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ABSTRACT OF THE THESIS

Fine-Grained End-Host Traffic Control

by

Sen Zhang

Master of Science in Computer Science

University of California, San Diego, 2015

Professor Alex C. Snoeren, Chair

In this thesis, we look at changes in the end-host network stack that are

needed to support REACToR, a hybrid data-center network. We discuss the re-

quirements posed by REACToR and propose a host-traffic control protocol. We

then describe three different implementations of the protocol.

To schedule optical circuits on a microsecond scale, a hybrid top-of-rack

switch needs to control end-host traffic. The most important performance charac-

teristic of the host-control protocol is its responsiveness, namely how quickly can

a flow be paused or unpaused.

The first implementation of the host-control protocol is based on priority-

based Ethernet flow control. While it provides good performance by taking advan-

x



tage of hardware implementations in commodity network cards, the implementa-

tion has correctness issues.

The second implementation is the Software-defined Data Plane proposal

which uses DPDK to provide a flexible user-land network stack. The host-control

protocol can be a subset of the Software-defined Data Plane. However since the

stack is implemented in software, there are performance penalties. It also requires

the original network stack to be replaced, which might entail a lot of changes in

end hosts.

The third implementation is a reprogrammed network card built with a

Netronome network flow processor. Being a hardware implementation, it has better

performance and does not demand changes in the operating system. Thus it can

help REACToR achieve the goal of operating “under the radar”.
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Chapter 1

Introduction

Traditional computer networks are built after a simple abstraction where

end hosts use the network as a water pipe and the network is passive from an

end host’s perspective. But some next-generation network prototypes are based

on much stronger interations between the network and end hosts. The REACToR

project [6] builds a data-center network that achieves high bandwdith by exposing

optical circuits to end hosts. The efficiency of the optical circuits depends on the

switch’s ability to control end-host traffic explicitly on a fine-grained time scale.

This thesis explores the host-control protocol as required by REACToR and

discusses three implementations of the protocol: an extension of priority-based

Ethernet flow control, a software implementation using DPDK and a hardware

implementation using a network flow processor.

1.1 Related Work

Our work is motivated by the hybrid switch REACToR [6], which creates an

innovative network architecture and poses new requirements for the end-host stack.

The Data Center Bridging (DCB) work explored similar fine-grained control of end-

host traffic in the Ethernet layer, for example Ethernet PAUSE frame and priority-

based flow control (PFC) [13]. TDMA-based Ethernet [12] proposes a TDMA MAC

layer that forms a tightly coupled network with a centralized link scheduler. It is

also based on Ethernet PFC, similar to our work described in Chapter 2. There

1
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has been a lot of work that aims to provide more control of the end-host stack

from the perspective of applications or operating systems. Frameworks like the

Data Plane Development Kit (DPDK) [2] and netmap [10] provide libraries for

fast packet processing. There are also hardware solutions such as NetFPGA [7]

and the Netronome network flow processor [8] (discussed in Chapter 4) that make

it easier to explore new network hardware. Software-defined Data Plane (SDD)

[11] builds a new end-host stack based on DPDK and allows a centralized network

controller to control end-host traffic. We discuss SDD in more detail in Chapter 3.

1.2 Background

REACToR addresses the problem that data-center networks are facing ever-

increasing demands but current network technologies are not scalable to support

higher and higher bandwidth. For example at 100 Gbps or higher, it is too expen-

sive to use copper cables for anything but intra-rack connections. Optical fibers

are much more scalable both in bandwidth and cost, but connecting optical fibers

with electrical switches requires two expensive optoelectronic transceivers for each

cable and results in huge costs for a typical data-center network [6]. We get the

most benefits only if both optical fibers and optical switches are employed on the

rack level. But the main challenge with an optical switch is its long switching

time. REACToR addresses this problem through a hybrid approach. As shown

in Figure 1.1, REACToR is a hybrid top-of-rack switch that connects to both

an electrical packet-switched network and an optical circuit-switched network. It

thus combines the scalability of optical switching and the flexibility of electrical

switching.

Optical circuits have several important characteristics. First, optical switches

normally have a very limited number of circuits. At any given time, only a small

portion of network flows can be serviced through the optical network. Combined

with the fact that network flows do not stay constant, the switch has to pick a

changing subset of flows for the circuits; other flows must be either paused or rate

limited. Second, the optical switch has a non-trivial reconfiguration time when
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Figure 1.1: REACToR architecture. Each host has a list of separately-
controllable queues. Reproduced from [6].

it needs to change circuit assignments. During this time it cannot transmit any

traffic, so all flows must be paused and buffered somewhere. Third, the high band-

width enabled by optical circuits, for example 100 Gbps, means a flow requires a

very large queue even if it is paused for a short time period. In REACToR, the

optical network is buffer-less and packets are buffered in end-host memory.

These characteristics mean a hybrid REACToR switch needs to control end-

host traffic on a fine-grained scale. For example when circuit assignment changes,

the switch has to first stop all flows before it can reconfigure the optical switch.

After the reconfiguration, it starts a new set of flows on circuits. Such pausing

and unpausing must happen as fast as possible, otherwise the utilization of the

circuits is impacted. In Section 1.3 we define a host-control protocol that enables

such control.
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1.3 Host-Control Protocol

To support a hybrid network like REACToR, end hosts need to support a

list of operations that are invoked by a top-of-rack switch.

First we define the concept of “flows”. For REACToR, a flow is all packets

that come in the same switch port and go out another, i.e. packets that are

scheduled through the same optical circuit. For an end host, a flow includes all

packets with the same IP destination. In our implementations the set of flows

are predefined for some hardcoded IP addresses. We might also use IP type of

service as the filter when evaluating the prototypes. In a real-world network the

IP destinations might need to be updated at runtime, but it is not a primary task

of the host-control protocol.

With multiple flows on the network, the switch needs to control each flow

individually. Each flow is either stopped by a pause command or resumed by an

unpause command. The switch sends commands to end hosts using a schedule

packet, which contains a flag for each flow. We refer to the commands as a flow

schedule.

1.4 Performance Metrics

When a flow is to be paused, the “off” delay is defined as the time between

when the host receives the schedule packet and when the host sends out the last

packet from the flow. The “on” delay is defined for the opposite case; when a flow

should be unpaused, the time between when the host receives the schedule packet

and when the host sends out the first packet from the flow is the on delay. The

on and off delays are the offset between switch and end hosts and decide how well

a circuit is utilized. Since we can hide the delays by sending out schedule packets

ahead of time, the variances of the delays are the most important measurements.

