
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Improving Performance for Flash-Based Storage Systems

Permalink
https://escholarship.org/uc/item/7w70s24f

Author
Yang, Jingpei

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w70s24f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

IMPROVING PERFORMANCE FOR FLASH-BASED
STORAGE SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Jingpei Yang

June 2014

The Dissertation of Jingpei Yang
is approved:

Professor Scott Brandt, Chair

Professor Carlos Maltzahn

Professor Jose Renau

Nisha Talagala, Ph.D.

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Jingpei Yang

2014

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Acknowledgments xi

1 Introduction 1
1.1 Flash memory in storage systems 1
1.2 Contributions . 4
1.3 Outlines . 6

2 Background and Related Work 8
2.1 NAND flash background . 8
2.2 Garbage Collection, Write Amplification, and Wear Leveling . . . 9
2.3 Flash-based Cache . 11
2.4 Log-structured system . 15
2.5 Approaches to access flash memory 18

3 Flash as a Cache in Tiered Storage 21
3.1 Flash-based Caching . 21
3.2 Problem Analysis . 23
3.3 Simulator and Analysis Methodology 25

3.3.1 Block Traces and Workload Analysis 26
3.3.2 SSC Simulator . 27

3.4 Reducing CLWA . 30
3.4.1 Cache Admission Control 30
3.4.2 Admission Policy Analysis 33

3.5 Reducing FLWA . 35
3.5.1 Cache-based vs. GC-based Eviction 35
3.5.2 GC Algorithms . 37

3.6 Combined Benefit . 43
3.7 QoS with Virtual Storage Containers 46
3.8 Future Work . 49

iii

3.9 Summary . 51

4 Log-structured Flash-based Storage Systems 53
4.1 Experimental Methodology . 54

4.1.1 Log-on-Log simulator . 56
4.2 Issues with stacking logs . 57

4.2.1 Metadata footprint increase 57
4.2.2 Mixed workload . 60
4.2.3 Unaligned segment size 61
4.2.4 Different log activeness 64
4.2.5 Decoupled segment cleaning 67

4.3 Experimental evaluation . 71
4.3.1 Single log . 72
4.3.2 Multiple logs . 78

4.4 Methods for log coordination . 80
4.4.1 Size coordination . 81
4.4.2 Virtual log defragger . 83

4.5 Future work . 86
4.6 Summary . 86

5 Log-less Flash-aware Storage Systems 88
5.1 Collapsing logs . 88

5.1.1 DirectFS using sparse space 89
5.1.2 Object-based flash-aware system 90

5.2 Simulator and analysis methodology 96
5.3 Experimental evaluation . 99

5.3.1 Experimental setup . 99
5.3.2 Performance evaluation 100

5.4 Future work . 104
5.5 Summary . 105

6 Conclusions 107
6.1 Flash-based caching device . 107
6.2 Flash-based primary storage . 109

Bibliography 111

iv

List of Figures

1.1 Storage system architecture . 3

2.1 Components of an SSC. 12

3.1 HEC Analysis and Simulation Environment 27
3.2 Two eviction Modes . 29
3.3 Effects of different admission policies: total number of bytes writ-

ten to flash are reduced by up to 80% through sequentiality track-
ing and touch count detection for selected traces, leading to longer
device life with improved hit rates. 36

3.4 Effects of eviction modes and GC policies varying SSC sizes. . . . 40
3.5 TPC-E: valid sectors distribution in log for different eviction modes,

GC-based eviction shows higher deviation of valid data though-
out log than Cache-based eviction, providing more flexibility on
victim-segment selection. 42

3.6 Comparison of TCWA and hit rate before and after cache and
flash layer optimizations: TCWA is significantly reduced with
well-selected algorithms. Hit rate maintains a certain level and
is improved under some workloads. 45

3.7 hm 0 performance with different VSC QoS configurations. 49

4.1 Log-on-log simulator . 57
4.2 Metadata foot print increases as more logs are introduced on file

system, defeats the benefit of multiple logs. 58
4.3 Mixed workload from logs and other traffic. 61
4.4 Unaligned segment size results in fragmented device space caused

by garbage collection. 62
4.5 Device GC Write Amplification factor varies segment sizes. . . . 63
4.6 Different log activeness results in high degree of fragmentation. . 66
4.7 Decoupled segment cleaning without TRIM 69
4.8 Decoupled segment cleaning with TRIM. 69
4.9 Single log experiments varying the capacity ratio and segment size. 76
4.10 Directing data to two separated logs can reduce WA in its own

layer, but potentially increases WA in the others, and results in
higher TCWA under some workloads or configurations. 79

v

4.11 Virtual Log Defragger. 84

5.1 The object-aware data placement framwork. 94
5.2 Compenents of object-based flash device. 97
5.3 Erase counts varies different data placement strategies. Object

aware data grouping achieves lower erase counts under both GC
selection algorithms. 102

5.4 Write amplification factor and wear-leveling varies different data
placement strategies. With object aware grouping, there is a bet-
ter balance between lower WA and improved wear-leveling factor. 103

vi

List of Tables

1.1 Comparison of current memory/storage technologies. [73] 2

3.1 TPC-E Polluted: Combined write amplification under ADMIT
ALL and OLDEST cache-based eviction mode, the workload is
more write intensive than the original one due to extra writes
from cache misses and from GC reclaiming process. 24

3.2 Trace Characteristics . 27
3.3 Evaluation of different cache admission policies (TPC-E Polluted):

restricted admission policies achieve higher hit rates with reduced
writes to the flash media when cache size is smaller. 34

3.4 TPC-E Polluted: Collective endurance impact under SSEQR+TC
and cost-benefit GC-based eviction mode, with well-selected cache
and flash layer algorithms, TCWA can be reduced by up to 20x
with improved hit rates. 43

4.1 Device WA varies with different number of upper logs. 67
4.2 TPCE: Lower capacity ratio provides device GC more invalidated

pages. TCWA shows reduction with more aggressive upper log
GC under same lower log physical size. 75

5.1 Object-level trace characteristics and experimental configurations. 100
5.2 Initial and final status of valid sectors distribution in different

object placing modes.Higher validity deviation in cost-benefit GC
algorithm does not always lead to lower WA. 102

vii

Abstract

Improving Performance for Flash-based Storage Systems

by

Jingpei Yang

With the dramatic advances in electronic device industry, the availabil-

ity of high speed non-volatile memory (NVRAM) has introduced a new tier into

the storage hierarchy, and holds great promise for reduction in latency, power

consumption, and improved performance. Among them, flash-memory has be-

come a popular storage medium to replace hard disk as a permanent storage

device and DRAM as a temporary storage device. Yet, despite their fast random

I/O performance, the design of a flash-based storage system achieves subopti-

mal performance or suffers from reduced endurance due to the nature of flash

memory, for example, out of place update, asymmetric read-write throughput,

and limited write cycles. Lack of application aware design makes flash memory

less efficient, and hence cannot meet various performance requirements. To this

end, we investigate the roles flash memory plays in different storage applications

and their performance and reliability requirements. By examining the behavior

of these systems and their consequent data access characteristics, as well as the

performance impact, we propose solutions that tradeoff performance, cost, en-

durance and reliability to achieve high efficiency for flash memory in different

storage applications with reduced overhead.

We first explore the use of flash memory as a write-through cache in a

tiered storage. We demonstrate the individual and cumulative contributions of

cache admission policy, cache eviction policy, flash garbage collection policy, and

flash device configuration on a flash caching device. We show that workloads on

Solid State Caches (SSCs) have significantly greater write pressures than their

storage counterparts. we propose HEC, a High Endurance Cache that aims

to improve overall device endurance via reduced media writes and erases while

increasing or maintaining cache hit rate performance.

To further characterize the behavior of flash memory used in differ-

ent storage applications, we focus on flash as a primary backing storage device

in the second part of this dissertation. We explore the drawbacks of a typi-

cal log-structured file system on top of a log-structured FTL flash device. We

characterize the interactions between multiple levels of independent logs, and

describe several practical scenarios which arises in real log-on-log systems. We

then propose a log-aware coordination to tune the layout of logs, so that when

multiple layers of logs exist in the system we can still achieve high performance

with minimum interference among each log.

In the third part of this dissertation, we explore the approaches to

collapsing logs. While there are several popular ways that utilize the nature of

flash memory translation layer to eliminate multiple layers of logs in the entire

system, we focus on the benefit we can obtain from a log-less object-based flash

aware system. We show from simulation experiments that advanced features

could be embedded to improve overall performance for object-based flash system

with low overhead through a rich interface.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my

advisor, Prof. Scott A. Brandt for his great and continuous support of my Ph.D.

journey. I would like to thank his help, kindness, and understanding during the

most difficult time I had in my Ph.D. His consistent encouragement and support

made this journey complete. It is my honor to have him as my Ph.D. advisor

and learn from him.

I would like to thank my manager at Fusion-IO, Dr. Nisha Talagala,

who provided guidance and persistent help on my research. Without the oppor-

tunities she gave me and her help and thoughtfulness, I could not be able to go

through those tough times. She is one of the sharpest people I have ever met

and keeps bringing new ideas. I learned a lot from her enthusiasm and diligence.

I would also like to thank my committee members, Prof. Carlos Maltzahn

and Prof. Jose Renau. Their time, dedication and insightful comments helped

me to improve my thoughts. In addition, I would like to thank Prof. Yiming

Hu who introduced me to the world of computer systems and architecture and

encouraged me to continue my Ph.D. study.

My gratitude also goes to my colleagues in the Advanced Development

Group at Fusion-IO and Prof. Darrell Long and Prof. Ethan Miller in the

Storage Systems Research Center at UCSC. I am lucky to have them during my

Ph.D. journey and work with them.

More importantly, the success of my Ph.D. depends largely on the sup-

port from Mary Fan and her family. My life in the United States could not go

xi

evenly without their help. Through them, I see God’s hand and provisions of

joys, challenges, and grace.

Last but not least, I would like to express my deepest gratitude to my

family. The tremendous support from my parents is beyond description. Being

far away from them for the past many years, their love is always with me. Thanks

for the good education they gave me. They deserve it.

xii

Chapter 1

Introduction

1.1 Flash memory in storage systems

Flash based devices are increasing in popularity for performance sensi-

tive applications ranging from databases to key-value stores to persistent mes-

saging, to name a few. Table 1.1 briefly depicts the characteristics of NAND flash

and other traditional storage media. With flash memory’s unique advantages,

it shows great potential to improve performance for a wide range of storage ap-

plications. As a result, the way we designed flash-based storage systems years

ago can no longer meet the needs of the fast development trend and increasing

requirements on performance and reliability any more. On the other hand, a

lot of designs only focus on improving performance on a single layer without

considering the limitations of the other layers. For example, the space reclaim-

ing process in a log-structured file system may be detrimental to the garbage

collection efficiency in the flash device.

Figure 1.1 depicts an overview of today’s storage hierarchy and shows

1

DRAM NAND Flash Disk

Cell Size 6-8 F 2 4-5 F 2 (2/3) F 2

Read Latency 10-60 ns 25 µs 8.5 ms
Write Latency 10-60 ns 200 µs 9.5 ms

Energy per bit access 2 pJ 10 nJ 100-1000 mJ
Static Power Yes No Yes
Endurance > 1015 104 > 1015

Non-volatility No Yes Yes

Table 1.1: Comparison of current memory/storage technologies. [73]

different roles of flash memory devices are playing in the system. As flash mem-

ory can deliver much better I/O performance than disk-based systems, it has

been used to store some frequently access data (e.g. metadata) and used in com-

bination with HDD to diminish the I/O latency through the block interface, or

even replace the HDD as a primary storage device. As shown in Figure 1.1, some

systems use flash array as a Network Attached Storage devices(NAS) [76, 26],

some use it as a traditional SSD backing device [83, 82]. In addition, its non-

volatile characteristic and relatively lower cost per GB makes flash memory a

good candidate to extend the size of main memory using DRAM in a tired stor-

age. Using flash as a cache enables applications with good workload locality

to leverage the performance of flash while utilizing less expensive traditional

disk-based storage as the backing store. A Solid-State-Cache (SSC) could be

used to serve various types of backing storage devices, there are a few commer-

cially avaliable flash based caching products to better serve large scale enterprise

storage systems and provide improved QoS [1, 87, 6].

While flash device has been used in a wide range of applications, the

design of a flash-based storage system still achieves suboptimal performance

2

Figure 1.1: Storage system architecture

due to the nature of flash memory such as out-of-place update and limited Pro-

gram/Erase cycles (P/E cycles). Minimizing unnecessary writes to flash is gener-

ally of high importance. Though a lot of research has been done to address these

issues and optimize the benefit flash memory can deliver to the system, most of

the designs only focus on improving performance on one layer, while running the

risk of increasing overhead and defeating its benefit on the other layer. This is

due to unawareness of different layers and the lack of coordinations between dif-

ferent system components. For example, some SSC designs minimize the garbage

collection overhead by exclusively discarding data in the victim segments, but

not considering the loss of valid pages may potentially results in more writes to

the flash cache due to a cache miss. Some log-structured flash-aware file system

separating data to different file system logs to get better data arrangement, but

not be aware of the limitations of the underlying hardware that can only support

3

fewer number of append points.

These issues lead to one of the problems our dissertation address: What

algorithms and design choices are better for different flash memory applications

to tradeoff performance and cost? By investigating the challenges of reducing

cost while maintaining high performance and reliability issues that a flash-based

storage system meets, we explore algorithms for garbage collector, data place-

ment strategies, application-aware controllers in different flash-based storage de-

vices. For instance, a cache device is in high demand of fast random I/O access,

this forces garbage collector to reduce overhead on both selection and reclaiming

processes so that it will not block the incoming requests and waste CPU cycles.

Meanwhile, as write-through cache allows eviction of valid data, cache hit rate

shall be maintained to a certain level. Thus, the garbage collector in device layer

should be aware of such performance requirements that is required by the upper

layer.

1.2 Contributions

The dissertation is a comprehensive study of flash memory used in the

storage systems. We investigate the flash memory device behavior following the

data path in the storage hierarchy, from caching for temporary data storage, to

the store of a large volume of permanent data. Different from other flash-aware

system designs that only focused on optimizing the performance of a single layer

without being aware of the limitations of the other layers, for example, multiple

file system logs on top of a single append point flash chip, or GC eviction policy

4

for flash-based cache without considering the hit rate QoS, our study explores

coordinations between different layers. We demonstrate the individual and cu-

mulative effects of different storage layers on the overall systerms’ performance

and endurance.

While there are many new classes of materials and technologies be-

coming interesting in the family of NVRAM, this dissertation focuses on solving

the problems in flash-based storage system. The use of flash memory in this

dissertation focuses on caching, primary backing storage, and a combination of

them. Flash memory used in other storage systems is simplified in our work.

Besides, algorithms proposed in this dissertation that fit into flash-based system

could also be applied to issues for other NVRAM candidates in the future as

long as log structure is used and out-of-place update happens in those devices.

The technical contributions of this dissertation include the following:

• We present the unique write pressures seen by a flash-based cache device

that result in cache and flash layer write amplification, and their combined

effects on hit rate and media endurance. We present methods to reduce the

write amplification factors by using a combination of admission, eviction,

and GC optimizations. Our combined algorithms help reduce cache writes

significantly, with improved or maintained hit rate.

• We characterize the interactions between multiple levels of independent

logs in a log-structured system using flash memory as a storage media,

and describe several practical scenarios which arises in real systems. We

show that log on log can result in highly counterintuitive behaviors. Fur-

5

thermore, we recommend several design choices for log coordinations to

preserve the advantages of log-structure while trailing off the disadvan-

tages that one level of log passes to the others.

• While log coordination helps improve overall performance in a system hav-

ing multiple layers of logs, collapsing logs is always beneficial as it reduces

the system overhead with improved efficiency. We also explore the possi-

bilities of utilizing the nature of flash translation layer for a log-less flash

aware system. Object-based flash system is investigated in this disserta-

tion. We explore its feasibility and the overhead of some advanced features,

for example, object data grouping, and discussed its use case.

1.3 Outlines

The rest of the dissertation is organized as following: Chapter 2 dis-

cusses flash-based storage systems and the state-of-art related work. This in-

cludes introduction of current designs and problems with flash memory used as

a traditional primary backing storage, as well as it being used as a caching de-

vice in a tiered storage system that resides in between DRAM main memory

and HDD. In chapter 3, we present the design of a High Endurance Flash-based

Cache (HEC) and the tradeoff between flash endurance and cache performance.

We evaluate the proposed algorithms through an SSC simulator and discussed

future directions to extend our work. Chapter 4 and chapter 5 are related to

flash memory used as a primary backing storage device. Chapter 4 discussed

the problem of existing log-structured file systems on top of a flash memory de-

6

vice. We show that log on log can result in highly counterintuitive behaviors. In

addition, we recommend several design choices and solutions to improve over-

all performance and minimize overhead for a log-aware system while log-on-log

cannot be eliminated. In chapter 5, we discussed the system design choices of

collapsing logs. It utilizes the nature of a log-like flash translation layer (FTL)

to reduce total number of logs in the entire system. Chapter 6 summarizes

contributions of this dissertation.

Parts of the dissertation have been published as a paper in conference.

Chapter 3 is based on a paper published in the 7th ACM International Systems

and Storage Conference (SYSTOR) in 2013 [96]. Chapter 3 and chapter 4 are

part of the projects I have done at Fusion-io. The ideas are described in United

States Patent Application entitled SYSTEMS AND METHODS FOR LOG CO-

ORDINATION, and SYSTEMS AND METHODS FOR A HIGH ENDURANCE

CACHE.

7

Chapter 2

Background and Related Work

Flash memory has attracted the attention of modern storage systems.

In this chapter, we discuss flash-based storage systems and the state-of-art re-

lated work. We first introduce the fundamental of NAND flash briefly, followed

by the introduction of current designs and problems with flash memory used as

a primary backing storage, as well as it be used as a caching device in a tiered

storage system.

2.1 NAND flash background

NAND flash memory has unique characteristics particularly with re-

spect to writes. In absence of mechanical parts, it has less possibility of page

failure, but higher chance of raw bit error as the density increases. Many studies

have been done to investigate the failure behavior of SLC and MLC [31, 89, 7].

The Raw Bit Error Rate (RBER) varies over time which is affected by I/O op-

erations, temperature, and etc. Moreover, RBER increases as the the number of

8

P/E cycles increases. As the capacity and density of flash chips increases, metrics

such as reliability, endurance, and performance are declining [32]. As a result,

longer and more complex ECCs are employed [61, 20, 45]. This brings challenges

to the future of a performance aware flash memory based storage system. While

high random I/O performance make them attractive in many applications, the

increasing cost of maintaining reliability and endurance make it difficult to be

adopted in large scale applications.

As the media must be explicitly erased between successive updates to

the same location, with the erase unit being substantially larger than the update

unit. NAND flash also has limited endurance, measured in P/E Cycles. For

example, some 25nm multi-level cell (MLC) NAND flash devices have a rating

of 3K P/E cycles per NAND flash erase block [63].

2.2 Garbage Collection, Write Amplification, and Wear

Leveling

To amortize the erase cycles over as many writes as possible, FTLs per-

form out-of-place updates. New writes are written to empty blocks while a back-

ground garbage collector coalesces free space and performs erases. Flash P/E

cycles are consumed by both user-data writes and the extra writes performed by

GC. The amplification of user writes by the system is referred to as write am-

plification [2] or Flash-Layer Write Amplification (FLWA). The combination of

user writes and FLWA result in the total Physical Bytes Written (PBW), which

is the primary metric of endurance and reliability in flash devices. FLWA can be

9

affected by user workloads and GC policies (including selection of erase blocks).

