPGA architecture including both LUTs and interconnects. The three

algorithms perform simulation guided netlist analyses and utilize don’t cares in

the netlist to enhance the reliability of the design.

Chapter 6 concludes the dissertation with discussion of the ongoing work and

future work as well.

5

CHAPTER 2

Technology Background

2.1 FPGA Architecture

A generic island-style FPGA architecture is shown in Figure 2.1. It consists of a

2D array of configurable logic blocks (CLBs) that are connected by programmable

global routing architecture. Each CLB can be parameterized by (k, N), i.e., it

consists of N LUTs and each LUT has k inputs. The configuration bits are in each

LUT to implement the desired functionality. The LUT inputs and outputs are

fully connected by intra-CLB routing (local routing) MUXes, which allow signals

to be respectively routed from and to CLB inputs and outputs internally. The

CLBs are connected via inter-CLB routing elements, i.e., switch boxes and connec-

tion boxes by wires deployed in routing channels with a width of w (the number of

tracks). Wires in switch boxes and connections boxes together with wires in local

routing, make up the whole interconnect architecture. Wires are linked by bidi-

rectional and unidirectional programmable interconnect points (PIPs). Typically,

the bidirectional PIPs are implemented by pass transistors, while unidirectional

PIPs are the selection bits in MUXes. These configuration bits configuring PIPs

contribute to most of the configuration bits in FPGA. Therefore, interconnects are

critical to FPGA designs since routing structure contributes a large portion of the

total FPGA area and configuration bits. There exits a large body of study explor-

ing various FPGA architectures for different optimization objectives [KTR08]. In

this dissertation, the most popular FPGA architecture [Meh12,ALT12] in modern

industrial FPGAs, is assumed.

6

CLBs

Interconnects

Switch box

for wires in

two directions

Connection Box

and CLB output pin

Connection Box

and CLB input pin

Figure 2.1: Island-style FPGA architecture

2.2 CAD Flow

CAD is one of the key factors to the QoR (e.g., performance, area, power, and

reliability) of FPGA based designs. The synthesis procedures in the basic CAD

flow for FPGAs are shown in Figure 2.2. They start with a description of the

circuit, usually in the form of a hardware description language (HDL) such as

VHDL and Verilog. Once the description is compiled, logic synthesis occurs

where the description is synthesized into a gate-level netlist and then mapped

to a netlist of programmable logic blocks (PLBs). After that, physical design,

including placement and routing, is performed to arrange the PLB netlist into

an FPGA. Sometimes, a physical synthesis may be performed between logic syn-

thesis and physical design, which performs further optimization based on back

annotated physical information from placement and routing.

7

High-level circuit

description

Compiler

Logic/physical synthesis

Physical design

Bitstream

Figure 2.2: Generic CAD flow for FPGA based designs

2.3 Review of Techniques for FPGA Reliability

In the literature, there are extensive studies on the FPGA reliability [DH06]. They

can be broadly categorized into two kinds, studies on error detection, evaluation,

and prediction [RRV02, JCG03,GCZ03,BBB04,HAW05,ATM07, JLF11, JLF12],

and approaches on error mitigation [LV62, DP94, HTA94, SRK04, AT05, CM10,

KPM09].

My dissertation is focused on error mitigation algorithms. Two major threats

for the FPGA reliability come from hard errors arising from circuit processing

and soft errors due to particle radiation. Section 2.3.1 and Section 2.3.2 present

existing techniques addressing them, respectively.

8

2.3.1 Hard Errors Mitigation Algorithms

Targeting the hard errors due to manufacturing defects, the following techniques

have been developed.

• Locating and masking defects by circuit redundancy

Column-based redundancy technique, proposed in [DP94,HTA94], has been

used in Altera’s Stratix II FPGA [ALT06]. If one logic block in a column

of logic blocks is found defective during testing of the device, the entire col-

umn is bypassed and its function is implemented by the redundant column.

Besides redundant columns and rows, some fine-grained redundancy archi-

tectures were also proposed [DI00,YL05], where redundant routing resources

are evenly distributed in the FPGA to tolerate defects. The aforementioned

tolerance is transparent to FPGA users, and the same synthesis can be used

for all chips of the same FPGA application. This manufacturer-masking

approach lowers synthesis cost for massive production, but suffers from low

defect coverage, large area overhead, and extra delay due to the bypass cir-

cuit. For example, only defective logic blocks within the same column are

tolerated with one extra column as in Stratix II.

• Circuit-wise synthesis

The technique has been applied to circuits with high defect rates, especially

for nano-technologies [Nae05,JA07,BKC07]. Each defect is located, and then

placement and routing is customized for each chip in order to work around

defects. Circuit-wise synthesis is not suitable for massive production of one

FPGA application. In addition, testing costs can be intolerably high.

• Triple-modular redundancy (TMR)

Compared to the previous two approaches, TMR [LV62] does not require

to detect and locate defects during synthesis. However, it has significant

9

overhead on area, power and performance.

• Multiple configurations

EasyPath by Xilinx, pre-develops multiple synthesis solutions for an FPGA

application. During testing, each chip chooses a synthesis that can tolerate

manufacturing defects for the particular application. Compared to circuit-

wise synthesis, multiple configuration reduces testing and synthesis costs.

Compared to TMR, multiple configurations reduce circuit overhead. How-

ever, the synthesis overhead increases.

Most existing techniques suffer from either expensive testing overhead, ex-

cessive overhead on performance, power and area, long design time, or a low

defect coverage rate.

2.3.2 Soft Errors Mitigation Algorithms

There are a number of studies on soft errors mitigation for FPGAs in the literature,

including circuit, architecture, and synthesis based solutions.

• Circuit solutions

Circuit based solutions create radiation hardened cells to shield against soft

errors. For instance, in the space-grade Virtex-5QV FPGA released from

Xilinx, the configuration memory has been implemented with radiation-

hardened by design (RHBD) dual-node latches that provide nearly 1000×

SEU hardness of the standard cell latches in the commercial version [XIL12b].

They come with considerable area, power, and cost overheads, and con-

straint themselves in applications with a high demand for the availability.

• Architecture solutions

There are several solutions on the architecture level. Designers routinely

apply circuit redundancy techniques (e.g., TMR [LV62]), to protect designs

10

from SEUs. However, TMR has 3.2× area overhead and a performance cost

of 10% [Roo04]. Samudrala et al. [SRK04] claimed that the area can be

reduced by 60-70% using their selective TMR approach. Error checking and

correction (ECC) [Tam06] is widely used in modern FPGAs, because its area

overhead is lower than TMR. For instance, single error correct double error

detect (SECDED) has the overhead of 8 bits per 64 bits of data (i.e., 13%).

Nevertheless, ECC requires power and area overheads to scan and detect er-

rors. Furthermore, errors fall into the scan interval are not tolerated. Mitra

et al. [MSZ05] proposed the built-in soft error resilience (BISER) algorithm

to use the on-chip design-for-testability resource for SEU protection. In sum-

mary, most architecture based solutions require area, power, performance,

design time, or cost overhead.

• Synthesis solutions

Several studies have demonstrated that the SEU issue can be mitigated by

synthesis based approaches while minimizing the aforementioned overheads.

Cong and Minkovich [CM10] reported that failure rates can be reduced by

12%, by choosing cuts with more don’t cares during technology mapping

with the help of their error analysis technique. Lee et al. [LFH10] proposed

an in-place decomposition (IPD) algorithm to make the circuit more robust

against soft errors. IPD introduces don’t cares by the decomposed and dupli-

cated subfunctions and the underutilized carry chains, and increases MTTF

without changing the topology of the PLB network. The work claims to

reduce failure rates by 76%. However, the algorithm does not tolerate de-

fects on interconnect. Note that the preceding techniques [LFH10, CM10]

consider SEUs on LUTs only, and their improvements for the reliability are

significantly smaller when SEUs on interconnects are taken into consider-

ation. Jose et al. [JHM10] proposed a rewiring algorithm for the robust-

ness of interconnects. However, their interconnect SEU model assumed that

11

each net has only one configuration bit, causing critical routes being used

to replace non-critical ones. Most synthesis based techniques are based on

time-consuming algorithms, e.g., binary decision diagrams (BDD), Boolean

satisfiability (SAT), integer linear programming (ILP) [LFH10], or set of

pairs of functions to be distinguished (SPFD) [JHM10]. In summary, most

preceding synthesis based techniques require long synthesis time, and do not

consider the SEU impact on interconnects.

12

CHAPTER 3

ROSE: Stochastic Resynthesis for FPGA

Reliability

Targeting stochastic error rate reduction in the presence of both hard and soft

errors while incurring minimal area and power overhead, we develop an for-

mal method (i.e., stochastic satisfiability (SSAT)) based fault tolerant Boolean

matching (FTBM), which exploits the flexibility of the look-up table (LUT) con-

figuration in FPGAs to maximize the stochastic yield rate for a logic function.

Using FTBM, we propose a robust resynthesis algorithm (ROSE) which maxi-

mizes stochastic yield rate for an entire circuit. Finally, we show that existing

programmable logic block (PLB) templates for area-aware Boolean matching and

logic resynthesis are not effective for fault tolerance, and we propose a new robust

template with path re-convergence. Compared to the state-of-the-art academic

technology mapper Berkeley ABC, ROSE using the proposed robust PLB tem-

plate reduces the fault rate by 25% with 1% fewer LUTs, and increases mean time

between failures (MTBF) by 31%, while preserving the optimal logic depth.

3.1 Introduction

Most of today’s programmable logic device (PLD) synthesis flows target nominal

designs. In this view, the low-level and uncertain physics of devices and transistors

are abstracted into Boolean digital signals, 0 and 1, and a circuit is a determinis-

tic function which maps input bits into output bits (and states). Logic synthesis

13

optimizes the representation of these functions through Boolean reasoning. De-

viations from the nominal behavior, e.g., through process variations and defects,

are controlled at the testing level by discarding defective chips.

Unfortunately, as faults become more pronounced in emerging applications and

technologies, such as permanent faults arising from circuit processing at nanome-

ter scales or soft errors arising from high-energy particle hits, the deterministic

view becomes limited. For CMOS circuits vulnerable to soft errors, these faults

reduce the mean time between failures (MTBF). For future nano-circuits with

more defective devices, they reduce the yield rate. This implies that logic design

and synthesis flows must explicitly account for and tolerate faults.

Indeed, fault tolerance techniques have been studied extensively for FPGA [DH06].

Without considering dynamic re-configuration during runtime, the following tech-

niques have been developed to tolerate manufacturing faults: (a) Locating and

masking faults by circuit redundancy (e.g., column-based redundancy, proposed

in [DP94, HTA94]); (b) Chip-wise synthesis proposed in [Nae05, JA07, BKC07];

(c) Triple-modular redundancy (TMR) [LV62]; (d) Multiple configurations (e.g.,

EasyPath by Xilinx). The detailed discussion about the aforementioned tech-

niques is presented in Section 2.3.1. In summary, most existing techniques suffer

from either expensive testing overhead, excessive overhead on performance, power

and area, long design time, or a low fault coverage rate.

We take an alternate route toward fault tolerant designs. We propose stochastic

synthesis for fault tolerance, where the presence of random faults is reflected in the

logic synthesis algorithm. We model faults in LUT configurations and the faults

in intermediate wires as random variables, following the probabilistic nature of

faults, and the probability that a LUT configuration bit or an intermediate wire

is defective is given as an input to our synthesis algorithm. Under these fault

sources, the fault rate of a circuit is the percentage of primary input vectors under

which the circuit does not produce the desired logic output values. Stochastic

14

synthesis algorithms explicitly minimize fault rates, along with traditional metrics

such as circuit area or delay.

As a particular example of stochastic synthesis, we propose ROSE, a RO-

bust reSynthEsis algorithm, which minimizes the stochastic fault rate under ran-

dom faults in FPGAs while incurring negligible area and performance overhead.

ROSE exploits the flexibility in implementing a logic block by a programmable

logic block (PLB) template (e.g., in selecting configuration bits), and rewrites

logic blocks to minimize the stochastic fault rate. Unlike manufacturer-masking,

ROSE does not need to locate faults by testing. Unlike chip-wise synthesis,

ROSE uses the same design for different chips of an FPGA application for stochas-

tic fault tolerance. It can be directly applied to tolerate faults in less critical

tasks, such as internet routing switches and enterprise servers, to reduce MTBF.

In addition, ROSE is orthogonal to the existing redundancy based fault-tolerant

approaches [DP94,HTA94], and therefore it also can be used to further increase

the robustness while reducing the overhead of existing techniques such as TMR

and column based redundancy for FPGAs.

The core algorithmic idea in ROSE is that of fault-tolerant Boolean match-

ing (FTBM). FTBM generalizes the Boolean matching problem [LSB05b,LSB05a]

to the setting with stochastic faults. It takes as input a PLB H, a Boolean func-

tion F , and the fault rates for the inputs and the SRAM bits of the PLB, and

outputs either that F cannot be implemented by PLB H, or the configuration of

H which minimizes the probability that the faults are observable in the output

of the PLB under all input vectors. We describe an algorithm for FTBM by a

reduction to stochastic satisfiability (SSAT) [Pap85]. Since SSAT has a high com-

putational cost (and state-of-the-art SSAT solvers are less developed than SAT

solvers), we convert the SSAT problem into a sequence of deterministic Boolean

satisfiability problems. While we apply FTBM in resynthesis, it can also be ap-

plied in various synthesis stages, such as technology independent optimization,

15

technology mapping or post-mapping resynthesis.

ROSE applies FTBM on circuit logic blocks against a set of pre-defined tem-

plates, substituting the block with the minimum fault rate configuration of the

template found by FTBM (provided this does not increase local logic depth or

area). Orthogonally to FTBM, ROSE enhances robustness by a suitable choice

of PLB templates. We evaluate some PLB templates for fault tolerance. First,

we show that existing templates for area optimization are not effective for fault

tolerance. Second, using the observation that reconvergence is a prime reason for

don’t cares, and that don’t cares can occlude errors, we propose a new robust

template with path reconvergence. Our template can be obtained by either con-

figuring the existing full connection between LUTs within a cluster, or hardwiring

selected connections between LUTs to reduce area.

On QUIP [ALT] benchmarks, ROSE (using the robust template) reduces the

fault rate by 25% with 1% fewer LUTs, and increases MTBF (mean time between

failures) by 31%, while preserving the optimal logic depth, when compared to the

state-of-the-art FPGA technology mapping, Berkeley ABC mapper [Mis11].

The remainder of this chapter is organized as follows. Section 3.2 presents

the motivation of the chapter, followed by preliminary definitions in Section 3.3.

Sections 3.4 and 3.5 present the overall approach and FTBM, respectively. The

experimental results are given in Section 3.6 and the chapter is concluded with

future research directions in Section 3.7.

3.2 Motivation

In this section, we perform a preliminary experiment to demonstrate that different

synthesis options have significant impact on defect-tolerance in FPGA technology

mapping. We use an existing logic synthesis and technology mapping tool, Berke-

ley ABC [Mis11]. We conduct the following experiments on FPGAs with a set

16

of MCNC benchmark applications. Each application is first synthesized by ABC

using various combinations of different technology independent optimization al-

gorithms, such as logic re-factorization (ABC alias “rf”), re-substitution (ABC

alias “rs”), re-synthesis (ABC alias “rs”) and AIG re-writing (ABC alias “rw”).

We apply 18 different synthesis options in our experiments to obtain 18 different

synthesis solutions with equivalent functionality for each application. Each syn-

thesized solution is then mapped to 4-input LUTs by ABC’s technology mapper

with the command “fpga -K 4”.

We now randomly inject defects into each mapped solution, assuming a 1-bit

configuration SRAM in an LUT can be defective (i.e., flipped) with the probabil-

ity 0.01% independently of other bits. A chip is considered failed if equivalence

checking (using ABC’s “cec”) w.r.t. the defect oblivious solution fails. The yield

loss (the number of failed chips over total 10K chips) due the injected defects for

each mapped solution is then counted based on Monte Carlo simulation with 10K

times.

200

250

300

350

400

450

500

200 250 300 350 400 450 500 550 600

Area (LUT#)

F
a

ile
d

 c
h

ip
#

 p
p

1
0

K

Smallest & most robust:
"src_rws"

Smallest & most variable:
"resyn3"

Robust gap w/
similar area

Figure 3.1: Yield loss vs. area (the number of LUT) for the MCNC application

“t481” with 18 different logic synthesis options (1-bit defect rate: 0.01%)

Two MCNC applications, “t481” and “ttt2”, are chosen as the representatives

to investigate the impact of logic synthesis to the yield. The simulation results

17

30

35

40

45

50

55

60

65

70

75

80

45 50 55 60 65 70

Area (LUT#)

F
a
ile

d
 c

h
ip

#
 p

p
1
0
K

Most robust:
"resyn"

Most variable:
"shake"

Smallest:
"compress2rsdc"

Biggest:
"resyn3"

Pareto curve:
"resyn2rs &
compress2rs"

Figure 3.2: Yield loss vs. area (the number of LUT) for the MCNC application

“ttt2” with 18 different logic synthesis options (1-bit defect rate: 0.01%)

as shown in Figure 3.1 and 3.2, where both figures plot the area (LUT#) vs.

yield loss for all 18 different synthesis options for each application. The following

interesting observations are obtained from the plots.