As shown in Figure 1.2, when the variance is 0, we can hide the delays and

achieve full utilization of the circuit. But when the variance is not 0, we have

to account for the maximum off delay and minimum on delay, leaving the circuit

under-utilized.
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Figure 1.2: On and off delays with 0
variance. The shaded duration is the re-
configuration of the circuit switch. A
schedule packet is sent at time a and
the traffic stops at b when reconfigura-
tion happens. Another schedule packet
is sent at c and the traffic resumes at
time d, the same time as the circuit is in
place.

Figure 1.3: On and off delays. When
the on and off delays have variance,
the traffic might stop earlier (time b)
than the reconfiguration, or resume later
(time d) than a circuit is turned on

1.5 Summary

In this chapter, we discussed the hybrid REACToR network and introduced

the end-host traffic control protocol. We defined the operations of the protocol and

its performance requirements. Following chapters of this thesis explore three dif-

ferent implementations of the protocol. The implementation based on the network

flow processor is the main part I work on and want to discuss. We compare its

performance to the first two implementations and show if it meets the requirements

of REACToR.



Chapter 2

Priority-based Ethernet Flow

Control

In this chapter we discuss existing Ethernet Flow Control protocols and

show if they can be extended to support fine-grained end-host traffic control. We

also talk about the performance of current implementations and establish the base-

line that we want to achieve with alternative implementations.

2.1 Ethernet Flow Control

In the traditional network model, Ethernet as a link-layer protocol only

has to deliver best-effort service. But some applications require a more reliable

Ethernet, such as Fibre Channel over Ethernet which cannot tolerate losses in

the link layer. Protocols have been developed for these requirements. One is the

PAUSE frame (IEEE 802.3x [13]), which allows an Ethernet station to pause the

transmission of the other end of a link, thus avoiding packet losses when congestion

happens. The PAUSE frame is extended by IEEE 802.1Qbb, which allows 8 classes

of traffic to be paused independently.

802.1Qbb enables priority-based flow control for Ethernet (PFC) which is

similar to the traffic control protocol we want to implement. PFC defines 8 pri-

orities and allows an Ethernet station to control another station’s traffic on a

fine-grained time scale. An example of PFC is shown in Figure 2.1, where station

6
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Figure 2.1: A PFC frame is sent specifying all classes except 3 to be paused.
Reproduced from [1]

A asks station B to pause all classes except 3. By mapping one network flow to

each priority, PFC can be used to control the flows. Section 2.3 discusses the

advantages and limitations of this approach.

2.2 PFC performance

PFC controls the 8 traffic classes by specifying a pause duration for each. In

the PFC frame, as shown in Table 2.1, there are 8 16-bit time values, each meaning

how long a class of traffic should be paused. The pause duration is defined as a

number of quanta and each quantum is the time to send 512 bits at the current

link speed. On a 10-Gbps link, each quantum is 51.2 ns and the maximum pause

duration is about 3.36 ms. A value of 0 means the corresponding class should be

unpaused.

The performance of PFC has been well studied. REACToR [6] shows that

a 10-Gbps Intel 82599 NIC can pause a flow within 1.0–2.2 µs and unpause a flow

within 1.2–1.3 µs. Both the absolute value and the variance of the delay are small.

Evaluation results of different implementations are compared to these numbers,

because we want to achieve the same performance for our traffic control protocol.

TDMA-based Ethernet [12] shows that there is a significant deviation in

how well the requested pause duration is respected. So when using PFC to control

flows, we use the timers as binary values: 0 unpauses a flow and 0xFFFF pauses
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Table 2.1: PFC frame format

Dest: 01:80:C2:00:00:01

Src MAC addr

Ethertype: 0x8808

opcode: 0x0101

class enable mask

Time (class 0)

Time (class 1)

Time (class 2)

Time (class 3)

Time (class 4)

Time (class 5)

Time (class 6)

Time (class 7)

CRC

a flow for the longest possible period until it is explicitly unpaused. When a flow

needs to be stopped for longer than the maximum period, we send PFC frames to

renew the pausing.

2.3 Design

The main limitation of PFC is the fixed number of 8 priorities. As shown

in Chapter 1, the REACToR switch needs to control all network flows, where each

flow is defined as packets with the same IP destination. In a data-center network,

there are many more than 8 destinations. For example in a rack of 40 hosts, the

top-of-rack switch needs to schedule traffic among at least these 40 hosts. PFC

works fine for a testbed with 8 hosts. To support more hosts, we need to reuse the

8 priorities.

In REACToR, circuits are assigned in the units of days, and days are orga-

nized into weeks. Within a week, a flow could get a circuit for at most one day. So
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it is an intuitive idea that we can limit each week to 8 days and use PFC within

each week. When there are more than 8 flows, they can be scheduled in multiple

weeks. At the beginning of each week, the host is updated with the set of 8 flows

and remap them to the PFC priorities.

The following algorithms show the high-level logic that the switch and the

host should implement.

switch-control-loop:

For each week:

Pick 8 flows and notify end hosts

For each day:

Send PFC frames for circuit schedules for the 8 flows

host-pfc-handler:

If new weekly schedule received:

Map a set of 8 flows to PFC priorities

If new PFC received:

Pause or unpause specified queues

2.3.1 Residual packets

However, because of the existence of queues, the mapping of PFC priorities

cannot be switched immediately.

In an Intel 82599 NIC, PFC is implemented by 8 hardware queues called

packet buffers [3]. Each packet buffer corresponds to a PFC priority and incoming

PFC frames control if packets can be sent from the packet buffers. When we change

the mapping between flows and packet buffers, we cannot control packets that are

already in the packet buffers. In fact, depending on where the remapping happens,

there might be more queues in between, thus more of such packets.

We refer to these as residual packets, which are packets sent from a flow that

is supposed to be paused. Residual packets are a problem because they violate the

traffic control protocol requirements. Essentially they cause a prolonged off delay

as the flow takes considerable time to stop. For REACToR, an implementation

with such residual packets leads to bad circuit utilization. Our goal in this chapter

is to measure the number of residual packets and evaluate the implementation of

the traffic control protocol based on remapping PFC priorities.
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Figure 2.2: Queues in the Linux network subsystem

2.3.2 Queues in Linux networking subsystem

In this section we talk about queues in the Linux networking subsystem

and where we can remap flows to different packet buffers.

As shown in Figure 2.2, there are a few layers of queues. The qdisc (queuing

discipline) layer classifies packets into flows and each qdisc queue corresponds to a

different flow. Tx-rings are the queues in the device driver; descriptor queues and

packet buffers are hardware queues.