Significant research has been performed on GC strategies, primarily focusing on

storage usages of flash, with some focus on cache usages.

Studies have focused on analysis of write amplification and performance

effects in SSDs due to various GC strategies [36, 71, 15]. In these studies, en-

durance impacts are assessed through measurement of write amplification or

write workload effects from various victim selection strategies. Other studies

have considered the effects of over-provisioning and victim selection [36, 71].

Other studies have focused on the impacts of wear leveling and its impact on

SSD endurance [66, 18, 8]. Recently, some research introduced a GC selection

algorithm designed for caching [85, 33]. Some other research focus on separating

data of different update frequencies and append them to different points in the

log during the initial writes, thus providing a better segment selection strategy

for GC [64, 37, 48, 67]. While reducing GC overhead for flash-based devices used

in different applications has been previously discussed [55, 51], there has been a

lack of research on coordinating GC with different cache components.

In addition, some research tries to pass the file system semantic to the

underlying flash memory device without much change on the block interface, thus

reducing the extra amount of data copied forward by GC due to lack of knowledge

from file system delete operations (TRIM) [10, 84, 42, 97, 92]. Others proposed

a new design of data structure for indexing in flash-based file systems [79, 27, 43,

93] to reduce the write operations for metadata update. On the other hand, some

research takes advantage of GC process to reduce file system level fragmentation

10

by combining data with adjacent logical block addresses, thus reducing the data

structure entries and write operations [21].

Recently, some researches introduced a garbage collector selection al-

gorithm that is designed for caching [86, 34]. From a cache point of view [14],

write-through policy allows eviction of valid packets silently but has high demand

of cache read hit rate, while write-back policy needs to handle asynchronous up-

date of cache and backing store. The asynchronous update to the backing store

introduces many challenges to garbage collection policies, admission policies, and

performance of regular operations. It can however enable more write intensive

workloads to become cache candidates, making it a good target for endurance

focused investigations. Thus, selecting a better segment to clean is not only

a problem of finding one with fewer number of valid packets to copy forward,

but also related to some other issues, for example, the hit rate of a flash-based

write-through cache will be affected by the garbage collector’s eviction policy.

2.3 Flash-based Cache

In all caches, hit rate is a primary performance and effectiveness met-

ric. In DRAM based caches, since the only cost of a cache insert is the content

displaced, focus has traditionally been on the eviction policy. Since SSCs gen-

erate writes upon admission of new data, a cache insert should be evaluated in

terms of not just what it replaces but also the media writes. In this dissertation,

we refer to these increased writes as Cache-Layer Write Amplification (CLWA),

which is computed as the ratio between the cache-generated writes and the orig-

11

inal workload writes. CLWA can result from cache misses on workload reads

and from both hits and misses on workload writes. Consequently, SSCs require

additional admission policy consideration specifically to help segregate or reject

unnecessary disk traffic (e.g., backups) from polluting the cache and to admit

only “quality” (or popular) data into cache. The size of the cache, the extant

cached data, and the admission policy can therefore impact the writes generated

by the cache to the underlying flash device.

Figure 2.1 shows the components of an SSC that serves varied backing

storage devices. An SSC device includes several components: cache controller,

flash controller, as well as banks of NAND flash. The cache controller may

include different admission and eviction policies to control the data flow to the

cache device. The choice of GC algorithms in the flash controller will determine

how incoming writes translate into physical writes, and hence the FLWA. The

combination of CLWA and FLWA will determine the PBW and the endurance

of the device for the cache workload, consequently we focus on writes and erases

as the flash endurance metrics.

Figure 2.1: Components of an SSC.

12

Given that an SSC can cache various kinds of back-end storage systems,

the performance of an application using an SSC is dependent on many factors:

the hit rate, the performance of the SSC, the performance of the backing store,

I/O patterns and bottlenecks in the application, etc. Since our goal in this

paper is to improve device endurance while maximizing performance, we focus

on hit rate as the performance metric, and writes and erases as the endurance

metrics. Comparing hit rate ensures that we can assess the efficiency of the

cache independent of the backing store and other factors. Since in most cases

SSCs are deployed in write-through mode to preserve the reliability of data, we

focus this study on write-through caching.

Limited studies [85, 71, 49] exist that have focused specifically on the

design of a high performance SSC device with file system or firmware support.

FlashTier [85] describes a system architecture that guarantees data consistency

and supports sparse address space for SSCs. OP-FCL [71] trades off over-

provisioned space with SSC overall performance. Other research focuses on inte-

grating flash into disk-based systems to improve system performance [78, 16, 19].

Narayanan et al. [69] quantifies the benefit of using SSCs for enterprise work-

loads. Little is known about the combined effects of workloads, caching admis-

sion and eviction policies, and FTL enhancements on SSC write workloads. In

our work, we evaluated additional SSC capabilities and characteristics and the

resulting WA (CLWA, FLWA, TCWA) and cache hit rate impacts on SSCs on

various traces. Additionally, we consider the impact of reserving capacity of

physical usage for hit rate and the combined system effects on the SSC write

13

workload and hit rate.

Other research outlines the design tradeoffs for SSD performance and

utilizes workload trace-driven simulators on traces obtained from real operational

workloads [8, 52]. Those simulation tools provide instruments to analyze SSDs

as a primary backing store. Our study utilizes simulators that are trace-driven,

however we have integrated cache-specific policies for admission and eviction

together with FTLs that focus on log-structured devices often used in SSCs.

Such integration provides us with a framework for investigating the combined

affects of key SSC components and their impacts on hit rate versus endurance.

Many studies have been performed for admission control and replace-

ment strategies of a cache device [12, 75, 95, 62]. Different from cache devices

that support in-place-updates and unlimited write cycles, admission control for

SSCs is even more critical to both performance and endurance. Studies have also

focused on detecting sequentiality in workloads in SSCs [71]. Using techniques

such as sequentiality detection and looping request detection [50] does impact

the workload as seen by the SSC. In addition, techniques for identifying recency

in cached data also impacts the workload seen by an SSC [41, 40]. Parallel to

these research, our work provides an extendable framework to integrate these

algorithms into an SSC device, and helps inform understanding of the impact of

different algorithms on a solid-state NAND device.

14

2.4 Log-structured system

As flash based devices are increasing in popularity for performance

sensitive applications ranging from databases to key-value stores to persistent

messaging, to name a few. In many or most of these cases, applications started

by using flash as a fast disk and then made optimizations within the application

itself to better leverage the flash. Since flash devices are known for asymmetric

write performance, a common design pattern for applications is to use a log

structure to optimize for flash - twitter fatcache [4], NILFS [53], SILT [59],

FlashStore [23], and so forth.

Applications have moved to a log structure to remove dependencies on

the underlying Flash Translation Layer of the flash device. Since flash cannot be

updated in place, every incoming write is directed to a fresh location in flash. As

the device runs out of physical space, a garbage collection process compacts valid

content and frees up erase blocks for incoming writes. The performance of the

flash device is as such heavily dependent on the garbage collection intelligence

and efficiency as well as the incoming workload. Since early flash devices, and still

some low end flash devices, demonstrate poor performance for random writes,

applications have evolved to contain their own dynamic mapping scheme in an

effort to limit I/O to the flash device to its ideal workload, large sequential

writes.

There is a significant history of log structured stores of various kinds

ranging from storage systems [22] to file systems [80] to databases [91] and

other applications. Some stores are strictly log structured in that no update

15

in place mechanisms are allowed, while other stores are more write-anywhere in

nature [35]. All log structured stores allow new writes to be directed to free

space in the device, and all contain some form of garbage collection (frequently

called cleaning), which allows invalid space to be compacted and reused. While

some strict log schemes force all new writes to the head of the log, others al-

low hole-plugging, enabling some invalid space to be reclaimed directly without

compaction.

Prior to the arrival of flash, the motivation for log structured stores

was to acclerate write performance while allowing random reads to be serviced

from DRAM cache. Log structured stores allow additional advantages, such

as enabling snapshots, transactional updates and eliminating the small write

performance problem when run above RAID 5 layouts [35, 65].

Flash inserts a new dimension since flash is by nature not update in

place at a physical level. Flash can only be erased in the units of erases blocks,

which are typically an order of magnitude of more larger than the unit of write

(e.g. 64 or 128 write pages per erase block). For easier management, many flash

devices group multiple erase blocks into larger Virtual Erase Blocks, which are

treated conceptually similarly to cleaner segments in a log structured file system.

Since flash has a limited number of program/erase cycles, flash garbage collection

has to balance both the efficiency of cleaning and the reliabilty requirements of

balancing the amount of writes to each virtual erase block. Flash has additional

requirements, such as read disturb handling, which require erases and rewrites

to maintain data integrity. As such, while some factors that drive flash garbage

16

collection are similar to those driving cleaning at higher level log stores, others

are media specific.

Both flash based logs and higher level logs maintain the notion of ap-

pend points, which are sequential streams within the architecture. While some

architectures are strictly single append point, implying that all writes, incom-

ing, cleaning, metadata, are driven to the same append point, others separate

these. F2FS [39], for example, has six logical append points. Similarly, the

FTL within a flash device may have one or more append points depending on

the design. Similarly, applications that are log structires may have one or more

append points (twitter fatcache has one, SILT has several).

This technique however has implications that are not fully understood.

The extra operations performed by the flash layer for garbage collection result in

additional write operations for every incoming write. The ratio of physical writes

to incoming writes is Write Amplification, which impacts performance as well as

endurance. When applications above the FTL perform their own log structured

writing, an additional garbage collection process needs to occur at the applica-

tion level, which some have termed Auxilliary Write Amplification [59], which

is a multiplicative effect over Write Amplification. The intent of the application

level log is to reduce the device WA to as close to 1 as possible, however the

ability to realize this is sometimes very dependent on configuration and inter-

actions between the device FTL and the application. Recent research also uses

log-structure in a DRAM-based system [81], though coordinations between logs

and garbage collectors are explored, the lack of information of the underlying

17

hardware layouts will still be detrimental to the overall performance. Same for

other log-structured system that uses emerging NVRAM devices as a storage

media.

While user space applications have adopted the log structured model,

file systems within the kernel have done the same [53, 39]. As a result, it is

possible that two or more log structured workloads may become stacked on a

flash device, with the application writing in log structured fashion over a file

system writing in log structured fashion over an FTL writing in log structured

fashion to the physical flash.

Comparing with other log-structured systems, this dissertation focuses

on Log on Log, outlining and characterizing the interactions between multiple

levels of independent logs. We describe several practical scenarios which arise in

real systems and show that the log on log strategy can provide benefits in some

situations but can result in highly counterintuitive behaviors in other situations

for flash-based storage systems. We show results from a log on log scenario

and compare it to an alternate architecture where the application operates in

coordination with the FTL to leverage its log rather than build an independent

log, and discuss the tradeoffs therein.

2.5 Approaches to access flash memory

Many researches have been done to explore the use of flash memory

and the best way to adopt them into the storage hierarchy. Currently, these

approaches can be categorized into three classes. Direct access model with a

18

flash-aware file system design on the host side, FTL-based model that embeds

the flash translation layer into the underlying device, and breaking the traditional

block interface with a more flexible object-based interface using a quite different

new design on both file system and the device part.

The direct access model supports direct access to a raw flash device by

a specific designed file system [9, 38, 46, 39]. Such system can usually achieve

performance efficiency by considering the characteristics of flash memory, such

as out-of-place update and wear-leveling. In addition, address translation and

garbage collectoin is done at the host side, giving the system more flexibility

and resource to maximize performance by balancing the workload from different

components. However, once designed, file system could not be optimized for a

specific type of hardware, and scalability is another problem.

The FTL-based model is a more popular approach in the current flash

world. With FTL embedded in the underlying device - flash-based Solid State

Disk, it allows a traditional disk-based file system to have flash memory as a

primary storage device without any change on the host side. This provides high

compatibility that file system designers do not have to worry about different flash

characteristics, while the SSD vendors design their own FTL algorithms for the

specific hardware. Many researches have been done to improve the performance

for FTL [56, 77, 44, 57]. However, the improvement is limited as this approach

introduces higher overhead with two duplicate layers mapping, one in the file

system and one in the FTL layer, especially when log-structured file system is

used on top of an SSD, it will be more detrimental to the overall performance

19

(see detailed discussion in Section 4)

The third approach - object-based model is previously developed in

distributed disk-based storage systems [17, 29, 94]. It offloads the traditional

file system’s storage management layer to the underlying device - Object Stor-

age Device (OSD), while the file system becomes lightweighted by keeping only

the name resolution layer on the host side. Through object-based interface that

standardized in the ANSI T10 [68], for example, read/write/create object(),

data blocks belonging to each object are now closely associated with its meta-

data and maintained by the OSD. With this approach, file system is unaware

of the hardware characteristics and no duplicated mapping is necessary. This

allows a generic file system to be able to manage the host side regardless of the

type of the underlying device, while having more flexibility and resources of ad-

vanced features on the device side, especially in large scale distributed systems

that no central controller is available. The benefit of object-based storage in

a disk-based system is not remarkable as file system does not need any com-

plex mapping mechanisms to map logical addresses to physical space on disk, it

shows promising benefit on the Storage Class Memory devices, large scale dis-

tributed storage systems [24, 54, 90]. Recent research has investigated its use

in the emerging technology for Storage Class Memories (SCM) as well as flash

memory [48, 47, 60, 58]. Other efforts are done to explore more efficient interface

for flash memory [72, 42, 88].

20

Chapter 3

Flash as a Cache in Tiered Storage

3.1 Flash-based Caching

In recent years, deployment of flash memory as a cache has rapidly ac-

celerated. Flash memory’s fast random I/O performance and non-volatile char-

acteristic make it a good candidate as a Solid State Cache device (SSC). Using

flash as a cache enables applications with good workload locality to leverage the

performance of flash while utilizing less expensive traditional disk-based storage

as the backing store.

Performance of cache is measured through read hit rate. Where, hit

rate is expressed as a percentage of number of reads serviced from the cache

compared to all read accesses. Cache admission and eviction policies are added

to the cache to admit quality data and evict less critical data, respectively. These

policies help improve read hit rate and hence the effectiveness of the cache.

While improving hit rate is critical for overall cache performance, SSCs

experience unique pressures that are not present in traditional DRAM caches.

21

Due to the characteristics of flash memory, such as limited Program/Erase cy-

cles (P/E Cycles) and out-of-place updates with subsequent Garbage Collection

(GC), minimizing unnecessary writes to flash is generally of high importance.

SSCs are more write intensive than their storage counterparts. From a

SSC point of view, writes to SSC are comprised of: user writes, writes caused by

admissions of cache misses (of new or previously evicted data), and writes due

to GC. Thus, the cumulative choices of cache admission policy, cache eviction

policy, GC strategy, and device configuration (e.g. system reserve for over-

provisioning) impact the overall SSC performance and endurance precisely be-

cause they arbitrate writes to flash.

In this work, High Endurance Cache (HEC), we develop and validate

techniques for improving SSC performance and endurance by providing insights

and answers to the following questions:

• How are the workload characteristics that a flash-based cache is likely to

encounter different from the workloads encountered by flash when used as

a storage device?

• How do different cache admission and eviction policies affect read cache

hit rate and device endurance?

• How do various GC strategies in the Flash Translation Layer (FTL) impact

writes/erases to media for cache workloads?

• What is the impact of the combination of cache admission and eviction,

GC policies and device configuration on hit rate and writes/erases to the

22

SSC?

To our best knowledge, this is the first study of a flash-based cache

device that focuses on improving performance and endurance through both cache

and flash layer optimizations. The contributions of our HEC work follow:

• We present the unique write pressures seen by an SSC that result in Cache-

Layer Write Amplification (CLWA) and Flash-Layer Write Amplification

(FLWA), and their combined effects on hit rate and media writes and

erases.

• At the cache layer, we present several cache admission policies and demon-

strate that CLWA can be significantly reduced (up to 8x). At the flash

layer, we present several GC policies and demonstrate that FLWA can also

be significantly reduced (up to 6.17x).

• We show that our combined admission, eviction, and GC optimizations

can reduce writes by up to 20x, reduce erases by up to 6x, with improved

or maintained hit rate.

• Finally, we show the implications of QoS with virtual storage containers

in cache for both performance and endurance of SSC.

3.2 Problem Analysis

We highlight the effects of CLWA and FLWA via a simple example. We

use a polluted TPC-E trace, which contains traffic from a database TPC-E run

23

combined with a backup workload. We execute the TPC-E Polluted trace (tpcep)

and gather the hit rates, read/write counts and flash management statistics from

our simulation framework (described in Section 3.3). We configure the cache to

admit all misses. In this example, the cache and the flash management layers

operate independently, with the cache performing LRW-based eviction (Least

Recently Written) and informing the FTL to invalidate evicted blocks one-by-one

as needed (see Sections 3.3.2.1 and 3.5.1), and the FTL performing an OLDEST

garbage selection policy, targeting the least recently written segments for copying

forward the valid data. The flash device is configured with 20% reserve for use

by the FTL GC. The cache is warmed with the workload prior to data collection,

processing the entire trace prior to executing the workload a second time during

which the data are gathered. Measurements are summarized after the warming

stage and are shown in Table 3.1.

Original Cache Cache GC Total CLWA FLWA TCWA Hit rate
r GB w GB size GB w GB w GB w GB %

331.90 36.8 80 322.13 1553.98 1876.11 8.75 5.82 50.93 14.03
100 300.11 1459.13 1759.24 8.16 5.86 47.82 20.67
120 275.83 1352.01 1627.84 7.50 5.90 44.25 27.98

Table 3.1: TPC-E Polluted: Combined write amplification under ADMIT ALL

and OLDEST cache-based eviction mode, the workload is more write intensive

than the original one due to extra writes from cache misses and from GC re-

claiming process.

CLWA: From Table 3.1, we see that the workload presented to the

flash device through the cache (Cache Writes) is far more write intensive than

the original workload (Original Writes). The original workload’s writes as well

24

as cache misses become writes to the flash device. As cache size increases, the

relative Cache Writes to Original Writes ratio decreases. However, the increase

of hit rate is suboptimal due to low quality writes. The CLWA can be as high

as 7-8x.

FLWA: Flash performs out-of-place updates, and writes are directed

to new locations with invalidation of the past instance. Invalidated pages will

be reclaimed for free space by GC. Reclaiming space may require that some

valid data be copied forward. In Table 3.1, ‘GC-Writes’ shows the extra writes

performed by the flash layer. The FLWA for this workload ranges from 5-6x for

different cache sizes.

Collective Endurance Impact : The ‘TCWA’ column in Table 3.1

shows the Total Combined Write Amplification effects of FLWA and CLWA.

Since the two operate independently, the original workload’s writes are ampli-

fied by the cache and each cache write is further amplified by the flash device.

The result is a 40-50x amplification in writes as compared to the original work-

load. Left unaddressed, these effects can render the endurance of SSC devices

unacceptably low - limiting how long they are useful as accelerators for storage

systems.

3.3 Simulator and Analysis Methodology

In this section, we describe the traces used in our analysis, the tools

we built to characterize traces, and the simulator we built to evaluate our cache

and flash layer optimizations.

25

3.3.1 Block Traces and Workload Analysis

The block traces represent various possible cache workloads. To ensure

robustness and broad applicability of our results, we have selected a variety of

traces with differing characteristics of cacheability, deployment scenario, trace

size, and unique data size.

For example, sequential requests are normally not cache worthy as they

cause cache pollution, however they are good candidates to aide gauging the ef-

fectiveness of a selective cache admission policy. Another example is that of

larger read/write ratios, which indicate stronger desire to cache and are more

likely cases for a cache deployment. We looked at 35 traces from Microsoft Re-

search [5] and several TPC-E workload traces generated from database runs [11].

