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Abstract

According to the cross-situational word-referent learning
account, infants aggregate statistical information from
multiple parent naming events to resolve ambiguous
word-referent mappings within individual events. While
some experimental studies have shown that infants and
adult learners are sensitive to these statistical regular-
ities, other studies that use naturalistic stimuli (e.g.,
real-world scenes with toys) reveal poor performance in
adults’ ability to infer the correct referent. In the cur-
rent study, we examined whether the properties of young
learners’ input “in the wild” may differ from those found
in laboratory experiments. We analyzed the temporal
and spatial regularities of parent naming events from a
naturalistic data set of video recordings and eye-tracking
collected while parents and children played with toys.
We also examined how these regularities affected infants’
visual selection of information through attention. Over-
all, we found that parents were less likely to name the
same toy twice than to name two different toys in se-
quence, except at short lags (0s > ¢ > 5s). Most of the
visual scenes accompanying naming events were com-
posed of several toys of approximately equal (and small)
size. Child attention to the target toy appeared to be
modulated primarily by object size. These results un-
derscore the importance of quantifying the regularities
found in naturalistic data in order to shed light on the
type of mechanism used in word learning.

Keywords: word learning; cross-situational learning;
vision and attention; exploratory data analysis

Introduction

One of the key challenges in word learning is that of map-
ping words to their referents in the world. In an every-
day learning context such as toy play, when a parent pro-
duces an object label that is new to the child, the correct
label-object mapping is not necessarily clear or explic-
itly stated from the child’s point of view. Quine (1960)
referred to this as referential uncertainty. Nonethe-
less, human learners, and even infants, are able to solve
this problem by building correct word-referent mappings
from this ambiguous input.

Several theoretical accounts have been proposed to ex-
plain how human learners solve the mapping problem.
On one account, learners reduce in-the-moment ambigu-
ity using social (Baldwin et al., 1996) and linguistic cues
(Abend, Kwiatkowski, Smith, Goldwater, & Steedman,
2017). On another account, learners aggregate statisti-
cal information about word-object mappings across indi-
vidually ambiguous learning situations; this mechanism
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is termed cross-situational learning (Yu & Smith, 2007;
Smith & Yu, 2008; Fitneva & Christiansen, 2011). The
current paper focuses on examining the cross-situational
learning solution for early word learning.

Cross-situational word-referent learning was proposed
to provide a statistical solution for initial mappings of
words to referents. All varieties of computational mod-
els succeed at this kind of learning (Amatuni & Yu, 2020;
Bhat, Spencer, & Samuelson, 2018; Bambach, Crandall,
Smith, & Yu, 2018). Laboratory experiments show that
adults, older children, and toddlers are quite good at this
kind of learning (Yu & Smith, 2007; Smith & Yu, 2008;
Fitneva & Christiansen, 2011). Following the general de-
sign principle in statistical language learning, the exper-
imental task of cross-situational learning was explicitly
invented to demonstrate that learning could emerge from
the aggregation of experiences with individually ambigu-
ous naming events. On each trial, the learner heard mul-
tiple words and saw multiple objects with no information
about which word went with which object. Across tri-
als, each word always co-occurred with just one referent;
thus there was cross-trial certainty despite within-trial
uncertainty. But this cross-trial certainty only holds if
the learner samples, remembers, and aggregates word-
referent co-occurrences across trials.

However, one critique that has been leveraged against
the cross-situational learning solution is that it may not
work with real-world data. Trueswell, Gleitman, and
colleagues (Medina, Snedeker, Trueswell, & Gleitman,
2011) asked adults to guess the intended referent when
presented with 3rd-person video (no audio) of parent
naming events. In this Human Simulation Paradigm
(HSP), adults were very poor at guessing referents and
further showed no ability to aggregate information about
word-referent correspondences across these highly clut-
tered visual scenes. If everyday scenes paired with words
are insufficient to support statistical learning in adults, is
it still possible that infants learn their first object names
by aggregating heard words and seen things across mul-
tiple naming experiences in the clutter of the real world?