1. Different synthesis options result in designs with significantly different area

and yield. In addition, one synthesis option will not consistently produce

minimal area or minimal yield loss for different applications, which makes

it impossible to directly optimize for robustness with the existing synthesis

algorithms. For example, synthesis option “src rws” results in minimal area

and yield loss for application “t481” while “compress2rsdc” generates the

smallest area and “resyn” produces the most robust design for application

“ttt2”.

18

2. The correlation between area and yield varies from one application to an-

other. Figure 3.1 shows a trend that the solution with smaller area is gener-

ally less vulnerable to defects. However, as shown in Figure 3.2, where the

smallest design (produced by synthesis option “compress2rsdc”) and the

biggest design (produced by synthesis option “resyn3”) have similar defect

rate while the most robust design (with option “resyn”) is over 20% larger

than the smallest design. More interestingly, a Pareto curve, including 4

area-yield trade-off points, is present in Figure 3.1.

3. Designs with similar area might have significantly different yield loss, as

shown in both figures, which motivates us to reconfigure the LUTs to max-

imize the logic masking for defects and thus to increase the robustness zero

or limited area overhead. In Figure 3.2, considering all seven solutions with

about 58 or 59 LUTs, the yield loss varies from 41 pp10K to 73 pp10K (a

78% difference).

The above observations demonstrate the potential to mitigate defects during

FPGA synthesis. In the rest of this chapter, we are concerned with finding an

optimal synthesis algorithm which minimizes yield loss without sacrificing area

optimality.

3.3 Preliminaries

3.3.1 Boolean Network

A PLB H consists of a network of interconnected logic devices with a set of input

pins and an output pin. A K-LUT is a LUT with K inputs, one output, and 2K

LUT configuration bits.

A LUT-based Boolean network is represented using a directed acyclic graph

(DAG) whose nodes correspond to LUTs and directed edges correspond to wires

19

connecting the LUTs. The nodes in the lowest level of the DAG are called circuit

inputs (CIs), which include the primary inputs (PIs) and the outputs of registers.

The nodes in the highest level are called circuit outputs (COs), which include

primary outputs (POs) and the inputs to registers.

A fanin (resp. fanout) cone of node n is a sub-network whose nodes can reach

the fanin edges of n (resp. can be reached from the fanout edges of n). Amaximum

fanout free cone (MFFC) of node n is a subset of the fanin cone such that every

path from a node in the subset to the CO passes through n. Informally, the

MFFC of a node contains all the logic used exclusively by the node. When a node

is removed or substituted, its MFFC can be removed.

A cut C of node n is a set of nodes of the network such that each path from a

CI to n passes through at least one node in C; node n is called the root of cut C.

A cut is K-feasible if the number of nodes in it does not exceed K. A logic block is

a sub-network which covers all nodes found on the path from the outputs (called

root nodes of the logic block) to the cut, including the roots and excluding the

cut. In this chapter, we consider multi-input, single-output (MISO) logic blocks,

but the proposed algorithm can be applied to multi-output, multi-output (MIMO)

logic blocks [HSM08], as well.

3.3.2 Boolean Matching

Given a PLB H and a Boolean function F , the Boolean matching problem (BM)

either maps function F to PLB H by describing an appropriate setting of the

LUT configuration bits, or concludes that PLB H cannot implement function F .

Boolean matching [CH01, BM97] is one of the most important sub-problems in

logic synthesis and technology mapping for FPGAs.

The Boolean matching problem can be formulated as a (quantified) Boolean

satisfiability problem in the following way [LSB05b,CM07,HSM07]. Consider a

20

PLB template H with inputs x′1, · · · , x
′
k, output G, intermediate wires z1, · · · , zm,

and LUT configuration c1, · · · , cn as shown in Figure 3.3. Let F be a Boolean

function of k inputs, given as a truth table.

LUT1

c0, SRAM

c1, SRAM

c15, SRAM

x'1 x'2 x'3 x'4

LUT2

c16, SRAM

c17, SRAM

c31, SRAM

x'5 x'6 x'7z1

G

x1 x2 x3 x4 x5 x6 x7 F

0 0 0 0 0 0 0 F0

1 0 0 0 0 0 0 F1

0 1 0 0 0 0 0

1 1 1 1 1 1 1 F127

F2

L
o

g
ic

 b
lo

c
k

B
o
o
le

a
n
 f

u
n
c
ti
o
n

Figure 3.3: Illustration of FPGA Boolean matching

We can write a set of Boolean constraints that define each internal and output

wire of H in terms of its inputs (see, e.g., [LSB05b,HSM07]). For example, the

internal wire z1 in Figure 3.3 can be defined as

(x′1 ∧ x′2 ∧ x′3 ∧ x′4 → (z1 ↔ c0)) ∧ · · · ∧

(x′1 ∧ x′2 ∧ x′3 ∧ x′4 → (z1 ↔ c15))

Let Ψ(H) be the conjunction of constraints defining each wire of H.

21

Similarly, the truth table for function F can be expressed as a set of constraints

between the input variables x1, · · · , xk and the output F :

Ψ(F) = (x1 ∧ x2 ∧ · · · ∧ xk → F0) ∧

(x1 ∧ x2 ∧ · · · ∧ xk → F1) ∧ · · · ∧

(x1 ∧ x2 ∧ · · · ∧ xk → F2k−1) (3.1)

where Fi = F if F (i) = 1, otherwise, Fi = F .

The Boolean matching problem for (H, F) can be then expressed as the quan-

tified Boolean formula problem that asks, does there exist some setting of the

LUT configuration c1, · · · , cn such that for all inputs x1, · · · , xk, the output G of

H is equivalent to F ? Formally, we ask:

∃c1 · · · cn∀x1 · · ·xk∃z1 · · · zm . Ψ(H) ∧Ψ(F) ∧ (G ↔ F) (3.2)

By replicating the formula for each possible valuation to the bits x1 · · ·xk, we

reduce the quantified formula to an (existential) satisfiability problem. Each sat-

isfying assignment gives an instantiation of the LUT configuration bits that imple-

ment the same function F . Most existing work for Boolean matching is based on

function decomposition [CH01] or on canonicity and Boolean signatures [BM97].

These approaches are limited by the input size of the functions they can handle

and the flexibility required by certain CAD tasks, such as FPGA architecture eval-

uation [LSB05a]. Recently, a SAT-based approach [LSB05b], with high flexibility

and the good trade-off between space and time complexity, has been proposed to

solve Boolean matching. This was improved by [SVB06, CM07] with up to 13x

speedup, and was further improved by [HSM07] with 100x speedup.

3.3.3 Fault Model and FTBM

In the presence of faults in the LUT configurations or intermediate wires be-

tween PLBs, we extend the Boolean matching algorithm in the following way. We

22

model faults in LUT configurations and the faults in intermediate wires as random

variables, and assume that the probability that a LUT configuration bit or an in-

termediate wire is defective is known. Under these fault sources, the fault rate of

a circuit is the percentage of primary input vectors under which the circuit does

not produce the desired logic output values. Based on the above fault modeling,

we formulate fault-tolerant Boolean matching (FTBM) as follows.

Definition 1. FTBM takes as input a PLB H, a Boolean function F , and the

fault rates for the input pins (representing intermediate wires between PLBs) and

the configuration bits of the PLB, and outputs either that F cannot be implemented

by PLB H, or the configuration of H which minimizes the probability, over all

input vectors, that the faults are observable in the output of the PLB.

Note that faults at PLB input pins result from faults of the upstream logic and

wires between PLBs. While we assume single fault in our experiments, our algo-

rithm for FTBM (described in Section 3.5) allows multiple faults to occur simul-

taneously.

3.3.4 Resynthesis for Fault Tolerance

Resynthesis [Mic91, MCB05,MSB91, BM07] is a technique that rewrites circuit

structures while maintaining the functionalities of transition and output functions

to reduce area. It can be performed simultaneously with technology mapping or as

a post-mapping optimization. The simultaneous approaches perform logic resyn-

thesis, such as Boolean decomposition of logic functions [LWG97,MWK03], during

the mapping process. Since they explore a large solution space, the simultaneous

approaches tend to be time-consuming, limiting their use to small designs. To

handle large designs, resynthesis is usually performed after technology mapping

for area recovery. Recently, [LSB05b, CM07, HSM08] proposed a combinational

resynthesis based on Boolean matching [BM97] for FPGA area reduction. The

23

resynthesis is performed by mapping logic blocks extracted from a circuit against

a library set of logic blocks (e.g., hard-wired LUTs) and replacing them with a

functionally equivalent logic block if area can be reduced.

While resynthesis guarantees a functionally equivalent circuit, the fault rate of

the resynthesized circuit can be significantly different from the original one. We

demonstrate this by examples in Figure 3.1 and Figure 3.2 in Section 3.2, which

show the fault rates vs. area (the number of LUTs) for 18 resynthesis solutions

obtained using different options to ABC [Mis11]. Notice that the same application

may be implemented using multiple distinct configuration settings with different

logic masking, resulting in significantly different fault tolerance but with similar

area. Hence, we propose a robust resynthesis algorithm to simultaneously reduce

circuit area and fault rate.

3.4 Robust Resynthesis

The fault rate of a circuit is impacted by both the synthesis algorithm and the

topological structure of the implementation. In this section, we first describe the

overall flow of our proposed robust resynthesis algorithm ROSE, and then present

a robust PLB template which enables better fault tolerance with ROSE.

3.4.1 Overall Algorithm of ROSE

Our procedure takes an application mapped to K-LUTs and scans the combina-

tional portion of the circuit in topological order from primary inputs to primary

outputs. In the course of scanning, new logic blocks are generated by combining

the logic blocks at the input LUTs. Each logic block is mapped against one or

more pre-defined PLB templates; if a mapping with the minimal fault rate is found

by FTBM, the logic block can be substituted by the PLB template. However, any

substitution that increases the local logic depth or area is discarded. This ensures

24

LB1
LB2

Intermediate

logics

Fault rate

of LB1

Input faults

of LB2

CIs

Faults in

config-bits

X

Faults in

config-bits

X

Figure 3.4: Propagation of faults in ROSE, where input faults of LB2 are resulted

from the output fault in LB1.

that the logic depth and area does not increase. In our implementation, only

MFFCs are considered as candidates for mapping.

As the resynthesis of a logic block will change the fault rate of its output

and therefore change the fault rates observable by the inputs of the downstream

network, ROSE processes all MFFCs in a topological order (from CIs to COs) to

guarantee that the input fault rates of a logic block have been correctly updated

before the block is resynthesized. To calculate the fault rate for a logic block, both

faults in LUT configurations and the inputs of the block need to be considered.

After resynthesis, we can obtain the fault rate of the block output and need to

update the fault rates for all downstream intermediate pins under the fanout cone

of the block output (see Figure 3.4).

3.4.2 Robustness of PLB Templates

Besides an effective robust resynthesis algorithm, it is also important to find an

effective PLB template for fault tolerance, because different templates may have

significantly different capability of carrying fault tolerance and therefore they can

pre-determine the potential of the effectiveness of FTBM.

We consider Boolean functions with up to 10 inputs. According to [LSB05b],

25

there are three possible PLB templates with no-more-than three 4-LUTs to im-

plement a Boolean function with up to 10 inputs (see Figure 3.5 (a),(b) and (c)).

The inherent disadvantage of these area efficient PLB templates is the lack of

opportunities to place don’t cares, which are the major source of logic masking

and fault mitigation. Inspired by a well-known observation that re-convergence is

a prime reason for don’t cares, we propose a new PLB template, R-PLB, as shown

in Figure 3.5 (d), which requires four 4-LUTs and forms re-convergent paths from

input to output.

4-LUT

4-LUT

4-LUT
4-LUT

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

z1

z3

z2

G

4-LUT

4-LUT

4-LUT

X1

X2

X3

X4

X5

X6

X7
X8

X9

X10
G

z1

z2

4-LUT

4-LUT

X1

X2

X3

X4

X5

X6

X7

z1

G

4-LUT

4-LUT

4-LUT

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10
G

z1

z2

(a) A-PLB0 (b) A-PLB1

(c) A-PLB2 (d) R-PLB

Figure 3.5: Area efficient PLB templates (a),(b) and (c), and the proposed robust

template (d)

26

The logic don’t cares include satisfiability don’t cares (SDCs) due to the fact

that some combinations are not produced as the inputs of the node, and observ-

ability don’t cares (ODCs) due to the fact that under some conditions the output

value of the node does not matter (i.e., is controlled by certain input combina-

tions) [MB05b]. Figure 3.6 shows examples of don’t cares in R-PLB. For simplicity,

we use 2-LUT to replace 4-LUT. In Figure 3.6(a), LUTs z2 and z3 implement 2-

AND and 2-OR, respectively. Gate z2 and z3 form a SDC for LUT G because

input vector z2 = 1 ∧ z3 = 0 will never happen due to the path reconvergence,

therefore the faults in configuration bit 10 in LUT G will not affect the output;

In Figure 3.6(b), LUTs z2 and z3 both implement 2-OR. x3 = 1 ∧ x4 = 1 is the

control signal of gate z2 and z3, which masks the output of LUT z1, i.e., makes

z1 an ODC for the output, and therefore any faults in configuration bits in LUT

z1 will not affect the output. In Section 3.6, we will experimentally show the

effectiveness of R-PLB for fault tolerance.

LUT2

LUT2

00 1

01 1

10 x

11 1

z1

z3

z2

X1

X2

X3

X4

LUT2

00 x

01 x

10 x

11 x

LUT2z1

z3

z2

X1

X2

1

1

G

(a) (b)

Figure 3.6: Examples of logic masking in R-PLB.

3.5 FTBM Algorithms

We now describe an algorithm for FTBM, which is the core of ROSE, and discuss

implementation issues. Recall the CNF-encoding procedure described in Section

3.3.2, after solving (3.2), a set of LUT configurations c1, · · · , cn will be returned by

the SAT solver if F can be implemented by H. There might exist multiple distinct

implementations (i.e., different configurations) for H all of which implement F .

27

In fact, we can obtain partial or even all feasible configurations by iteratively

adding the negation of previously obtained configurations into the CNFs and

solving an augmented SAT problem. For each of these feasible configurations,

C = (c
′

1, · · · , c
′

n), we evaluate the fault rate at the output of this logic block under

this configuration setting. The configuration, C∗, which results in the minimal

fault rate is chosen as the candidate for mapping or resynthesis.

3.5.1 Fault Rate Calculation

The main step of FTBM is an algorithm for fault rate calculation. We now

show how fault rate calculation can be reduced to stochastic satisfiability (SSAT)

[Pap85], a generalization of Boolean satisfiability where some variables may be

“randomly quantified” in addition to variables that are existentially or universally

quantified. For example, the formula

∃x1,ℜx2, ∀x3, . . . , ∃xn−1,ℜxn.(Eϕ(x1, . . . , xn) ≥ β)

asks whether there exists a value for x1 such that for random values of x2 (chosen

from a given distribution), for all values of x3, . . . there exists a value of xn−1 such

that for random values of xn the expected value Eϕ that the Boolean formula ϕ is

satisfied under the variable assignment is at least β. SSAT has been studied in the

AI community to reason about planning under uncertainty and belief networks

[Lit99], and detailed complexity bounds are known [LMP01]. It is known that

stochastic satisfiability can be solved using DPLL style algorithms [Lit99], and

many heuristics, such as non-chronological backtracking, can be applied in this

context as well [MB05a]. However, SSAT tools are not as mature as SAT solvers

in practice.

For a logic block, we assume two (independent) sources of faults: defective

input bits of the logic block (resulting from the faults of the upstream logic and

wires between PLBs) and defective LUT configurations inside the block. Assume

28

the fault rate of input bit x′i is Pi, i.e., that with probability Pi, the ith input in

the mapped circuit is the opposite of the ith input of the function F . For each i,

we introduce a Boolean variable pi, where pi = 1 with probability Pi and pi = 0

with probability 1− Pi and the constraint

pi ↔ (x′i 6= xi) (3.3)

to indicate that pi is 1 iff the input bit x′i is not equal to xi. Similarly, assume that

the fault rate of the LUT configuration ci is Di, i.e., with probability Di, the ith

LUT configuration bit in the logic block has a value opposite to the nominal LUT

configuration bit. We introduce a Boolean variable di that is 1 with probability

Di, and add the constraint

di ↔ (c′i 6= ci) (3.4)

to indicate that the ith LUT configuration bit c′i is different from the correct value

ci iff di is 1.

Then, given a threshold β, the Boolean matching problem under random faults

in the input bits and the LUT configuration of the logic block is reduced to the

stochastic satisfiability instance:

∃c1, · · · , ∃cn,ℜp1, · · · ,ℜpk,ℜd1, · · · ,ℜdn, ∃c
′
1, · · · ,∃c

′
n,

∀x1, · · · ,∀xk, ∃x
′
1, · · · , ∃x

′
k, ∃z1 · · · ∃zm,∃G,∃F

E{Ψ(H) ∧Ψ(F) ∧ (G ↔ F)∧
∧

i=1,··· ,n

di ↔ (c′i 6= ci) ∧
∧

i=1,··· ,k

pi ↔ (x′i 6= xi)} ≥ β (3.5)

where Ψ(H) and Ψ(F) are the constraints that define the internal and output

signals of H and the truth table F , respectively. The probabilities P (di = 1) = Di

are given as inputs to the problem, and P (pi = 1) = Pi are obtained from the

upstream logic block. If the above SSAT problem is satisfiable, then the choice

of the LUT configuration c1, . . . , cn ensures that the probability that the circuit

implements F even when the LUT configuration and inputs are flipped is at least

29

β. By a binary search on β, we can find the maximal probability that the defective

circuit implements the function F for this choice of the LUT configuration.