We built a Workload Analyzer (WLA) to characterize block traces and

help inform trace selection for our experiments. The metrics reported by the

WLA include unique sector counts, critical cache size, read/write ratio, and

histograms for read/write Logical Block Address (LBA), sequential and non-

sequential addresses, request sizes, and sequential access lengths. The Critical

Cache Size is the minimal cache size that is required to cache the admitted trace

data without a single eviction. Critical cache size is therefore highly dependent

on the specific admission algorithm. When all cache misses are admitted by

default, the critical cache size is the same as the unique overall sector count. As

the admission policy becomes more restrictive, the actual cache size necessary to

cache all admitted sectors decreases. Table 3.2 presents a partial WLA summary

for the six traces used in our analysis.

26

Trace Description Total Total R/W Unique Total Non Seq Seq
Name R GB W GB Ratio % GB req (K) req (K) req (K)

stg 1 Web staging 79.5 5.99 93.0 80 2197 1077 1120
web 2 Web server 262.8 0.78 99.7 66 5175 1990 3185
hm 0 HW monitor 9.96 20.48 32.7 2.31 3993 2560 1432
prn 0 Print server 13.12 45.97 0.29 14.80 5586 2761 2824
prn 1 Print server 181.35 30.78 85.5 80.90 11233 8098 3134
tpce Database 241.61 88.96 73.1 127.25 19086 18366 719
tpcep DB+backup 331.90 37.81 89.8 226.52 9442 8120 1321

Table 3.2: Trace Characteristics

3.3.2 SSC Simulator

Figure 3.1: HEC Analysis and Simulation Environment

The SSC simulator mimics the behavior of an SSC and contains two ma-

jor components: the cache controller and flash controller. The cache controller

simulates cache behavior. It reads the input block trace, and depending on the

user-chosen cache mode and the admission policy, performs the caching actions.

The flash controller simulates a NAND flash device. Similar to a solid-state stor-

age (SSD) device, it includes an FTL, GC, wear-leveling and other flash-related

capabilities. We validated our SSC simulator by comparing its results against

an SSC product - directCache [1], for a subset of the traces.

Figure 3.1 shows the overall workflow of our trace analysis and simu-

27

lation environment. We perform a workload analysis, where we determine the

characteristics of each trace. Based on the analysis report, we select traces pos-

sessing a spectrum of interesting characteristics.

The internal view of a typical SSC is introduced in previous section 2.1.

While cache controller maintains the components of a generic cache deivce, flash

controller consists of all modules that are needed to make a raw flash memory de-

vice work properly in the system. Then we run these selected traces through our

SSC simulator, varying both admission and eviction policies, and evaluate the

workloads’ behavior under different cache and flash configurations. We describe

each of these components in turn below.

3.3.2.1 Cache Controller

The cache controller supports two modes of operation, as is shown in

Figure 3.2. The first mode consists of Cache-based eviction, which utilizes both

an in-memory fixed-size valid-data-only cache and an FTL log-structured cache.

Both embodiments maintain the same fixed valid sector count in this mode.

When the in-memory cache becomes full, a least recently written (LRW) or

least recently used (LRU) element is evicted, one sector at a time, and a signal

is sent to the FTL log to invalidate that sector (one at a time) using the industry

standard TRIM operation [3]. The Cache Controller may then overwrite the in-

memory block with the newly admitted sector, and the flash controller is now

free to reclaim this sector under GC. In this mode, GC copies-forward all valid

data, as the eviction in the upper cache controller is invisible to the lower flash

28

controller. This allows the cache controller to be more flexible on which sector

to evict once it is full, for example, based on the hotness of data in the cache.

The second mode consists of GC-based eviction, which utilizes only

an FTL log-structured cache, and flash-based GC algorithms to perform cache

eviction. In this mode, the cache controller performs no eviction, and the flash

controller evicts data during its GC process. The cache discovers the presence or

absence of data by querying the FTL via an EXISTS operation. In the GC-based

eviction model, the GC can use cache-specific intelligence (eviction) to improve

endurance.

Figure 3.2: Two eviction Modes

3.3.2.2 Flash Controller

The flash controller implements a log structure that continually ap-

pends new data at the head of a log, similar to existing FTLs. Metadata for

29

the flash controller, such as maps of valid and invalid blocks and erase counts,

are kept in-memory for fast searching. The controller also supports various GC

algorithms to free-up erasure blocks or segments for further cache usage when

the device fills up. We use the term GC Segment to refer to an erasure block that

consists of a fixed number of flash pages for a specific hardware configuration.

3.4 Reducing CLWA

In this section, we explore techniques to reduce writes at the cache

layer by selectively admitting cache misses. We describe and evaluate a series of

cache admission policies (see details in previous work [30]). The settings for the

policies mentioned below were chosen precisely because they perform the best

across all the workloads we consider in this paper.

3.4.1 Cache Admission Control

We investigate two classes of admission policies, one focused towards

excluding sequential traffic and the other focused towards admitting data based

soley on it’s access frequency. The default policy is ADMIT ALL where every

miss is admitted to cache. ADMIT ALL has drawbacks as it does not filter cache

pollution (such as backup operations or sequential scans) nor evaluate the quality

of the request data, thus being detrimental to hit rate and impacting endurance

by generating large numbers of cache-miss writes. On the other hand, for random

workloads, the absence of large-scale sequentiality (only small looping requests),

and with somewhat high read recurrence (read before eviction), this policy can

30

be beneficial. As a policy for the generic workload that has random workloads

mixed with sequential requests, clearly ADMIT ALL is suboptimal. Such lack

of discrimination leads to cache flooding, cache pollution, increased WA, and

shorter NAND life.

Selective Sequential Rejection (SSEQR): All non-sequential re-

quests are admitted to cache, and short sequential strings are admitted to cache.

We will explain the main concept first, then describe the selective portion of

the filter. We keep an array W (the window), of request beginning and ending

addresses wek = (bak, eak) (LBA’s in our implementation), for the most recent

k requests: W = {we1, we2, ..., wek}.

On a request r, its start address bar is compared against the ending

addresses in W . Each request’s address data-pair is always inserted into W as

a new window entry we. If bar is arithmetically subsequent to any of the end

address entries in W , within an allowable gap G, then r is sequential and is

denied admittance into cache.

If ∃ea ∈W |0 6 bar − ea 6 G⇒ reject r

We now explain the selective part of this filter. Employing the same

framework just mentioned, we track the length of each sequential string and allow

cache admissions of strings up to a configurable length L in megabytes. In short,

this policy admits small sequential strings into cache, and is our replacement to

a looping sequential request detector [50]. Typically, values satisfying L 6 4 MB

are best, though in our implementation we chose L = 4 MB. In our experiments,

the default settings are: (k,G) = (8, 4).

31

Touch Count (TC): Sectors or collections of sectors are admitted

only after they have been accessed a certain number of times, thus earning their

way into the cache. Since this technique requires the ability to track activity

to not just cached sectors but to the entire backing storage device, we employ

memory efficient ways to track accesses. To accomplish this, we employ a bitmap

B representing the backing store, together with a hashing scheme (think of the

bitmap as a touch count ledger - tracking how many times backing store addresses

have been touched). We also define a segment to be a contiguous string of

sectors, typically a power of two in length, i.e., 2a. At the initialization stage,

knowing the size of the backing store, we create the bitmap array. This bitmap

consists of storage for the touch-count counts for all segments, employing j bits

per each segments touch count.

As requests are tendered, the bitmap is modified to keep track of which

segments have been touched and how many times. When a segment has attained

a touch count equal to the threshold, then it is admitted to cache.

When a request is tendered, the touch count is incremented for each

segment that the requests addresses intersect. It is possible (commonly) that a

request not begin or end strictly on segment boundaries (recall that a is config-

urable) and can span segment boundaries. Thus, we increment the touch count

for each segment that intersects the request.

Checking and incrementing a touch count value is fast and is performed

via masking the bits of B that correspond to each segment intersecting the

request. If any of the segments intersecting a request has attained the threshold

32

t (user configurable), then the request is admitted. Furthermore, if any portion

of a requests touch-count has attained the threshold then it is admitted even

though other portions of the requests intersecting segments have not yet reached

the threshold. We call this touch count promotion.

As workloads progress throughout the day, the touch counts become

stale as they represent earlier activity that may not be currently valid. To

ameliorate this, we employ multiple bitmaps Bi, for i = 1,2,3,..., and either: (1)

a time-based rotation schedule, or (2) a data-driven rotation schedule R where

the bitmaps are rotated to a fresh (zeroed) map every R GB of data. The other

bitmaps are used as a bitmap history to help workloads and touch counts blend

throughout continued activity over time. For this experiment, we employed one

bitmap with one bit per touch count entry, and segment size is 4MB.

Sequentiality and Touch Count (SSEQR+TC): If a request is not

deemed sequential, and if its constituent segments have attained the touch-count

threshold t, then admit.

3.4.2 Admission Policy Analysis

Table 3.3 shows the hit rates and writes that result from each admis-

sion control algorithm being applied to the TPC-E Polluted trace. Given the

large backup-based read content in this trace, under ADMIT ALL a significant

amount of sequential writes are generated, leading to a CLWA of 2.5-8x. How-

ever, when admission policies are applied, both the CLWA and the effective cache

size required to hold the cached data decrease. For example, when SSEQR is

33

applied, a hit rate of 79% is achievable with a 138GB cache, with a CLWA of

1.7. In comparison, ADMIT ALL achieves a lower hit rate (41%) with a similar

cache size (136GB), but much larger CLWA (7.73). In fact, the ADMIT ALL

policy is only able to achieve high hit rates when the cache is large enough to

hold the backup traffic as well as the database traffic.

At smaller cache sizes, the admission policies achieve higher hit rates

and lower CLWA than ADMIT ALL, while generating fewer writes to the flash

layer. As the physical cache size increases, the more restrictive admission policies

become limited - ADMIT ALL can achieve a higher hit rate since it does make

use of the extra capacity.

Policy Orig Cache Phy Post Trace Hit CLWA

R W Size Size* Read Write R-miss W-hit W-miss Rate

GiB GiB % GiB GiB GiB w GB w GB w GB %

ADMIT 331.9 36.8 50 135.91 84.40 284.31 247.50 32.70 4.10 41.26 7.73
ALL 70 190.28 170.40 198.31 161.50 34.21 2.59 62.05 5.39

90 244.64 279.50 89.22 52.41 35.87 0.93 87.08 2.42

SSEQR 331.9 36.8 50 76.66 71.71 161.07 124.27 32.22 4.59 20.86 4.38
70 107.33 132.21 116.64 79.84 34.04 2.77 47.89 3.17
90 138.0 200.38 62.60 25.80 35.88 0.92 79.01 1.70

TC 331.9 36.8 50 64.83 44.33 169.28 134.56 30.93 3.80 19.22 4.60
70 90.76 85.87 142.66 107.94 32.27 2.45 34.66 3.88
90 116.69 149.21 95.60 60.88 33.39 1.34 55.66 2.60

SSEQR 331.9 36.8 50 53.57 56.75 136.78 101.87 31.27 3.64 15.21 3.72
+TC 70 75.0 98.43 111.22 76.31 32.67 2.24 32.61 3.02

90 96.43 150.94 72.33 37.42 33.85 1.06 57.34 1.97

Table 3.3: Evaluation of different cache admission policies (TPC-E Polluted):

restricted admission policies achieve higher hit rates with reduced writes to the

flash media when cache size is smaller.

Figure 3.3 depicts the total number of bytes written to the flash, the

erase counts, and the hit rates for four admission policies on four traces. From

34

the figure, we see that sequentiality and touch count detection can reduce the

total number of writes to the flash media (up to 60% and 80% for prn 1 and tpcep

traces, respectively, at larger cache sizes). The erase counts are also reduced,

leading to extended device life. Overall, the SSEQR policy is able to filter the

backup pollution traffic from the TPC-E Polluted trace, but the TC approach is

able to be generally discriminating of quality traffic across a variety of trace types

(observe the relationships in all graphs in Figure 3.3). The hybrid combination

of the two polices, SSEQR+TC, generates high hit rates with substantially lower

CLWA values than ADMIT ALL.

3.5 Reducing FLWA

In this section we describe and evaluate FTL techniques for reducing

FLWA by way of various GC algorithms and Cache-based versus GC-based evic-

tion

3.5.1 Cache-based vs. GC-based Eviction

While traditional SSD devices can only reclaim invalidated pages, an

SSC device can evict valid data based on the cache controller’s knowledge of data

usage. Eviction of valid data improves GC efficiency with less data being copied

forward. As part of our quest to reduce FLWA, we investigate GC algorithm

effectiveness under both Cache-based and GC-based eviction.

Cache-based : In this mode, each GC algorithm only considers the in-

valid space as seen by the FTL. When the cache is full of valid data (as perceived

35

(a) web 2 trace under different admission

policies

(b) TPC-E Polluted trace under different ad-

mission policies

(c) prn 1 trace under different admission

policies

(d) stg 1 trace under different admission poli-

cies

Figure 3.3: Effects of different admission policies: total number of bytes written

to flash are reduced by up to 80% through sequentiality tracking and touch count

detection for selected traces, leading to longer device life with improved hit rates.

36

by the cache controller), it signals the FTL to invalidate one sector at a time,

based on the cache’s replacement policy. GC then utilizes victim-selection algo-

rithms (such as OLDEST) to reclaim space, no valid data is ever discarded in

this mode. It is important to note that the cache layer is not FTL-aware and that

the LRW or LRU list maintained by the cache controller is not representative

of the FTL view. Furthermore the cache controller LRW or LRU list represents

the valid data view of the SSC size which is the total device physical size −

system reserved capacity or 80% of the total device physical size.

GC-based : In this mode, the GC algorithm usurps the eviction re-

sponsibilities from the cache controller, and valid data in the victim segment are

discarded by the flash controller. Some applications require a certain number

of valid sectors to be preserved in the device to guarantee a certain hit rate

without aggressively evicting hot cache entries. This is achieved by tracking the

number of valid pages in the media and letting GC perform eviction or copying

forward based on the usage. Note that in this mode, the GC algorithms valid

data view is the view over the total device physical size. As will be shown in

Section 3.5.2.3 these different validity views has an impact on hit rate, FLWA,

and segments erased between the two eviction modes.

3.5.2 GC Algorithms

We implemented and evaluated three commonly-used GC algorithms

for victim segment selection. Their descriptions and impacts on FLWA are de-

scribed below. These three algorithms can be used in both Cache-based and

37

GC-based eviction modes.

Greedy Segment Selection : Selects victim segments with the most

invalid pages. From both cache and storage usage viewpoints, this algorithm is

the most space efficient in that it frees more usable space by erasing the least

number of segments. However, it runs the risk of wearing out some segments

earlier than others as some hot segments may be selected more frequently without

concern for erasure count.

Cost-benefit : Employs a utilization function that considers both space

and age [80] during victim segment selection. This algorithm provides improved

wear-leveling over the greedy algorithm and attempts to group data with similar

access frequencies during GC, which can then result in lower FLWA by segre-

gating cold data.

OLDEST Segment (Tail-drop): GC chooses the oldest segment

programmed in the log (similar to the LRW policy at the cache layer). This

provides low victim-segment search overhead, and potentially chooses one that

is less active. However, this can result in copying forward large amounts of data

(i.e. high FLWA) if the segment in question does not possess many invalidated

sectors.

3.5.2.1 Configurations

To isolate the impact of GC policy, we use the ADMIT ALL admission

policy in all our experiments and only vary the GC policy for different SSC

physical sizes. We determine the impacts of Cache-based eviction relative to

38

GC-based eviction. We evaluate the effectiveness of each algorithm with regards

to hit rates, FLWA, and segment erase counts. For an accurate comparison

between GC-based and cache-based eviction, we force the SSC to keep the same

amount of valid data (i.e., 80% of physical device capacity as 20% is reserved

capacity) in both modes in order to guarantee the amount of cacheable data

remains the same.

3.5.2.2 Eviction Mode and GC Policy Analysis

Figure 3.4 shows the test results under four different workloads for both

Cache-based and GC-based eviction approaches. The left graphs (i.e. 3.4(a),

3.4(c), and 3.4(e)) show the performance of Cache-based eviction while those on

the right (i.e. 3.4(b), 3.4(d), and 3.4(f)) display GC-based eviction. While

comparing Cache-based with GC-based eviction approaches, we see that the hit

rate and FLWA vary between different eviction modes, even though both modes

guarantee the same amount of valid sectors in the SSC.

Some broad trends are as follows: first, the GC-based eviction has

broadly lower FLWA than Cache-based eviction, regardless of workload or GC

algorithm. The improvements in FLWA range from 1.5x to approximately 5x.

Second, the hit rates of GC-based eviction appear to be roughly similar to that of

Cache-based eviction, with a difference of 5-10% under different GC selection al-

gorithms. Third, the FLWA of Cache-based eviction does not appear to improve

with any particular GC algorithm. For all cases except the stg trace, the results

of all three GC algorithms is roughly the same. Fourth, reductions in segment

39

39.58 47.49 55.41 63.33 71.240.0
0.2
0.4
0.6
0.8
1.0

H
it

 R
at

e
(H

R
)

SSC Physical Size vs HR, FLWA, and Segment Erase Count

greedy_all cost_benefit_all oldest_all

39.58 47.49 55.41 63.33 71.24
SSC Physical Size (GiB)

0
1
2
3
4
5

FL
W

A

39.58 47.49 55.41 63.33 71.240
500

1000
1500
2000
2500
3000
3500
4000

S
eg

m
en

ts
 E

ra
se

d

(a) web 2: Cache-based eviction

39.58 47.49 55.41 63.33 71.240.0
0.2
0.4
0.6
0.8
1.0

H
it

R
at

e
(H

R
)

SSC Physical Size vs HR, FLWA, and Segment Erase Count

greedy_all cost_benefit_all oldest_all

39.58 47.49 55.41 63.33 71.24
SSC Physical Size (GiB)

0
1
2
3
4
5

FL
W

A

39.58 47.49 55.41 63.33 71.240
500

1000
1500
2000
2500
3000
3500
4000

Se
gm

en
ts

 E
ra

se
d

(b) web 2: GC-based eviction

76.35 91.62 106.89 122.16 137.430.0
0.2
0.4
0.6
0.8
1.0

H
it

 R
at

e
(H

R
)

SSC Physical Size vs HR, FLWA, and Segment Erase Count

greedy_all cost_benefit_all oldest_all

76.35 91.62 106.89 122.16 137.43
SSC Physical Size (GiB)

0
1
2
3
4
5
6
7

FL
W

A

76.35 91.62 106.89 122.16 137.430
1000
2000
3000
4000
5000

S
eg

m
en

ts
 E

ra
se

d

(c) TPC-E: cache-based eviction

76.35 91.62 106.89 122.16 137.430.0
0.2
0.4
0.6
0.8
1.0

H
it

R
at

e
(H

R
)

SSC Physical Size vs HR, FLWA, and Segment Erase Count

greedy_all cost_benefit_all oldest_all

76.35 91.62 106.89 122.16 137.43
SSC Physical Size (GiB)

0
1
2
3
4
5
6
7

FL
W

A

76.35 91.62 106.89 122.16 137.430
1000
2000
3000
4000
5000

Se
gm

en
ts

 E
ra

se
d

(d) TPC-E: GC-based eviction

135.91 163.10 190.28 217.46 244.640.0
0.2
0.4
0.6
0.8
1.0

H
it

 R
at

e
(H

R
)

SSC Physical Size vs HR, FLWA, and Segment Erase Count

greedy_all cost_benefit_all oldest_all

135.91 163.10 190.28 217.46 244.64
SSC Physical Size (GiB)

0
1
2
3
4
5
6
7
8

FL
W

A

135.91 163.10 190.28 217.46 244.640
500

1000
1500
2000
2500
3000

S
eg

m
en

ts
 E

ra
se

d

(e) TPC-E Polluted: Cache-based eviction

135.91 163.10 190.28 217.46 244.640.0
0.2
0.4
0.6
0.8
1.0

H
it

R
at

e
(H

R
)

SSC Physical Size vs HR, FLWA, and Segment Erase Count

greedy_all cost_benefit_all oldest_all

135.91 163.10 190.28 217.46 244.64
SSC Physical Size (GiB)

0
1
2
3
4
5
6
7
8

FL
W

A

135.91 163.10 190.28 217.46 244.640
500

1000
1500
2000
2500
3000

Se
gm

en
ts

 E
ra

se
d

(f) TPC-E Polluted: GC-based eviction

Figure 3.4: Effects of eviction modes and GC policies varying SSC sizes.