For outgoing packets, they go though each layer sequentially. There is a

mapping scheme between the different layers since they do not have the same

number of queues. In the case of an Intel 82599 NIC and the Linux ixgbe driver,

there are 64 qdisc queues, 64 tx-rings and 128 descriptor queues. We can change

which flow is controlled by each PFC priority by modifying the mapping between

any two layers.

But the only reasonable choice is the mapping between qdisc queues and

tx-rings. The other mappings are either hardcoded or require too much work to

change: the mapping between descriptor queues and packet buffers is fixed in
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hardware. Tx-rings and descriptor queues are part of the DMA interface and any

change requires a lot of care to ensure DMA performance;

When a qdisc queue is remapped to a different tx-ring, we get residual

packets from the tx-ring, descriptor queue and packet buffer. We can remedy the

problem using rate limiters in the Intel NIC. Each descriptor queue can be limited

to a minimum of 1000th of maximum rate; i.e. 10 Mbps for a 10-Gbps card. Thus

we can reduce the number of residual packets from descriptor queues and tx-rings.

But residual packets from the packet buffers cannot be controlled.

Since we try to assign flows to separate queues in each layer, the number of

flows supported by the entire system is limited to the smallest number of queues.

In this case, the above design could support 64 flows as in tx-rings layer.

The qdisc layer also handles new flow schedules. The NIC driver captures

schedule packets and pass the schedule to qdisc.

2.4 Implementation

We implement the queue remapping in the Linux kernel. The two main

parts are the ixgbe driver and the multiq qdisc.

For any outgoing packets, the driver checks its qdisc queue number and

the flow schedule, and puts the packet into the correct tx-ring. When a schedule

packet is received, the driver parses the schedule and sends an update to the qdisc

layer. The multiq qdisc only sends packets from the enabled queues.

To classify packets into different flows, we create Linux traffic control (tc)

filters and put packets into different qdisc queues. So a qdisc queue corresponds

to a flow.

2.5 Evaluation

Our implementation has the same on and off delay as Ethernet PFC since

we do not change how PFC frames are handled. A PFC frame still controls the

packet buffers directly and can pause or unpause a packet buffer with the same
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Figure 2.3: Testbed including two servers. Host A acts as a normal server. Host
B acts as a switch.

latency.

But because of the existence of residual packets, when a flow is enabled we

might be sending packets from a wrong flow. To measure the residual packets and

determine where they come from, we evaluate the queue remapping on a testbed

as shown in Figure 2.3.

2.5.1 Testbed setup

The testbed has two machines directly connected using an Ethernet cable.

Both machines run Debian Linux 7.0 with kernel 3.4.44 x86 64 and Intel Xeon

E5520. Host A acts as an end host with an Intel 82599EB 10-Gbps Ethernet

card. Host B acts as a top-of-rack switch and is equipped with a Myri-10G Dual-

Protocol NIC from Myricom. The Myricom NIC supports kernel-bypassing mode

which allows us to send and receive raw Ethernet frames. So Host B is used to

send PFC control frames.

Host A runs a traffic generator that sends MTU-sized packets, which are

classified into different flows according to the IP type of service. On Host B there

is a PFC sender and a packet collector. The PFC sender sends schedules to A,
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including the weekly schedule at the start of each week and the daily PFC frames

during each week. The packet collector saves all packets sent by A and records the

receiving time and index of each packet.

An example schedule is shown below, which is equivalent to assigning a

circuit to 16 flows sequentially and achieving a staircase traffic pattern.

schedule: 0 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

schedule: 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

We vary the day length and schedule for different experiments in order to

show the minimal schedule interval that can be supported, the number of residual

packets, and how different schedules can be supported.

2.5.2 Residual packets

Figure 2.4 shows the trace of 16 flows using the above schedule. In the

bottom right of the figure are the residual packets. Table 2.2 shows the packet

trace when the second week starts. What we want to see is flow 0-7 are disabled

and 8-15 enabled. But before packets for flow 8 come in, we first receive a few

packets from flow 0. After that, we get 1-2 packets from flow 0 after every 500-800

packets from flow 8.

These are the residual packets and the reason is that flow 0 and 8 share
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Figure 2.4: Packet trace for 16 flows and day length 40 ms.

Figure 2.5: Packet trace for 16 flows
and day length 200 µs.

Figure 2.6: Packet trace for 16 flows
and day length 2 ms.

the same packet buffer, descriptor queue and tx-ring in the NIC. The initial 8-9

packets come from the packet buffer because that is roughly the size of a packet

buffer. The later ones are from the rate limited descriptor queue. Packets in the

descriptor queues for flow 0 and 8 are sent to the same packet buffer, which is why

the two flows are interleaved and flow 0 is at a much lower rate.

Figure 2.5 shows the same schedule but with a shorter day length. Since
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Table 2.2: Packet trace when new week starts. The index column shows packet
sequence numbers within each flow. The timestamp column shows when each
packet is received by the packet collector.

flow index
timestamp

(µs)

0 42783 18049

0 42784 18050

0 42785 18052

0 42786 18053

0 42787 18054

0 42788 18055

0 42789 18056

0 42790 18057

8 38907 18058

0 42791 18060

8 38908 18061

8 38909 18062

8 38910 18063

8 38911 18064

each flow is enabled for a short time, we only get the first batch of residual packets

from the packet buffer.

Figure 2.6 shows the same schedule but with flow 8-15 enabled for a few

more weeks, and wihout rate limiting on the descriptor queue. We can see that

during the second week, all residual packets are sent out when a day starts. They

do not appear in later weeks because the tx-ring, descriptor queue and packet

buffer have been flushed and qdisc does not send down more packets.

For completeness, Figure 2.7 shows a schedule with 64 flows enabled.
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2.6 Summary

As described in Section 2.3, residual packets are the primary problem when

reusing the PFC priorities. The residual packets come in two batches, one from

the packet buffers and the other from rate limited descriptor queues. The first

batch can be hidden by viewing it as part of the variance, as shown in Section 1.4.

However the second batch cannot be hidden as easily. Even though the number

of residual packets in the second batch is limited and the cost in the context

of REACToR is a small utilization drop, they violate the requirements of the

traffic protocol. Hence we look for alternative implementations without the residual

packets problem.



Chapter 3

Software Implementation with

DPDK

Packet processing frameworks like the Data Plane Development Kit (DPDK)

[2] and netmap [10] make it possible to implement a host-control protocol in soft-

ware. In fact we can implement the entire end-host stack with these libraries.