The above formulation (3.5) requires all min-terms of G and F are identical

under all input vectors x1, · · · , xk, which is too restrictive in practice. Therefore,

we relax the definition of fault rate as the percentage of min-terms produced by

G that are not equal to the corresponding min-term in function F . Formally,

suppose logic block H with output G and the LUT configuration set to c1, . . . , cn

implements a Boolean function F (x1, · · · , xk). The fault rate of logic block H

under the input and the LUT configuration faults is defined as

DF (H) =
1

2k

1,··· ,1
∑

x1,··· ,xk=0,··· ,0

DFmin-term(x1,··· ,xk)

where DFmin-term(x1,··· ,xk)
is the probability that G and F have different values

when the input is fixed at (x1, . . . , xk) and faults occur randomly according to Pi

and Di. This probability can be computed by maximizing β in the SSAT formula:

ℜp1, · · · ,ℜpk,ℜd1, · · · ,ℜdn,

∃c′1, · · · , c
′
n, ∃x

′
1, · · · , ∃x

′
k, ∃z1 · · · ∃zm, ∃G, ∃F

E{Ψ(H) ∧Ψ(F) ∧ (G(x1, · · · , xk) ↔ F (x1, · · · , xk))∧
∧

i=1,··· ,n

di ↔ (c′i 6= ci) ∧
∧

i=1,··· ,k

pi ↔ (x′i 6= xi)} ≥ β (3.6)

Note that the bits c1, . . . , cn and x1, . . . , xk are assumed to be fixed in the above

formula. Finally, we have

DFmin-term(x1,··· ,xk)
= 1− β̂,

where β̂ is the maximal probability of satisfying formula (3.6).

3.5.2 Reduction to Deterministic SAT

While there are tools to solve SSAT directly [Lit99], we found that their runtimes

are too long to be applied directly to our problem. For example, it takes over four

30

hours on a Xeon 1.9GHz workstation to solve a SSAT instance with 16 random

variables, 14 universal variables and 2K clauses using the implementation from

[Lit99]. Instead, we solve Equation (3.6) iteratively using a deterministic SAT

solver (miniSAT [ES] in our experiments), by enumerating satisfying assignments

and evaluating the expectations according to the probability distributions of the

randomly quantified variables.

We first express (3.6) as a deterministic SAT problem by changing the random

quantifiers before pi’s and di’s to existential quantifiers:

∃p1, · · · ,∃pk, ∃d1, · · · , ∃dn,

∃c′1, · · · ,∃c
′
n,∃x

′
1, · · · ,∃x

′
k,∃z1 · · · ∃zm, ∃G, ∃F

{Ψ(H) ∧Ψ(F) ∧ (G(x1, · · · , xk) ↔ F (x1, · · · , xk))∧
∧

i=1,··· ,n

di ↔ (c′i 6= ci) ∧
∧

i=1,··· ,k

pi ↔ (x′i 6= xi)} (3.7)

Then, we solve an ALL-SAT problem for (3.7), obtaining all satisfiable assign-

ments for pi’s and di’s:

(p11, · · · , p
1
k, d

1
1, · · · , d

1
n), · · · , (p

m
1 , · · · , p

m
k , d

m
1 , · · · , d

m
n)

The maximal probability of satisfying (3.6) can be calculated by using the follow-

ing formula:

β̂ =
1

2

m
∑

i=1

(

k
∏

j=1

Pr(pj = pij) ·
n
∏

j=1

Pr(dj = dij)

)

assuming the independence of each fault 1 and the probabilities Pi and Di. Note

that Pi denotes the probability that either (xi = 0∧x′i = 1) or (xi = 1∧x′i = 0). If

we distinguish between these two cases assuming that they are equally probable,

we have that (xi = 0 ∧ x′i = 1) with the probability (Pi)/2 and (xi = 1 ∧ x′i =

1Although independence between faults is assumed here for the reduction from SSAT to
deterministic SAT, such reduction can be done for multiple faults with given correlation. There-
fore, the SSAT-based formulation and algorithm can be extended to handle multiple faults.

31

0) also with the probability (Pi)/2. Therefore we have to distinguish how the

corresponding variables are assigned and to use Pi/2(Di/2) in our calculation.

An ALL-SAT problem (e.g., 3.7) can be solved by iteratively adding the nega-

tion of the previously satisfiable solutions into the CNFs, which is computationally

expensive, and we exploit the structure of the problem to speed up the fault rate

calculation. We note that the probabilities Pi and Di are usually very small. So

we rule out certain combinations of pi’s and di’s that have very low probability

of occurrence. For example, we can restrict the search to assignments in which

at most a small number of pi’s and di’s are one simultaneously. When the fault

rate of single bit is low, this is a nice approximation that may slightly reduce

the total fault rate but with significant speedup of the reasoning runtime. In our

experiments, we shall assume there is a single faulty bit.

3.6 Experimental Results

3.6.1 Evaluation Based on Boolean Functions

We have implemented ROSE in C++ in the OAGear package [XPC05]. We use

miniSAT2.0 [ES] as the SAT engine in FTBM. All experimental results are col-

lected on a Ubuntu workstation with 2.6GHZ Xeon CPU and 2GB memory. We

test our algorithms on QUIP benchmarks [ALT], where each benchmark is mapped

by Berkeley ABC mapper [Mis11] with 4-LUTs. We assume that one and only

one bit of the LUT configuration in the mapped FPGAs is defective. The fault

rate of the chip is the percentage of the input vectors that produce the defective

outputs, and it is calculated by Monte Carlo simulation with 20K iterations where

one bit fault is randomly injected in each iteration.

We evaluate the effectiveness of the three templates for fault tolerance. We first

extract 3000 9-input Boolean functions from QUIP benchmarks by enumerating 9-

32

feasible cuts. Without considering input faults, we perform FTBM to map these

9-input Boolean functions against A-PLB1, A-PLB2, and R-PLB, respectively.

The configurations with minimal or maximal fault rate can be obtained by using

two versions of FTBM algorithms, i.e., FTBM+ and FTBM−, where FTBM−

returns the configurations with the maximal fault rate while FTBM+ returns the

ones with the minimal fault rate. We compare R-PLB with A-PLB1 and A-PLB2

in terms of (a) the minimal fault rate that can be achieved by these templates,

and (b) the gap of the fault rates (i.e., the difference between the minimal and

maximal fault rates) under all feasible configurations. Due to the space limit,

we only show the comparison results between R-PLB and A-PLB2 in Figure 3.7.

In these plots, only those Boolean functions that can be implemented by both

templates are taken. As shown in the plots, the minimal fault rates achievable

by R-PLB are generally less than those achievable by A-PLB2. In addition, the

solution space, in terms of the gap of the fault rates that can be produced by

all feasible configurations of template R-PLB, is generally wider than that of

template A-PLB2, which indicates that there exists more flexibility to place don’t

cares in R-PLB. Similar observations are obtained by comparing R-PLB and A-

PLB1. With these observations, we consider R-PLB as a more effective template

for fault mitigation. Nevertheless, all other templates, A-PLB0, A-PLB1, and

A-PLB2, can be tested by FTBM during technology mapping or resynthesis to

trade-off area and fault rate.

3.6.2 Evaluation Based on Benchmark Circuits

Under the same setting in Section 3.6.1, we now evaluate the effectiveness of

ROSE for fault tolerance. All ABC-mapped QUIP benchmarks are resynthesized

by ROSE using area-efficient PLB templates (Figure 3.5 (a)-(c)) and the robust

PLB template (Figure 3.5 (d)). In resynthesis using area-efficient templates, each

of the three templates is examined and the configuration with the maximal fault

33

rate is returned. The logic depths are preserved in all resynthesis algorithms. The

results are summarized in Table 3.1 and Table 3.2.

We first show the gap between the minimal fault rate and the maximal fault

rate that can be achieved by ROSE. The FTBM+ and FTBM− mentioned in the

previous sub-section are used in ROSE to obtain the minimal and maximal fault

rates, respectively. As shown in column “gap” in Table 3.1, ROSE using FTBM+

consistently returns results with smaller fault rates compared to ROSE using

FTBM−, and the gap is up to 2.42%. Note that ROSE only maximizes the local

logic masking, i.e., the best logic masking introduced by ROSE may not always

be the most effective to the primary outputs. The above observation indicates our

approach in ROSE is a high quality heuristic in terms of global optimization. In

the following experiments, we always use FTBM+ in ROSE. In addition, ROSE/R

using the robust template consistently obtains a bigger gap than ROSE/A using

area-efficient templates. This demonstrates that the robust template does offer a

higher potential for fault rate reduction.

Moreover, Table 3.1 compares the fault rates resulted from ABC (sub-column

“ABC”), ROSE using area-efficient templates (sub-column “ROSE/A”) and ROSE us-

ing robust template (sub-column “ROSE/R”), respectively. Compared to the

mapping by ABC, our ROSE using the robust template reduces fault rate by 25%

(1.06% vs. 0.80%) on average. Compared to ROSE using area-efficient templates,

ROSE using the robust template reduces fault rate by 14% (0.80% vs. 0.93%) on

average.

As shown in column “area” of Table 3.2, our ROSE using area-efficient tem-

plates and the robust template reduces area by 10% and 1%, respectively, com-

pared to ABC mapping results. Since R-PLB has larger area compared to area-

efficient templates, ROSE/R results in 11% larger area than ROSE/A.

In addition, Table 3.2 compares the runtime of the deterministic SAT-based

resynthesis using area efficient templates [HSM08]. The proposed ROSE using two

34

different template sets. It shows that ROSE using area efficient templates and

ROSE using the robust template has 3X and 10X runtime overhead, respectively,

compared to the deterministic resynthesis. The ROSE using the robust template

is slower than the one using area efficient templates because the robust template

contains more LUTs and FTBM requires more runtime to solve the SAT problem.

3.6.3 Estimation of MTBF

We now estimate the mean time between failure (MTBF) obtained by differ-

ent resynthesis algorithms for industrial FPGAs. As suggested by [MER05], the

MTBF can be estimated by the following formula:

MTBF = 109/(24 · 365) FITtotal

FITtotal = 100 · Rvulnerability · Rintrinsic error (3.8)

Rintrinsic error = Area · RFIT

where Rvulnerability is the vulnerability factor, which is the fraction of faults that

become errors, and can be estimated by the mean of the fault rates in Table 3.1,

and Rintrinsic error is the intrinsic error rate, which is proportional to the area

(SRAM bits number) and the raw FIT rate2 for a single bit, RFIT. Typically,

RFIT is 0.001-0.01 FIT/bit and we use 0.01 FIT/bit in our estimation.

We use 330,000 4-LUTs as the typical industrial FPGA size to estimate the

MTBF obtained by our ROSE. As shown in Table 3.3, ROSE using the robust

template increases MTBF by 31% (27.15 years vs. 20.66 years) compared to

ABC. Note that the MTBFs in our experimental results match the typical server

system reliability goals as reported in [MER05], which validates our experimental

settings. Note that the purpose of this comparison is to provide a sanity check

for the effectiveness of our approach; clearly there exist many differences between

FPGAs and server systems, but we do expect “ball-park” parameter values for

2One FIT is one failure in a billion hours.

35

MTBF calculations to be similar.

3.7 Conclusions and Future Work

We are encouraged by the initial success of ROSE in minimizing the stochastic

fault rate while preserving optimal logic depth and minimally impacting area. On

QUIP benchmarks, ROSE reduced the fault rate by 25% with 1% fewer LUTs,

and increased MTBF by 31%, while preserving the optimal logic depth, when

compared to ABC [Mis11]. We believe that our study of robust FPGA resynthesis

provides a first step toward a general methodology for stochastic synthesis. In

particular, there are several open directions.

• Our experiments assume single fault, but the proposed algorithm can deal

with multiple uncorrelated faults, which will be first explored in future work.

In addition, we will extend the proposed algorithm to consider given corre-

lations between faults.

• To cope with the runtime overhead of the SAT-based Boolean matching, we

will study more efficient alternatives for Boolean matching, e.g., building

a hybrid algorithm combining SAT and Boolean decomposition [MBC08],

which enables us to perform the resynthesis on logic blocks with wider in-

puts and leading to optimization for robustness from a more global point of

view. In addition, potential advance of SSAT solvers will also provide more

optimization power of our resynthesis.

• As the essence of the proposed stochastic synthesis is to take advantage

of don’t cares in a logic network, we will explore the don’t cares explicitly

for robust resynthesis. For example, one can first calculate the complete

don’t cares [MB05b] for a logic block, and then explore all possible mapping

solutions considering these don’t cares and select the one which maximizes

36

logic masking to prevent the fault propagation. More generally, one can take

advantages of the existing flexibilities in the network, e.g., Boolean relations

[BS89], Sets of Pairs of Functions to be Distinguished (SPFDs) [YSN96], and

sequential flexibilities [CKM08]. These may lead to more efficient algorithms

and in turn more globally optimized solutions.

• By introducing additional logic masking, defect-aware logic synthesis al-

gorithms such as ROSE can make verification and silicon debugging tasks

difficult. In the future, it is necessary to address the tradeoff between logic

masking and testability or verifiability. One possible solution is to provide

proofs of correctness of transformations [KLG08].

• In the longer term, we shall investigate how other logic synthesis and op-

timization algorithms can be made fault-tolerant by exploiting redundancy

or flexibility in the solution space. Finally, we shall investigate how fault

tolerance at the logic synthesis level interacts with algorithm-level fault tol-

erance [Neu56].

• Our algorithm applies to standard cell-based circuits as well. There is some

existing work on fault-tolerant logic synthesis for standard cell designs. For

example, [NS04] developed a critical-area driven technology mapping, and

[KPM07] applied logic redundancy and structural restructure to mask soft

errors based on a fast simulation. Our work extends these ideas to an explicit

formulation of stochastic synthesis.

37

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

50

100

150

200

250

300

350

400

Fault rate (%)

F
re

qu
en

cy
 o

f B
oo

le
an

 fu
nc

tio
ns

A−PLB2
R−PLB

(a) Achievable minimal fault rate

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

50

100

150

200

250

300

350

400

450

Fault rate gap (%)

F
re

qu
en

cy
 o

f B
oo

le
an

 fu
nc

tio
ns

A−PLB2
R−PLB

(b) Gap between minimal and maximal fault rates

Figure 3.7: Comparison between template R-PLB and template A-PLB2

38

benchmarks gap fault rate

ROSE/R ROSE/A ABC ROSE/A ROSE/R

barrel64 2.42% 0.64% 2.09% 1.82% 1.63%

fip cordic cla 0.62% 0.35% 1.25% 1.07% 0.93%

fip cordic rca 0.54% 0.31% 1.17% 1.03% 0.84%

mux8 128bit 0.30% 0.10% 0.97% 0.94% 0.67%

nut 000 0.51% 0.38% 0.97% 0.83% 0.63%

nut 002 0.44% 0.25% 0.71% 0.60% 0.48%

nut 004 0.32% 0.23% 0.69% 0.58% 0.50%

oc ata ocidec1 0.52% 0.14% 0.72% 0.65% 0.52%

oc ata ocidec2 0.66% 0.18% 0.88% 0.79% 0.64%

oc ata v 0.38% 0.19% 0.55% 0.47% 0.40%

oc cordic p2r 2.06% 0.64% 3.35% 3.09% 3.09%

oc correlator 0.13% 0.20% 0.67% 0.64% 0.59%

oc dct slow 0.37% 0.20% 0.55% 0.46% 0.36%

oc des area opt 0.83% 0.47% 1.26% 1.08% 0.93%

oc des des3area 1.25% 0.52% 2.04% 1.89% 1.44%

oc i2c 0.37% 0.22% 0.62% 0.52% 0.46%

oc rtc 0.60% 0.30% 0.95% 0.79% 0.71%

oc sdram 0.65% 0.28% 0.76% 0.64% 0.60%

os sdram16 0.78% 0.35% 0.97% 0.83% 0.74%

geomean 0.58% 0.30% 1.06% 0.93% 0.80%

normalized mean 1 0.87 0.75

Table 3.1: Comparison of fault tolerance between ABC and ROSE using robust

and area-efficient PLB templates

39

benchmarks area (LUT#) runtime (min)

ABC ROSE/A ROSE/R [HSM08] ROSE/A ROSE/R

barrel64 1862 1414 1734 1.55 9.22 16.77

fip cordic cla 1044 823 1027 0.7 0.78 7.10

fip cordic rca 983 789 970 0.58 0.55 5.88

mux8 128bit 898 770 898 0.23 0.25 149.03

nut 000 927 912 926 2.23 182.03 6.38

nut 002 652 645 652 3.03 4.2 4.80

nut 004 618 550 615 0.35 1.1 8.27

oc ata ocidec1 693 660 692 1.5 1.6 4.48

oc ata ocidec2 838 769 837 1.55 1.72 4.77

oc ata v 512 452 494 0.15 0.2 3.10

oc cordic p2r 3175 3131 3175 0.98 19.72 9.12

oc correlator 611 585 610 0.13 0.22 9.35

oc dct slow 513 479 512 2.87 36.7 6.50

oc des area opt 1192 1127 1191 6.63 31.15 6.52

oc des des3area 1784 1580 1783 3.77 29.32 5.35

oc i2c 597 548 590 3.25 2.45 28.67

oc rtc 887 708 881 0.43 0.65 22.13

oc sdram 731 648 728 0.32 1.5 4.08

os sdram16 947 821 923 0.45 2.4 69.75

geomean 980 877 970 0.93 3.07 9.42

normalized mean 1 0.9 0.99 1 3.29 10.08

Table 3.2: Comparisons of area and runtime between ABC and ROSE using robust

and area-efficient PLB templates

40

MTBF (year)

benchmark area ABC ROSE using R-PLB

330,000 LUTs 20.66 27.15

ratio 1 1.31

Table 3.3: MTBF (mean time between failures)

41

CHAPTER 4

IPR: In-Place Reconfiguration for FPGA

Reliability

To ensure not breaking the current CAD flow during the reliability optimization,

we present a logic synthesis algorithm which performs a satisfiability (SAT) based

in-place reconfiguration (IPR) in look-up tables (LUTs) on FPGAs. IPR maxi-

mizes identical configuration bits for complementary inputs of a LUT to prevent

the error propagation. It preserves the functionality and topology of the netlist,

and therefore, requires no change of physical design. Compared to the state-of-

the-art academic technology mapper Berkeley ABC, IPR reduces the relative fault

rate by 48% and increases mean time to failure (MTTF) by 1.94× with the same

area and performance. Applying both ROSE and IPR reduces the relative fault

rate by 49% and increases MTTF by 2.40× with 19% less area.