40

erase counts up to 6x were seen using GC-based. Finally, where there is a dis-

crepancy in the results among different GC algorithms, in the GC-based eviction

cases, the Greedy and Cost-benefit algorithms appear to outperform OLDEST.

We observe that a more careful victim-selection algorithm, such as Cost-benefit,

yields up to 60% FLWA improvement and up to 50% erase counts improvement

over a simplistic SSC algorithm like OLDEST.

3.5.2.3 Interactions between Cache and Flash Policies

Figure 3.4 clearly shows that cooperative GC, as performed under GC-

based eviction, results in lower FLWA than independent GC as performed by

Cache-based eviction. For example, FLWA is reduced for the TPC-E trace using

GC-based eviction with the Cost-benefit policy by 1.5x to 4x depending on the

physical cache size. A reason for this is the difference between the distributions

of invalid data in the segments between the two eviction modes.

For Cache-based eviction, candidate segments are chosen based on re-

cency (or frequency) from the cache’s perspective (i.e. in-memory data). In

contrast, GC-based eviction predominantly looks at invalidity (or recency) from

a storage perspective (i.e. on media). As a result, the valid sectors evicted by

the cache controller are different from the ones evicted by GC, even though both

use similar GC policies such as OLDEST. This results in a different view of the

valid sectors’ distribution throughout the log. Figure 3.5 represents the distri-

bution of invalid sectors in each segment under the two eviction modes for the

TPC-E trace. While the total number of invalid sectors in the SSC remains the

41

same, the deviations are large. As shown in Figure 3.5(a), Cache-based eviction

created a uniform distribution of invalid data across the segments for the TPC-E

workload. Such uniformity in the distribution did not provide advantage to any

of the GC algorithms investigated under Cache-based eviction and resulted in

similar FLWA and segments erased for each; see Figure 3.4(c).

0

20000

40000

60000

80000

100000

120000

140000

160000

1 21 41 61 81 101 121 141 161 181 201 221

V
a

li
d

 s
e

ct
o

rs

Erase Block ID

(a) Cache-based eviction

0

50000

100000

150000

200000

250000

300000

1 21 41 61 81 101 121 141 161 181 201 221

V
a

li
d

 s
e

ct
o

rs

Erase Block ID

(b) GC-based eviction

Figure 3.5: TPC-E: valid sectors distribution in log for different eviction modes,

GC-based eviction shows higher deviation of valid data thoughout log than

Cache-based eviction, providing more flexibility on victim-segment selection.

As shown in Figure 3.5(b) the distribution in invalid data amongst the

erasure segments is non-uniform in GC-based eviction. Non-uniform invalidity

is desirable for GC since it enables algorithms to select segments with large

numbers of invalid blocks. The non-uniform distribution in GC-based eviction

demonstrates that a more selective GC policy can yield better effectiveness with

regards to reducing FLWA. The benefits include generation of additional free

space while maintaining a lower segment erased count, and the provision of

42

greater room for the upcoming hot write-data with higher efficiency.

The data also shows that workloads with higher relative reads, Fig-

ure 3.4(b, f), generate lower FLWA under GC-based eviction. The lower FLWA

is caused by the fact that invalidity across the log in GC-based eviction mode

is caused by workload writes that caused overwrites of logical addresses. These

overwrites result in physical locations in the FTL log becoming invalid. As a

result, the log has less valid data. When a valid data capacity reservation is en-

forced, the amount of freedom the GC-based eviction algorithm has to evict data

is dependent on the difference between the valid data in the log and the value

of the capacity reservation. The more invalidity the log possesses, the lower this

gap and the greater the likelihood that GC-based eviction will be forced to copy

data forward, thereby generating higher FLWA.

3.6 Combined Benefit

In this section we put it all together and demonstrate the combined

benefit of increasing hit rate, reducing CLWA and FLWA, and any unexpected

interactions between admission control and eviction schemes.

Original Cache Cache GC Total CLWA FLWA TCWA Hit Rate
W (GB) Size (GB) W (GB) W (GB) W (GB) %

36.8 80 70.10 169.19 239.29 1.90 3.41 6.50 46.59
100 37.65 169.05 206.70 1.02 5.49 5.62 59.78
120 37.65 44.80 82.45 1.02 2.19 2.24 59.78

Table 3.4: TPC-E Polluted: Collective endurance impact under SSEQR+TC

and cost-benefit GC-based eviction mode, with well-selected cache and flash

layer algorithms, TCWA can be reduced by up to 20x with improved hit rates.

43

Table 3.4 shows the combined effect of deploying an admission control

policy SSEQR+TC and a GC-based eviction scheme using Cost-benefit segment

selection, two techniques that individually generated good results for CLWA

and FLWA reduction, respectively. The combined solution generates TCWAs

of between 2-7, which is 8x-20x better than the original TCWA generated by

the combination of ADMIT ALL at the cache controller layer and conventional

(non-cache aware) GC at the flash controller layer (see Table 3.1).

The summarized data for the other five traces are shown in Figure 3.6.

Due to space limitations, we present one set of cache sizes for each trace, and

show the TCWA and hit rate before and after the cache and flash layer op-

timizations, with TCWA normalized to the “before” state. Fifteen (15) of 18

simulations show increased or maintained hit rate with reduced TCWA. Three

(3) of them showed reduction in TCWA at the expense of hit rate (9-25%). These

results demonstrate that significant benefits in device endurance can be achieved

for cache workloads when flash-aware policies are used at both the cache and

the flash controller layers. They also demonstrates the value of cache-aware GC

policies at the flash controller layer.

Tables 3.1 and 3.4 show that hit rate can be significantly improved (2-

3x) while still reducing CLWA and FLWA. Such hit rate improvement is workload

dependent (e.g. TPC-E Polluted trace), however we found the results to be

generally applicable to the workloads we have tested.

We also looked at what improvements could be gained if we made

changes independently to the cache controller policies and GC algorithms. When

44

Figure 3.6: Comparison of TCWA and hit rate before and after cache and

flash layer optimizations: TCWA is significantly reduced with well-selected algo-

rithms. Hit rate maintains a certain level and is improved under some workloads.

we implemented changes to the flash controller layer only we observed a 1.1x to

6.17x FLWA reduction. We observed CLWA decrease in 71% of the simulations

by 1.02x to 2.19x, 24% remained the same, and 5% increased by less than 10%.

TCWA decreased by 1.11x to 9.61x or remained the same. We also observed hit

rate improvements up to 10% in 71% of the simulations while 29% remained the

same.

When we implemented changes to the cache controller layer only we

observed a 1.08x to 8x reduction in CLWA. We observed FLWA increase in 41%

of the simulations from 1.05x to 1.58x with 18% reducing by 1.17x to 2.82x

and 41% with the same FLWA . Overall, TCWA decreased by 1.09x to 13x or

remained the same for all simulations. We also observed hit rate improvements

in 58% of the simulations, 29% remained the same, and 12% reduced by less

than 10%.

45

We performed similar tests across all the workloads using an LRU re-

placement instead of LRW replacement eviction policy. The results for LRU and

LRW were similar with respect to the benefits achieved by GC-based eviction

over Cache-based eviction. We believe the cause to be the uncoordinated result

of GC operating at a different segment size than the cache eviction. GC moves

data around in physical flash, causing the evictions performed by the cache layer

in Cache-based eviction mode to become uniformly distributed across the flash

in both LRU and LRW scenarios.

3.7 QoS with Virtual Storage Containers

As virtualization technologies become involved, such as Virtual Storage

Containers (VSC), a single physical device could be partitioned into several cache

instances of different sizes to favor various user application requirements. Cache

and flash controller design choices, when optimized for virtualization technolo-

gies, present potentially further complications (ensemble settings) because of a

single shared log instance. Indeed, for example, to guarantee a certain Quality

of Service (QoS) on the hit rate for one application on a specific partition, the

GC may have to invalidate log data belonging to other VSCs, resulting in more

data copied forward during garbage collection. In this case, admission, eviction,

and garbage collection will have to be aware of these requirements for improved

performance.

When Virtual Storage Container (VSC) is turned on, I/O requests with

different LBA ranges are put into different logical containers. Only one log

46

is maintained by VSC-aware FTL for mapping between logical and physical

addresses on the device.If virtualization technology is introduced where a single

physical device is divided into partitions, active data from one partition may be

obliterated by data from another partition due to their positions in the log. This

will result in a dramatic decrease in performance as the eviction component is

oblivious to the QoS requirement on each logical instance.

In todays commonly available SSC devices, silent eviction happens at

the tail of the log when the device is running out of space. This improves

garbage collection efficiency with no data being copied forward. However, due

to flash memorys out-of-place update nature, each segment usually contains

a large number of valid and invalid pages. Evicting valid sectors reduces the

amount of useful sectors in the log and produces negative effects on the read hit

rate, especially under a random workload where the usage of the log is very low,

making the hit rate QoS far from satisfactory.

In addition to SSD-aware algorithms as discussed in Section 3.5, we

seek solutions to SSC-aware algorithms that leverage cache eviction strategies

as well as SSD-based metrics.

benefit
cost = space ∗ w1 + age ∗ w2 + V SC ∗ w3

As is shown above, space, age, and VSC are metrics in different dimen-

sions to indicate the GC efficiency, forexample, the number of valid pages, the

last time each segment is modified, and different VSC activeness and usage when

multiple VSCs exist. Meanwhile, different weights w1,w2,w3 could be embedded

based on SSC design choices. In this dissertation, we only focus on the combined

47

effects of these factors on one cache instance. Intelligent cache-aware algorithms

with interactions between cache and flash controllers, as well as multiple VSCs

will be explored in the future.

For a single VSC instance in our framework, it allows a user-defined

QoS setting that is known by the flash controller. To measure the performance

and endurance, we conduct our experiments under various QoS settings, which

forces the GC to perform copies forward so that the log can keep a minimum

quantity of valid sectors and allow GC to perform evictions once the amount of

valid data satisfies a certain threshold. This precipitates further design choices in

the tradeoff between SSC performance and endurance - by adjusting the amount

of valid data kept in the log.

In order to provide better QoS on cache hit rate, we measure the per-

formance of different VSC configurations, with 0%, 50%, and 100%. When VSC

is configured to be 0, there is no guarantee on the number of valid sectors the

log has to keep. At the time GC starts, it can silently evict all valid sectors

in the victim segment. When VSC is configured to be 100, flash controller will

force the log to keep at least 80% of valid data while the rest of 20% is reserved

for garbage collection. As a result, GC copies forward a large amount of data to

satisfy this QoS setting.

Similar to other experiments, we conduct the tests with cache size from

50% to 100OLEST, and 8% of GC threshold. Is is shown in Figure reffig:vsu

that as different QoS settings force different number of valid sectors to be stored

in the log, this result in an increase of cache hit rate as vsc qos min increases.

48

On the other hand, in order to guarantee a certain usage level, GC has to do

valid data copying forward when the usage is below the required vsc qos min

instead of silent eviction. As vsc qos min increases, write amplification factor

increases accordingly, causing additional writes to the flash. There is a tradeoff

between performance and endurance of SSC, design choices could be made to

minimize the WA if hit rate is guaranteed within a certain range.

1.39 1.67 1.94 2.22 2.500.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Hi
t R

at
e

(H
R)

SSC Physical Size vs HR, WA, and Segment Erase Count

vsc_qos = 0 vsc_qos = 50 vsc_qos = 75 vsc_qos = 100

1.39 1.67 1.94 2.22 2.501
2
3
4
5
6
7
8
9

W
rit

e
Am

pl
ifi

ca
tio

n
(W

A)

1.39 1.67 1.94 2.22 2.50
Physical Size

0
1000
2000
3000
4000
5000
6000
7000
8000

Se
gm

en
ts

 E
ra

se
d

Figure 3.7: hm 0 performance with different VSC QoS configurations.

3.8 Future Work

In this section, we have exclusively explored write-through as the caching

mode for an SSC. In the future we plan to extend our work to write-back caching.

Unlike write-through mode, in write-back caching mode the most-recent copy of

the data would not always be in the backing store but in the SSC itself, needing

to be asynchronously written to the backing store (destaging). The asynchronous

49

update to the backing store introduces many challenges to GC policies, admis-

sion policies, and performance of regular operations. It can however enable more

write-intensive workloads to become cache candidates, making it a good target

for endurance-focused investigations.

In this section, we have looked at only one cache instance within a

single SSC. In many data center deployments, due to virtualization, more than

one cache instance would be running within the same device. We intend to

explore the impacts of multiple independent cache instances on the same FTL.

In our work we focused on comparing FTL and cache layer policies and GC

versus cache layer eviction with configurations where the amount of valid data

guaranteed (e.g. hit rate QoS capacity reservation) in the SSC was fixed at 100%.

Preliminary work was performed with varying hit rate QoS percentages (e.g. 0%,

50%, 75%) and that work will be the basis for future investigations on impacts

to hit rate, CLWA, and FLWA in such configurations. We intend to explore the

impacts of multiple independent cache instances on the same FTL, extending the

work presented so far on QoS and its interaction with GC and cache algorithms.

We also intend to explore the implication of running multiple instance of write-

back, write-through, and a combination of write-back and write-through caches

within the same flash device. The performance-endurance tradeoffs in the multi-

cache scenario will be challenging and could require global admission and eviction

policies in addition to the local admission/eviction policies for individual caches.

50

3.9 Summary

The focus of our high endurance flash based cache was to analyze the in-

dividual contributions and cummulative choices of cache admission policy, cache

eviction policy, GC strategy, and device configurations on the overall endurance

and performance of a high endurance SSC device.

Through our experiments we have the following observations.

• Workloads from write-through caching software products with admission

policies yield much different workloads as seen by SSCs. The resulting

changes in workloads, due to such configurations, can result in cache layer

write amplification (CLWA).

• Cache-based vs. GC-based victim selection, using differing GC policies,

under various cache workloads, demonstrates much different hit rates,

FLWA, and segment erases for differing cache sizes (different percentages

of the critical cache size for each trace). These differences produce impacts

on write workload, P/E cycles, and overall performance. We recognized

varying data validity distributions in each approach which in turn had

impacts on victim selection, CLWA, FLWA, and segment erases. We iden-

tified that such choices must be considered carefully to balance endurance

with performance in SSCs.

• Use of capacity reservation with QoS enforcement on SSCs provides for

improved hit rate at the expense of FLWA. We identified that when using

capacity reservation and QoS, the hit rates approached that of cache-based

51

eviction with improvements seen in both write amplification and segment

erases as contrasted in GC-based eviction.

In addition we identified a number of areas for further research. The

use of VSCs and QoS has shown improvements in balancing endurance versus

performance. Additional study is required to understand the effects of multiple

VSCs with QoS residing on a single SSC and the effects of garbage collection

victim selection strategies on such configurations. As our study focused on SSCs

configured as write-through devices further study is required on the impacts of

VSCs with QoS in write-back cache configurations.

52

Chapter 4

Log-structured Flash-based Storage

Systems

The use of log-structured in storage systems is to maximize write through-

put by aggregating small random writes to large sequential ones. With logging,

storage medium is easier to manage, for example, free space management be-

comes straightforward regardless of the fragmentation inside the log. Recovery

mechanism could be simple and fast as newer data is always appended to the tail

of the log. This is also good for keeping transactional consistency. Even crash

occurs in the middle of a transaction, the last uncommitted message could be

discarded with little overhead. Though garbage collcetion process takes up most

of the resouce in a log-structured system, it provides more flexibility on reclaim-

ing space based on different performance requirements, hardware configurations,

and reliability needs.

With this said, individual logging design is always optimized for its own

performance. Multiple logs within one application is even btter. For example,

53

some log-structured system place hot and cold in separate logs, or store data

and metadata in different logs. This groups data of silimilar update frequen-

cies, making them be invalidated together within a short period of time, and

hence minimize the GC overhead. In addition, independent logging applications

achieve better isolation so that application-specific data and storage management

could be feasible.

However, when considering flash memory as a primary stoarge medium

in these systems, due to the nature of NAND flash that does not support in-place

update, another log-like Flash Translation Layer (FTL) to map from logical to

physical addresses must be adopted. Such duplicated logging on file system

(or application) and device layers suffers suboptimal performance and reduced

reliability. Data layouts become intermixed defeating the benefit of original log

structure and reducing flash memory life time due to uncoordinated log activities.

4.1 Experimental Methodology

We pick F2FS and NILFS as examples of two real systems for exper-

imental environment to describe the log-on-log architecture. NILFS is a newly

designed log-structured system to improve data consistency with features like

”continuous snapshotting”. It is not primarily written to be flash friendly, so

we use it as a baseline test for comparison with the flash-friendly log-structured

F2FS design. Samsung’s recently developed flash-aware file system - F2FS [39]

also uses a log structure on the host side, the file system layer can have upto 6

logs that separates data and metadata based on their hotness. The redirection of

54

data to different system logs aims to aggregate data of similar update frequency

so that they have high chance to be invalidated together within a certain period

of time, and hence reduce the GC overhead by copying forward less amount of

live data. Such technology has been proposed for a while in several systems, such

as DualFS [74] and hFS [98]. However, the benefit of such systems can only be

obtained with a device that supports multi-append point technology - in which

the underlying device can maintain more than one active segments at a time, or

where the device log can have more than one append points other than the tail.

There is limitation to do so on the hardware side, thus defeating the benefit of

the original multi-log design. In addition, even if the FTL is able to support

multiple number of logs with hardware support, the number of upper layer logs

tends to grow faster than that of the underlying physical logs. With this said,

we conduct our experiments as a more general case that uses F2FS or Nilfs on

the host side and a Fusion-io’s ioDrive2 [25] as a primary storage device. The

ioDrive2 we use is a 785GB NAND-based MLC SSD with a single append point

(single log) in the FTL layer.

For each problem described in the following sections, we measured the

performance and collected several system statistics, for example, file system

writes to the flash media, actual physical media writes, device garbage collection

write amplification factor, and etc.

55

4.1.1 Log-on-Log simulator

In order to quantify the issues with stacking logs, in addition to experi-

ments on real existing file systems, we also build a log-on-log simulator to mimic

a system configuration that having one log stacking on another. The basic struc-

ture of our simulator could be depicted in Figure 4.1. Initially, there are two

layers of logs, the upper layer log can be treated as a log-structured file system

that maintians its own log, and does address translation from virtual to logical

space. While the lower layer log can be treated as a physical device that stores

data on the media, with a log-like structure, for example, FTL in solid-state

disks, logical addresses are translated to actual physical addresses. Data could

be passed across logs by a standard I/O interface through operations such as

READ, WRITE, TRIM, and etc.

Same as a typical log-structured system, each log alone has its own

components, such as metadata management that maintains log metadata, stor-

age management that controls data placement, garbage collector to reclaim free

space on demand, and etc. These components’ activities within one layer are

invisible to the logs in the other layers.