The key to answering this empirical question is to mea-
sure and quantify the statistics of the input that young
learners perceive in the real world. Toward this goal,
the infant-perspective scenes that coincide with parent
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naming events are the input for learning. Hence, theories
and research on early object name learning need to work
with these scenes (Yu, Zhang, Slone, & Smith, 2021).
Further, the relevant data for learning concerns the scene
elements visually selected by the active learner. Thus,
we need to know the properties of the infant-perspective
scenes that coincide with parent naming and we also
need to know how infants visually select information in
those scenes.

The goals of the present study are to analyze real-
world scenes that capture parent naming moments from
the infant’s perspective in order to determine: 1) what
temporal regularities are present in parent naming dur-
ing naturalistic toy play; 2) what complexity and compo-
sition characterizes visual scenes during parent naming,
and 3) how infants allocate their attention (as measured
by eye-gaze) and thereby constrain their input. We first
describe the temporal properties of the auditory input
(i.e., parent naming) and how it impacts child attention.
We then characterize the visuo-spatial properties of the
infant-perceived scenes corresponding to naming events
and how they affect child attention. Since we do not have
a direct measure of learning as in the lab-based cross-
situational learning experiments, we measure infant gaze
since visual attention is necessary (but not sufficient)
for learning. If laboratory tasks and assumptions about
early word learning violate the properties of the audio-
visual context of infant learning experiences in the real
world, then the cross-situational learning mechanism, in
its current form, may not be sufficient to explain how
infants learn word-referent mappings.

Data and Data Processing

The data used in this analysis were collected from free-
flowing parent-child dyadic toy play sessions (n = 36,
age = 15—25 mo), each involving the same set of 24
toys. Each session lasted an average of 8.11 minutes
(range 0.95—16.17 min), with 291.79 minutes of video
data in total. Figure 1-left shows a third-person view
of the experiment setup. At the beginning of the exper-
iment, the 24 toys were randomly spread on the floor.
The parents were asked to play as they would at home
and to keep their child engaged with those toys. During
the play session, the parent and child each wore a head-
mounted eye-tracker with a front-facing camera captur-
ing what was in their field of view (sampling rate of 30Hz
for both). An example of the child’s view can be seen in
Figure 1-right.

The videos from the eye-trackers and front-facing cam-
eras were synchronized and calibrated using the Yarbus
program (Positive Science LLC) to generate a gaze cross-
hair in each image frame indicating the child’s gaze lo-
cation (Fig. 1 right). The field-of-view videos were
then processed using YOLO object detection (Redmon
& Farhadi, 2018), which was trained on an annotated

557

Figure 1: Third-person view of the experiment setup
(left) and the child egocentric view (right), showing the
gaze cross-hair.

sub-sample of frames to detect toys present in the video.
After training, the algorithm automatically detects toy
objects in view, providing up to twenty-four coordinate
sets per frame (x, y, x-length, y-length) that are used
to draw “bounding boxes” around all of the visible toys.
Parent speech and child vocalizations were manually an-
notated at the utterance level using Audacity. There
was no minimum utterance length for annotation, but
utterances less than 400ms apart were collapsed into a
single utterance. The gaze data, object detection data,
and transcriptions were all synchronized, which allowed
us to measure children’s visual attention and scene com-
position temporally aligned to individual spoken utter-
ances.

The current study includes data from 106,200 frames
of egocentric videos from the child’s front-facing camera,
corresponding to 1,475 parent naming events. For each
naming event, object detection data and gaze fixations
were extracted within a 3s window starting at the onset
of a given naming event.