4.1 Introduction

Compared to application specific integrated circuits (ASICs), field programmable

gate arrays (FPGAs) are more vulnerable to soft errors, considering that most of

logic functions and interconnects are implemented by SRAM cells. FPGAs used

in applications, such as networking, power grid, medical equipment, automotive

system, are all suffering from the reliability issues. Soft error mitigation should

be considered during the design flow in FPGA applications. In this chapter, we

focus on logic synthesis level to enhance the reliability of FPGA based designs.

42

Recently, a robust logic resynthesis technique called ROSE has been pro-

posed [HFH08] as an effective design optimization for fault tolerance. The tech-

nique rewrites a LUT-based Boolean network and inserts logic masking to prevent

the propagation of stochastic faults. It obtains 2× MTTF improvement with no

area and performance overhead compared to the state-of-the-art academic logic

synthesis tool Berkeley ABC [Mis11]. ROSE is orthogonal to the existing fault

tolerance techniques such as [LV62,LH07,CLH08,PCM07,KPM07], with advan-

tages of negligible overhead on area, performance, and testing. However, ROSE

can change the topology of the LUT-based logic network, which limits its appli-

cability in the design flow as shown below.

In the design flow of FPGA based systems (see Figure 4.1), logic resynthesis

(e.g., ROSE) is performed after logic synthesis and before physical design. There

is a drawback for most existing techniques [LV62,LH07,CLH08,PCM07,KPM07,

HFH08] for FPGA reliability in the aforementioned flow. They rely on the re-

sults of placement and routing to gather the fault information, but they change

interconnects, i.e., change the physical design. Due to the change of the physical

design during the optimization, the fault information is changed and needs to be

updated, which requires a redo of placement and routing and physical aware logic

optimization, resulting in the reliability convergence issue.

Therefore, there is a need of in-place logic optimization for the reliability. In

this chapter, we propose an in-place logic resynthesis algorithm, which performs

logic transformation while preserving the functionality and the topology of the

LUT-based logic network. Therefore, it does not require a redoing of the physical

design and leads to a faster design closure. Our core algorithm in-place reconfigu-

ration (IPR) maximizes identical configuration bits corresponding to complemen-

tary inputs of a LUT such that the faults seen at a pair of complementary inputs

have less possibility of propagation and the overall reliability is optimized. IPR

is iteratively carried out by simultaneously reconfiguring multiple adjacent LUTs

43

High-level circuit

description

Compiler

Logic synthesis

Physical design

(Placement and routing)

Fault

info
Timing

info

IPR

Physical-aware logic

resyntehsis (ROSE)

Bitstream

Figure 4.1: A simplified synthesis flow for FPGAs

without changing the functionality and topology of the LUT-based logic network.

IPR can apply to both combinational and sequential circuits.

Compared to the state-of-the-art academic technology mapper Berkeley ABC,

IPR reduces the relative fault rate by 48% and increases MTTF by 1.94×. IPR

is orthogonal to ROSE since we can first perform ROSE to increase the robust-

ness before the physical design, and then employ IPR as a post physical design

optimization for further reliability enhancement. Combining ROSE and IPR re-

duces the relative fault rate by 49% and increases MTTF by 2.40X compared with

Berkeley ABC mapper.

44

The remainder of this chapter is organized as follows: Section 4.2 presents

background and preliminaries. Section 4.3 and Section 4.4 provide the in-place

LUT reconfiguration algorithm and the proposed logic resynthesis algorithm, re-

spectively. The experimental results are given in Section 4.5 and the chapter is

concluded with future research directions in Section 4.6.

4.2 Preliminaries

4.2.1 In-place Resynthesis

In-place resynthesis is a technique that optimizes a circuit while preserving the

functionality and topology of the logic network. The major advantage of this

technique is that it has no impact on the design closure because the optimization

is performed in place. In-place resynthesis algorithms are particularly feasible for

various FPGA optimizations due to the design freedom provided by LUT config-

urations. For example, a LUT truth table reset technique is used for dynamic

power reduction considering the floating pins of LUTs [GA07], and a polarity

selection was proposed for leakage power reduction based on the dependency of

leakage power on logic values of signals [AN06]. The aforementioned work recon-

figures individual LUTs. In contrast, the in-place LUT reconfiguration approach

proposed in this chapter reconfigures multiple LUTs simultaneously.

4.2.2 Circuit Representation

A K-LUT is a LUT with K inputs, one output, and 2K LUT configuration bits. A

LUT-based Boolean network is represented using a directed acyclic graph (DAG),

in which nodes denote LUTs and directed edges represent the interconnects among

the LUTs. The nodes in the lowest level of the DAG are called circuit inputs (CIs),

which include the primary inputs (PIs) and the outputs of registers. The nodes in

45

the highest level are called circuit outputs (COs), which include primary outputs

(POs) and the inputs to registers.

A fanin (resp. fanout) cone of node n is a sub-network whose nodes can reach

the fanin edges of n (resp. can be reached from the fanout edges of n). Amaximum

fanin (resp. fanout) cone of node n is the largest fanin (resp. fanout) cone of n.

It contains all the nodes in the path from CI (resp. CO) to node n. A fanin cut

(resp. fanout cut) C of node n is a set of nodes in the network such that each

path from a CI (resp. CO) to n passes through at least one node in C, and node

n is called the root of cut C.

4.2.3 Fault Model

We assume a stochastic single fault model, i.e., at a time, at most one fault

occurs. The faults have identical random distribution for configuration bits in

LUTs. The fault rate of a circuit is the percentage of primary input vectors that

cause observable primary output errors. Although we assume single fault in our

experiments, our algorithm (described in Section 4.3 and 4.4) can handle multiple

faults.

4.2.4 ODC Mask and Node Criticality

In this chapter, we utilize don’t cares for the fault tolerance. There are two kinds of

don’t cares. The satisfiability don’t cares (SDCs) are due to some combinations not

being produced as input vectors of nodes. The observability don’t cares (ODCs)

occur, when output values of nodes do not propagate to the COs under some

conditions [MB05b].

We adopt the definition of ODC mask [KPM09] to quantify the capability of

fault tolerance of the node under tested during the optimization. The ODC mask

of node n is defined by Definition 2. Given the definition, we define the criticality

46

of node n as the percentage of ones in its ODC mask, which is used to decide the

ordering of nodes for in-place reconfiguration.

Definition 2. ODC Mask Let 〈X1, . . . , XK〉 be a sequence of K input vectors for

node n. The ODC mask of n, written ODCmask(n), is a K-bit sequence where

ith bit is 0 if the input vector Xi is in the don’t care set of n; otherwise, the ith bit is

1. Formally, ODCmask(n) ∈ 0, 1K such that ODCmask(n)i ≡ Xi /∈ ODC(n),

where ODC(n) is the don’t care set of n.

The ODC mask is computed as follows. First, the truth table of node n is

bitwise negated. Then, a simulation is performed in the fanout cone to check

whether the changes can propagate to primary outputs. Plaza et al. proposed a

heuristic algorithm [PCM07] with O(N) complexity to calculate the ODC mask

for all the nodes. In reverse topological order, for each node, a local ODC mask

is simulated for its immediate fanout. The local ODC mask is computed by

negating the truth table of n and checking whether the output of the fanout has

been changed. Then, the local ODC mask is bitwise-ANDed with the global ODC

mask to produce the branch ODC mask for that fanout. After that, all the branch

ODC masks for fanouts are bitwise-ORed to produce the global ODC mask for

node n.

4.3 IPR Algorithm

According to criticalities of nodes, we apply in-place reconfiguration for nodes

sequentially to increase the robustness of the circuit. The key idea of IPR is to

maximize identical configuration bits in a selected logic block, while preserving

the functionality and the topology of the block by reconfiguring multiple LUTs

simultaneously. In each reconfiguration, in-place Boolean matching is used to

ensure the functional equivalence. In this way, transient or permanent faults seen

at a pair of complementary inputs have less possibility of propagation, and the

47

overall reliability of the circuit is optimized. This procedure can be applied to

a sequential logic network by applying independently to each combination logic

block.

In the rest of the chapter, without specific declaration, we denote the node

under optimization as nopt. For nopt, an input vector is corresponding to a logic

output specified by a configuration bit, e.g., input vector 01 generates logic output

0 if the configuration bit c01 is 0. The input vector and the configuration bit

have a one-to-one relationship. Furthermore, the configuration pair (c00, c10) is

corresponding to a pair of complementary inputs 00 and 10 with regards to input

pin 1.

4.3.1 Motivation

In this section, we show an example to illustrate how to enhance the robustness of

the circuit by maximizing identical configuration bits for complementary inputs

of a LUT. In figure 4.2, there are two 2-LUTs. Suppose input 1 has a high defect

rate. Given the same input sequences, there are two different output sequences

for the two 2-LUTs. When 0→1 faults occur in input 1, the fault rate of LUT

A is greater than that of LUT B. The reason is that in LUT B, the value of

configuration bits c00 and c10 are same that introduces logic masking for input 1

when the value of input 0 is 0. Intuitively, the more identical pairs of configuration

bits for complementary inputs are in the LUT, the more faults are prevented

from propagation. However, reconfiguring can change the function of a LUT.

Reconfigure multiple LUTs simultaneously in a selected logic block can be used

to ensure the functionality of the block unchanged.

48

1011 1110 0110 1011

0110 0100 1001 1101

1011 1110 0110 1011

0110 0100 1001 1101

00 C00=1

01 C01=1

10 C10=0

11 C11=0

LUT A

00 C00=1

01 C01=0

10 C10=1

11 C11=0

LUT B

nopt

nopt

Fault rate=25%

Fault rate=0%

Original sequence of the output of nopt is

0011 1010 0100 1000, but a fault happens to nopt

making some 0s in the sequence flip to 1s.

Figure 4.2: Motivation of the in-place reconfiguration algorithm

4.3.2 Algorithm Overview

The overview of the IPR algorithm is illustrated in Algorithm 1. Given a node

nopt, we denote all the fanout cuts of the node as SC. We represent all the pairs

of configuration bits for complementary inputs in each fanout cut as SP . First,

we calculate the criticalities of all the configuration bits for node nopt. After that,

each fanout cut ci is processed sequentially according to the size of the cut. In

each iteration, SP is initialized as all the pairs of configuration bits for comple-

mentary inputs in current fanout cut. Then, we iteratively search a feasible cone

containing ci by function constructCone (ci). We check whether there is a LUT

49

Algorithm 1 IPR(nopt)
1: Calculate the criticalities of all the configuration bits for node nopt;

2: V alid← false;

3: // For each fanout cut ci ∈ SC according to the size of the cut;

4: repeat

5: SP ← All the pairs of configuration bits of the cut ci;

6: while SP 6= Φ do

7: Cone(ci)← constructCone (ci);

8: V alid← booleanMatching (SP , Cone(ci));

9: if V alid then

10: inPlaceReconfiguration (SP , Cone(ci));

11: break;

12: else

13: SP = SP - pi;

14: end if

15: end while

16: until | SC | == 1 || V alid == true

configuration for all LUTs in the cone that ensures all the pairs in SP have iden-

tical values without changing the function and topology of the cone by function

booleanMatching (SP , Cone(ci)). If there is a solution, the configuration is

applied by inPlaceReconfiguration (SP , Cone(ci)). Otherwise, the pair of con-

figuration bits with the least criticality is removed from SP , and a new round is

invoked with the updated SP . Finally, we terminate the IPR algorithm when the

size of SC is 1 or we find a feasible solution by the in-place Boolean matching.

In the following sections, we discuss items including (i) the calculation of

the criticality for the configuration bit; (ii) the cone construction strategy used in

constructCone (ci); and (iii) in-place Boolean matching for LUT reconfiguration

preserving the function and topology of the selected cone.

4.3.3 Criticality for Configuration Bit

Given the complementary inputs of a LUT, we cannot set all the pairs of configu-

ration bits identical. Choosing which pairs of configuration bits to be identical is

the key for the in-place optimization. Therefore, we have to define the criticality

50

of configuration bit. High priority should be given to the configuration bit which

can mask more faults during in-place reconfiguration. In Equation 4.1, Nsequence

denotes the length of the sequence of input vectors used for the full-chip functional

simulation. Nvector is the number of input vectors associated with the configura-

tion bit c in the sequence. Rtolerate is the percentage of input vectors, which masks

faults when the input of the LUT is defected. Rtolerate is derived from ODC mask.

1-Rtolerate represents the percentage of input vectors making the faults observable

at primary outputs. The criticality of configuration bit c can be formulated as

follows,

Criticality bit(c) =
Nvector

Nsequence

(1− Rtolerate) (4.1)

4.3.4 Cone Construction

In the IPR algorithm, when a node nopt is selected, a cone surrounding this node

needs to be chosen for reconfiguration. We choose the cones with following two

criteria. Given a node nopt, the cone needs to cover nodes in the fanout as many

as possible; besides, the input size of the cone is limited. The first criteria tries to

ensure that we could find a feasible solution during Boolean matching, given the

flexibility provided by the node coverage; the second criteria guarantees compu-

tation cost for Boolean matching not be too high.

4.3.5 In-place Boolean Matching

The difference between in-place Boolean matching(IP-BM) and other template-

based Boolean matching is that, we use the original cone in the netlist instead

of the pre-designed template to rewrite the netlist. We employ IP-BM to check

whether we can reconfigure LUTs within the cone and make selected pairs of

configuration bits (specified by set SP in Algorithm 1) identical without changing

51

the function and the topology of the cone. If such a configuration exists, IP-BM

should return a set of configurations for all LUTs within the cone. Otherwise, a

configuration of the cone with new specified pairs of configuration bits is used to

invoke a new round of IP-BM.

IP-BM is formulated as follows. Suppose the cone CF has m inputs, i.e.,

x1, · · · , xm and one output, F . The truth table of output F is denoted by

(F0, F1, · · · , F2m−1), Fi ∈ {0, 1}, which is computed by simulation. To encode

IP-BM as an SAT problem, we first encode this truth table into a conjunctive

normal form (CNF) as follows.

Ψ(F) = (x1 ∧ x2 ∧ · · · ∧ xm → F0) ∧

(x1 ∧ x2 ∧ · · · ∧ xm → F1) ∧ · · · ∧

(x1 ∧ x2 ∧ · · · ∧ xm → F2m−1), (4.2)

where Fi = F if F (i) = 1, and Fi = F , otherwise.

To encode the cone, we formulate inputs and outputs of cone CF as variables

in the CNF. For example, a K-input LUT (with inputs xL
0 , · · · , x

L
K , output z and

configuration bits c0, · · · , c2K−1) can be encoded as

Ψ(L) = (xL
0 ∧ xL

1 ∧ · · · ∧ xL
K → (z ↔ c0)) ∧ · · · ∧

(xL
0 ∧ xL

1 · · · ∧ xL
K → (z ↔ c2K−1))

Suppose cone CF contains p LUTs: L0, · · · , Lp−1. The characteristic function

of this cone is obtained by taking the conjunction of constraints defining these

LUTs as follows.

Ψ(CF) = Ψ(L0) ∧ · · · ∧Ψ(Lp−1). (4.3)

To make the values of a pair of configuration bits (ci, cj) identical, we have the

following constraint clause:

ci ↔ cj (4.4)

52

Combining (4.2), (4.3) and (4.4), we form the following CNF formulation for

IP-BM:

∃c1 · · · cn∀x1 · · ·xm∃z1 · · · zp . Ψ(CF) ∧Ψ(F)∧

(G ↔ F)
∧

∀(ci,cj)∈SP
(ci ↔ cj)

(4.5)

where G is the output of the cone. Note that (4.5) is a quantified Boolean formula

(QBF) and it can be solved by any QBF solvers or SAT solvers after eliminating

the universal quantifiers [LSB05b,CM07,HSM07]. If (4.5) is satisfiable, there is a

feasible configuration of the cone such that all pairs of configuration bits defined

in set SP can be set identical, and the configuration of LUTs can be obtained

based on the assignments in c1, · · · , cn. The topology of the cone is not changed

after reconfiguration considering that it is constrained by characteristic function

(4.3). If (4.5) is unsatisfiable, we need to reduce the size of set SP and solve the

IP-BM with less constraints as shown in Algorithm 1.