The simulator can stack more than two layers log together, each with

its own management mechanism. In addition, we can extend more than one log

in each layer. Each log appends data to the tail, and garbage collector starts to

work independently when the log is out of space. In our simulation experiments,

we only focus on the two-layer log scenario, with each layer up to two logs.

Multiple layers and more than two logs will be further investigated in the future.

56

Figure 4.1: Log-on-log simulator

4.2 Issues with stacking logs

In this section, we show the problem with a log-on-log structured sys-

tem. To simplify the issue, we start with a structure having one log stacking

on another FTL log, we present the counter-intuitive behavior of such systems.

We describe the system’s deficiency based on several of its log activities, and

then propagate to a more general two-layer log structured system where both

file system or application and the hardware device has more than one logs on

their own layer.

4.2.1 Metadata footprint increase

Increase in metadata footprint is unavoidable when logs are stacked on

each other. At each log layer, one needs to maintain metadata that not only

describes the log but also ensures that it always represents a consistent state.

For example, in NILFS, the metadata blocks consists of file b-tree, inodes, inode

b-tree, and checkpoint [53]. The on-disk space required by metadata for NILFS

could be even higher to hundred KB for every file update, especially with direct

57

I/O. Moreover, most log systems also cache a copy of the on-media metadata

in OS memory which increases with the number of log layers. When file system

logs keep growing, the metadata needed to maintain each log increases. As an

example, F2FS is designed to support up to 6 logs, making it possible for the file

system to identify hot/warm/cold data and separate them to different segments.

However, each log requires a nonignorable amount of metadata to manage its

activity. These metadata not only increases the memory consumption, but also

generates more writes to the device, and hence would be further amplified by

the underlying log activities, for example, lower log garbage collection.

Figure 4.2: Metadata foot print increases as more logs are introduced on file

system, defeats the benefit of multiple logs.

We measured the total file system write bytes issued to the device

under different workloads varies number of file system logs. We configured F2FS

to have 2 and 6 logs. With 2 logs, F2FS separates user data and metadata,

while 6 logs further separate each type of data into 3 segments, hot, warm and

cold. We use FIO benchmark tool to generate workloads with different I/O size.

58

The workloads include random and sequential read/write operaitons, with and

without caching (O DIRECT), I/O size of 1KB and 4KB.

As is show in Figure 4.2, under the same application workload that

writes 8GB totally, the file system generally writes more data to the device

when it grows from 2 to 6 logs. For example, the first column set shows the

total number of file system writes issued to the device with an original 8GB

random writes, buffered IO and 1k IO size. File system amplifies the original

writes due to file metadata and log metadata. Since the user writes are the same

for 2 and 6 logs, the file metadata used to maintain the file status remains the

same. Thus, the increased writes from 2 to 6 logs are generated by the additional

log metadata that is used to maintain the log status. In this chapter, we refer

to the increased writes generated by file system from the original workload as

File System Write Amplification (FSWA), which is computed as the ratio of file

system writes to the device and the original workload writes. From our test,

the FSWA varies under differnet number of file system logs, and increase from

1.5 to 2.0 (up to 33%) when file system grows from 2 to 6 logs in the test of

sequential write, 4k IO size, and direct IO. This difference is larger comparing to

the random workload (the last two column set in Figure 4.2). Under sequential

workload, as each write operation extends the size of the file and requires ionode

updates, as a result each write generates an additional metadata write which

is not true for random workload. Thus in sequential writes that extending file

size, metadata is more active and hence requires more log metadata to maintain

the metadata log. With more frequent metadata operations, separating data

59

and metadata introduces higher metadata footprint for those metadata logs.

Generally, if some logs are more active than others in the system, they generate

higher log metadata overhead.

As more logs are invoked on the upper layer, more metadata writes

will be generated to maintain the log, and hence increasing FSWA. While sep-

arating data of differnet attributes or from different applications provides more

design flexibility and aims to fully utilize the system resources, the increased

performance overhead defeats such benefit and the additional writes reduce the

flash device endurance due to the nonignorable amount of metadata foorprint

increase.

4.2.2 Mixed workload

The nature of a log structure is to guarantee that data is written se-

quentially and appended at the tail of the log internally. In the upper layer

log, file system or application writes sequentially within their own logs. How-

ever, the workload seen by the underlying device is quite different, with only

one physical device and single lower log, workloads from logs and other non-log

traffice get mixed, mostly likely to be random, especially when more than one

logs are active at the same time - which usually happens in the real world. In

addition, as disscussed above that lower log writes its own metadata, where the

characteristics of metadata vary depending on the hardware design. Thus the

actual traffic seen by the device is hard to predict. As is shown in Figure 4.3, IO

requests from different upper logs intermingle with each other before reaching

60

the device and results in the chaos especially under intensive workload.

Figure 4.3: Mixed workload from logs and other traffic.

4.2.3 Unaligned segment size

Many of the advantages of sequentializing (or collocating) writes in

large segments is lost when logs are stacked on each other. Among them, seg-

ment size mismatching causes most performance deficiency. First, segment size

mismatch (i.e., unequal segment size) in logs leads to data spread across seg-

ment boundaries in the lower log. This results in data of upper log fragmented

in the lower log. The degree of fragmentation gets amplified when each of these

layers performs segment cleaning leading to increased write amplification. As an

example shown in Figure 4.4, data from the same upper log segment is spread

across segments in the lower device log, regardless of the ratio of segment size on

each layer. At the time when an entire upper layer segment is deleted (fsys seg

2), the invalidation is across two segments in the underlying device. Reclaiming

physical space may have to do garbage collection of two dev seg, and results in

high device GC WA (see Section 4.2.5 for more detailed discussion on segment

cleaning). The fragmentation becomes worse with multiple logs are stacked on

61

top of one device log.

(a) Initially, application writes segment 1, 2, 3 sequentially to the device log

(b) Delete segment 2: upper log cleans one segment, underlying log cleans two segments

Figure 4.4: Unaligned segment size results in fragmented device space caused by

garbage collection.

Second, matching segment sizes between logs does not prevent data

fragmentation. Different logs have different behaviors and attributes, and hence

different metadata objects and sizes. They write metadata objects at different

conditions and frequencies. This results in variability in the capacity of segments

within and across logs. Moreover, underlying logs have their own metadata

which is invisible to the upper log, and intermixed the data from upper logs.

It is impossible to align data perfectly based on their attributes (e.g. types

of data, origin of data). Hence cleaning of segments at one log layer doesn’t

preclude the need to clean the segments at another layer. Even if the segment

sizes exactly matches, the metadata written by each log layer would make it

impossible to align data perfectly. As is discussed in the previous section that

62

metadata for each layer log is nonignorable. Hence cleaning of segments at one

log layer doesn’t preclude the need to clean the segments at another layer.

Figure 4.5: Device GC Write Amplification factor varies segment sizes.

We measured the impact of different segment sizes on device garbage

collection by running the block trace captured in Figure 4.2 through our single-

log SSD simulator. We picked block trace of random writes, 6 file system logs,

1k IO size, and buffered IO. The SSD is configured to be of size 6GB. As F2FS

has a default segment size of 2MB, we vary the device segment size from 1MB to

64MB. As shown in Figure 4.5, GC WA increases as segment size increases. For

example, under greedy policy that selects the victim segment with most invalid

data, as segment size increases, GC WA increases dramatically, especially when

device segment size is larger than the file system segment size. The increase

of WA can be caused by both the unmatched segment size from two logs, and

the lack of flexibility of choosing segments having less valid data with larger

63

device segment size. In other words, if file system segment size matches the

device segment size well or larger than the underlying segment, the chance of

fragmented logs could be reduced. However, this is usually not feasible in the

real system as device segment sizes vary by different vendors design and usually

not easy to be configured.

4.2.4 Different log activeness

In the case of multiple logs within one layer, if application separates

data to different logs, logs will have different activeness based on the data type

it stores. For example, metadata log is usually more active and smaller than

the data log. As a result, each log triggers the data invalidation and garbage

collection with different frequencies. Since the original workload remains the

same, separating data to multiple upper logs tends to make the invalidation and

garbage collection on one original log be spread across multiple upper logs. Once

be propagated to lower log, it is likely to be across even more segments. The

more number of upper logs are, the more dispersing lower level data is stored.

More application or file system logs is not always good for overall performance,

the reduced upper layer WA sometimes results in higher device WA, thus making

the combined WA higher.

Separating data of different update frequencies in uppper log can help

reduce the file system garbage collection overhead, and better organize the data

layouts on the lower log if with multi-append point on the device side. This is

achieved by maintaining more than one active logs in the file system and keeping

64

more than one active physical segments at a time on flash, e.g. F2FS uses one

log for user data and one for metadata. As an example shown in Figure 4.6, if

the underlying hardware does not support multi-logs which is common in the

current SSD products, user data and metadata will be intermixed in the device.

Usually, metadata is invalidated more often than user data. Thus, the upper

metadata log will be garbage collected sooner and more frequently. Either TRIM

or overwriting the metadata blocks will cause invalidation of blocks on the device

log (Figure 4.6(a)). However, if the file system supports advanced capabilities

that further separates metadata to hot and cold one, which is even better for the

upper logs’ data arragements. Hot metadata log will be the one that has most

frequent invalidations. As the total amount of file metadata remains the same,

the separation of data to multiple upper logs will disperse data to more lower

logs or segments, and hence the invalidations, as is shown in Figure 4.6(b). Thus,

invalidation tends to be distributed to more lower logs or segments with smaller

size of extents, resulting in high degree of fragmentation and higher device GC

WA.

If there are m upper logs stacking on n lower logs, then the ratio of

(m/n) can indicate the degree of data fragmentation to some extent. The higher

the ratio is, it is more likely that a single underlying log may contain data

from more different upper logs. With different log activeness, such as update,

invalidation, and GC activities, the lower log will suffer from high degree of

fragmentation, and hence higher WA as the system is aging.

We conducted an experiment of 2 upper logs vs. 6 upper logs using

65

(a) With fewer application logs, upper layer segment invalidation will be aggregated to fewer

device segments.

(b) More application logs tends to distribute invalidation across more flash log segments,

resulting in higher WA.

Figure 4.6: Different log activeness results in high degree of fragmentation.

F2FS. Under the same workload of 60GB random writes, 4k IO size and direct

IO, the file system writes issued to the device is much closer (see column 3 - fsys

W GB in Table 4.1). However, due to the different distributions of hot and cold

data within the same device log and the decreased size of invalidated extents,

6-log case gets higher fragmentation, and hence much higher devce GC WA than

2-log case. As more valid data is copied forward during GC, it has to reclaim

more segments at once to free same amount of space, as a result, more erase

counts in more logs case. (see column 5 and 7 in Table 4.1). If the file system

has more hot files on a smaller portion, more logs gets worse as the invalidation

of data and metadata blocks will be spread to more device segments with smaller

extent size, as is shown in Table 4.1 zipf0.8 vs. zipf1.1.

Though in the 6-log case, the increased log metadata also contributes

66

to more device writes and higher GC (See section 4.2.1), in this buffered I/O

experiments, we can still separate their effect in a coarse manner by assuming

the resulting device writes are from both original workload and increased log

metadata in a linear scale. Thus, still the much higher WA and erase counts are

mostly caused by the effect of data activities distributed across logs.

Generally, if upper logs have a diverse range of activeness, for example,

some applications may be more active than others at a certain period of time,

or some logs are much smaller than others, it increases the degree of data frag-

mentation presented on the lower logs and results in high device GC overhead.

random log fsys device erase GC data GC
distrbution # W GB W GB count copied GB WA

zipf:0.8 2 120.55 221.02 370 98.28 1.82
zipf:0.8 6 121.08 267.88 473 144.58 2.19

zipf:1.1 2 122.05 222.78 374 98.52 1.81
zipf:1.1 6 122.53 277.10 493 152.35 2.24

uniform 2 96.32 137.94 188 39.96 1.41
uniform 6 96.42 141.25 195 43.15 1.45

Table 4.1: Device WA varies with different number of upper logs.

4.2.5 Decoupled segment cleaning

Coordinated segment cleaning is almost impossible when logs are stacked

on each other. Garbage collection is a side effect of log structuring, where inval-

idated blocks within segments need to be reclaimed to generate free space [80].

By design, logs work in isolation (i.e., manage their free space themselves) and

are oblivious of other logs underneath them, which results in an inefficient im-

plementation of logs.

67

First, data that is presumed to be valid at the lower layer need not be

valid at the upper layer if without TRIM support. Invalidations at the upper logs

need not trickle down to the lower log, as a result, lower logs works with outdated

validity information. Invalidations in the lower logs is normally inferred by

overwrites performed by the upper logs. The lower-log layers performs segment

cleaning operations, move data (invalid at the upper log but valid in its level)

that would never be accessed but invalidated by the upper layer at some point

in time. In the worst case, such data can be moved multiple times within the

lower log before the upper log overwrites it due to re-allocation of logical block

addresses (LBA).

Second, data could be moved multiple times across log layers due to

uncoordinated segment cleaning. Each log layer performs segment cleaning while

being agnostic of the activities in the other log layer. Considering the case

where the segment cleaner of the lower log runs ahead of the segment cleaners

of the upper logs segment. In this situation, the lower log could clean a segment

that contains one or more segments from the upper logs. After the cleaning

is done, the segment cleaner of the upper logs will move the data (as part of

segment cleaning) and rewrite the segments in the lower log again. The process

of uncoordinated segment cleaning creates more invalidation at the lower log’s

segment that was used to store data from upper logs. The unnecessary additional

writes caused due to uncoordinated garbage collection increases the WA, and if

running on a flash device it also decreases the device’s lifetime.

Figure 4.7 depicts an example of decoupled cleaning without TRIM.

68

Initially, data are written sequentially to the device. At a certain point, file

system deletes some data blocks without informing the underlying FTL (Block

2, 4 and 6 in this example). When the device garbage collector wakes up, those

data are still valid from the lower log and device GC point of view, so it still

copies them forward to reclaim device segment 1. This increases the device GC

write amplification (WA) by copying invalid data seen by upper layer. As a

result, invalidated blocks 2, 4 and 6 will stay in the flash media until file system

GC cleans segments containing those LBAs and overwrite those LBAs with new

data. Copying of these blocks by device GC could happen several times until

the file system re-allocates those LBAs.

Figure 4.7: Decoupled segment cleaning without TRIM

Figure 4.8: Decoupled segment cleaning with TRIM.

Third, high degree of data fragmentation due to different log charac-

teristics and activities (discussed in Section 4.2.3) increases device GC WA, and

69

meanwhile garbage collection on both layers further fragments the data layouts.

While file system makes effort to write sequentially on its own segment basis,

even with the effort of invalidating and overwriting sequetially, holes could be

made at the layer with larger segment size due to the unmatched segment size or

page size as well as the timing issue for both layers’ GC. Without TRIM, as an

example shown in Figure 4.7, when file sytem GC invokes after device GC has

copied block 2, 4 and 6, the overwrite operation sent to the device will invalidate

those blocks, and causes fragmentation on the media. As a result, when device

GC wakes up again, valid data (Block 7 in this case) will be copied forward. This

further increases the WA due to the mixed placement of valid data and invalid

data. Even with TRIM, as is shown in Figure 4.8, fragmentation problem still

exists. When file sytem TRIMs the entire segment (Figure 4.8), the underlying

device segments only invalidate a portion of them. Moreover, if file system GC

happens after device GC, those valid blocks will be copied at least twice. In ad-

dition, device GC process usually involves several stages including segment scan,

victim segment selection, and valid data re-read and re-write. Not to block the

incoming requests in a high performance system, this is multi-threaded and al-

ternate with new IO requests. Data written by GC and by new write operations

will be mixed, and further enhances the degree of fragmentation.

Fourth, many of the optimizations in segment cleaning algorithms are

no longer applicable when logs are stacked on top of each other. For example,

grooming based on hold cold segments needs not hold true at lower log layers.

As mentioned earlier, the notion of hold/cold data at the lower log need not be

70

accurate and representative at the higher layer. Reasons include interspersed

data from segments across (and within) logs, segment cleaning at an upper log

layer translates to ”hot” data to the lower log layer, segment cleaning at an lower

log moves ”cold” data from the upper log (which could have been invalidated)

making it hot on a overwrite, and assumptions about availability of multiple

append points.

4.3 Experimental evaluation

In this section, we quantify the problems discussed in previous sections

with our log-on-log simulator. The log-on-log simulator presents an ideal condi-

tion which keeps all metadata in memory. Our focus is on measuring the write

amplification factor in both log layers, and their combined WA. Since the cost of

GC is one of the dominant factors that affect both performance and device en-

druance, we focus on exploring solutions to improve performance and endurance

by reducing GC cost. As both the single log and multi-log experiments show

the deficiency of stacking logs in an uncoordinated configurations in the ideal

environment, in real system, the condition will get worse.

We picked several traces from Microsoft Research [5] and several TPC-E

workload traces generated from database runs [11] to run through our simulator.

Though these are block level traces, as our two-layer log simulator is independent

of platforms and system configurations, it could be abstracted as any two-layer

modules reside in the entire system hierarchy. In this file system to device case,

we mimic them to be requests sent to the higher level log. The LBAs in the trace

71

are treated similar to virtual addresses in the VFS layer, and be translated to

the logical addresses by upper layer log, then be passed to the lower log through

a block-like interface, and then be converted to physical addresses by flash FTL.

4.3.1 Single log

Generally, each log needs to reserve a portion of its free space for recla-

mation process. Logical addresses in upper log can only be reused after the

upper layer GC reclaims that address space which is in a segment unit in this

case, thus lower layer log only gets “update” operations on the same logcial ad-

dress after the upper layer GC runs for a while. The actual total usable logical

space (or total unique logical addresses that are used) in the upper log could

not exceed the physical size of the lower log. In other words, upper log size is

always smaller than the lower logs. For example, if the physical device is 1TB,

it reserves 20the upper layer also reserved 20exposed to the user or application

is only 640GB then.

The higher the size ratio of upper vs. lower log is, the higher utilization

the lower log will be, and hence the more aggresive lower log GC will be. In

this experiment, we fix the upper log size and conduct the uppper/lower log

size ratio from 40% to 90% by changing the lower log size. Each layer has 10%

reserved space for GC and uses greedy policy to choose victim segment. We vary

each layers segment size from 2MB upto 512MB so that we can get a variety of

segment size ratios between two logs.

We measure the upper log write amplification as the ratio of total upper

72

layer writes to the original writes in the trace (FSWA) and the lower log write

amplification which is actually caused by the flash translation layer’s GC activity

as the ratio of total lower layer writes to the upper layer writes (FLWA). Similar

to the TCWA in Chapter 3, the total combined write amplification represents

the effect of FSWA and FLWA.

4.3.1.1 Capacity ratio

Usually, the physical and logical (virtual) space each layer log exposes

is different, this depends on system design, configurations, and hardware char-

acteristics. And hence the capacity ratio of upper to lower log varies. If the

capacity ratio is high which means the size of each layer is close to each other,

then the lower log will be running out of space soon after the upper log is. That

means, both layers GC starts within a short period of time. In this case, it has

high chance that a lot of logical addresses have not be reused or reclaimed by

upper log, and thus less data invalidation seen from the lower log. When lower

GC starts, most of the pages in the victim segment are still alive, more data be-

ing copied forward resulting in higher GC WA. In other words, lower log GC will

be more aggressvie to reclaim a certain amount of free sapce. In such systems,

usually FLWA is much higher than FSWA, and dominant the combined TCWA.

Reducing FLWA is more critical to the overall performance.

On the other hand, if the capacity ratio is lower, which means upper

log GC starts much earlier than the lower log GC. It allows more invalidation in

the lower layer, and hence reduces the FLWA. This tradeoff the FSWA for lower

73

FLWA, and hence the TCWA would also be reduced.