Study 1: Temporal Continuity of Parent
Naming Events

Previous lab experiments showed that word learning is
facilitated when human learners are exposed to repeated
naming of the same object within a short period of time
(Kachergis, Yu, & Shiffrin, 2009), compared with when
naming frequently switches between different objects.
The goals of Study 1 were to examine whether such tem-
poral regularities can be observed in parent naming dur-
ing free-flowing toy play and to compare child attention
to named (target) objects when hearing repeated names
and when hearing different names.

The lag between any two naming events was deter-
mined by their inter-onset interval (IOI), as seen in Fig-
ure 2. Parent naming utterances were categorized into
two groups: 1) same when the parents named the same
toy repeatedly (e.g., parent names “doll”, then 5s later
names “doll” again); or 2) different when the parents
named one toy first and then switched to name a differ-
ent toy (e.g., parent names “doll”, then 3s later names
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Figure 2: Temporal continuity of parent naming. The
graph shows examples of the three different events of in-
terest: the same toy being repeated, an isolated naming,
and two different toys being named.

“bed”). Due to the annotation scheme, naming event
pairs within the same utterance had an IOI of t=0s.

First, we examined the overall distribution of IOIs and
the likelihood of repeated parent naming based on these
I0Is. Then, we measured child attention during these
naming events (from onset of utterance to 3s after) and
modeled the relationship using a logistic mixed effects
model.

Results

There were 40.97 naming events on average per subject
(range 7—111), with a mean of 3.09 naming events for
each toy (range 1—19) per subject. Different naming
pairs were more frequent (n = 869) than same naming
pairs (n = 570).

Using the inter-onset interval between any two naming
events to quantify the temporal aspect of parent nam-
ing behavior, we found that the overall distribution of
the IOIs, regardless of toy identity, was right skewed;
the mean time lag was 10.925s, while the median was
4.25s (SD=25.56s, range 0—570.39s). The IOIs for same
naming events were on average shorter (M=>5.87s) and
less variable (SD=9.31s, range 0—110.68s) when com-
pared to those for different naming events (M=14.24s,
SD=31.59s, range 0—570.39s). Since the IOIs for both
same and different naming event pairs are not normally
distributed, we used a Wilcox rank sum test on their
distributions, which showed that the difference is statis-
tically significant (W=3.08e5, p-value < 3.33e-15).

We grouped the inter-onset intervals by second and
calculated the conditional probability of the child hear-
ing the same or different toy as the second label given
the IOI (Fig. 3). The graph includes those naming event
pairs that are less than 20s apart to focus on the nam-
ing events that are temporally close together (same =
544, different = 703). Within a single utterance (t=0s),

558

1.00
B Different
33 M Same
075 %8
S 39|45 15 11
£ 174 30[27{5g]20(20 20
o 17 1212|640
8 0.50
o
80
o 107] 89 51
025 ), » .
75 14|13 10/ 8] 8 9
3| [3]2]1],
0.00
0 5 10 15 20

Time since first naming event (s)

Figure 3: Likelihood of the parent naming the same or
different toy based on the time since the first naming
event (IOI). The black box demarcates within-utterance
naming pairs (t=0s).

children are more likely to hear the parent name two dif-
ferent toys. However, for separate naming events (t>0s),
children are more likely to hear the same label repeated
within four seconds after the first naming, but this prob-
ability decreases as the inter-onset interval increases.

In order to quantify child attention based on the inter-
onset interval, we calculated the proportion of time that
the child fixated the target during the second nam-
ing event. Here we excluded naming event pairs that
are within a single utterance (t=0s), since there is not
enough resolution in the data to extract the child’s at-
tention proportion during each individual word. Figure
4 shows attention to target proportions from the second
naming event across lags. The mean attention propor-
tions and line of best fit are plotted over the individ-
ual proportions (for a given naming event) binned by
second. With this new set of temporally close naming
pairs (0<IOI<=20s), we found that children spend sim-
ilar proportions of time fixating the target object dur-
ing the second naming event for repeated toys (atten-
tion proportion: M=0.41, SD=0.39) and for two differ-
ent toys (M=0.38, SD=0.35). Attention proportion did
not appear to change as IOI increased either for same or
different naming pairs.