A significant advantage of a packet processing framework is its flexibility.

These frameworks provide direct access to the network and allow novel features to

be included in the network stack implementation. However, a possible drawback

and the main issue we examine is performance penalty, since flow schedules can only

be handled on a higher software level. Another downside of building everything

on top of such frameworks is the necessity to rewrite the entire stack, including

all network protocols. User applications might have to be recompiled or modified

too.

In this chapter we discuss the design of the Data Plane Development Kit

and a data-plane implementation that supports end-host traffic control.

3.1 Data Plane Development Kit

DPDK is a framework that supports fast packet processing on commodity

hardware. It includes a device driver and a software library that are optimized to

reduce the overhead of processing packets from Linux userland. It delivers good

18



19

Figure 3.1: Data plane based on DPDK. Reproduced from [4].

performance by taking advantage of multi-core processors and their increasing

speed; see Figure 3.1 where the control plane is the original operating system

while the data plane uses DPDK and runs on dedicated cores. Using DPDK

an application can send packets to and receive packets from the wire directly,

with minimum latency caused by the DPDK framework in between. With such

flexibility, DPDK can be used to to implement a network stack and the host-control

protocol.

DPDK provides a generic interface to applications called the Environment

Abstraction Layer (EAL) [5]. EAL includes optimizations for specific operating

systems and hardware but hides the details from applications. As shown in Fig-

ure 3.2, applications are linked against the abstraction layer and userland libraries.

EAL supports multi-threading with EAL threads, called “logical cores”

(lcores), which are implemented by Linux pthreads. The EAL threads are typically

pinned to different CPU cores. For example an application might have a TX lcore

and an RX lcore. Using multiple physical cores eliminates context switching and

ensures fast packet processing.

DPDK also provides several libraries optimized for packet processing, among

which the most important ones are the ring, mempool and mbuf libraries. To re-

duce memory overhead, DPDK requires dedicated memory and uses huge pages

to minimize TLB misses. To allocate and free memory for packets, the mempool

library provides an API to manage fixed size objects, with various optimizations

such as per-core local cache. Packets are stored in fixed size buffers called mes-
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Figure 3.2: DPDK components. Reproduced from [4].

sage buffers and are allocated and freed by the mbuf library from a memory pool.

Each mbuf contains metadata and payload of a packet and might link to additional

mbufs. The ring library provides support for lock-free FIFOs that can be used as

TX and RX queues.

Besides CPU cores and memory, DPDK also needs to optimize accesses to

the network card and does so with Poll Mode Drivers (PMD). A PMD enables

packet transmission and reception without interrupts. Instead, the application has

to poll the driver for incoming packets. It sends and receives packets in bursts

where a small burst size can reduce latency and a large size can improve through-

put.

A poll mode driver allows packets to be processed in a simple run-to-

completion model, where each lcore retrieves a burst of packets and completes

the processing before handling the next burst. Packets do not have to be passed



21

Figure 3.3: System overview of the SDD architecture. Reproduced from [11].

through intermediate queues. A pipeline model is also possible with a PMD,

where each lcore is responsible for a different stage of the processing and packets

are passed between them through queues. Obviously the run-to-completion model

is simpler and might have a better performance by avoiding the queue overhead

and having better cache locality.

3.2 Software-defined Data Plane

Software-defined Data Plane (SDD) [11] uses DPDK to build an end-host

stack that supports centralized network controllers. In this section, we discuss the

design of SDD and how its implementation covers the host-control protocol.

SDD addresses the problem that while modern data-center networks are

becoming increasingly centralized, end hosts are not part of the centralized control.

It implements both the control plane and data plane on top of DPDK in order to

provide responsive control of network flows.

As shown in Figure 3.3, the key components of SDD are SDDQueues and

an API that controls when traffic can be transmitted from an SDDQueue.

An SDDQueue is a shared memory region that are accessible to SDD and a

userland network stack. An SDDQueue can be associated with one or more network
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Figure 3.4: Characterizing the responsiveness of adding and removing conditional
dequeue commands. Reproduced from [11].

flows and its “dequeue condition” determines how packets should be transmitted

from the queue, such as the time and the rate. The SDDQueue API allows a

network controller to manage the queues, for example to change how flows are

mapped to SDDQueues or set a timer of when a queue is drained. One of the design

goals of SDD is to allow fast control of the queues. It exploits the performance

and features of DPDK such as using separate cores for Tx and Rx and a third core

for handling API calls.

Our host-control protocol can be seen as a subset of SDD features. To

implement the protocol, each flow is bound to a separate SDDQueue based on

their destinations. Whenever a flow needs to be paused or unpaused, the switch

sends a new dequeue condition to the end host. The on and off delays are equivalent

to how fast SDD can carry out new dequeue conditions.

3.3 Evaluation

The implementation of the host-control protocol described above is essen-

tially the same as the “tightly-coupled TDMA” experiment of SDD. The RemoveD-

equeueCondition call is used to stop a queue and the AddDequeueCondition call

to start a queue. Their response times are the off delay and on delay respectively.

Figure 3.4(a) shows the distribution of the off delay, i.e. the time between
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when RemoveDequeueCondition is invoked and the flow is stopped. The mean of

the off delay increases as transmission rate is higher, possibly because of heavier

queuing below DPDK. The CDFs have long tails. While most data points fall in

a range of 4 µs, the range of all points are considerably longer. For example when

Tx rate is 1 Gb/s, the range is close to 8 µs.

Figure 3.4(b) shows the distribution of the on delay, which stays the same

regardless of the transmission rate. Most data points are still in a range of 4 µs

but there is a long tail especially when Tx rate is 1.5 Gb/s.

3.4 Summary

In this chapter we first explored the design of a packet processing framework

DPDK. We also talked about SDD, a data plane based on DPDK that supports

remote controllers, and how it can be used to implement our host-control protocol.

We included the evaluation results of SDD. Compared to the PFC implementation

in Chapter 2, where the commodity hardware achieves on/off delay with a range

of less than 2 µs, the software-based implementation has significantly longer delay.

A data plane on top of software packet processing libraries also requires dedicated

CPU cores and memory which might not be desired by a data center. Another

drawback with such an approach is that it requires the entire network stack to be

replaced. A lot of engineering effort might be needed before real applications can

be evaluated.



Chapter 4

Hardware Implementation with

Network Flow Processor

Since the software stack using DPDK has a much larger variance of off/on

delay than PFC, we explore the possibility of a hardware implementation. If achiev-

able, it is likely to have much better performance, close to PFC implementations.