Table 4.2 shows an example of our experiments with tpce trace. We

fixed the lower physical log size and vary the upper log size. Under the same

workload, when the size of upper log is larger and the capacity ratio is relatively

higher, we see a lower FSWA and less amount of data be written to the device.

However, this increases the FSWA by copying more valid pages during device

GC. When lower GC is dominant in determining TCWA - when lower segment

size is larger than 8MB in this case, less writes from the upper layer results in

higher total device writes. On the other hand, if we configure the upper log

to be smaller (up/low size ratio of 0.8), though this makes file system GC more

aggresive and issuing more writes to the device, those increased writes contribute

to update/rewrite operations on the same logical addresses, and hence more

invalidation occurs within each segment to favor lower FLWA. When the order

of FLWA reduction surpasses that of the FSWA rise, the combined overhead will

be decreased.

Figure 4.9 depicts the results in another dimension where lower log size

varies under a fixed-sized upper log. In such conditions, higher capacity ratio

presents more physical space in the lower log. Lower log GC can be less active,

and hence the FSWA dominant the TCWA. In such case, choosing a segment

size that achieves lower FSWA will be more effective to help improve the overall

performance. We will discussed the segment size ratio in details in the following

section.

74

up/low low seg orig w up GC FSWA low GC FLWA TCWA erase
s ratio MB GB W GB W GB count

0.9 2 88.96 32.63 1.37 0 1.00 1.37 46693
0.9 4 88.96 32.63 1.37 72.38 1.60 2.18 41877
0.9 8 88.96 32.63 1.37 175.00 2.44 3.33 34073
0.9 16 88.96 32.63 1.37 250.26 3.06 4.18 21854
0.9 32 88.96 32.63 1.37 339.46 3.79 5.18 13782
0.9 64 88.96 32.63 1.37 404.02 4.32 5.91 7924
0.9 128 88.96 32.63 1.37 442.03 4.64 6.34 4266
0.9 256 88.96 32.63 1.37 494.39 5.07 6.92 2343

0.8 2 88.96 45.86 1.52 0 1.00 1.52 53468
0.8 4 88.96 45.86 1.52 61.93 1.46 2.21 42587
0.8 8 88.96 45.86 1.52 102.08 1.76 2.66 26434
0.8 16 88.96 45.86 1.52 167.25 2.24 3.40 17388
0.8 32 88.96 45.86 1.52 216.08 2.60 3.94 10257
0.8 64 88.96 45.86 1.52 244.54 2.81 4.26 5584
0.8 128 88.96 45.86 1.52 261.66 2.94 4.46 2929
0.8 256 88.96 45.86 1.52 281.62 3.09 4.68 1545

Table 4.2: TPCE: Lower capacity ratio provides device GC more invalidated

pages. TCWA shows reduction with more aggressive upper log GC under same

lower log physical size.

4.3.1.2 Segment size ratio

Another factor that affects both layers WA is the segment size - which

is a smallest unit during the GC process. Generally in a single log case, smaller

segment size can provide more flesibility to the GC selection algorithm as it

arranges the storage space in a fine-grained manner so that the selection mecha-

nism can find a segment with fewer valid pages. Thus, the smaller segment size,

the lower WA. Usually due to the metadata overhead of maintaining segments

and some hardware limitations, segment size is designed in an order of MB to

achieve balance between GC efficiency and maintenance overhead.

When one log is stacking on another, simply choosing a smaller seg-

75

(a) prn 0: upper/lower size ratio 90%. (b) prn 0: upper/lower size ratio 70%

(c) prn 1: upper/lower size ratio 90%. (d) prn 1: upper/lower size ratio 70%

(e) tpce: upper/lower size ratio 90% (f) tpce: upper/lower size ratio 70%

Figure 4.9: Single log experiments varying the capacity ratio and segment size.

76

ment size to favor lower WA in its own log sometimes is harmful to other layers

GC performance. We have discussed the problem of unaligned segment size in

Section 4.2.3. Here we further explore the impact of different segment size ratio

on the TCWA. Figure 4.9 shows the TCWA of three of the traces: prn 0, prn 1,

and tpce (See detailed trace characteristics in Table 3.2). prn 0 is write inten-

sive, prn 1 and tpce is read intensive workload. We fix the upper log size while

configuring the lower log size to make the up/low size ratio from 40% to 90%.

For each size ratio, we varying both layers segment size and measure the FSWA,

FLWA and TCWA.

For each segment size configure, the TCWA starts to increases dramati-

cally once the lower segment size exceeds the upper segment size. This is because

upper GC reclaims space in a unit of upper segment size, at the time these logical

addresses are reused - when same upper segments are written again, this is seen

as invalidation by the lower log. If these invalidation can cover the entire lower

segment at once, then the whole lower segment can be reclaimed with no data

copied forward, and as a result FLWA is 1. If these invalidations only cover a

part of the lower segment, the more random upper GC chooses victim segments,

the higher degree of fragmentation lower log will suffer. This becomes worse as

the up/low segment size ratio decreases. On the other hand, if upper segment

size is larger, re-writing one upper segment can always conver at least one lower

segment, no matter whether the size is a multiple of lower segment size. In this

case, lower GC can always find segment without or with fewer valid pages.

While smaller upper segment size can help reduce FSWA and hence

77

issue fewer writes to the device, it gets lower TCWA when device log segment

size is small. Once device segment size gets larger and FLWA becomes dominant,

the increased FLWA due to the segment fragmentation will make TCWA even

higher. As is shown in Figre 4.9(a)(c)(e), the very left part shows smallest upper

segment size behaves best, however, the increasing ratio of them is also larger.

Once beyond a certain point, larger upper segment size gets lower TCWA regard

less of the size of the lower segment size.

In addition, if the capacity ratio is lower that device GC does not have

to work aggresively and delays its wake up time to allow more invalidations,

smaller upper segment size gets lower TCWA as long as the FSWA is dominant.

For example, Figure 4.9(c)(d) shows the TCWA of prn 1 with 90% and 70%

capacity ratio. Though they both show the same trend at the macrolevel, the

turnning point in the 70% case is closer to a larger device segment size, which

means, with larger physical device, smaller upper segment size is better if the

lower segment size is not too big (e.g. in an order of hundred MB). That is said,

the choice of each layers segmeng size to achieve smallest overhead depends on

the segment size ratio and the log capacity ratio.

4.3.2 Multiple logs

In order to explore the impact of multiple logs, we configure our sim-

ulator to have 2 upper logs and 1 lower log to mimic a system having more file

system logs on top of a device with fewer append point (e.g. F2FS on a com-

mercially available SSD). We use the same traces as above, each upper log has

78

their own address ranges so that incoming requests are redirected to different

logs based on the request’s address. Once a log is running out of space, the GC

starts reclaiming space internally. To simplify the problem, we configure each

upper log having same segment size, same GC threshold, and same GC selection

algorithms. As each log has different capacity and activeness, the workload seen

by the lower log will be random and unpredictable.

(a) tpce: TCWA gets higher with 2 upper

logs.

(b) prn 0: TCWA is reduced with 2 upper

logs

Figure 4.10: Directing data to two separated logs can reduce WA in its own

layer, but potentially increases WA in the others, and results in higher TCWA

under some workloads or configurations.

Figure 4.10 presents results of tpce and prn 0 under one configuration,

both with a 90% up/low capacity ratio. We put the single-log case and 2-log

case together for easy comparison. For prn 0, FSWA is reduced with two upper

logs in all segment size configurations, this is in line with the purpose of mult-log

design. While it generates fewer writes to the device, and makes the device GC

less active meanwhile, TCWA is reduced. As device segment size increases, the

inceasing ratio of TCWA is also lower than that in the single log case. This is

79

an optimal condiftion for multiple logs. On the other hand, in the tpce trace

where workload is random and with no distinct difference of access frequencies

on the address ranges, for example, in the workload that data and metadata are

usually updated together, separating data based on types does not help reduce

WA. Figure 4.10(a) shows a higher TCWA in the 2-log configuration especially

when device segment size is smaller. Though the incrasing raio of TCWA is

lower in 2-log case, in most of the case, single log configuration works better.

While the workload is hard to predict in the real world, separating data

based on types is not always beneficial. This rises more difficulties to the file

system or application designers. With underlying hardware layouts unknown,

they need to be more cautious on directing data to different logs. We intend

to further explore the log coordinations between logs within and across multiple

layers.

4.4 Methods for log coordination

We have characterized the interactions between multiple levels of inde-

pendent logs, and describe several practical scenarios which arises in real sys-

tems. Stacking logs on each other defeats the benefit of original logs due to lack

of log coordinations. In the system where log structure can still show its superior

performance and reliability, we recommend several design choices to reduce the

overhead of multiple levels of logs.

80

4.4.1 Size coordination

In a typical log-on-log system, two size-related configurations will affect

the overall system performance, and each of them are not independant on its own

layer, which is quite different from a single log architecture. We have analyzed

the impact of different capacity and segment size ratios on the overall TCWA in

the previous section. We will summarize the design suggestions regarding size

coordination here.

Capacity : Larger capacity is not always beneficial. For larger upper

log, it provides more virtual space, delays the file system GC start time, and

lowers the upper GC activeness and hence lower FSWA. As a result, file system

writes less data to the device. However, as device log gets less invalidation

from writes, more valid pages will be in the victim segments when device GC

is activated, and hence higher FLWA. Moving more physical data forward is

harmful to performance.

Generally, the cost of moving virtual/logical pages around in file system

or other application logs is lower than that of moving physical pages in the device

log. In addition, the device endurance is directly related to the total writes to

the flash which is a factor of TCWA (FSWA * FLWA). While reducing both

layers WA is not easy to achieve, slightly increasing the upper layer FSWA by

making upper log GC working more aggressively to tradeoff a lower FLWA could

be a better choice. With a fixed sized physical device, configuring a smaller size

of upper log can help reduce the total writes to the device as long as it can hold

the workload. In other words, smaller up/low log capacity ratio improves the

81

overall performance. This also stands for the condition when upper log size is

fixed, smaller up/low log capacity ratio means a larger physical device, which

can always gets lower FLWA, and hence reduced TCWA.

Segment Size : The common sense that smaller segment size can al-

ways gets lower WA is no longer true in the log-on-log scenario. We have shown

the segment size impact on the individual logs as well as the entire log-on-log.

When TCWA is determined by the combination of FSWA and FLWA, we should

be very carful when choosing each layers segment size.

Generally, in the system that upper log is not the only consumer of

the underlying physical log and other upper level applications are less active, or

the lower log has more spare capacity so that device GC is less aggresive than

file system GC, it is better to choose an upper segment size that can achieve

lowest FSWA without bringing too much metadata overhead, such as segment

metadata, and etc. On the other hand, when both layers have heavy workload

and the capacity is close to each other, it is better to have the upper segment

size match or larger than the lower segment size. Though larger upper segment

size run the risk of increasing FSWA, the large range of invalidation it passes to

the device can help reduce device GC WA dramatically.

File system designers do not know the underlying hardware layouts,

and vice versa. Besides, due to the hardware limitations, normally it is hard

to change the device segment size after it leaves the factory. The best way

to do segment coordination is to configure the file system or application layers

segment size during mounting. By getting lower segment size information, file

82

system can configure its own layer’s segment size based on the capacity ratio

and lower segment size. The advantange of doing this is pretty straightforward

and only needs to be done at the startup time with no overhead.

4.4.2 Virtual log defragger

Recently, several log-structured file systems are designed as flash-aware

and aim to optimize SSD performance. However, the underlying log (FTL)

is usually lacking information about the upper layer log, e.g. the block and

segment sizes, the number of upper logs, etc. Passing these information through

a standard interface is not easy to achieve in many systems. In addition, even if

the FTL is able to support multiple number of logs (multi-append points) with

hardware support, the number of upper layer virtual logs tends to grow faster

than that of the underlying physical logs. One of the main reasons for this is

due to the fact that the upper layers assume that they manage their own logs

and does not propagate or inform invalidations at its layer to the FTLs log layer.

What we really need is a separate log at the FTL layer to store/append data

from the upper log. This would provide isolation for the individual upper logs

and prevents intermixing of upper log-data, which will enable the upper logs to

retain all the good properties of maintain a log.

Unfortunately, it is easy to increase the number of application logs, but

is impossible for the FTL to support an arbitrary number of active append points

all the time due to hardware restrictions to match the number of upper logs.

Thus, the data layouts on the physical device usually present a quite different

83

view than that on the upper layer virtual logs. The mismatch in the number

of logs in the upper and lower layer (especially when the number of logs are

greater in the upper layer) defeats the benefit of maintaining logs at the upper

layer, and potentially increases write-amplification during garbage collection at

the SSDs FTL (or lower) layer. To solve this problem, we propose a Virtual

Log Defragger that can be invoked at system idle time. The main idea can be

described in Figure 4.11.

Figure 4.11: Virtual Log Defragger.

The defragger (we refer to Virtual Log Defragger in the rest of this

section) works for any m-to-n logs configuraitons. We show an example of 3-to-

1 case in Figure 4.11. Before defragment, upper logs write sequentially within

their own log, and the lower log receives intermixed requests from the upper

layer concurrently. Most of the time the order each of them writes to the physi-

cal device cannot be predicted, and the requests size vary. This makes it difficult

to re-organize data from different upper logs on-line without blocking other in-

coming requests. While there is only a single log (or append point) in the lower

log, it is also not possible to separating data from different logs during device

84

garbage collection. To solve this problem, we propose a Virtual Log Defragger

at system idle time.

Defragger wakes up when system is idle, or when a file system log or

application log is idle, or a defragger request is issued to a specific upper log.

After selecting the target log, the upper layer reads the entire log and write pages

back to the device. By doing so, virtual/logcial attributes of data blocks are not

changed, while blocks from same virtual layer will be physically contiguous on

the device. The selection of upper log to be defragged can be based on several

factors, for example, relatively static logs could be a good candidate.

The defragger works without restrictions on the number of underlying

logs. It makes up for a lack of multi-append points at the device level, or allevi-

ate the deficiency when file system has more logs than FTL does. It also helps

reduce metadata overhead for FTL mapping by grouping data from the same

upper log and merging adjacent blocks, e.g. index entries can be reduced with

several small pieces of data chunks are integrated by the extent-based index-

ing. Moreover, the GC performance can be improved if data of similar update

frequencies from the same log have already be grouped in the device segment.

Besides, aligning segment size for each layer is no longer critical. If the defragger

can detect the activeness of each upper log or even each segment, it can arrange

the defragmentation order and group multiple upper segments having similar

update frequencies to the same device segment.

85

4.5 Future work

We focus on single log case in our experiments. The capacity ratio

as well as the segment size ratio helps reduce overall TCWA when a single log

stacks on another log. In a system with multiple logs in each layer, or even

with multiple instances of log-structure, things will be more complicated. We

intend to explore the impacts of multiple logs with different configurations and

activeness.

We propose a virtual log defragger to group data from same upper log

during system idle time. The behavior of the defragger is not fully undertood

yet, nor its possible collaboration with garbage collection process. Several things

remain undetermined, for example, the best time to start the defragger, the

interface lower layer exposes to the defragger to informs the status of device GC,

and etc. We will further investigate its characteristics in our future work.

4.6 Summary

As flash memory has its own log-like mapping mechanism, a log-structured

system on top of a NAND flash-based device will causes performance degradation

and decreased device endurance due to duplicated loggings and uncoordinated

activities on each log layer. In this chapter, we characterize the interactions

between multiple levels of independent logs, and describe several practical sce-

narios which arises in real systems. We show that log on log can result in highly

counterintuitive behaviors. While applications and file systems continue to use

86

log-structure for their own performance and reliability purposes, we recommend

several design choices to minimize the side effect that multiple layers logs bring

to the entire system due to lack of coordinations. Through our real system and

simulation experiments, we suggest a better choice of capacity ratio and seg-

ment size ratio. In addition, we also propose a virtual log defragger at system

idle time. The benefit and ovehead for the defragger will be further investigated

in our future work.

87

Chapter 5

Log-less Flash-aware Storage

Systems

5.1 Collapsing logs

We have discussed the problem of a log-structured file system or appli-

cations on top of a log-like FTL flash device in the previous chapter. Though

log-structured system can achieve higher performance and better system relia-

bility, and log-aware optimaztion can help coordinate activities between different

layers, stacking logs on logs is not always a good idea. In real systems, the struc-

ture could be more complicated that makes things even worse. For example, a

log-structured application stacks on a log-structured file system, and with a log-

structured flash device underneath. Light-weighted log coordination between

any two layers may result in negative impact on performance of other layers,

making the overall system behavior hard to control, and hence unpredictable.

There are several classes of alternatives to collapse file system level logs

88

by utilizing the nature of flash memory and device embedded FTL. In this chap-

ter, we will discuss the design of two log-less flash-aware system - DirectFS and

object-based system. We focus on object-based flash system, its performance,

portability, feasibility, and show from simulation experiments that such system

can provide light-weighted advanced features to improve overall performance as

well as reliability with no interference to other system layers.

5.1.1 DirectFS using sparse space

One approach to breaking logs is to utilize the rich 64-bit address space

in modern computer systems to do direct mapping, and leverages the FTL map-

ping mechanism. DirectFS is an extension of the ideas presented in[42]. It

leverages the underlying FTL log structure via four primitives. A sparse address

space represented by the FTL enables DirectFS to eliminate its own mappings

of ¡file, offset¿ to physical block. Rather, directFS maps each file to a small

number of virtual extents, and relies upon the FTL to allocate physical blocks

to these virtual addresses as blocks are consumed. Different from conventional

file block allocation in a typical log-structured system, DirectFS offloads these

capabilities to the underlying FTL, as FTL by nature is responsible of doing

mapping between logical to physical addresses.

In place of a journal, directFS uses two primitives, atomic writes and

persistent TRIMs [70] provided by the underlying FTL. The atomic writes are

executed entirely or not at all, and persistent TRIMs (also atomic) provide trans-

actional deletes of virtual address ranges. By using these in combination as a

89

group of transactional updates and deletes, DirectFS can move from transaction-

ally consistent state to transactionally consistent state without an independent

journal. Finally, directFS uses statistics exported by the FTL on allocated block

counts to maintain accurate counts of physical space consumption, which limits

updates of superblocks when files are extended. DirectFS also exports the same

primitives to user space applications as capabilities of DirectFS files.

Without the overhead to maintain a log, DirectFS outperforms the

conventional log-structured file system on a flash-base storage media. e.g. Nilfs,

F2FS. In addition, with large virtual address space, more add-on could be in-

troduced that performs the same capability such as atomic transaction in a

journaling file system, but with less overhead. The performance and advanced

features of DirectFS is beyond this dissertation’s scope, and will be discussed in

the future.

5.1.2 Object-based flash-aware system

Different from DirectFS, another approach to collapsing logs in the file

system layer is to utilize an object-based interface, so that file system semantics

could be passed to the underlying device to let the storage device deal with all

the complicated jobs such as data placement, indexing, garbage collection, and

etc. Meanwhile file system could be very simple and portable.

The design of an object-based storage system has been discussed many

years ago [17, 29], however its use is not widely popular in the world of disk-based

storage system since disk does not require complicated data remapping, which

90

makes the intelligent object-based storage device (osd) lose its attraction. Not

until the emerging technology of non-volatile memory, has object-based storage

started to attract attention in the new class of storage medium, not only in the

large distributed systems, but in a single node host machine as well.

In an object-based design, file system only takes care of name resolution

and offloads the storage management layer to the object-based device. As the

storage management layer is device specific that has to serve the characteristics

and limitations of different hardware, for example, flash memory’s out-of-place

update, and limited endurance of different NVRAM devices, maintaining such

mechanism in the device layer would be more beneficial. Meanwhile, hardware

layout is transparent to the object-based file system so that regardless of the

types of the underlying NVRAM, the upper layer could be generic.