4.4 Robust Logic Resynthesis

4.4.1 Overall Algorithm

We integrate the IPR algorithm into the logic resynthesis flow. First, the circuit

analysis is performed. We simulate the entire circuit to gather the truth table

for each node in the topological order and calculate the ODC mask [PCM07] in

the reverse topological order. The criticality of each node is calculated based on

the ODC mask. According to the descendant order of criticalities of nodes, we

iteratively select a node nopt to be optimized by the IPR algorithm until time is

out. After we reconfigure fanouts of nopt, we update the truth table and ODC

mask of the reconfigured cone locally. The node criticality is re-calculated before

moving to the next node. Figure 4.3 outlines the flow of robust logic resynthesis.

53

Incremental Cone-wise Update

Initial Full-chip

Function Simulation

Initial Full-chip

ODC Mask Calculation

Node Criticality

Analysis

Cone Construction

Incremental Cone-wise

Truth Table Update

Incremental Cone-wise

ODC Mask Update

In-place Boolean Matching

and LUT reconfiguration

IPR

Circuit Analysis

Figure 4.3: The flow of robust logic resynthesis

4.4.2 Localize Update

We denote the optimized cone as CR. The maximum fanin cone and maximum

fanout cone of CR are denoted as CMFI and CMFO, respectively. After performing

the IPR algorithm, there are two kinds of node information to be updated. One

is the truth table, and the other is the ODC mask.

For the truth table, because we preserve the function of the circuit outside

cone CR during Boolean matching, only the truth tables of LUTs in cone CR are

changed and need to be updated.

54

The ODCmask of CR has been changed by IPR. Because CR is in the maximum

fanout of CMFI and the ODC mask calculation is based on the maximum fanout

cone of a node, the ODC mask of CMFI is also changed. CMFO is unaffected during

the optimization, therefore, its ODC mask is not changed. It is time-consuming

to update the ODC mask for CMFI . Fortunately, our experiments show that the

reliability improvement of the circuit is not affected, even if we do not update the

ODC mask of CMFI . In our algorithm, we only update the ODC mask of CR.

4.5 Experimental Results

We have implemented the IPR algorithm in C++ and used miniSAT2.0 [ES] as

the SAT solver. All experimental results are collected on a Ubuntu workstation

with 2.6GHz Xeon CPU and 2GB memory. We test our algorithms on QUIP

benchmarks [ALT]. As discussed in Section 4.2.3, we assume that all configuration

bits have an equal possibility to be defective. We calculate the fault rate by Monte

Carlo simulation with 20K iterations where one bit fault is randomly injected in

each iteration for 1k input vectors.

As shown in Figure 4.4, we first map each benchmark by the Berkeley ABC

mapper [Mis11] using 4-LUTs, then we perform and compare the following syn-

thesis flows: (1) ABC followed by the physical design tool, VPR [BR97], without

any defect-oriented logic resynthesis, (2) ABC followed by VPR, and in-place

optimization by IPR, and (3) ABC followed by ROSE and VPR, and in-place

optimization by IPR. Considering faults in configuration bits of both LUTs and

interconnects, Monte Carlo simulation is performed to calculate the full-chip fault

rate, with results summarized in Table 4.1.

We use ABC as the baseline for comparison. As shown in Table 4.1, IPR

reduces the fault rate by 48% without area overhead. The best flow in terms of

the robustness and area is ROSE+IPR, which reduces fault rate by 49% with 19%

55

circuit

ABC

ROSE

VPR VPR

IPR

Fault Simulation

VPR

IPR

Figure 4.4: Experimental flows

smaller area. However, for some circuits, ROSE+IPR flow may result in higher

fault rate than IPR flow (e.g., barrel64 and fip cordic cla). That is because ROSE

is performed before IPR, which changes the topology of the LUT-based netlist

and changes the input netlist for IPR. Table 4.1 also reports MTTF. Because we

assume that all the testing conditions are the same for ABC and IPR, MTTF is

inversely proportional to the product of fault rate and area. Compared to ABC,

IPR and ROSE+IPR increases MTTF by 1.94× and 2.40×, respectively.

56

QUIP Benchmark

Fault Rate LUT# Runtime (seconds)

ABC IPR ROSE+IPR ABC IPR ROSE+IPR IPR

barrel64 2.02% 0.93% 0.94% 1931 1931 1484 19.46

fip cordic cla 1.92% 0.78% 0.79% 1042 1042 802 6.11

fip cordic rca 1.91% 0.83% 0.77% 981 981 751 5.71

mux8 128bit 5.37% 2.84% 2.74% 1923 1923 1796 1.52

oc ata ocidec1 2.98% 1.83% 1.80% 695 695 632 4.52

oc ata ocidec2 3.20% 1.69% 1.73% 840 840 742 4.89

oc ata v 2.15% 1.13% 1.11% 514 514 411 1.43

oc dct slow 1.55% 0.90% 0.85% 509 509 439 4.91

oc des area opt 1.59% 0.98% 0.99% 1190 1190 1007 20.51

oc des des3area 1.68% 1.16% 1.23% 1782 1782 1479 39.64

oc rtc 1.59% 0.72% 0.77% 879 879 591 3.90

oc sdram 1.97% 0.89% 0.86% 729 729 553 1.89

os sdram16 1.65% 0.79% 0.80% 947 947 719 5.28

GeoMean 2.12% 1.09% 1.09% 977.72 977.72 791.10 5.58

Ratio 1 0.52 0.51 1 1 0.81

MTTF 1 1.94 2.40

Table 4.1: Comparison of fault tolerance among ABC, IPR, and IPR + ROSE

flow

57

4.6 Conclusions and Future Work

IPR increases MTTF by 2× over ABC, the state-of-the-art academic technology

mapper. More importantly, unlike its predecessors, IPR preserves the topology of

the logic network for a faster design closure between logic synthesis and physical

design. In addition, IPR is complementary to existing fault-tolerant resynthesis

algorithms. Combining IPR and ROSE, the best design flow for reliability and

design closure is to perform pre-layout ROSE and post-layout IPR.

Although our experiments assume single fault, the proposed algorithm can

deal with multiple uncorrelated faults, which will be explored in future work. We

will also extend the proposed algorithm to consider given correlations between

faults.

While our criticality calculation in this chapter does not consider interconnect

explicitly, IPR algorithm can be used without change if interconnects are taken

into consideration for criticality. In addition, the current algorithm tolerates in-

terconnect defects implicitly by modeling them as defects on outputs of a LUT. In

the future, we will extend IPR with criticality considering interconnects explicitly.

58

CHAPTER 5

IPF: In-Place X-Filling Algorithms for the

Reliability of Modern FPGAs

Targeting the modern FPGA architecture including both LUTs and interconnects,

we propose three synthesis based in-place X-Filling algorithms by utilizing don’t

cares to augment the reliability of FPGA based designs. Compared with cir-

cuit and architecture based solutions, our algorithms are in place, and do not

require area, power, performance, and design time overheads. Compared with

other synthesis based algorithms, we take into account the widely accepted in-

terconnect architecture besides considering LUTs during optimization. For the

ten largest combinational MCNC benchmark circuits mapped to 6-LUTs, our

approaches achieve up to a 37% greater failure rate reduction, and up to 150×

runtime speedup, compared with the best known in-place algorithm, the In-Place

Decomposition (IPD) algorithm.

5.1 Introduction

Field Programmable Gate Arrays (FPGAs) have been increasingly used in many

applications due to fast time-to-market, no Nonrecurring Engineering Expense

(NRE), and easy long-term maintenance. They have been widely used in differ-

ent applications, such as networking, digital signal processing, prototyping and

hardware emulation. Nevertheless, Single Event Upsets (SEUs), also called soft

errors, have posed a major barrier for the reliability of SRAM-based FPGAs.

59

SEUs are generally caused by high-energy particle strikes, e.g., neutrons coming

from cosmic rays or alpha particles emitting from trace impurities in packaging

materials and solder bumps [Bid10]. Other reasons cause SEUs include the power

supply disturbance and the electromagnetic interference. They change values of

devices, such as SRAM cells and flip-flops, when charges collected from strikes are

larger than a threshold. Because most logic functions and interconnects in SRAM-

based FPGAs are implemented by SRAM cells, they are more vulnerable to SEUs

compared with Application Specific Integrated Circuits (ASICs). SEUs have a

permanent impact on FPGAs till configuration scrubbings are applied [SMC01].

In the past, the SEU issue has received attention only from high reliability ap-

plications in military and aerospace areas. As modern FPGAs have advanced to

28nm technology to provide low cost and low power solutions [Meh12,ALT12], the

devices are prone to SEUs for most applications due to reduction in core voltage,

decrease in transistor geometry, and increase in switching speed. Therefore, SEU

mitigation for SRAM-based FPGAs has gained growing significance.

The chapter focuses on SEU mitigation for SRAM-based FPGAs. There are a

number of studies in the literature on the subject. The solutions can broadly be

divided into circuit, architecture, and synthesis based techniques. The first two

categories require extensive area, power, performance, design time, or cost over-

head [XIL12b,LV62, SRK04,Tam06,MSZ05]. Several studies have demonstrated

that the SEU issue can be mitigated by synthesis based approaches while minimiz-

ing the aforementioned overheads. However, they either mitigate errors introduced

by SEUs on Look-Up Tables (LUTs) only [HFH08,FHH09,LFH10,CM10], without

considering the SEU impact on interconnects, or there is a flaw in the interconnect

SEU model, e.g., the model in Jose’s paper [JHM10] assumed that there is only

one configuration bit in each net. They rely on creating don’t cares to tolerate

errors introduced by SEUs. However, the large amount of pre-existing don’t cares

makes them difficult to further increase don’t cares. As shown in Table 5.1, for

60

the ten largest combinational MCNC benchmark circuits [Yan91], we observe that

don’t cares comprise approximately 40% and 60% of utilized LUT configuration

bits, when the designs are mapped to 4-LUTs and 6-LUTs 1, respectively.

This motivates us to exploit pre-existing don’t cares in LUTs to augment the

reliability of designs. We present three In-Place X-Filling (IPF) algorithms 2,

which fill don’t cares to mask errors introduced by SEUs on both LUTs and inter-

connects. Compared with other synthesis based algorithms, we take into account

the widely accepted interconnect architecture used in VPR [BR97,LKJ11] during

optimization. In addition, our algorithms overcome the slow runtime issue prevail-

ing in most previous synthesis based techniques. That is because our algorithms

do not search for functionally equivalent implementations, therefore, they do not

need time-consuming algorithms like Binary Decision Diagrams, Boolean Satis-

fiability [HFH08, FHH09], Integer Linear Programming [LFH10], or Set of Pairs

of Functions to be Distinguished [JHM10]. Compared with circuit and architec-

ture based solutions, our algorithms do not require area, power, performance,

and design time overheads, because they do not change LUT level placement and

routing, i.e., they are in-place algorithms.

For the ten largest combinational MCNC benchmark circuits mapped to 6-

LUTs, our approaches achieve up to a 37% greater failure rate reduction, and

up to 150× runtime speedup, compared with the best known synthesis based in-

place algorithm, the In-Place Decomposition (IPD) algorithm. In this chapter,

the sensitivity of a circuit to SEUs is measured by the failure rate. The failure

rate is the frequency with which a circuit fails due to SEUs occur on its LUT

configuration bits or interconnect configuration bits. The computation of the

failure rate is presented in 5.2.2.

1After designs are mapped by the Berkeley mapper [Mis11], their don’t cares are computed
by the windowing technique proposed by Cong et al. [CM10].

2The term has been used for power-aware Automatic Test Pattern Genera-
tion (ATPG) [LHM09], in which power is minimized by filling don’t cares to reduce
logic switches of designs.

61

Table 5.1: The ratio of don’t cares to utilized LUT configuration bits. *SDC refers

to satisfiability don’t care.

MCNC circuits
4-LUT 6-LUT

Configuration bits# Don’t cares# SDC* bits# Configuration bits# Don’t cares# SDC bits#

alu4 11520 3662 3151 33408 17180 15356

apex2 15440 7785 3570 45760 29063 19303

apex4 12640 4685 4622 37440 20920 20319

des 19984 6003 5597 54528 33185 31686

ex1010 17648 5800 5746 43584 23445 23105

ex5p 8656 4646 4331 23808 16193 13471

misex3 11776 3892 3552 31552 15923 14751

pdc 35360 18564 17412 105280 63760 58580

seq 15968 5342 4187 46208 20885 17934

spla 34000 17726 16625 98688 61325 56294

Average 18299 7811 6879 52026 30188 27080

Ratio
1 42.68% 37.59% 1 58.03% 52.05%

1 88.08% 1 89.70%

The rest of this chapter is organized as follows. We start with preliminaries

introducing design representation, and don’t cares in Section 5.2. The IPF prob-

lem is formulated in Section 5.3, and the proposed algorithms are presented in

Section 5.4. The experimental results are summarized in Section 5.5 followed by

a conclusion in Section 5.6.

5.2 Preliminaries

Before introducing our algorithms, we first present the FPGA architecture that

our algorithms target. We also show the representation of a FPGA design used

in following sections. In addition, we introduce the fundamentals of don’t cares.

5.2.1 Design Representation

Before discussing about the background, basic notations about design represen-

tation are provided as follows. An FPGA design is usually represented by a

62

directed acyclic graph. In the graph, nodes represent LUTs, and edges represent

interconnects between LUTs. If Node a drives Node b, Node a is called Node b’s

fan − in, and Node b is called Node a’s fan − out. The node without fan-in

is called primary input, and the node without fan-out is called primary output.

The fan − in (fan − out) cone of Node a is the nodes reachable through fan-in

(fan-out) edges from Node a.

5.2.2 Failure Rate and Don’t Care

In this chapter, the sensitivity of a configuration bit to an SEU is measured by the

failure rate of the configuration bit Ci, i.e., the frequency with which a circuit fails

due to the SEU on the configuration bit, expressed in Equation 5.1. The sensitivity

of a chip to SEUs can be measured by the failure rate of the whole chip, which is the

average of failure rates of all the configuration bits (See Equation 5.2). V denotes

all the combinations of primary input vectors. C denotes all the configuration

bits. POgolden is the primary output vector without the impact of SEUs. POSEU

is the primary output vector when an SEU occurs on the configuration bit Ci.

Fr(Ci) =

∑

∀v∈V (POgolden(v) ∧ POSEU(v)(Ci))

|V |
(5.1)

Fr =

∑

∀Ci∈C
Fr(Ci)

|C|
(5.2)

If a configuration bit is insensitive to an SEU, i.e., flipping the bit doesn’t

change the functionality of the logic network, the bit is a don’t care bit. There

are two kinds of don’t care bits, i.e., satisfiability don’t care (SDC) bits and

observability don’t care bits. As a result of reconvergent paths and fan-out cone

masking, there is limited accessibility and observability to some nodes, specifically,

some configuration bits insides those nodes. The SDC bit is the inaccessible

configuration bit inside the nodes which don’t have a full set of permutations

63

at their fan-ins [MZS06]. The ODC bit is the configuration bit which is not

observable at the primary output given a set of primary input vector [MZS06]. In

Figure 5.1, C11
3 in LUT D is an SDC bit that is not accessible. C00 in LUT A

is an ODC bit when a = 0 and d = 0. In this work, we only focus on exploiting

SDC bits for SEU mitigation for two reasons: (1) SDC bits comprise about 90%

of total don’t cares for the designs under test, as shown in Table 5.1; (2) SDC bits

are compatible don’t cares, because flipping an SDC bit does not invalidate other

don’t cares.

5.3 Problem Formulation

In this section, we illustrate utilizing pre-existing don’t cares to mitigate errors

introduced by SEUs, and formulate the In-Place X-Filling (IPF) problem. In

Figure 5.1, given a logic function f , there are two implementations with same in-

terconnects between LUTs. Configuration bit C11 in LUT D is an SDC bit that is

inaccessible in a normal situation. Therefore, the functionalities of two implemen-

tations are the same regardless of whether C11 is assigned 0 or 1. Nevertheless,

when C11 is filled with 0 in Figure 5.1 (a), the failure rate is greater than when

it is assigned 1 in Figure 5.1 (b). Both failure rates in Figure5.1 (a)(b) are calcu-

lated by Equation 5.1 and5.2. The reason is that, SDC bit C11 in LUT D may be

accessed when an SEU is in the fan-in cone of LUT D; therefore, when C11 is filled

with a feasible value, even if an SEU occurs, C11 can be used to mask errors in

LUT D. The example shows that, we can exploit pre-existing don’t cares instead

of creating don’t cares to augment the reliability of designs while preserving the

functionality and the topology of designs.

The basic idea hidden behind the example is that, in a normal circuit, SDC

bits in LUTs are inaccessible. When SEUs occur in fan-in cones, SDC bits might

3In the chapter, the configuration bit corresponding to the input ABCD is denoted as CABCD.

64

be chosen. In this situation, LUTs can still output correct values, if SDC bits are

feasibly assigned. More concretely, we formulate the in-place X-Filling problem

in Definition 3.

Definition 3. The IPF problem: Given a design, fill SDC bits in all LUTs to

increase the likelihood of masking errors introduced by SEUs in their fan-in cones

thereby to augment the reliability of the design.

5.4 In-place X-Filling Algorithms

In this section, three IPF algorithms are proposed. The three algorithms are in

two categories. Two of them are LUT analysis based algorithms, and the other is

a LUT and interconnect analyses based algorithm.