But modifying or creating hardware demands substantial work. A potential plat-

form is the network flow processor from Netronome, which is a network interface

card that can be reprogrammed with a high-level language. Another disadvan-

tage with hardware solutions is that they require hardware investments, of course.

But compared to rewriting the entire network stack and dedicating CPU cores to

network processing, it is possible that a hardware solution provides better perfor-

mance guarantee and may be a better choice for data centers whose scale warrants

custom hardware.

This chapter discusses a third implementation of a fine-grained end-host

traffic control protocol using a Netronome network flow processor. By reprogram-

ming a network card and evaluating its ability to do traffic control, we show that

fine-grained traffic control can be implemented efficiently in the NIC hardware.

24
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Figure 4.1: NFP-32xx block diagram. Reproduced from Netronome website [8]

4.1 Network Flow Processor

We use a network flow processor (NFP) from Netronome [8] as the base

platform. The NFP is optimized for networking applications and is programmable

as a network card. In this section we briefly describe the features of the NFP-3240

that relate to our case.

4.1.1 NFP-3240

The NFP-3240 has 40 cores (also called microengines or MEs) at 1.4 GHz,

each of which has 8 hardware threads (also called contexts); see Figure 4.1. They

are 32-bit RISC cores and organized into 5 clusters. Resources on the NFP are

allocated to one of four different levels: thread, ME, cluster or the entire device.

Besides MEs, the other class of key components of the NFP are functional

units [9]. They can be seen as peripherals or accelerators with specialized mi-

croengines that handle networking-related tasks. For example, the PCIe controller

provides high-speed data transfers between the NFP and the host, and the memory

unit provides access to the card’s internal DRAM.
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The NFP has a lot of data storage units, both registers and memory [9].

Each ME has 256 general purpose registers (GRP), which are used in either

context-relative mode where each context owns a subset of the GPRs, or abso-

lute mode where a register is visible to all contexts. Each ME also has 4 KB of

local memory (LM), which provides more general purpose registers from a pro-

grammer’s perspective. To communicate with functional units, such as reading or

writing memory, every ME has access to 512 transfer registers, half of which are

used for reading and half for writing. There are also 128 next-neighbor (NN) reg-

isters in each ME which are used for inter-ME communication or as more general

purpose registers.

Besides these different registers, the NFP has several other types of storage

units. Each ME cluster is equipped with a cluster-local scratch (CLS) which is 64

KB of SRAM and used for inter-ME communciation within a cluster. The device

has 4 GB of DRAM that is accessible by all MEs through the Memory Unit. There

is also an SRAM component but the storage is actually backed by DRAM.

As mentioned above, each ME on the NFP is multi-threaded. The 8 con-

texts are scheduled in a cooperative and round-robin fashion. A context keeps

running until it yields control voluntarily and only one context can be running at

any time.

Signals are the primary mechanism in the NFP to achieve asynchronous

operations. They are usually raised by functional units to notify an ME of I/O

completion, but they can also be used for inter-context or inter-ME communication.

Contexts in the same ME communicate through either shared registers or signals.

The many registers and threads on the NFP define a very special program-

ming model. Programmers have access to a large number of registers and write

programs that are similar to high-level C code. Even though the MEs are multi-

threaded, programmers do not have to use locks since there is no preemption. But

they do need to take multi-threading into account when issuing long-running I/O

operations and must wait for signals explicitly. Programmers must also consider

what registers a variable is allocated to, for example if a variable is only visible to

each context or shared between all contexts.
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Figure 4.2: Architecture of NIC implementation on NFP-3240. Each rectangle
is a “block” in the firmware. There are two blocks (PCIE-SVC and another PCI-
OUT) not shown in the graph.

4.1.2 NIC implementation on NFP

The NFP-3240 already works as a network card. The current implementa-

tion enables one of the two ports on the card and makes it a 10-Gbps NIC.

As shown in Figure 4.2, the NIC implementation is made up of a few blocks

that run on different MEs. Most of the blocks run on one ME while the application

block uses 16 MEs. A total of 25 MEs are used by the current firmware.

The application block is the central piece that implements the logic of the

processor. As a network card, the application block takes packets from the PCIe

interface (PCI-IN), and sends them to the Ethernet link (TX). On the receiving

path, it gets incoming packets from RX and sends them to PCI-OUT. The RO

block (RO meaning reorder) ensures the packets are not out of order. There is also

a Queue Management (QM) block on both the incoming and outgoing path; they

provide buffers to avoid packet losses. All blocks other than application are called

infrastructure blocks, since they perform general tasks and may be used for other

purposes of the NFP, for example as a switch instead of a NIC.
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4.2 Design

The NIC implementation described in the previous section essentially sup-

ports a single stream of packets. Because we want to control each flow indepen-

dently, we need a number of parallel queues. We also need to classify packets

of each flow into different queues and control these queues according to a flow

schedule.

Two potential blocks in which to implement the queues are QM and TX,

since they give us the most control of packets. When flow schedules change, we

only have control over packets in the queues. Once a packet leaves a queue, it

can no longer be stopped. Similarly when we want to restart a flow, its packets

can only reach the wire following previous packets. So to minimize the off and on

delay, the queues should be put as close to the physical link as possible.

The last software block in the packet pipeline is the TX block, where packets

are handed to the hardware Ethernet controller. We can theoretically achieve

minimal delay variance by putting the queues in TX. But TX does not allow such

modifications because it has to process packets under a strict time requirement

to achieve a desired throughput. The QM block gives us much more freedom

since it works with packet descriptors instead of actual packet data. We choose

to implement the queues in QM and Section 4.4 evaluates the throughput of the

NIC.

With the different queues, we associate each flow with a queue and need

to classify packets into flows. All packets must be inspected and marked with a

flow number, which has to be accessible by the QM block so that it knows the

queue each packet should go to. The classification is based on packet data, such

as destination IP address or Type of Service. There are two places in the current

NIC implementation where we can afford to look at the data of each packet, the

kernel driver or the application block. The kernel driver can easily look at each

packet, but it has to pass the flow number within packet descriptors all the way to

QM, through the DMA interface, PCI-IN block, application block and RO block.

Much less change is needed if the classification is done in the application block.

It is much closer to QM and already reads some bytes of each packet to check
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the header fields. So our implementation modifies the application block to classify

packets.

To pass the flow information to QM, the application block embeds flow

numbers in packet descriptors, which contain several unused fields.

The last part of the design is how to handle new schedules from the switch.