On the other hand, since osd gets more information from upper layer

through the rich object-based interface, a lot of advanced features could be in-

troduced, while it could not be easily achieved in a block-based interface. For

example, separating data of different types (data and metadata) and redirect-

ing them to different active segments [48] can help better organize data layouts.

Previously many efforts have been done to redirect data of various access fre-

quencies to different append point so that garbage collector can choose a victim

segment with less amount of valid data. However the performance improvement

is usually suboptimal due to the lack of file system information passed through

a standard block interface, as it is hard to tell from the LBAs the types of data.

Maintaining a buffer to store LBA information such as touch counts in the device

91

layer is even more infeasible.

Other features, such as object-level reliability and object-level compres-

sion and encryption can be achieved on the osd device layer without consuming

a lot of host side resources [48]. In this dissertation, we provide a design choice

of object-aware data placement that aggregates data based on object size and

remaps them to different segments. We show from simulation results that such

method is easy to approach with little overhead, but can provide great benefit

on garbage collection efficiency and more balanced wear-leveling.

Typically, the objects in an object-based system could be divided into

two categories, regular user data objects, and file system metadata objects. osd

does not differentiate them, nor through the standard object interface. So both

user data objects and file system metadata objects are treated as regular objects

by osd. On the other hand, osd creates its own object metadata, such as indexing

entries, object size, and etc. To simplify the structure, we keep all osd created

metadata in memory in our simulator.

5.1.2.1 Object-aware data grouping

A lot of research has been done to explore the relationship between data

file sizes and their access patterns [28, 13]. It is said that though most of the

data accessed are in large files, ”the majority of file accesses are to small files”

(e.g.about 80% of the accesses are on files smaller than 10KB). However, the

implementation of these approaches to grouping smaller files or objects usually

end up less efficient, and sometimes results in negative impact on performance

92

due to incorrect grouping. Even if file system groups data optimally, it is hard to

pass these information through a standard block interface. When flash memory is

used as a primary storage media, data is remapped to different physial locations

by FTL and will be moved multiple times during garbage collection, which results

in quite different views from two layers that makes the grouping of files inefficient.

If we maintain an additional layer of data access information in the device,

this will cause problems similar to log-on-log structure as we discussed in the

previous chapter. Thus, flash-based storage system needs a more intelligent but

light-weighted design.

An object-based storage system meets these requirements. File system

does not have to deal with complicated data management like object grouping.

Meanwhile, it can utilize the sparse address space to do easy name resolution.

Data managment such as grouping and placing are maintained by osd alone,

so there is only one consistent view of virtual to physical data in the entire

system. Thus, osd can have more flexibility on managing the objects based on

their characteristics, such as access frequencies, object size, request size, so on

and so forth.

In our design, we use a simple scenario by grouping objects based on

their sizes. As is said that a large portion of data accesses are on files smaller

than 10KB [13], most of such files or objects could be well fit into a single physical

flash page in most of today’s NAND flash device (4KB or 8KB). Once be read or

written, the entire objects could be retrieved through a single I/O. When object-

based flash device supports multiple logs (or multiple append points), osd could

93

Figure 5.1: The object-aware data placement framwork.

group these small objects together into one log, and redirect objects larger than

10KB to the other log. As small objects are acceesed more frequently, segments

in the small objects log are more like to be invalidated together so that GC

overhead could be reduced dramatically. On the other hand, larger objects are

more like to be accessed sequentially but only once in a certain long period of time

(e.g. backup process), segments in the larger objects’ log can remain relatively

stable. This approach could not be easily achieved through block interface as

the underlying device has no idea of which LBAs belong to which files or objects.

Through object interface, grouping data is simple, flexible, and straightforward.

Based on these observation, we trigger the osd to maintain two logs,

one for objects smaller than a flash page, and one for objects larger than a flash

page. The framework of object-aware data placement is shown in Figure 5.1.

In some flash device that supports two logs, the incoming data is treated to be

94

hot and put into the ”hot” log, while the data moved by garbage collector is

assumed to be relatively static and be appended to the other ”cold” log. We

will evaluate the performance of these methods on an object-based osd in the

following section.

5.1.2.2 Object-aware features

As object-based interface provides much feasibility and flexibility on

data management, a lot of other features could be explored without consuming

too much host side resource. Meanwhile, the change could be done only on the

device layer, without interfering the host side file system design which provides

better portability and compatibility. Several examples are listed as follows:

Object-aware reliability : Current design of data reliability relies on

per-page basis error detection and correction. Such mechanisms are limited on

the ability to correct a certain number of bit errors, but cannot deal with errors

such as misdirected writes where pages are stored at the wrong place with no

failure return message [10]. By offloading data management layer to the device

which is responsible for the actual physical location of the data, such failures

could be detected and corrected through objec-level reliability. In addition, dif-

ferent level of reliability could be achieved on different objects, for example,

higher reliability on objects’ metadata. In addition, failures that occur in the

middle of a transaction could also be detected on the affected objects. The

overhead of the additional object-level reliability could be mantained at a cer-

tain portion to the total metadata overhead if with well design of indexing and

95

buffering [48].

Object-aware eviction and admission : When object-based flash

is used as a caching device, it is possible to detect the hotness on an object

base, for example, touch count per object. Such engine could help decide object-

level eviction and destaging for both write-back and write-through caches when

device is full. Similar to the components discussed in Chapter 3 that using LRU

combined with advanced GC algorithms, improved cache hit rate with reduced

GC overhead could be achieved if the cache has more knowledge of objects. This

could outperform a sector-level cache eviction or destaging by better knowing

the temporal and spacial locality of data access. In addition, object-level data

prefetching in a tiered storage is also possible. Data belonging to one object could

be prefetched together from disk to flash cache and to the main memory. This

could help fully utilize the device bandwidth by obtaining an entire object, and

meanwhile improve memory or cache efficiency without reading ahead useless

data.

5.2 Simulator and analysis methodology

In this section, we describe the traces used in our analysis, the tools we

built to characterize traces, and the simulator we built to evaluate our object-

aware data placement and garbage collection performance.

Since currently there is no real world object-level trace available for our

analysis, we choose several block-level traces available in the public domain and

convert them into object-level traces synthetically. Our trace converter works

96

similar to a simplified object-based file system, that by receiving a read/write

requests, it treats the original block level requests as system calls from VFS

layer, and converts the original block read/write operations into object-level

requests. The converter internally maintains a one-one mapping table that

translates each LBA into a < oid, offset > pair. If the incoming request’s

LBA does not yet exist in the table, the converter assigns a new object ID

(oid) with offset 0 to the new request. Otherwise, it retrieves the correspond-

ing objects’s id and starting offset, and convert the request to an object-level

request < r/w, oid, offset, size >. In both cases, the requests’ size remain un-

changed. In addition, it does not change the original trace’s characteristics, such

as read/write ratio, and total unique data. The main components of the trace

converter is depicted in Figure 5.2.

Figure 5.2: Compenents of object-based flash device.

While the object-level requests are sent to the object storage device

(osd) through an object interface, the osd will do object data placement, object

metadata maintenance, and etc. Same as an object-based system design that file

system only does name resolution and let the OSD finishes the rest of the tasks,

97

our OSD simulator manages the objects’ physical locations, osd level metadata,

device garbage collection, and etc. Internally, osd uses a log-structure to append

new data to the end of the physical log, data mapping is in a unit of sector (512

bytes or 4096 bytes) while erasing is in a unit of segment. For each read/write

request passed from the upper layer, osd looks up its mapping table, and finds

the old location of the object if it exists. Otherwise, it will treat the operation

as a create() request. By doing this, we have a variety of request types including

object create/read/write, and the write requests will do overwrite operations or

extend the existing object’s size based on its starting offset and size.

In addition, our osd simulator can maintain 1 or 2 active segments at

a time, which is similar to the concept of two active logs or append points.

With one log, osd appends objects to the tail as a conventional log-structured

FTL device. By activating two logs, osd has more flexibility on placing data to

either log, depending on the pre-defined object placement policies. For example,

appending new requests’ data to one log and garbage collection data to the other,

or aggregating small objects to one log while large objects to the other. We will

discuss the performance of different scenarios in the following section.

In our following experiments, we pick two block traces prn 0 and prn 1

in Table 3.2 for our analysis of object-aware data placement. We first run these

traces through the trace converter, and output object level traces in a format of

(timestamp, read/write, oid, offset, size). We then run through the converted

traces against our osd simulator, and output the statistics. The characteristics of

two converted traces are shown in Table 5.1. Trace1 is write-intensive and trace

98

2 is read-intensive, both with a lot of read/write/create/update operations.

5.3 Experimental evaluation

We have discussed the effect of separating data and redirect them to

different logs in the previous chapter and showed the importance of grouping

data correctly. In this section, we evaluate the garbage collection overhead on

an object storage device.

5.3.1 Experimental setup

Our simulation experiments run against semi-synthetic object traces

that converted from block traces. The characteristics of two traces are shown in

Table 5.1. Trace 1 is write-heavy and trace 2 is read-heavy. We configure the

osd to be able to hold all unique data in the trace, meanwhile trigger enough

GC activities for our performance and endurance analysis. For each test, we ran

the traces for two loops, the first round is to warm up the osd device so that all

data could be admitted to the flash, while the second round is to generate more

activities. We show the efficiency of object-level data grouping in the osd layer,

and its benefit of reducing GC overhead, and hence improved endurance.

There are three data placement modes that we are investigating. Sin-

gle append point : the conventional data placement strategy with a single

append point. All dats is appended to the tail of the log, and osd only main-

tains one active segment at a time. Two append points: osd supports two

append points that incoming new data is appended to the active (hot) segment,

99

Trace 1 (w) Trace 2 (r)

total objects 307236 2048255
unique size GB 17.93 84.06
max object size MB 4.25 2.07
read GB 13.12 181.78
write GB 45.97 30.78
workload write intensive read intensive
configured flash size GB 21 95
segment size MB 21 48
of segments 1024 2048
GC threshold 10 10

Table 5.1: Object-level trace characteristics and experimental configurations.

while valid data copied forward by garbage collector is appended to the inac-

tive (cold) segment. This approach is popular in many SSDs that support two

append points, but with no clue of file system information through a standard

block interface, nor do they maintain additional data access statistics inside the

devie layer. Object-aware grouping : data requests belonging to small objects

(smaller than 8KB in our configuration) are appended to hot segment, larger

objects as well as garbage collection data are appended to cold segment. Final-

ized segments are put into one single list for GC selection. Once the free space

is below the GC threshold, we trigger GC to select a victim segment based on

either greedy or cost-benefit algorithms.

5.3.2 Performance evaluation

Figure 5.3 depicts the garbage collection efficiency of three data place-

ment methods in terms of erase counts. It is shown from both workloads that

greedy policy in two append points mode achieves lowest erase counts. This is

because the relatively colder data during garbage collection are separated to the

100

cold segment efficiently, so that GC algorithm was able to choose segment with

least amount of valid data in the hot segments pool. However, this runs the risk

of wearing out some of the segments sooner than others especially in the two log

mode as colder segments have less chance to be erased.

Such impact is shown when cost-benefit policy is used which tries to

balance the hotness and age of the segments. As is shown in the Figure 5.3,

in two log mode where greedy policy performs best among three modes, cost-

benefit suffers from much higher GC overhead than others. This happens because

most of the data in the cold segments is relatively stable and lives longer in the

device. When GC is not working aggressively in a fresh device, it is able to

find hot segments with less valid data to reclaim. As device becomes full and

aged, the need of reclaiming any free space hole gets higher, those cold and old

segments with more valid data also need to be copied out to avoid potential

retention errors. As a result, cost-benefit GC algorithms may move more data

in the case of two log mode and hence higher erase counts to reclaim a certain

amount of free space.

However, endurance not only depends on erase counts, but also the

distribution of erase counts throughout the entire device - here we use standard

deviation of erase counts to measure the wear-leveling factor. As is shown in

Figure 5.4, greedy policy often gets lower WA but higher erase counts devia-

tion, while cost-benefit sacrifices the GC efficiency to some extent but provides

improved erase counts balance in the single log object placement mode. With

object-aware grouping strategy, data could be better organized on the device.

101

(a) Write intensive workload - trace 1 (b) Read intensive workload - trace 2

Figure 5.3: Erase counts varies different data placement strategies. Object aware

data grouping achieves lower erase counts under both GC selection algorithms.

Under both read-heavy and write-heavy workload, object-aware data grouping

achieves lower erase counts as well as lower WA. Though the erase counts is

slightly higher than greedy policy in two log case, the wear-leveling factor is the

lowest among all three strategies. When cost-benefit algorithm is triggered, it

provides better balance between GC efficiency and device overall endurance.

trace # of logs obj aware GC policy start validity dev end validity dev

1 w heavy 2 No cost ben 14271.81 4919.87
2 Yes cost ben 14363.74 2731.61

2 r heavy 2 No cost ben 25830.18 5578.80
2 Yes cost ben 26275.24 3490.15

Table 5.2: Initial and final status of valid sectors distribution in different object

placing modes.Higher validity deviation in cost-benefit GC algorithm does not

always lead to lower WA.

We compare the distribution of valid sectors across segments, under

two log mode, with and without object-aware grouping, both of them use cost-

102

(a) Write intensive workload - trace 1 (b) Read intensive workload - trace 2

Figure 5.4: Write amplification factor and wear-leveling varies different data

placement strategies. With object aware grouping, there is a better balance

between lower WA and improved wear-leveling factor.

benefit GC selection algorithms. We show the initial status of such distribution

when the device becomes full and before the first GC activity is triggered, and

the final status when the entire test run finishes. As is shown in Table 5.2, the

initial validity deviation for these two modes are very close under both workloads.

However, as the device becomes more active, different data is being moved around

due to the way they are grouped and placed on device, which results in a different

view of validity distribution. Though under non-object aware two log mode, the

valid sectors deviation becomes higher, it does not provide a positive impact

on the selection of victim segments. In contrast, it suffers from higher WA.

One of the reasons is cost-benefit algorithm selects victim segment based on the

number of valid data and the age of the segment. If data is not well grouped,

for example, if segment is mixed with some very hot and relatively cold data, it

is still treated as hot segment based on the latest time it was accessed by hot

103

data. This provides some illusive information to the algorithm, and results in

more valid data being copied forward, sometimes being moved multiple times.

With object-aware data grouping, the chance of objects with similar update

frequencies being grouped together becomes higher, and hence lower WA and

better wear- leveling.

We show this as an example of object aware data grouping that provides

better GC efficiency with lower overhead invoked. More intelligent mechanisms

could be designed, for example, application specific objects grouping and data

placing in the case of single or multiple instances on a single device, or with

multiple flash memory devices. Other advanced GC algorithms could be further

explored such as grouping data belonging to one objects during garbage collection

so that number of indexing records could be reduced, and hence lower metadata

overhead.

5.4 Future work

As object-based flash memory is one of the approaches to collapsing

multiple layer of logs in the storage hierarchy, we discussed several design choices

that could be made to achieve improved performance as well as better endurance

through the rich object-based interface. We present one solution to reduce GC

overhead by grouping data on object-level with the support of two append points

on the device. In the future, other advanced features could be furthre explored.

We plan to extend our work of object-level data grouping to a more mature mode.

Currently we keep all object related metadata such as indexing and objects’

104

access time in memory, as a result, the overhead of metadata is not thoroughly

investigated when they are flushed to the device. By flushing metadata to the

device, different object grouping and placing strategies will be considered as

metadata itself has its unique characteristics and reliability requirements. In

addition, the grouping of data will also affect the overhead of total metadata,

its access patterns, and hence the GC efficiency.

We have mentioned that several advanced object aware features could

be designed for improved system performance and reliability. We also plan to

explore these features in the future. When object-based flash device is used for

caching in between DRAM and hard disks, it would be interesting to see the

effects of object-aware data eviction and admission. We believe with careful

design choices, object-aware data grouping could help improve cache hit rates as

well as reduce GC ovehread.

5.5 Summary

In this chapter, we present the approaches to collapsing multiple layers

of logs in storage systems. These approaches do not have to construct any log-like

mechanism in the file system layer to work efficiently with flash device. Instead,

they utilize the log-like FTL on the flash device to achieve light-weighted data

management. The focus of our work was to explore one of the approaches -

object-based storage system. We discussed its superiority in flash-based device,

which could be further extended to other NVRAM technologies.

We built an object-based flash device simulator, and embedded the

105

object-aware add-on features - object-aware data grouping when the device sup-

ports two-append ponts. Through our simulation experiments against two con-

verted object-level traces, the object-aware data grouping outperforms two other

data placing strategies with reduced erase counts and balanced wear-leveling fac-

tor. In addition, we identified a number of areas for further reserach. The impact

of object metadata grouping and placing is an interesting area to explore. Using

object-based flash memory as a caching device is another interesting area, for

example, the effect of object-aware eviction and admission.

106

Chapter 6

Conclusions

Modern storage systems have moved to a non-volatile world, in which,

flash memory is one of the most promising technologies that providing high

throughput and stability with relatively low cost. In this chapter, we conclude

contributions of our study in flashs-based storage systems, and discussed the

limitation of the work as well as future research directions.

6.1 Flash-based caching device

We have exclusively explored write-through as the caching mode for

an SSC in chapter 3. we demonstrate some performance and endurance issues

that arise in flash-based caches. We show that workloads on SSCs have signifi-

cantly greater write pressures than their storage counterparts (as misses become

writes). We analyzed the individual contributions and cumulative choices of

cache admission and eviction policies, and GC strategy on the overall hit rate

and endurance. We show uncoordinated algorithms at Cache and FTL layers are

107

less efficient than coordinated policies (where GC assists cache eviction). With

advances in NAND technology, P/E cycles are decreasing and finding ways to

reduce P/E cycle consumption is critical. Combined reduction of CLWA and

FLWA through our techniques enables SSCs to maintain endurance.

Also, cache hit rate is a critical performance parameter and improv-

ing it must be balanced with approaches to reducing CLWA and FLWA. Our

analysis showed that cache admission algorithms (for improving hit rate) can

be used cooperatively with GC and cache eviction algorithms with improved

endurance. Through our experiments, 83% of 18 simulations showed increased

or maintained hit rate with significantly improved endurance. Moreover, use of

Virtual Storage Containers (VSCs) with quality of service (QoS) enforcement

on SSCs provides for improved hit rate at the expense of WA. We identified

that when using VSCs and QoS, the hit rates approached that of cache-based

eviction with improvements seen in both write amplification and wear leveling

as contrasted in GC-based eviction.

In the future we plan to extend our work to write-back caching which

has higher requirements on data consistency and integrity. In addition, multiple

instances of caching on a single device will be futher investigated. The impact of

partitioning an SSC on GC, hit rates, write endurance and so forth and how these

affect the application-level response latency is an interesting topic to explore.

108

6.2 Flash-based primary storage

In chapter 4 and 5, we explore the best way to use flash memory as a

primary storage device, both on the file system design and on the device part.

We use log-structured system as an example to demonstrate its deficiency in

flash-based systems though it has been very widely used in many applications

today.

In chapter 4, we characterize the interactions between multiple levels

of independent logs, and describe several practical scenarios which arises in real

systems. We also built a log-on-log simulator to quantify the overhead that

multiple layers of logs brought in to the system, more specifically on the write

amplifications and its impact on system performance and flash endurance. We

show that log on log can result in highly counterintuitive behaviors. However,

log-structured system can still bring benefit to a wide rang of applications from

database, key-value caching, to all-flash backing storage, for example, efficient

space management, fast recovery, and easy transactional consistency, and so

forth. Given this context, we recommend some design choices to reduce the

overall overhead by coordinating different log layers activities, including tuning

segment size and a lightweighted defragger. Though the focus of our study is

on a single log in each layer, the problems we described can be propagated to

any number of logs, and the design choices we recommend is general to m-on-n

logs. We intend to exclusively explore the impacts of multiple logs for various

applications in the future.