5.4.1 IPF Algorithm Framework

Figure 5.2 shows the IPF algorithm framework. Given a mapped netlist (see

Figure 5.2(a)), the IPF algorithms fill SDC bits to reduce error propagations in

the netlist. The framework has two stages. First, we perform a logic simulation to

collect all SDC bits in the netlist (see Figure 5.2(b) and (c)). Second, different IPF

algorithms are applied for SDC bits according to different reliability requirements

(see in Figure 5.2(d)).

In the first stage, a window based logic simulation is performed to collect SDC

bits. The basic idea is to perform an exhaustive logic simulation on a selected

window instead of the full circuit, to collect the SDC bits which are not accessible

during the logic simulation. Compared to a full-circuit simulation, the collected

SDC bits are underestimated. In this chapter, we adopt Cong and Minkovich’s

work [CM10] to collect SDC bits. The features of their work are as follows, (a)

when choosing the window, the priority is given to the windows covering the

65

most nodes given a bounded input number; (b) overlapping windows are used to

minimize the controllability set, i.e., making the SDC bit collection a tight lower

bound compared to a full-circuit simulation.

In the second stage, different techniques are adopted according to different

objectives as follows.

• LUT analysis based: Based on the criticalities (defined in Section 5.4.2.2) of

LUT configuration bits, two IPF algorithms are proposed. They are efficient

and effective on the failure rate reduction due to SEUs on LUTs, but not as

good at SEUs on interconnects.

• LUT and interconnect analyses based: The algorithm is based on SDC bit

preferences (defined in Section 5.4.3.2) for masking errors introduced by

SEUs on LUTs and interconnects. Although it has runtime overhead due

to interconnect analysis compared with the two LUT analysis based algo-

rithms, it outperforms them in terms of the failure rate reduction when

considering SEUs on both LUTs and interconnects. That is because they

work on masking errors in the LUT under test, but this algorithm works on

tolerating errors on all the possible configuration bits in the fan-in cones.

5.4.2 LUT Analysis Based IPF Algorithms

5.4.2.1 Algorithm Overview

Given the SDC bit collection, the two LUT analysis based IPF algorithms analyze

the criticalities of LUT configuration bits, and leverage SDC bits to mask errors

introduced by SEUs on LUTs. Algorithm 2 shows the pseudo code for the pro-

posed algorithms. For each LUT, every configuration bit is injected an SEU at a

time (see Algorithm 2 Line 3). Different from the window based logic simulation

for the SDC collection, a full circuit logic simulation is carried out for the critical-

66

Algorithm 2 LUT analysis based IPF Algorithms

Require: A mapped netlist with the SDC bit collection;

Ensure: An enhanced netlist;

1: for Each LUT in an anti-topological order do

2: for Each configuration bit of the LUT do

3: (1) Inject one SEU;

4: (2) Propagate signal sequence in the fan-in and fan-out cone of the LUT;

5: (3) Calculate the criticalities of LUT configuration bits;

6: end for

7: if Based on critical configuration bits then

8: Perform the algorithm in Section 5.4.2.3;

9: end if

10: if Based on critical outputs then

11: Perform the algorithm in Section 5.4.2.4;

12: end if

13: end for

67

ity analysis of the LUT configuration bits (see Algorithm 2 Line 4 and 5). Based

on the criticalities, one of in-place techniques is employed to reconfigure the SDC

bits for each LUT (see Algorithm 2 Line 6-9).

The LUT enhancement is performed in an anti-topological order to ensure

that LUTs can be enhanced independently, proved by Theorem 1. The indepen-

dent optimization enables the two LUT analysis based IPF algorithms to work

in an incremental manner. Furthermore, the full circuit analysis guarantees the

accuracy of the criticalities of LUT configuration bits. Therefore, the critical-

ity update during optimization is performed in an incremental and accurate way.

In the following section, we introduce the definition and the calculation of the

criticalities.

Lemma 1. In a normal situation, SDC bits do not affect the functionality of a

design due to the inaccessibility. However, in a faulty circuit, SDC bits can be hit

and outputted, changing the functionality of the design.

Theorem 1. In the two LUT analysis based IPF algorithms, LUTs can be en-

hanced independently if the enhancement is performed in an anti-topological order.

Proof. Suppose the LUT that has an SEU is LUT A. The fan-in cone of LUT A

can be considered as a normal circuit, while the fan-out cone can be considered

as a faulty circuit due to introducing the SEU in LUT A. Based on Lemma 1,

flipping SDC bits in the fan-in cone does not affect the functionality and the crit-

icality calculation. However, changing SDC bits in the fan-out cone may affect

them. In other words, if the LUT enhancement is performed in a topological

order, the criticalities of bits in preceding LUTs may be changed. The two LUT

analysis based IPF algorithms rely on the criticalities of configuration bits. There-

fore, only the anti-topological order can guarantee that LUTs can be optimized

independently.

68

5.4.2.2 Evaluation of the Impact of SEUs

In the literature, there are two kinds of methods for the evaluation of the impact

for SEUs. One is seeking for the analytical solution, and the other is based on

logic simulation. The analytical based method [AT05] cannot be practically used

for large designs due to the lack of support for signal convergence of both faulty

and non-faulty paths. In this chapter, we adopt the prevailing logic simulation

based evaluation used in the previous work [MZS06,KPM07,CM10,JLF11].

A logic simulation computes the value of the outputs of internal nodes and

the primary outputs of a logic network, given a set of input vectors. One run of

simulation propagates one set of vector through the network. Its complexity is in

linear in the network size. Targeting the impact of an SEU on a particular con-

figuration bit, we flip the value of the configuration bit, and perform simulations,

to see what the percentage of input vectors is resulting in the changes in primary

outputs of the logic network. In other words, based on the aforementioned simu-

lation, utilizing Equations 5.1 and 5.2, we derive the approximate failure rate for

each configuration bit, used as the criticality of the configuration bit. According

to Luckenbill’s experiments [LLH10], 1K randomly generated input vectors yield

a close estimation to the full input vectors with a mean error of 1%, and 128K

input vectors reduces the error to 0.3%. We perform the same 100K simulations

for each configuration bit to evaluate the impact of SEUs in this chapter. Con-

sidering that our algorithms achieve up to 37% failure rate reduction, the error is

sufficient for the evaluation of the impact of SEUs.

To ensure the efficiency of the simulation, in our implementation, we employ

the following techniques,

• Performing simulations in a bit-parallel manner, i.e., simulating 32 or 64

runs at the same time.

• Performing simulations in a incremental style, i.e., except for the first 100K

69

simulations, we only need to re-simulate and propagate the errors in the

fan-in and fan-out cone of the current node, and stop the simulation once

there is no change of outputs of nodes during the propagation.

• Using And-Invert Graph [Mis11] representation for the logic network. Simu-

lating an AIG node involves bitwise operations on the simulation information

of the fan-ins.

5.4.2.3 Critical Configuration Bit Based

For each SDC bit, only a limited number of configuration bits can be augmented

by the SDC bit. They are the n LUT configuration bits with 1 hamming distance

from the SDC bit, where n is the number of inputs of the LUT. In Figure 5.3(a),

suppose C010 is an SDC bit, it can be used to augment C000, C011, and C110.

In this algorithm, an SDC bit is filled with the same value as that of the bit

with the highest criticality in the LUT under test. As a result, whenever an SEU

is in the fan-in cone, resulting in the SDC bit being accessed instead of that bit,

the output is still correct. In Figure 5.3 (a), C011 has the highest criticality 5%.

As a result, SDC bit C010 is filled with 1.

5.4.2.4 Critical Output Based

The algorithm focuses on which output results in more errors if not corrected. In

other words, an SDC bit is assigned 1 or 0 according to the sum of the criticalities

of all the candidate bits in the On set and Off set in the LUT. In Figure 5.3 (b),

although the criticality of C011 is the highest, C010 is assigned 0, because the sum

of the criticalities of candidate bits in the Off set is 6%, higher than that of the

On set. Note that the more critical output is not necessarily the more frequent

output. The former is based on the criticality calculation in a faulty circuit logic

simulation, and the latter is based on a logic simulation for a normal circuit. The

70

algorithm is focused on the more critical outputs.

5.4.3 LUT and Interconnect Analyses based IPF Algorithm

5.4.3.1 Algorithm Overview

Given the SDC bit collection, the LUT and interconnect analyses based IPF algo-

rithm assumes that SEUs can be on LUTs and interconnects. In Figure 5.4, given

a mapped netlist with the SDC bit collection, the SDC bit preference analysis

is performed on LUTs and interconnects separately. After combining preferences

from LUTs and interconnects analysis, SDC bits are filled, and an enhanced netlist

is dumped.

The key difference between the LUT and interconnect analyses based algorithm

and the “critical output based” IPF algorithm in Section 5.4.2.4 is that, the latter

calculates the criticality of a configuration bit regardless of whether an SDC bit

is hit or not, while the former only counts when an SDC bit is actually hit and

outputted to mask errors, i.e., the SDC bit is in effect. In the following sections,

SDC bit preferences for masking errors are introduced.

5.4.3.2 SDC Bit Preferences for Masking Errors Introduced by SEUs

on LUTs

In order to mask errors by assigning the value to SDC bits, we want to know,

in a faulty circuit simulation, how many times the propagated errors could be

masked if the SDC bits are pre-set as 0 (or 1), i.e., the SDC bit preferences to

be pre-set as 0 (or 1). The more preferable value is assigned to the SDC bit for

SEU mitigation. Here is an example illustrating the calculation of the SDC bit

preference for 0 shown Figure 5.5. Supposing that the output sequence of a LUT is

0101 without the impact of SEUs, denoted as G, and the output sequence under

SEUs is 0110, denoted as F . Then, the difference of the two output sequence

71

is 0011, denoted as D. For a specific SDC bit on the LUT, supposing that the

SDC bit is hit at only the input vectors corresponding to the last two values in

the output sequence, i.e., 0011, denoted as H . For the third column in shade

in Figure 5.5, there is a difference between G and F , and G outputs 0. At the

same time, an SDC bit is hit according to H. The error can be tolerated if the

SDC bit is pre-set to 0. Therefore, the SDC bit preference for 0 increases by 1.

In summary, calculations for SDC bit preferences to mask errors introduced by

SEUs on LUTs are as follows,

1− preference = count 1{H&D&G}

= count 1{H&(G ∧ F)&G}

= count 1{H&F̄&G} (5.3)

0− preference = count 1{H&D&Ḡ}

= count 1{H&(G ∧ F)&Ḡ}

= count 1{H&F&Ḡ} (5.4)

In Equation (5.3) and (5.4), count 1 counts the number of 1s in a vector. Equa-

tion (5.3) computes the chance that the output is 1 in a normal circuit, when an

SDC bit is hit in a faulty circuit, and there is a difference between the output

of the LUT with and without introducing an SEU. The same logic applies for

Equation (5.4). Similar calculations of the SDC bit preferences can be extended

to interconnect.

72

5.4.3.3 SDC Bit Preferences for Masking Errors Introduced by SEUs

on Interconnects

In this chapter, we consider the island-style FPGA architecture discussed in Sec-

tion 2.1. In this architecture, interconnects consist of local wires, connection

boxes, and switch boxes. The signal routes are directed by configuration bits

in the three components. Configuration bits in interconnects can be flipped by

SEUs, causing SDC bits in LUTs hit and outputted. We apply a logic simulation

similar to that in Section 5.4.3.2 to configuration bits in local wires, connection

boxes, and switch boxes respectively, i.e., we flip a configuration bit in one of

the three components once a time, and perform SDC bit preference calculations.

Combining the three categories, the total bit preferences are available for masking

errors introduced by SEUs on interconnects. Merging SDC bits preferences for

masking errors introduced by SEUs on LUTs and interconnects, we fill SDC bits

and produce the netlist with the enhanced reliability.

5.4.4 Complexity Analysis

The runtime for IPF algorithms can be broken down into three portions: the

runtime for SDC bits collection, the runtime for evaluation of the impact of SEUs

on configuration bits, and the time spent on reconfiguration. The reconfiguration

is performed in constant time after gathering the criticalities of configuration

bits. Besides, we adopt window based logic simulation for SDC bits collection

and full-chip simulation for the evaluation of SEU impact. Therefore, the runtime

is dominated by the time for evaluation shown in Equation 5.8. NW is the number

of simulations in 64-bit machine words. n and m are the number of nodes and the

average number of configuration bits insides one node, respectively. T1 denotes the

simulation time spent on one node. Tini denotes the simulation time for calculating

the golden result without the impact of SEUs. Tinc denotes the simulation time

73

for incrementally evaluating the impact of SEUs on configuration bits. L denotes

the number of nodes to be re-simulated in each simulation during the incremental

process. In summary, the computation complexity of IPF algorithms is O(nm).

NW =
100K

64
(5.5)

Tini = NW · n · T1 (5.6)

Tinc = NW · n ·m · T1 (5.7)

Ttotal = Tini + Tinc

= NW · n · T1(1 +m · L)

=
100K

64
· n · T1(1 +m · L)(L ≪ n) (5.8)

5.5 Experimental Results

Table 5.2: The failure rate comparison of X-Filling algorithms for SEUs on LUTs

for the 6-LUT mapping

Circuits LUT#

Failure rate reduction for SEUs on LUTs

Random One Zero

IPF

LUT based
LUT and interconnect based

Critical conf bit Critical output

alu4 507 0.00% 8.57% 0.00% 22.86% 20.00% 14.29%

apex2 687 -7.69% -3.85% -7.69% 15.38% 15.38% 11.54%

apex4 594 -3.57% 0.89% -8.04% 16.07% 15.18% 13.39%

des 556 -4.31% -3.45% -6.03% 9.48% 7.76% 6.90%

ex1010 668 -6.40% -0.80% -9.60% 9.60% 8.80% 8.00%

ex5p 384 -44.74% -32.89% -53.95% 7.89% 9.21% 2.63%

misex3 490 5.56% 7.41% -3.70% 25.93% 27.78% 22.22%

pdc 1515 -24.44% -24.44% -31.11% 11.11% 10.00% 5.56%

seq 705 3.17% 7.94% 0.00% 20.63% 20.63% 19.05%

spla 1436 2.50% 5.00% 1.67% 15.83% 15.83% 14.17%

Average 754 -7.99% -3.56% -11.85% 15.48% 15.06% 11.77%

The proposed IPF algorithms are implemented in C++, and tested on PC

74

Table 5.3: The failure rate comparison of X-Filling algorithms for SEUs on LUTs

for the 4-LUT mapping

Circuits LUT#

Failure rate reduction for SEUs on LUTs

Random One Zero

IPF

LUT based
LUT and interconnect based

Critical conf bit Critical output

alu4 720 0.77% 0.00% 2.31% 10.77% 10.00% 8.46%

apex2 965 -0.99% -0.99% -0.99% 5.94% 3.96% 1.98%

apex4 791 -2.69% -1.24% -2.07% 6.40% 7.02% 8.06%

des 1249 -6.98% -6.53% -5.18% 4.50% 4.73% 3.60%

ex1010 1103 -4.72% -4.33% -4.33% 2.36% 2.56% 2.17%

ex5p 541 -39.68% -37.78% -41.59% 6.35% 5.08% 4.44%

misex3 736 1.54% 0.51% 0.00% 11.28% 12.31% 9.74%

pdc 2210 -18.33% -16.17% -19.95% 9.43% 10.51% 8.36%

seq 998 0.45% 1.36% 0.45% 8.64% 9.09% 4.55%

spla 2126 3.61% 1.20% 2.41% 10.24% 10.04% 9.44%

Average 1144 -6.70% -6.40% -6.89% 7.59% 7.53% 4.11%

with dual core CPU E4400 @ 2.00GHz and 2.0 GB of RAM. For the ten largest

combinational MCNC benchmark circuits [Yan91], we use designs mapped by the

Berkeley ABC mapper [Mis11] as the baseline. All designs enhanced by our IPF

algorithms have passed the functional equivalent checking by the Berkeley ABC

mapper.

• First, assuming SEUs on LUT configuration bits only, we compare our al-

gorithms with other X-Filling algorithms, which are focused on filling SDC

bits to mitigate errors introduced by SEUs, to reveal the effectiveness of our

algorithms.

• Second, to test our interconnect analysis engine, we compare our LUT anal-

ysis based IPF algorithms with our LUT and interconnect analyses based

algorithm for SEUs on interconnects.

• Finally, the circuit level improvement and the runtime comparisons between

our algorithms and another synthesis based algorithm are provided.

75

5.5.1 Evaluation of X-Filling Algorithms for SEUs on LUTs

Table 5.2 and 5.3 show the evaluation for six X-Filling algorithms. They all focus

on filling SDC bits to mitigate errors. Compared with the baseline from the

Berkeley ABC mapper, we show the effectiveness our algorithms on failure rate

reductions for SEUs on LUTs.

Besides our algorithms, the three other X-Filling algorithms are described as

follows. The “Random”, “One”, and “Zero” algorithms fill SDC bits with 0 or

1 randomly, with all 1, and with all 0, respectively. For our algorithms, the

column “Critical conf bit” represents the algorithm that employs SDC bits to

mask errors on the most critical configuration bit in Section 5.4.2.3. The column

“Critical output” represents the algorithm that utilizes SDC bits to mask more

critical outputs in Section 5.4.2.4. Both of the two algorithms are based on the

LUT analysis. The last algorithm is the LUT and interconnect analyses based

algorithm discussed in Section 5.4.3.

For each configuration bit, 100K input vectors are injected into the circuit.