Again our goal is to minimize off/on latency, so it is best if the schedules are

processed as early as possible. RX is the first block that receives incoming pack-

ets, but like TX it is heavily optimized and any change can easily affect the NFP

performance. The current RX does not look into packet data either, so it is impos-

sible to recognize and parse a schedule packet without issuing expensive memory

reads. The next block in the pipeline is the application block, which runs on many

threads and is able to look at each packet. So the application block is where we

capture schedule packets. To communicate a schedule to the QM block, any of the

inter-ME communication mechanisms can be used.

4.3 Implementation

We implement the new NIC firmware based on a software release for NFP-

3240 from Netronome. This section talks about the implementation details of each

design decision mentioned in Section 4.2.

4.3.1 Classifying packets

As mentioned in Section 4.2, the infrastructure blocks work with packet

descriptors. There are two parts to each descriptor. The first part is a 32-bit

handle that refers to a packet buffer that stores packet data. The second part is

a much larger data structure called metadata, which contains more information

about each packet including packet length as well as application-specific data.

One of the application-specific fields can be used to save flow numbers.

Metadata is initialized by the application block and to classify packets, it looks at

packet headers and marks the flow number in metadata. The metadata is stored

in DRAM and read later by the QM block.
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Figure 4.3: Architecture of original QM block

Figure 4.4: Architecture of new QM block

4.3.2 Multiple queues

The queues are implemented in the QM block. To make further changes

easier we first translate the original implementation from assembly to C.

The main function of QM is to receive packet buffer handles from RO and

pass the corresponding packet metadata to TX. The processing is divided into 5
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steps, as shown in Figure 4.3: (1) QM reads a packet handle from RO through

the CLS ring; (2) QM stores the handle in an SRAM queue (which is actually

backed by DRAM); (3) QM dequeues a handle from the SRAM queue; (4) QM

reads the corresponding metadata from the SRAM metadata queue (also backed

by DRAM); (5) QM sends the handle and metadata to TX through the NN ring.

The original QM block essentially passes all packets through a single queue

in step (2) and (3). We need to replace it so that packets from different flows are

put in different queues and then dequeued according to the queue schedule.

The new QM implementation has the same 5 steps but in a different order.

(1) When QM gets a packet handle, (2) it reads the corresponding metadata right

away, which contains the flow number marked by the application block. (3) QM

then puts both the handle and metadata in the correct DRAM queue. QM also

keeps a local copy of the queue schedule; if a flow is enabled, (4) QM reads from

its queue and (5) sends the handle and metadata to TX. If a flow is paused, no

dequeue is done so packets from the flow are not transmitted.

The main change is that the single SRAM queue in Figure 4.3 is replaced

by multiple DRAM queues. Since the SRAM interface is backed by DRAM, there

is no performance penalty. Of course we now read and write more data because

metadata is also stored in the queues, but the impact is negligible. In our prototype

implementation, we have 16 queues.

The assembly implementation of the original QM runs a single loop that

finishes all 5 steps. Our new implementation in C breaks the loop into two parts,

one of which handles the enqueue steps (1) - (3) and the other handles the dequeue

steps (4) and (5). This results in shorter and simpler code since each part of

the loop is executed by different contexts. To further simplify the code, the I/O

operations are done in a synchronous fashion (wait for each I/O operation to

complete before starting another). The NFP compiler parses such code better and

we can avoid heavy annotation to ensure correct register allocation.
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4.3.3 Receiving schedules

The last part is to supply the queue schedule to QM used in step (4). As

mentioned in the Section 4.2, the schedule packets are received in the application

block. It looks at the headers of each incoming packet and recognizes schedule

packets.

To send a schedule to QM, the application block writes to a transfer register

in QM. Since they run on different MEs, we have to declare the transfer register

as remotely accessible and import the register in the applicaiton block. Then it

can be written to through the CAP interface (CSR Access Proxy; CSR meaning

Control and Status Registers).

4.3.4 Format of schedule packets

We use a custom IP protocol number to designate schedule packets. The

payload of the packet is similar to PFC frames as described in Chapter 2, containing

a simple 16-bit mask that specifies if each flow should be pause or unpaused.

4.4 Evaluation

We evaluate two characteristics of the NIC: its throughput as a normal NIC

and the off/on delay it can achieve for the host-control protocol. We use an NFP-

3240 that is installed on an HP server with Intel Xeon E5520 and Linux 3.2.57

(Host A). Another server is used to send flow schedules and receive packets (Host

B). It is equipped with a Myricom Myri-10G Dual-Protocol NIC. The servers are

connected through a Cisco Nexus switch.

Before we discuss performance, Figure 4.5 shows the 16 flows controlled

independently, similar to experiments in Chapter 2, Compared to Chapter 2, here

we can see the individual packets because the days are shorter and as shown later,

the throughput is below line rate. When each day starts, there is a burst of packets

because of the queue; once the queue is drained, the flow gets back to the normal

speed. The longer a flow has been paused, the bigger a burst. Finally when all

flows are enabled, we see a similar pattern of bursts.
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Figure 4.5: Packet trace for 16 flows and day length 100 µs.

4.4.1 Throughput

We measure the throughput of the NIC with both the original firmware

and the new firmware with our modifications. By comparing the results, we make

sure our modifications do not result in performance degradation. We use iperf to

measure both sending and receiving throughput. For sending throughput, Host

A with the NFP runs iperf client and Host B with the Myricom card runs iperf

server. Receiving throughput is measured the other way around.

Figure 4.6 shows the throughput of the original NFP firmware. We measure

different number of flows (as different number of iperf client threads). For each

flow count, iperf is run for 10 times, each time for 10 seconds. The box plots

show the distribution of the evaluation results, including median, first and third



34

1 2 4 8 10 20
number of flows

3.0

3.5

4.0

4.5

5.0

5.5

6.0

th
ro

u
g
h
p
u
t 

(G
b
p
s)

TCP, sending

1 2 4 8 10 20
number of flows

TCP, receiving

Figure 4.6: NFP throughput with original firmware

quartiles, minimum and maximum, and outliers. The NFP achieves 5.5 Gbps for

sending with any number of flows and 4.2 Gbps for receiving with more than 2

flows. When there is only 1 flow, the receiving throughput is lower (3.6 Gbps) and

has much larger variance. However the NFP is supposed to work as a 10-Gbps

NIC. Bottlenecks potentially exist in the kernel driver or the firmware.

Figure 4.7 shows the throughput after our modifications. It is about the

same as Figure 4.6 for both sending and receiving throughputs. For sending with

20 flows, the box plot shows a larger variance (with smaller third quartile) while

in Figure 4.6 the lowest data point is considered an outlier. The reason is that a

throughput of 5.0 Gbps happens once in Figure 4.6 and three times in Figure 4.7.