In chapter 5, we discuss the methods of collapsing logs. In applications

109

that the cost of maintaining a log structure exeeds its benefit or there are other

light-weighted methods to achieve these beneift, the best way is to collapse logs

on the file system layer while a log-like mapping in flash cannot be eliminated.

While there are two methods that utilize the nature of flash memory to avoid

duplicated logs - DirectFS and object-based flash system, we focus on exploring

the feasibility and flexibility of designing an object-based flash systems with

improved performance and reduced GC overhead. We show through simulation

results the benefit of adding advanced features to an object-based flash system.

110

Bibliography

[1] http://www.fusionio.com/products/directcache/.

[2] http://en.wikepedia.org/wiki/Write_amplification.

[3] http://en.wikepedia.org/wiki/TRIM.

[4] FatCache. https://github.com/twitter/fatcache.

[5] MSR Cambridge Traces. http://iotta.snia.org/traces/388.

[6] NetApp flash cache. http://www.netapp.com/us/products/

storage-systems/flash-cache/.

[7] Trends in nand flash memory error correction.

http://www.cyclicdesign.com/whitepapers/Cyclic Design NAND ECC.pdf,

2009.

[8] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark

Manasse, and Rina Panigrahy. Design tradeoffs for SSD performance. In

USENIX 2008 Annual Technical Conference on Annual Technical Confer-

ence, ATC’08, pages 57–70, Berkeley, CA, USA, 2008. USENIX Association.

111

[9] Aleph One Ltd. YAFFS: Yet another flash file system.

http://www.yaffs.net.

[10] Andrea C. Arpaci-dusseau, Remzi H. Arpaci-dusseau, and Vijayan Prab-

hakaran. Removing the costs of indirection in flash-based ssds with name-

less writes. In Proceedings of the 2nd USENIX conference on Hot topics in

storage and file systems, 2010.

[11] Storage Networking Industry Association. http://www.tpc.org/tpce/

default.asp.

[12] Ricardo Baeza-Yates, Flavio Junqueira, Vassilis Plachouras, and

Hans Friedrich Witschel. Admission policies for caches of search engine

results. In Proceedings of the 14th international conference on String pro-

cessing and information retrieval, SPIRE’07, pages 74–85, Berlin, Heidel-

berg, 2007. Springer-Verlag.

[13] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and

John K. Ousterhout. Measurements of a distributed file system. In Proceed-

ings of the Thirteenth ACM Symposium on Operating Systems Principles,

SOSP ’91, pages 198–212, New York, NY, USA, 1991. ACM.

[14] Timothy Bisson and Scott A. Brandt. Reducing hybrid disk write latency

with flash-backed i/o requests.

[15] Werner Bux and Ilias Iliadis. Performance of greedy garbage collection in

flash-based solid-state drives. Perform. Eval., 67(11):1172–1186, November

2010.

112

[16] Steve Byan, James Lentini, Anshul Madan, and Luis Pabon. Mercury:

Host-side flash caching for the data center. In MSST, pages 1–12. IEEE,

2012.

[17] Luis Cabrera and Darrell D.E. Long. Swift: Using distributed disk striping

to provide high i/o data rates. Technical report, Santa Cruz, CA, USA,

1991.

[18] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory storage

systems. In Proceedings of the 2007 ACM symposium on Applied computing,

SAC ’07, pages 1126–1130, New York, NY, USA, 2007. ACM.

[19] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding in-

trinsic characteristics and system implications of flash memory based solid

state drives. In Proceedings of the eleventh international joint conference

on Measurement and modeling of computer systems, pages 181–192, 2009.

[20] Shih-Liang Chen, Bo-Ru Ke, Jian-Nan Chen, and Chih-Tsun Huang. Reli-

ability analysis and improvement for multi-level non-volatile memories with

soft information. In Proceedings of the 48th Design Automation Conference,

pages 753–758, 2011.

[21] Mei-Ling Chiang, Paul C. H. Lee, and Ruei-Chuan Chang. Using data

clustering to improve cleaning performance for plash memory. Softw. Pract.

Exper., 29(3):267–290, March 1999.

[22] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh. The logical

113

disk: a new approach to improving file systems. In Proceedings of the

fourteenth ACM symposium on Operating systems principles, 1993.

[23] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flashstore: High through-

put persistent key-value store. Proc. VLDB Endow., 3(1-2):1414–1425,

September 2010.

[24] Exablox. OneBlox. https://www.exablox.com/products/.

[25] Fusion-io. Fusion-io ioDriveII. http://www.fusionio.com/products/

iodrive2/.

[26] Fusion-io. Fusion-io ioN. http://www.fusionio.com/products/

ion-accelerator/.

[27] Eran Gal and Sivan Toledo. Algorithms and data structures for flash mem-

ories. ACM Comput. Surv., 37(2):138–163, June 2005.

[28] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and explicit

grouping: Exploiting disk bandwidth for small files. In Proceedings of the

Annual Conference on USENIX Annual Technical Conference, ATEC ’97,

pages 1–1, Berkeley, CA, USA, 1997. USENIX Association.

[29] Garth A. Gibson and Rodney Van Meter. Network attached storage archi-

tecture. Commun. ACM, 43(11):37–45, November 2000.

[30] Greg Gillis, Swaminathan Sundararaman, Nisha Talagala, Amar Mu-

drankit, and Jonathan Ludwig. Admission polices for solid state cache

devices. In Proceedings of 2013 Non-Volatile Memories Workshop, 2013.

114

[31] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Ei-

tan Yaakobi, Paul H. Siegel, and Jack K. Wolf. Characterizing flash mem-

ory: anomalies, observations, and applications. In Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture, pages

24–33, 2009.

[32] Laura M. Grupp, John D. Davis, and Steven Swanson. The bleak future of

nand flash memory. In Proceedings of the 10th USENIX conference on File

and Storage Technologies, pages 2–2, 2012.

[33] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Sivasub-

ramaniam. Leveraging value locality in optimizing nand flash-based ssds. In

Proceedings of the 9th USENIX conference on File and stroage technologies,

FAST’11, pages 7–7, Berkeley, CA, USA, 2011. USENIX Association.

[34] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Sivasub-

ramaniam. Leveraging value locality in optimizing nand flash-based ssds. In

Proceedings of the 9th USENIX conference on File and stroage technologies,

pages 7–7, 2011.

[35] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS

file server appliance. In Proceedings of the USENIX Winter 1994 Technical

Conference on USENIX Winter 1994 Technical Conference, WTEC’94.

[36] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman

Pletka. Write amplification analysis in flash-based solid state drives. In Pro-

115

ceedings of SYSTOR 2009: The Israeli Experimental Systems Conference,

SYSTOR ’09, pages 10:1–10:9, New York, NY, USA, 2009. ACM.

[37] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman

Pletka. Write amplification analysis in flash-based solid state drives. In Pro-

ceedings of SYSTOR 2009: The Israeli Experimental Systems Conference,

pages 10:1–10:9, 2009.

[38] Adrian Hunter. A brief introduction to the design of UBIFS.

http://www.linux-mtd.infradead.org/doc/ubifs whitepaper.pdf.

[39] Kim Jaegeuk. F2FS:flash-friendly file system.

http://en.wikipedia.org/wiki/F2FS.

[40] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer.

High performance cache replacement using re-reference interval prediction

(RRIP). SIGARCH Comput. Archit. News, 38(3):60–71, June 2010.

[41] Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference

recency set replacement policy to improve buffer cache performance. In

Proceedings of the 2002 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, SIGMETRICS ’02, pages

31–42, New York, NY, USA, 2002. ACM.

[42] William K. Josephson, Lars A. Bongo, David Flynn, and Kai Li. DFS: A

file system for virtualized flash storage. In FAST ’10: Proccedings of the 8th

conference on File and storage technologies. USENIX Association, 2010.

116

[43] Dongwon Kang, Dawoon Jung, Jeong-Uk Kang, and Jin-Soo Kim. µ-tree

: An ordered index structure for nand flash memory. In Proceedings of the

7th ACM & IEEE international conference on Embedded software, pages

144–153, 2007.

[44] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. A

superblock-based flash translation layer for nand flash memory. In Pro-

ceedings of the 6th ACM & IEEE International conference on Embedded

software, pages 161–170, 2006.

[45] Yangwook Kang and Ethan L. Miller. Adding aggressive error correction to

a high-performance compressing flash file system. In EMSOFT ’09: Proceed-

ings of the seventh ACM international conference on Embedded software,

pages 285–294, New York, NY, USA, 2009. ACM.

[46] Yangwook Kang and Ethan L. Miller. Adding aggressive error correction

to a high-performance flash file system. October 2009.

[47] Yangwook Kang, Jingpei Yang, and Ethan L. Miller. Efficient storage man-

agement for object-based flash memory. August 2010.

[48] Yangwook Kang, Jingpei Yang, and Ethan L. Miller. Object-based SCM:

An efficient interface for storage class memories. May 2011.

[49] Taeho Kgil, David Roberts, and Trevor Mudge. Improving NAND flash

based disk caches. In Proceedings of the 35th Annual International Sym-

posium on Computer Architecture, ISCA ’08, pages 327–338, Washington,

DC, USA, 2008. IEEE Computer Society.

117

[50] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul Min,

Yookun Cho, and Chong Sang Kim. A low-overhead high-performance uni-

fied buffer management scheme that exploits sequential and looping refer-

ences. In Proceedings of the 4th conference on Symposium on Operating

System Design & Implementation - Volume 4, OSDI’00, pages 9–9, Berke-

ley, CA, USA, 2000. USENIX Association.

[51] Youngjae Kim, Sarp Oral, Galen M. Shipman, Junghee Lee, David A. Dil-

low, and Feiyi Wang. Harmonia: A globally coordinated garbage collector

for arrays of solid-state drives. In Proceedings of the 2011 IEEE 27th Sym-

posium on Mass Storage Systems and Technologies, MSST ’11, pages 1–12,

Washington, DC, USA, 2011. IEEE Computer Society.

[52] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar.

FlashSim: A simulator for NAND flash-based solid-state drives. In Pro-

ceedings of the 2009 First International Conference on Advances in System

Simulation, SIMUL ’09, pages 125–131, Washington, DC, USA, 2009. IEEE

Computer Society.

[53] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara,

and Satoshi Moriai. The linux implementation of a log-structured file sys-

tem. SIGOPS Oper. Syst. Rev., 40(3):102–107, July 2006.

[54] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick

Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weather-

spoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: An archi-

118

tecture for global-scale persistent storage. SIGPLAN Not., 35(11):190–201,

November 2000.

[55] Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang,

and Jongman Kim. A semi-preemptive garbage collector for solid state

drives. In ISPASS, pages 12–21. IEEE Computer Society, 2011.

[56] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon

Park, and Ha-Joo Song. A log buffer-based flash translation layer using

fully-associative sector translation. ACM Trans. on Embedded Computing

Systems, 6(3), 2007.

[57] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. LAST:

locality-aware sector translation for nand flash memory-based storage sys-

tems. SIGOPS Oper. Syst. Rev., 42(6):36–42, October 2008.

[58] Young-Sik Lee, Sang-Hoon Kim, Jin-Soo Kim, Jaesoo Lee, Chanik Park,

and Seungryoul Maeng. Ossd: A case for object-based solid state drives.

Mass Storage Systems and Technologies, IEEE / NASA Goddard Confer-

ence on, 0:1–13, 2013.

[59] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT:

a memory-efficient, high-performance key-value store. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles, SOSP

’11, 2011.

[60] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the lifetime of flash-

based storage through reducing write amplification from file systems. In

119

Proceedings of the 11th USENIX Conference on File and Storage Technolo-

gies, FAST’13, pages 257–270, Berkeley, CA, USA, 2013. USENIX Associ-

ation.

[61] Yuu Maeda and Haruhiko Kaneko. Error control coding for multilevel cell

flash memories using nonbinary low-density parity-check codes. In Proceed-

ings of the 2009 24th IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, pages 367–375, 2009.

[62] Carlos Maltzahn, Kathy J. Richardson, and Dirk Grunwald. Reducing the

disk i/o of web proxy server caches. In Proceedings of the Annual Confer-

ence on USENIX Annual Technical Conference, ATEC ’99, pages 17–17,

Berkeley, CA, USA, 1999. USENIX Association.

[63] Micron. http://www.micron.com/~/media/Documents/Products/White%

20Paper/nand_201.pdf.

[64] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and

Young Ik Eom. SFS: random write considered harmful in solid state drives.

In Proceedings of the 10th USENIX conference on File and Storage Tech-

nologies, pages 12–12, 2012.

[65] Ian Murdock and John H. Hartman. Swarm: a log-structured storage system

for linux. In Proceedings of the annual conference on USENIX Annual

Technical Conference, ATEC ’00, pages 28–28, Berkeley, CA, USA, 2000.

USENIX Association.

[66] Muthukumar Murugan and David. H. C. Du. Rejuvenator: A static wear

120

leveling algorithm for NAND flash memory with minimized overhead. In

Proceedings of the 2011 IEEE 27th Symposium on Mass Storage Systems

and Technologies, MSST ’11, pages 1–12, Washington, DC, USA, 2011.

IEEE Computer Society.

[67] Muthukumar Murugan and David. H. C. Du. Rejuvenator: A static wear

leveling algorithm for nand flash memory with minimized overhead. In

Proceedings of the 2011 IEEE 27th Symposium on Mass Storage Systems

and Technologies, pages 1–12, 2011.

[68] D. Nagle, M. E. Factor, S. Iren, D. Naor, E. Riedel, O. Rodeh, and J. Satran.

The ANSI t10 object-based storage standard and current implementations.

IBM J. Res. Dev., 52(4):401–411, July 2008.

[69] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety,

and Antony Rowstron. Migrating server storage to ssds: analysis of trade-

offs. In Proceedings of the 4th ACM European conference on Computer

systems, EuroSys ’09, pages 145–158, 2009.

[70] David Nellans, Michael Zappe, Jens Axboe, and David Flynn. PTRIM +

EXISTS: Exposing new FTL primitives to applications. In 2nd Annual

Non-Volatile Memories Workshop, 2011.

[71] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H. Noh. Caching less

for better performance: balancing cache size and update cost of flash mem-

ory cache in hybrid storage systems. In Proceedings of the 10th USENIX

121

conference on File and Storage Technologies, FAST’12, pages 25–25, Berke-

ley, CA, USA, 2012. USENIX Association.

[72] Percona. Tuning for speed: Percona server and fusion-io. http:

//www.percona.com/files/presentations/percona-live/nyc-2011/

PerconaLiveNYC2011-Tuning-For-Speed-Percona-Server-and-Fusion-io.

pdf.

[73] Taciano Perez and Cesar A. F. De Rose. Non-volatile memory: Emerging

technologies and their impacts on memory systems. In Technical Report,

2010.

[74] Juan Piernas, Toni Cortes, and José M. Garćıa. DualFS: a new journal-

ing file system without meta-data duplication. In Proceedings of the 16th

international conference on Supercomputing, pages 137–146, 2002.

[75] Konstantinos Psounis and Balaji Prabhakar. Efficient randomized web-

cache replacement schemes using samples from past eviction times.

IEEE/ACM Trans. Netw., 10(4):441–455, August 2002.

[76] PureStorage. Purestorage flash array. http://www.purestorage.com/

flash-array/.

[77] Abhishek Rajimwale, Vijayan Prabhakaran, and John D. Davis. Block man-

agement in solid-state devices. In Proceedings of the 2009 conference on

USENIX Annual technical conference, pages 21–21, 2009.

122

[78] David Roberts, Taeho Kgil, and Trevor Mudge. Integrating NAND flash

devices onto servers. Commun. ACM, 52(4):98–103, April 2009.

[79] Hongchan Roh, Sanghyun Park, Sungho Kim, Mincheol Shin, and Sang-

Won Lee. B+-tree index optimization by exploiting internal parallelism of

flash-based solid state drives. Proc. VLDB Endow., 5(4), December 2011.

[80] Mendel Rosenblum. The design and implementation of a log-structured file

system. Technical report, Berkeley, CA, USA, 1992.

[81] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. Log-structured

memory for dram-based storage. In Proceedings of the 12th USENIX Con-

ference on File and Storage Technologies (FAST 14), pages 1–16, Santa

Clara, CA, 2014. USENIX.

[82] SamSung. http://www.samsung.com/global/business/

semiconductor/minisite/SSD/us/html/about/overview.html?gclid=

CL764c3Alr0CFQ5gMgodHWIACQ.

[83] SanDisk. http://www.sandisk.com/products/ssd/.

[84] Mohit Saxena and Michael M. Swift. FlashVM: Revisiting the virtual mem-

ory hierarchy. In Proceedings of the 12th Workshop on Hot Topics in Oper-

ating Systems (HotOS-XII), 2009.

[85] Mohit Saxena, Michael M. Swift, and Yiying Zhang. FlashTier: a

lightweight, consistent and durable storage cache. In Proceedings of the

123

7th ACM european conference on Computer Systems, EuroSys ’12, pages

267–280, New York, NY, USA, 2012. ACM.

[86] Mohit Saxena, Michael M. Swift, and Yiying Zhang. FlashTier: a

lightweight, consistent and durable storage cache. In EuroSys, pages 267–

280, 2012.

[87] Nimble Storage. CASL hybrid flash storage architecture. http://www.

nimblestorage.com/products/architecture.php.

[88] Sriram Subramanian. Beyond the Block-based Interface for Flash-based

Storage. PhD thesis, Madison, WI, USA, 2013. AAI3560183.

[89] Hairong Sun, Pete Grayson, and Bob Wood. Quantifying reliability of solid-

state storage from multiple aspects, 2011.

[90] Hitachi Data Systems. An evolution in storage:

The object store. http://www.hds.com/assets/pdf/

hitachi-solution-profile-object-based-storage.pdf.

[91] TokuTek. Tokudb. http://www.tokutek.com/.

[92] Michael Wei, Laura M. Grupp, Frederick E. Spada, and Steven Swanson.

Reliably erasing data from flash-based solid state drives. In Proceedings

of the 9th USENIX conference on File and stroage technologies, FAST’11,

2011.

[93] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping Chang. An efficient b-tree layer

124

implementation for flash-memory storage systems. ACM Trans. Embed.

Comput. Syst., 6(3), July 2007.

[94] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Darrell D. E. Long,

Yangwook Kang, Zhongying Niu, and Zhipeng Tan. Design and evalua-

tion of oasis: An active storage framework based on t10 osd standard. In

Proceedings of the 27th IEEE Symposium on Massive Storage Systems and

Technologies (MSST 2011), May 2011.

[95] Chul-Woong Yang, Ki Yong Lee, Yon Dohn Chung, Myoung-Ho Kim, and

Yoon-Joon Lee. An effective self-adaptive admission control algorithm for

large web caches. IEICE Transactions, 92-D(4):732–735, 2009.

[96] Jingpei Yang, Ned Plasson, Greg Gillis, and Nisha Talagala. HEC: Improv-

ing endurance of high performance flash-based cache devices. In Proceed-

ings of the 6th International Systems and Storage Conference, SYSTOR ’13,

pages 10:1–10:11, New York, NY, USA, 2013. ACM.

[97] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. De-indirection for flash-based ssds with nameless

writes. In Proceedings of the 10th USENIX conference on File and Storage

Technologies, Berkeley, CA, USA, 2012.

[98] Zhihui Zhang and Kanad Ghose. hFS: a hybrid file system prototype for

improving small file and metadata performance. In Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,

2007.

125