Table 5.2 shows that all other X-Filling algorithms, “Random”, “One” and “Zero”

generate designs with worse failure rates. Compared to the baseline from the

Berkeley ABC mapper, they increase failure rates by 7.99%, 3.56%, and 11.85%

for the 6-LUT mapping on average. For some circuits, they increase the failure

rate by greater than 50%, e.g., Circuit “ex5p”. For the 4-LUT mapping, they

increase failure rates by 6.70%, 6.40%, and 6.89% in Table 5.3.

Our IPF algorithms reduce failure rates for both the 6-LUT mapping and

the 4-LUT mapping. For the 6-LUT mapping, our LUT analysis based algo-

rithms “Critical conf bit” and “Critical output” reduce failure rates by 15.48%

and 15.06%. The LUT and interconnect analyses based algorithm reduces the

failure rate lower than those of the two algorithms, because it takes into account

SEUs on interconnects. For the 4-LUT mapping, Table 5.3 shows the same trend

76

except that the failure rate reductions are lower than those for the 6-LUT map-

ping. The reason is that, designs mapped to 4-LUTs have less SDC bits according

to Table 5.1. That means we have less flexibility and potentially less room to

augment the reliability of designs.

Considering SEUs on LUTs, Table 5.2 and 5.3 show the failure rate comparison

of the X-Filling algorithms. We conclude that our IPF algorithms produce better

results than other X-Filling algorithms. The two LUT analysis based algorithms

outperform the LUT and interconnect analyses based algorithm. Whether designs

are mapped to 6-LUTs or 4-LUTs also affects the failure rate reductions.

5.5.2 Evaluation of the IPF Algorithms for SEUs on Interconnects

Table 5.4: The failure rate comparison of the IPF algorithms for SEUs on inter-

connects for the 6-LUT mapping

Circuits LUT#

Failure rate reduction for SEUs on interconnects

LUT based
LUT and interconnect based

Critical conf bit Critical output

Local SBOX CBOX Local SBOX CBOX Local SBOX CBOX

alu4 507 8.58% 8.79% 9.11% 8.31% 4.34% 47.21% 46.67% 29.83% 29.51%

apex2 687 9.99% 5.92% 10.17% 8.82% -3.55% 13.20% 34.22% 40.08% 38.43%

apex4 594 11.17% 9.34% 21.73% 11.88% 12.16% 18.34% 51.39% 63.50% 62.20%

des 556 6.27% -6.35% 2.34% 3.49% -6.82% 3.16% 20.02% 12.18% 9.09%

ex1010 668 5.67% 29.15% 20.11% -6.76% 16.07% 5.26% 45.11% 67.78% 62.10%

ex5p 384 8.59% -1.36% 39.33% 11.77% 0.62% 42.38% 23.89% 25.10% 30.81%

misex3 490 11.32% 24.30% 20.96% 16.65% 27.43% 16.23% 63.71% 61.09% 58.16%

pdc 1515 17.92% 23.01% 22.63% 20.54% 31.72% 27.73% 53.17% 65.67% 64.79%

seq 705 10.98% 25.67% 19.53% 6.31% 22.34% 14.06% 49.40% 60.47% 51.60%

spla 1436 13.09% 25.42% 50.43% 14.44% 23.34% 46.94% 53.49% 67.32% 76.41%

Average 754 10.36% 14.39% 21.63% 9.54% 12.76% 23.45% 44.11% 49.30% 48.31%

To test our interconnect analysis engine, we compare the two LUT analysis

based IPF algorithms with the LUT and interconnect analyses based algorithm

for SEUs on interconnects.

We adopt the Jing’s work [JLF11] to perform the interconnect evaluation for

77

Table 5.5: The failure rate comparison of the IPF algorithms for SEUs on inter-

connects for the 4-LUT mapping

Circuits LUT#

Failure rate reduction for SEUs on interconnects

LUT based
LUT and interconnect based

Critical conf bit Critical output

Local SBOX CBOX Local SBOX CBOX Local SBOX CBOX

alu4 720 0.50% -3.71% 3.56% 2.33% -7.93% -2.19% 21.89% 25.26% 27.65%

apex2 965 2.33% 10.13% -3.53% 1.02% 18.53% -5.86% 14.59% 27.78% 14.35%

apex4 791 -2.20% 2.34% 2.27% -1.18% -1.69% -2.39% 28.37% 47.73% 59.28%

des 1249 -3.22% 8.23% -0.03% -1.84% 0.17% -1.28% 4.55% 10.78% 8.37%

ex1010 1103 -3.58% 3.41% -1.91% -1.04% -3.38% -7.44% 2.01% 18.91% -14.29%

ex5p 541 14.04% 25.15% 18.92% 14.13% 20.77% 19.64% 25.68% 36.88% 35.93%

misex3 736 -1.09% 15.38% 7.55% -0.26% 10.71% 9.54% 25.87% 44.17% 48.37%

pdc 2210 13.66% 19.18% 18.55% 8.50% 18.21% 17.67% 14.44% 45.84% 46.45%

seq 998 5.06% 6.57% -1.56% 1.63% -2.68% -33.65% 29.00% 48.93% 39.75%

spla 2126 9.61% 15.30% 16.54% 6.55% 11.97% 15.28% 15.13% 44.42% 45.01%

Average 1144 3.51% 10.20% 6.04% 2.98% 6.47% 0.93% 18.15% 35.07% 31.09%

island-style FPGAs. In this architecture, interconnects are composed of local

wires, switching boxes, and connection boxes. Each time, we flip a configuration

bit in one of the three components, and perform a full-circuit logic simulation. For

each configuration bit, 100K input vectors are injected into circuits. Considering

the average number of LUTs in circuits is 754 for the 6-LUT mapping, and the

number of interconnect configuration bits is roughly more than 5× compared

with those of LUTs, we perform approximately 24 billion simulation runs for the

interconnect evaluation. In Table 5.4 and 5.5, we label the failure rate reductions

for local wires, switching boxes, and connection boxes as “Local”, “SBOX”, and

“CBOX”, respectively.

For the 6-LUT mapping in Table 5.4, the algorithm in the last three columns

considering interconnects achieves a 40% failure rate reduction on average, higher

than the two LUT based algorithms, which reduce failure rates by 10%. Especially,

some circuits yield worse failure rates in some interconnect categories using the two

LUT analysis based algorithms. For Circuit “des”, the failure rate due to SEUs

78

on switch boxes is increased by 6.35% by the “Critical conf bit”algorithm. For

Circuit “ex1010”, the failure rate due to SEUs on local wires is increased by 6.76%

by the “Critical output” algorithm. However, none of the designs gets failure rates

downgraded in any interconnect category using the LUT and interconnect analyses

based algorithm for the 6-LUT mapping. Because designs mapped to 4-LUT

have less SDCs, all the algorithms yield lower failure rate reductions compared to

designs mapped to 6-LUTs. The algorithm considering the interconnect impact

still achieves a 15% greater improvement compared with the ones that do not.

In summary, for SEUs on interconnects, the algorithm considering the inter-

connect impact achieves a greater failure rate reduction for all the designs for both

the 6-LUT and the 4-LUT mapping than the two LUT analysis based algorithms.

5.5.3 Evaluation of Synthesis based SEU Mitigation Techniques on

the Circuit Level

In this section, we perform the circuit level evaluation for failure rates of synthesis

based SEU mitigation techniques. Circuit level means that SEUs can be on LUTs

and interconnects during the evaluation. We compare our IPF algorithms with

the best known synthesis based in-place algorithm, the In-Place Decomposition

(IPD) algorithm [LFH10]. We only present comparisons for the 6-LUT mapping

considering the IPD algorithm has only 6-LUT mapping results in public.

In Figure 5.6, the X-axis lists the ten largest combinational MCNC benchmark

circuits according to the area of designs, and the Y-axis lists circuit level failure

rate reductions. In the figure, when the designs are small, the IPD algorithm and

our LUT analysis based algorithms yield similar failure rate reductions. As the

design size increases, our algorithms outperform the IPD algorithm. Our LUT

and interconnect analyses based algorithm always generate a design with a better

reliability compared with the IPD algorithm. For the circuit “des”, the reason

79

why the failure rate is increased by the LUT analysis based algorithm, but the

rate can be reduced by IPD algorithm and our LUT and Interconnect analyses

based algorithm is that, the criticality used in LUT analysis based algorithm does

not consider whether the SDC bit is actually hit and is used for logic masking;

however, our LUT and interconnect analyses based algorithm takes the SDC bit

hit into account when calculating the SDC bit preference, and results in the failure

rate reduction

The IPD algorithm targets SEUs on LUT configuration bits, and yields a

7% circuit level failure rate reduction, although it is known for high failure rate

reduction when considering SEUs on LUTs only. On the circuit level, our LUT

analysis based IPF algorithms achieve a 6% higher reduction compared with the

IPD algorithm, and our LUT and interconnect analyses based IPF algorithm

achieves a 37% greater improvement.

5.5.4 Runtime Comparison of SEU Mitigation Techniques on the Cir-

cuit Level

Figure 5.7 presents runtime comparisons for the IPD algorithm and our IPF algo-

rithms for the 6-LUT mapping. Similarly, the X-axis lists the ten largest combina-

tional MCNC benchmark circuits according to the area of designs, and the Y-axis

lists runtime in seconds. On average, our “Critical conf bit” and “Critical output”

algorithms achieve 150× and 142× speedup compared with the IPD algorithm.

Although our LUT and interconnect analyses based algorithm requires a runtime

overhead for the interconnect analysis, it still achieves 7× speedup compared with

the IPD algorithm. The fast synthesis time makes our IPF algorithms scalable in

practice.

The reason for the short runtime is that our approaches do not search for func-

tionally equivalent implementations, and therefore do not need time-consuming

80

Binary Decision Diagrams, Boolean Satisfiability [HFH08,FHH09], Integer Linear

Programming [LFH10], or Set of Pairs of Functions to be Distinguished [JHM10]

as adopted in other synthesis based algorithms. Furthermore, when performing

the criticality analysis and SDC bit preference analysis, we adopt a 64-bit word-

wise logic simulation instead of a bit-wise logic simulation.

In summary, our IPF algorithms outperform the IPD algorithm in terms of

both the failure rate reduction and the runtime.

5.6 Conclusions and Future Work

Targeting the ever-increasing SEU issue, we propose three synthesis based in-

place X-Filling algorithms by exploiting don’t cares to augment the reliability of

designs. Compared with circuit and architecture based solutions, our algorithms

are in place, and do not require area, power, performance, and design time over-

heads. Compared with other synthesis based algorithms, we take into account the

widely accepted interconnect architecture used in VPR [BR97,LKJ11] during op-

timization. For the ten largest combinational MCNC benchmark circuits mapped

to 6-LUTs, our approaches achieve up to a 37% greater failure rate reduction on

the circuit level, and up to 150× runtime speedup, compared with the best known

synthesis based in-place algorithm, the In-Place Decomposition (IPD) algorithm.

The more don’t cares are reconfigured to mask errors introduced by SEUs,

the greater failure rate reduction we can achieve. Increasing don’t cares during

synthesis can be leveraged to obtain targeted trade-off between reliability and

area in the future. Furthermore, we plan to extend the IPF algorithms to handle

sequential circuits. The key for this extension is to model the error propagations

in sequential cycles efficiently. In addition, the impact of the technology scaling

makes multiple errors introduced by SEUs a big concern. The difficulty to extend

the IPF algorithms for multiple errors is to tackle the correlation between errors.

81

The three issues will be addressed in the future work.

82

X1

X2

a

b

c

d

f

(a) Failure rate=0.2031

2-LUT

D

00 0

01 1

10 1

11 0
2-LUT

C

00 0

01 0

10 0

11 1

2-LUT

B

00 0

01 0

10 1

11 0
2-LUT

A

00 0

01 0

10 0

11 1

X1

X2

a

b

c

d

f

(b) Failure rate=0.1875

2-LUT

D

00 0

01 1

10 1

11 1

2-LUT

B

00 0

01 0

10 1

11 0
2-LUT

A

00 0

01 0

10 0

11 1
2-LUT

C

00 0

01 0

10 0

11 1

f = ab + ac + bcd + acd

Figure 5.1: Given the same functionality and topology, different implementations

yield different failure rates due to the assignment of the SDC bit.

83

(a) Input a mapped netlist

?
X

1010 … 1

0011 … 0

0110 … 0

0001 … 1

...

Input 10

Inaccessible = SDC bit

(b) Create a window; perform a window based logic simulation

(c) Collect all SDC bits

Two LUT analysis based IPF

algorithms

A LUT and interconnect

analyses based IPF algorithm

(1) Base on critical

configuration bits

to fill SDC bits

(2) Base on critical

outputs to fill SDC

bits

(d) Different IPF algorithms

How to fill the SDC

bit to reduce error

propagations?

(3) Based on SDC bit

preferences to mask SEUs

Figure 5.2: An illustration of the IPF algorithm framework

84

000

001

010

011

configuration bit criticality value

2%

SDC

5%

0

1

1

100

101

110

111

4% 0

000

001

010

011

configuration bit criticality value

2%

SDC

5%

0

1

100

101

110

111

4% 0

0

(a) (b)

Figure 5.3: An illustration of the two LUT analysis based IPF algorithms (a)

Critical configuration bit based (b) Critical output based

A mapped netlist with

the SDC bit collection

Analyze SDC bit

preferences for LUTs

Analyze SDC bit

preferences for

interconnects

Merge preferences

and fill SDC bits

An enhanced netlist

Figure 5.4: An overview of the LUT and interconnect analyses based IPF algo-

rithm

85

D 0 0 1 1

G 0 1 0 1

F 0 1 1 0

H 0 0 1 1

Figure 5.5: An example of the SDC bit preference for masking errors introduced

by SEUs on LUTs

-10%

0%

10%

20%

30%

40%

50%

60%

alu4 apex2 apex4 des ex1010 ex5p misex3 pdc seq spla

IPD Critical conf bit Critical output LUT and interconnect based

Figure 5.6: The failure rate comparison of synthesis based SEU mitigation tech-

niques on the circuit level for the 6-LUT mapping.

86

1

10

100

1000

10000

alu4 apex2 apex4 des ex1010 ex5p misex3 pdc seq spla

IPD Critical conf bit Critical output LUT and interconnect based

Figure 5.7: The runtime comparison of SEU mitigation techniques on the circuit

level for the 6-LUT mapping.

87

CHAPTER 6

Conclusions and Future Work

Focusing on the reliability of FPGA based designs, to meet the industrial needs on

cost (e.g., area and power overhead), CAD flow, runtime, and FPGA architecture,

this dissertation proposes several novel logic synthesis algorithms. Chapter 3

presents an algorithm seeking a formal method to improve the reliability of FPGA

based designs while incurring minimal area and power overhead. In Chapter 4,

an in-place logic synthesis algorithm is presented so that there is no need for

iterations of logic and physical synthesis during reliability optimization, i.e., no

break for the current CAD flow. Chapter 5 is focused on the runtime and FPGA

architecture. Three fast in-place logic synthesis algorithms targeting the modern

FPGA architecture including both LUTs and interconnects, are presented.

In the effort to enhance the FPGA reliability while minimizing the area and

power overhead, we formulate the reliability problem under random faults as a

stochastic satisfiability (SSAT) based Boolean matching, and employs both area

efficient and robust templates to rewrite the netlist (Chapter 3). During each

iteration of remapping, among the solutions derived from Boolean matching, only

the one that improves the reliability and incurs least overhead is chosen. It results

in a 25% reduction for the failure rate with 1% fewer LUTs.

Minimizing the area and power overhead is not the only requirement from

FPGA designers when they face the reliability challenge. The least modification

of the netlist is desired as there is no need for iterations of logic and physical

syntheses when improving the reliability. In Chapter 4 and Chapter 5, we propose

88

in-place reconfiguration algorithms. The algorithm in Chapter 4 is focused on

errors on LUTs, while the algorithms in Chapter 5 take further advantages of

the error analyses on both LUTs and interconnects. Compared with the the

best known in-place algorithm, the in-place decomposition (IPD) algorithm, for

the ten largest combinational MCNC benchmark circuits mapped to 6-LUTs, our

approaches achieve up to a 37% greater failure rate reduction, and up to 150×

runtime speedup.

In the future, an interesting research direction is to address the tradeoff be-

tween logic masking and testability or verifiability, considering that introducing

additional logic masking, defect-aware logic synthesis algorithms can make ver-

ification and silicon debugging tasks difficult. One possible solution is to pro-

vide proofs of correctness of transformations [KLG08]. Another interesting fu-

ture research direction is to extend our algorithm to standard cell-based circuits.

There is some existing work on fault-tolerant logic synthesis for standard cell de-

signs. For example, [NS04] developed a critical-area driven technology mapping,

and [KPM07] applied logic redundancy and structural restructure to mask soft

errors based on a fast simulation. The CAD flow for standard cell designs can

benefit from our in-place reliability enhancement algorithms.

89

References

[ALT] ALTERA. “Altera: QUIP for Quartus II V5.0.” In
http://www.altera.com/education/univ/.

[ALT06] ALTERA. “Altera Stratix II Features.” In
http://www.altera.com/products/devices/stratix2/features/density/st2-
density.html, 2006.

[ALT12] ALTERA. “Reducing total system cost with low-power 28-nm FP-
GAs.” In http://www.altera.com, WP-01180-1.1, Apr. 2012.

[AN06] Jason H. Anderson and Farid N. Najm. “Active leakage power op-
timization for FPGAs.” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 25(3), Mar. 2006.