However the median values are close. We conclude that the NIC has the same

performance even with extra queues and handling of schedule packets.
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Figure 4.7: NFP throughput with new firmware

4.4.2 Off/on delay

To measure on and of delays, we have to capture the timestamps of both

flow schedule packets and data packets in order to know how long it takes for a

flow to start or stop. The Myricom NIC on Host B gives us the timestamp of each

data packet, but not timestamps of schedule packets because we only know when

packets are sent to the outgoing queue, not when they are place on the wire.

To obtain the exact timing between data packets and schedule packets, we

use the SPAN (Switch Port Analyzer) feature of the Cisco Nexus switch. SPAN

monitors a specified port on the switch and mirrors all traffic to another port. We

need a third server (Host C or sniffer) which receives the duplicated packets of those

sent and received by Host A. Ideally we would have used ERSPAN (Encapsulated

Remote SPAN) that provides nanosecond-scale timestamps, but it is not supported
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Figure 4.8: Timestamps of schedule packets.

on our version of hardware.

We restore the timestamps of schedule packets by combining packet traces

from Host B and Host C. As shown in Figure 4.8, the timestamp of a schedule

packet tsch can be inferred from two preceding and following data packets. From

the packet trace captured by Host C, we find the two data packets, pkt1 and pkt2.

The packet trace from Host B gives us their timestamps t1 and t2. We calculate

tsch as tsch = t3 + lensch

2
where t3 = t1+(t2−lendata)

2
. To compute off delay, we search

for the last packet of the paused flow in the packet trace from Host B, which has

timestamp t as in Figure 4.8. The off delay is t− tsch. For on delay, we search for

the first packet in the flow and the delay is (t− lendata)− tsch. We subtract lendata

from t because the start of a flow is marked by the beginning of the packet. In our

experiments, schedule packets are 64 bytes while data packets can be configured

to different sizes.

The precision of off/on delay depends on how accurate is tsch, which depends

on several factors such as packet gaps and if SPAN can even capture all packets.

We discuss these issues later.

In our first experiment, Host A sends two flows (with two different IP types

of service) to Host B, which receives the packets and saves their sequence numbers

and timestamps. Host B sends schedule packets to Host A to pause and unpause

flow 0 for 10,000 times. In total there are 20,000 schedule packets. Each time

flow 0 is paused or unpaused for 100 µs (day length). The switch mirrors all

packets to Host C which records their sequence numbers, including those of the

schedule packets. We need more than one flows because otherwise it is impossible

to reconstruct timestamps of on schedules. If there is only one flow and it is

paused, no packet is transmitted before the schedule packet. We refer to these

extra flows as background flows.
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Figure 4.9: CDF of packet gaps around each each schedule packet

The sniffer captures 19,998 schedule packets, however not all are useful.

8379 packets are received back to back (or with only one data packet in between)

even though they are sent with 100 µs intervals. This problem might be caused

by bad timing of the receiver or sending schedule packets through a switch. Data-

packet gaps (between t1 and t2) are unreasonably large (over 10 µs) for 17 schedule

packets. 10 of the gaps are between 80-173 µs which is similar to a clock problem

we observed on these servers before, where the clock jumps ahead 120 µs every 1.2

milliseconds. 5 of the rest are close to 10 µs, 1 is 600 µs and the last one is 3 ms.

No packets are lost in all of these cases, so again the cause might be in the switch

or the Myricom NIC.

After removing these problematic schedule packets, we are left with 5802

off schedules and 5780 on schedules. Figure 4.9 plots the CDF of the packet gaps.

The majority of the gaps are below 6 µs. The median is 3 µs for off schedules and 4

µs for on schedules. This matches the data rate reported by the packet generator,

which can only send at a similar packet rate regardless of packet size. With packet

size of 64 B, it can generate traffic at 680 K packets per second, or 350 Mbps. The

average packet gap is 1.47 µs. Since the packet gap plotted in Figure 4.9 includes

two packets (t2 − t1 includes a data packet and a schedule packet), a median of 3
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Figure 4.10: CDF of off and on delays

µs makes sense. The packet gaps for on schedules are slightly longer because when

they are sent, only one flow is enabled and thus the data packets have a larger gap.

Table 4.1: Off and on delays (µs)

mean std range min max

off delay 2.48 1.26 6.77 0.04 6.82

on delay 4.40 1.47 8.27 0.14 8.40

We calculate off delay and on delay as described above, after taking out

those with unreasonably large gaps. Figure 4.10 shows the CDF of the off and

on delays. See Table 4.1 for the mean, standard deviation and range. On delay

has a negative value because By comparing range to the results in Chapter 3, the

NFP has a slightly better performance man SDD but still much worse than PFC

implementations. However if we take into consideration of the inaccuracy of the

packet gaps, the actual performance should be more desirable than shown here.

But we defer it to future improvements to the evaluation testbed.
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Figure 4.11: CDF of off and on delays for different packet sizes

More experiments

The above experiment has a few hard-coded settings, for example data rate,

data packet size, number of background flows and which flow is paused/unpaused.

We did not evaluate different data rates due to limitations in our traffic

generator, but due to bottlenecks in the NFP, changing packet size is equivalent

to changing data rate.

Figure 4.11 shows off and on delays for different packet sizes. The delays

generally fall below 10 µs, although there is a long tail as the size increases, possibly

due to SPAN dropping packets. We omit results for 1400 B because too many

packets are dropped.

Both off delay and on delay follow a similar distribution for different packet

sizes, with similar variance. The mean values grow with packet size, which can

be explained by that larger packets take longer to transmit. For off delay, larger

packet size means more data to transmit before a flow is stopped. Similarly for

on delay, before a flow is restarted, more data has to be transmitted from the

background flows.

Table 4.2 and Table 4.3 show evaluation results for different number of

flows. Table 4.4 and Table 4.5 show results for controlling different flows when



40

Table 4.2: Off delay for different packet size and number of flows. Each cell shows
the mean and standard deviation (µs).

packet size

nflow 64B 500B 1000B

2 2.81 (1.28) 3.63 (1.48) 4.66 (10.83)

4 2.08 (1.32) 2.37 (2.06) 3.01 (3.83)

8 1.52 (1.25) 1.78 (2.97) 2.12 (3.03)

16 1.25 (0.87) 1.43 (1.22) 1.75 (1.19)

Table 4.3: On delay for different packet size and number of flows. Each cell shows
the mean and standard deviation (µs).

packet size

nflow 64B 500B 1000B

2 4.32 (1.53) 4.99 (1.17) 5.33 (1.68)

4 4.30 (1.01) 4.61 (1.20) 5.47 (1.25)

8 4.44 (1.58) 4.84 (0.90) 5.57 (1.61)

16 4.31 (1.24) 5.39 (3.10) 5.47 (1.28)

Table 4.4: Off delay for pausing different flows. Each cell shows the mean and
standard deviation (µs).

packet size

controlled

flow
64B 500B 1000B

0 2.01 (1.45) 2.53 (2.21) 2.83 (2.61)

1 2.04 (1.30) 2.32 (1.55) 2.83 (1.66)

2 1.96 (1.41) 2.44 (2.01) 2.78 (3.67)

3 2.01 (1.67) 2.35 (2.02) 3.00 (3.74)

there are 4 flows in total. Each experiment sends 100,000 off schedules and on

schedules.

When the number of background flows increases, off delay becomes smaller

because the traffic generator sends packets in a round-robin fashion and packets

from different flows are perfectly interleaved. With more packets from background
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Table 4.5: On delay for pausing different flows. Each cell shows the mean and
standard deviation (µs).

packet size

controlled

flow
64B 500B 1000B

0 4.18 (1.18) 4.81 (0.93) 5.26 (1.50)

1 4.20 (0.99) 4.53 (1.34) 5.39 (0.96)

2 4.08 (1.12) 4.69 (0.91) 5.21 (1.70)

3 4.04 (1.15) 4.49 (1.18) 5.36 (1.15)

flows in the queue, the controlled flow can be stopped faster. On delay stays

largely the same regardless of the number of flows which is expected. Table 4.4

and Table 4.5 show that off delay and on delay do not change no matter which

flow is controlled by schedule packets. Here each column should contain the same

value, which is also equal to the corresponding cell in row nflow = 4 in Table 4.2

and Table 4.3. The results are close to our expectations.

4.5 Summary

In this chapter we discussed the design and implementation of a host-control

protocol in the network interface card. Using a programmable network flow pro-

cessor, we added multiple queues in the NIC with support for fine-grained flow

schedules. We evaluated the performance of the NIC and compared it to alterna-

tive implementations including PFC and SDD. Its performance is slightly better

than SDD, but not yet close to PFC in commodity NICs.

Due to limitations in the evaluation testbed, we devised a way to infer

timestamps of schedule packets from two packet traces. But the testbed still has a

lot of imperfections, preventing us from running some experiments like large packet

sizes.

Our conclusion is that it is viable to implement a fine-grained end-host

traffic control protocol in the NIC hardware. It has better performance than a

software implementation and does not require changes in the operating system or
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network stack. The card can act like a normal NIC to conventional switches, but

can also work with a hybrid switch like REACToR.



Chapter 5

Conclusion

In this chapter, we review the different implementations of the host traffic

control protocol, discuss future directions and conclude the thesis.

5.1 Host-Control Protocol and the Three

Implementations

The end-host traffic control protocol is motivated by the hybrid switch

REACToR. We describe details of the protocol and its performance requirements.

What we care most is the on delay, off delay and their variance.

There are three possible implementations of the protocol. The first is based

on the priority-based Ethernet flow control protocol. To support the use case

in REACToR where there are more than 8 flows, the PFC priorities need to be

reused. However to reuse the priorities we have to remap queues in the system

which causes the problem of residual packets. We measure the residual packets and

show that such an implementation does not meet the requirements of the traffic

control protocol, because packets from the wrong flows are sent for considerable

time. But the original PFC implementations in commodity NICs have excellent

performance with regard to on and off delays. They set the baseline for evaluating

future implementations.

We then discuss the second implementation of the traffic control protocol

43
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Table 5.1: Comparison of the three implementations. Each row shows different
statistics but the numbers are all in µs.

off-delay on-delay

PFC min (max): 1.0 (2.2) min (max): 1.2 (1.3)

SDD mean (range): 10 (4) mean (range): 12 (4)

NFP mean (std): 2.48 (1.26) mean (std): 4.40 (1.47)

based on DPDK. With the flexibility and performance of DPDK, it can be used to

implement the whole network stack. A recent proposal by Software-defined Data

Plane [11] provides an end-host stack that supports centralized network controllers.

We talk about how SDD can be used as an implementation of the host-traffic

control protocol with reasonable performance. The primary disadvantage of a

solution on top of DPDK is that it requires a lot of changes in end hosts, including

replacement of the network stack and recompiling of applications.

The main part of this thesis is a hardware implementation of the protocol

that hides the changes in the network from end hosts. Using a Netronome net-

work flow processor, we reprogram a network interface card to support fine-grained

traffic control. Such an implementation allows REACToR to achieve the goal of

operating ”under the radar”, with applications and the network stack unaware of

circuits in the network. We describe details of the new NIC design and evaluate

various performance characteristics. Its on and off delays are better than the SDD

implementation, but still worse than PFC. However given the inaccuracy in the

evaluation setup, better experiments are needed to provide more precise measure-

ments. Since a hardware implementation makes host-traffic control transparent to

the operating system, the network flow processor provides a feasible solution to

implementing the control protocol.

Table 5.1 shows the known statistics of the delay for each implementation.

Since the published results on the first two do not include mean and standard

deviation numbers, we can only compare the available statistics.
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5.2 Future Work

The hardware implementation based on NFP supports 16 flows. A future

improvement is to extend to more flows and evaluate the scalability of the NIC.

Right now a list of counters are associated with each queue which represent the

number of packet descriptors. Three microengine threads serve the 16 queues

by searching through them sequentially. Queues can be added by simply declaring

more DRAM queues in the QM block, but the sequential search should be evaluated

to test its scalability.

The kernel driver for the NFP can also be improved. The current implemen-

tation only supports a single queue in the kernel, while having multiple QM queues

on the card. The status of the QM queues is not reported to the kernel driver, thus

when any QM queue is full, packets coming into that queue are silently dropped.

A multi-queue kernel driver will work better with the new firmware. The kernel

driver needs to declare multiple queues to the upper layers. The firmware (PCI-IN

block) then pulls packets from these queues according to QM-queue status. When

a QM queue is full, packets for other queues are still transmitted.

Another thing we would like to have done is more precise measurements of

the NIC implementation. As mentioned in Section 4.4.2, the timestamps of sched-

ule packets are only inferred from packet traces. Ideally we could use something

like ERSPAN to observe the timestamps directly. With better timestamps, we can

get a more accurate evaluation of on and off delays and the performance of the

hardware implementation.
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