[AT05] G. Asadi and M. B. Tahoori. “Soft Error Rate Estimation and Mit-
igation for SRAM Based FPGAs.” In Proc. ACM Intl. Symp. Field-
Programmable Gate Arrays, pp. 149–160, 2005.

[ATM07] Hossein Asadi, Mehdi B. Tahoori, Brian Mullins, David Kaeli, , and
Kevin Granlund. “Soft error susceptibility analysis of SRAM-based
FPGAs in high-performance information systems.” IEEE Trans. on
Nuclear Science, 54(6):2714–2726, Dec. 2007.

[Bau05] Robert C. Baumann. “Radiation-Induced Soft Errors in Advanced
Semiconductor Technologies.” IEEE Trans. on Device and Materials
reliability, 5(3):305–316, Sep. 2005.

[BBB04] M. Bellato, P. Bernardi, D. Bortolato, M. Ceschia A. Candelori,
A. Paccagnella, M. Rebaudengo, M. Sonza Reorda, M. Violante, and
P. Zambolin. “Evaluating the effects of SEUs affecting the configura-
tion memory of an SRAM-based FPGA.” In Design Automation and
Test in Europe, pp. 584–589, Feb. 2004.

[Ber06] Berkeley Design Technology, Inc. “BDTI Focus Report: FPGAs for
DSP, Second Edition.” In BDTI Benchmarking, 2006.

[Bid10] Nematollah Bidokhti. “SEU concept to reality (allocation, prediction,
mitigation).” In Proc. Reliability and Maintainability Symp., pp. 1–5,
Jan. 2010.

[BKC07] Ravi Bonam, Yong-Bin Kim, and Minsu Choi. “Defect-Tolerant Gate
Macro Mapping and Placement in Clock-Free Nanowire Crossbar Ar-
chitecture.” In Defect and Fault-Tolerance in VLSI Systems, pp. 161–
169, Sep. 2007.

90

[BM97] Luca Benini and Giovanni De Micheli. “A survey of Boolean matching
techniques for library binding.” ACM Transactions on Design Au-
tomation of Electronic Systems, 2(3):193–226, 1997.

[BM07] R. Brayton and A. Mishchenko. “Sequential Rewriting.” In Int. Work-
shop on Logic Synthesis, 2007.

[BR97] V. Betz and J. Rose. “VPR: A new packing, placement and routing tool
for FPGA research.” In Proc. Int. Workshop on Field-Programmable
Logic and Applications, pp. 213–222, Sep. 1997.

[BS89] R. K. Brayton and F. Somenzi. “Boolean Relations and the Incomplete
Specification of Logic Networks.” In Int. Conf. on Very Large Scale
Integration, 1989.

[CH01] Jason Cong and Yean-Yow Hwang. “Boolean Matching for LUT-Based
Logic Blocks With Applications to Architecture Evaluation and Tech-
nology Mapping.” IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems, Sep. 2001.

[CKM08] Michael L. Case, Victor N. Kravets, Alan Mishchenko, and Robert K.
Brayton. “Merging Nodes under Sequential Observability.” In Proc.
Design Automation Conf, pp. 540–545, 2008.

[CLH08] L. Cheng, Y. Lin, L. He, and Y. Cao. “Trace-Based Framework for
Concurrent Development of Process and FPGA Architecture Consid-
ering Process Variation and Reliability.” In Proc. ACM Intl. Symp.
Field-Programmable Gate Arrays, Feb. 2008.

[CM07] Jason Cong and Kirill Minkovich. “Improved SAT-Based Boolean
Matching Using Implicants for LUT-Based FPGAs.” In Proc. ACM
Intl. Symp. Field-Programmable Gate Arrays, 2007.

[CM10] J. Cong and K. Minkovich. “LUT-based FPGA technology mapping
for reliability.” In Proc. Design Automation Conf, pp. 517–522, Jun.
2010.

[DH06] Asbjoern Djupdal and Pauline C. Haddow. “Yield Enhancing Defect
Tolerance Techniques for FPGAs.” In Proc. of the Int. Conf. on Mili-
tary and Aerospace Programmable Logic Devices, 2006.

[DI00] A. Doumar and H. Ito. “Design of switching blocks tolerating de-
fects/faults in FPGA interconnection resources.” In Defect and Fault-
Tolerance in VLSI Systems, 2000.

[DP94] Serge Durand and Christian Piguet. “FPGA with Self-repair Capa-
bilities.” In Proc. ACM Intl. Symp. Field-Programmable Gate Arrays,
1994.

91

[ES] Niklas Een and Niklas Sorensso. “MiniSat.” http://minisat.se/.

[FHH09] Z. Feng, Y. Hu, L. He, and R. Majumdar. “IPR: In-place reconfigu-
ration for FPGA fault tolerance.” In Proc. Int. Conf. on Computer
Aided Design, pp. 105–108, Nov. 2009.

[FML04] Joseph Fabula, Jason Moore, Austin Lesea, and Saar Drimer. “The
NSEU Sensitivity of Static Latch Based FPGAs and Flash Storage
CPLDs.” In Proc. of the Int. Conf. on Military and Aerospace Pro-
grammable Logic Devices, 2004.

[GA07] S. Gupta and J. Anderson. “Optimizing FPGA power with ISE design
tools.” http://www.xilinx.com, 2007.

[GCZ03] P. Graham, M. Caffrey, J. Zimmerman, P. Sundararajan, E. Johnson,
and C. Patterson. “Consequences and categories of SRAM FPGA con-
figuration SEUs.” In Proc. of the Int. Conf. on Military and Aerospace
Programmable Logic Devices, 2003.

[HAW05] O. Heron, T. Arnaout, and H.J. Wunderlich. “On the reliability eval-
uation of SRAM-based FPGA designs.” In Proc. Int. Conf. Field-
Programmable Logic and Applications, 2005.

[HFH08] Y. Hu, Z. Feng, L. He, and R. Majumdar. “Robust FPGA resynthesis
based on fault-tolerant Boolean matching.” In Proc. Int. Conf. on
Computer Aided Design, pp. 706–713, Nov. 2008.

[HSM07] Yu Hu, Victor Shih, Rupak Majumdar, and Lei He. “Exploiting Sym-
metry in SAT-Based Boolean Matching for Heterogeneous FPGA Tech-
nology Mapping.” In Proc. Int. Conf. on Computer Aided Design,
2007.

[HSM08] Yu Hu, Victor Shih, Rupak Majumdar, and Lei He. “FPGA Area
Reduction by Multi-Output Function Based Sequential Resynthesis.”
In Proc. Design Automation Conf, 2008.

[HTA94] Neil J. Howard, Andrew M. Tyrrell, and Nigel M. Allinson. “The Yield
Enhancement of Field-programmable Gate Arrays.” In IEEE Trans.
on Very Large Scale Integration (VLSI) Systems, 1994.

[JA07] Mandar Joshi and Waleed Al-Assadi. Development and Analysis of
Defect Tolerant Bipartite Mapping Techniques for Programmable cross-
points in Nanofabric Architecture. Springer Netherlands, 2007.

[JCG03] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin. “Ac-
celerator validation of an FPGA SEU simulator.” IEEE Trans. on
Nuclear Science, 50(6):2147–2157, Dec. 2003.

92

[JHM10] M. Jose, Y. Hu, R. Majumdar, and L. He. “Rewiring for robust-
ness.” In Proc. IEEE/ACM Design Automation Conf., pp. 469–474,
Jun. 2010.

[JLF11] N.F. Jing, J.-Y. Lee, Z. Feng, W.F. He, Z.G. Mao, S.-J Wen, R. Wong,
and L. He. “Quantitative SEU fault evaluation for SRAM-based FPGA
architectures and synthesis algorithms.” In Proc. Int. Conf. Field-
Programmable Logic and Applications, pp. 282–285, Sep. 2011.

[JLF12] Naifeng Jing, Ju-Yueh Lee, Zhe Feng, Weifeng He, Zhigang Mao, and
Lei He. “SEU Fault Evaluation and Characteristics for SRAM-based
FPGA Architectures and Synthesis Algorithms.” ACM Trans. on De-
sign Automation of Electronics Systems, 18(13), Dec. 2012.

[KLG08] S. Kundu, S. Lerner, and R. Gupta. “Validating High Level Synthesis.”
In Computer Aided Verification, pp. 459–472. Springer, 2008.

[KPM07] Smita Krishnaswamy, Stephen M. Plaza, Igor L. Markov, and John P.
Hayes. “Enhancing Design Robustness with Reliability-aware Resyn-
thesis and Logic Simulation.” In Proc. Int. Conf. on Computer Aided
Design, pp. 149–154, 2007.

[KPM09] S. Krishnaswamy, S. Plaza, I. Markov, and J. Hayes. “Signature-
based SER Analysis and Design of Logic Circuits.” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 2009.

[KTR08] Ian Kuon, Russell Tessier, and Jonathan Rose. “FPGA Architecture:
Survey and Challenges.” Foundations and Trends in Electronic Design
Automation, 2:135–253, Feb. 2008.

[LFH10] J.-Y. Lee, Z. Feng, and L. He. “In-place decomposition for robust-
ness in FPGA.” In Proc. IEEE/ACM Int. Conf. on Computer-Aided
Design, pp. 143–148, Nov. 2010.

[LH07] Yan Lin and Lei He. “Device and Architecture Cocurrent Optimization
for FPGA Transient Soft Error Rate.” In Proc. Int. Conf. on Computer
Aided Design, November 2007.

[LHM09] J.-Y. Lee, Y. Hu, and R. Majumdar. “Simultaneous test pattern com-
paction, ordering and x-filling for testing power reduction.” In Proc.
Int. Symp. Quality Electronic Design, pp. 702–707, Mar. 2009.

[Lit99] M. Littman. “Initial experiments in stochastic satisfiability.” In Proc.
of the national conf. on Artificial intelligence, pp. 667–672, 1999.

[LKJ11] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W.M. Fang, K. Kent,
and J. Rose. “VPR 5.0: FPGA CAD and architecture exploration tools

93

with single-driver routing, heterogeneity and process scaling.” ACM
Trans. Reconfigurable Technology and Systems, 4(32), Dec. 2011.

[LLH10] Samuel Luckenbill, Ju-Yueh Lee, Yu Hu, Rupak Majumdar, and Lei
He. “RALF: Reliability Analysis for Logic Faults - An Exact Algorithm
and Its Applications.” In Design, Automation and Test in Europe
Conference and Exhibition, pp. 783–788, 2010.

[LMP01] M.L. Littman, S.M. Majercik, and T. Pitassi. “Stochastic Boolean
Satisfiability.” J. Autom. Reasoning, 27(3):251–296, 2001.

[LSB05a] A. Ling, D. Singh, and S. Brown. “FPGA Logic Synthesis using Quan-
tified Boolean Satisfiability.” In SAT 2005 Springer LNCS Vol 3569,
pp. 444–450, 2005.

[LSB05b] A. Ling, D. Singh, and S. Brown. “FPGA technology mapping: a
study of optimality.” In Proc. Design Automation Conf, 2005.

[LV62] R. E. Lyions and W. Vanderkulk. “The use of triple modular redun-
dancy to improve computer reliability.” IBM J. Res. Dev., 6(2):200–
209, Apr. 1962.

[LWG97] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. “Logic de-
composition during technology mapping.” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 16(8):813–833, Aug
1997.

[MB05a] Stephen M. Majercik and Byron Boots. “DC-SSAT: A Divide-and-
Conquer Approach to Solving Stochastic Satisfiability Problems Effi-
ciently.” In Proc. of the national conf. on Artificial intelligence, pp.
416–422, 2005.

[MB05b] Alan Mishchenko and Robert K. Brayton. “SAT-Based Complete
Don’t-Care Computation for Network Optimization.” In Design Au-
tomation and Test in Europe, pp. 412–417, 2005.

[MBC08] A. Mishchenko, R. K. Brayton, and S. Chatterjee. “Boolean factoring
and decomposition of logic networks.” In Proc. Int. Conf. on Computer
Aided Design, 2008.

[MCB05] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. “DAG-
Aware AIG Rewriting.” In Proc. Design Automation Conf, 2005.

[Meh12] N. Mehta. “Xilinx redefines power, performance, and design produc-
tivity with three innovative 28 nm FPGA families: Virtex-7, Kintex-7,
and Artix-7 devices.” In http://www.xilinx.com, WP373 (v1.3.1), May
2012.

94

[MER05] Shubu Mukherjee, Joel Emer, and Steven. K Reinhardt. “Radiation-
Induced Soft Errors: An Architectural Perspective.” In 11th Interna-
tional Symposium on High-Performance Computer Architecture, 2005.

[Mic91] G. De Micheli. “Synchronous logic synthesis: algorithms for cycle-time
minimization.” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 1991.

[Mis11] A. Mishchenko. “ABC: A System for Sequential Synthesis and Verifi-
cation.” In http://www.eecs.berkeley.edu/alanmi/abc/, Feb. 2011.

[MSB91] S. Malik, E. Sentovich, R. Brayton, and A. Sangiovanni-Vincentelli.
“Retiming and resynthesis: Optimizing sequential networks with com-
binational techniques.” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 10:74–84, 1991.

[MSZ05] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K.S. Kim. “Robust system
design with built-in soft-error resilience.” IEEE Computer, 38(2):43–
52, Feb. 2005.

[MWK03] A. Mishchenko, X. Wang, and T. Kam. “A new enhanced constructive
decomposition and mapping algorithm.” In Proc. Design Automation
Conf, 2003.

[MZS06] A. Mishchenko, J. Zhang, S. Sinha, J. Burch, R. Brayton, and
M. Chrzanowska-Jeske. “Using simulation and satisfiability to com-
pute flexibilities in Boolean networks.” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 25(5):743–755, May
2006.

[Nae05] Helia Naeimi. “A Greedy Algorithm for Tolerating Defective Cross-
points in NanoPLA Design.” In Master Thesis, California Institute of
Technology, 2005.

[Neu56] J. von Neumann. “Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components.” In C.E. Shannon and J. Mc-
Carthy, editors, Automata Studies, pp. 43–98. Princeton Univ. Press,
1956.

[NS04] A. Nardi and A. L. Sangiovanni-Vincentelli. “Logic Synthesis for Man-
ufacturability.” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 2004.

[Pap85] C. Papadimitriou. “Games against nature.” Journal of Computer and
Systems Sciences, 31:288–301, 1985.

95

[PCM07] S. Plaza, K-H. Chang, I. Markov, and V. Bertacco. “Node Mergers
in the Presence of Don’t Cares.” In Proc. Asia South Pacific Design
Automation Conf., pp. 414–419, 2007.

[Roo04] R. Roosta. “A comparison of radiation-hard and radiation-tolerant
FPGAs for space applications.” NASA Electronic Parts and Packaging
Program, JPL D-31228, Dec. 2004.

[RRV02] M. Rebaudengo, M.S. Reorda, and M. Violante. “Simulation-Based
Analysis of SEU Effects on SRAM-based FPGAs.” In Proc. Int. Conf.
Field-Programmable Logic and Applications, pp. 607–615, 2002.

[SMC01] F. Sturesson, S. Mattsson, C. Carmichael, and R. Harboe-Sorensen.
“Heavy ion characterization of SEU mitigation methods for the Vir-
tex FPGA.” In 6th European Conf. on Radiation and Its Effects on
Components and Systems, pp. 285–291, Sep. 2001.

[SRK04] P.K. Samudrala, J. Ramos, and S. Katkoori. “Selective triple modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis
for FPGAs.” IEEE Trans. on Nuclear Science, 51(5):2957–2969, Oct.
2004.

[SVB06] Sean Safarpour, Andreas Veneris, Gregg Baeckler, and Richard Yuan.
“Efficient SAT-based Boolean Matching for FPGA Technology Map-
ping.” In Proc. Design Automation Conf, 2006.

[Tam06] S. Tam. “Single error correction and double error detection.” In
http://www.xilinx.com, XAPP645 (v2.2), Aug. 2006.

[XIL12a] XILINX. “7 Series FPGAs Overview.” In http://www.xilinx.com, May
2012.

[XIL12b] XILINX. “Radiation-hardened, space-grade Virtex-5QV device
overview.” In http://www.xilinx.com, DS192 (v1.3), Mar. 2012.

[XIL13] XILINX. “Xilinx Stays a Generation Ahead with Multiple
20nm Firsts.” In http://press.xilinx.com/2013-01-30-Xilinx-Stays-a-
Generation-Ahead-with-Multiple-20nm-Firsts, Jan. 2013.

[XPC05] Zhong. Xiu, David. A. Papa, Philip. Chong, A. Kuehlmann, Rob A.
Rutenbar, and Igor L. Markov. “Early Research Experience With Ope-
nAccess Gear:.” In Proc. Int. Symp. on Physical Design, 2005.

[Yan91] S. Yang. “Logic Synthesis and Optimization Benchmarks, Version 3.0.”
Technical report, Microelectronics Center of North Carolina (MCNC),
1991.

96

[YL05] A. J. Yu and G. G. Lemieux. “Defect-tolerant FPGA switch block and
connection block with fine-grain redundancy for yield enhancement.”
In Proc. Int. Conf. on Field-Programmable Logic and Applicationes,
2005.

[YSN96] Shigeru Yamashita, Hiroshi Sawada, and Akira Nagoya. “A new
method to express functional permissibilities for LUT based FPGAs
and its applications.” In Proc. Int. Conf. on Computer Aided Design,
1996.

97