We used a logistic mixed effects model to test the
relationship between (centered) IOI, naming pair type
(same/different), and their interaction and the proba-
bility that the child looked at the target (a binarized
version of the fixation proportion plotted in Figure 4).
Parent-child dyads were entered as random intercepts.
Neither the IOI nor the naming pair type had a signifi-
cant relationship to the probability that the child looks
at the named toy (IOI: b = 0.001, SE = 0.02, p = 0.66;
Pair type: b =0.08, SE = 0.15, p = 0.58). The interac-
tion between the two predictors was also not significant
(p = 0.36).
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Figure 4: Proportion of time spent looking at the tar-
get for (second) naming events that are preceded by the
naming of the same toy or different toy. Time since first
naming was binned for each second.

In sum, parent naming events seem to be organized
such that repetitions of the same toy name mostly occur
within a short period of time, while sequential naming
of different toys occurs at longer lags. However, within
a single utterance, parents are most likely to name two
different toys. The time between two naming events and
whether they refer to the same object or a different ob-
ject do not appear to influence how much attention the
child pays to the referent of the second naming event.

Study 2: Spatial Properties of Visual
Input During Naming Events

When hearing a toy name, what was the infant’s visual
input and how did they allocate attention? Study 2
aimed to answer these questions by analyzing the spa-
tial regularities of scenes from the infant’s viewpoint
and their impact on child attention. Taking a statisti-
cal learning perspective, the child is a statistical learner
that extracts a subset of the information that they are
presented with. To that end, we aim to quantify two
aspects of scene composition during naming events; the
first aspect is the distribution of toy sizes in the child’s
field of view, and the second aspect is the combination
of these toys in view to comprise a visual scene (Fig. 5).

For the distribution of object sizes, we ranked the ob-
jects in the child’s view during a naming event according
to size. We then calculated the average object sizes for
each size rank per scene, regardless of identity, and rep-
resented each scene as a vector of the top six object sizes.
Mean shift clustering, an unsupervised clustering algo-
rithm, was used to identify patterns in scene composition
and extract prototypical scenes from these scene vectors.
Similar to Study 1, we quantified child attention based
on these prototypical scenes and then modeled their re-
lationship using a mixed effects model.
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Figure 5: An example of the object detection data af-
ter processing (left) and the corresponding extracted toy
sizes (right).
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Figure 6: Mean toy sizes during a given naming event,
sorted by size ranks. Dashed lines indicate the average
number of toys in the child’s field of view during a nam-
ing event, based on toy size cutoff.

Results

During naming events, there were an average of 17.05
toys in view (SD=4.08, range 1—24). However, when we
filtered the data to only include toys in the foreground
(toy size > 5% of image), there was an average of 4.38
toys in view (SD=2.29, range 0—14).

To get a more detailed look at regularities of toy sizes,
we calculated the average size of toys by rank within
a scene (Fig. 6). The bottom half of largest toy sizes
were dropped in order to focus on the more noticeable
objects in the child’s field of view. Only a few toys oc-
cupy a relatively large portion of the child’s field of view;
the largest toy during the naming event occupies about
15% (SD=8.53%). We tried different potential cut-offs
for identifying toys in the foreground: those taking up
>3%, >5%, and >7% of the image. With the first, most
generous definition (toy size >3%), there was an aver-
age of 9.134 toys per scene (SD=3.39, range 0—21). The
second foreground cut-off value (toy size >5%) gave an
average of 4.382 toys (SD=2.288, range 0—14), which
most closely matches the original cross-situational learn-
ing studies. With a stricter definition of the foreground
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Figure 7: Five major clusters as identified by the mean shift clustering results. A) Each graph represents a proto-
typical scene composition during a naming instance, with each bar being the nth largest toy. Dashed lines indicate
the modal target toy rank and the corresponding count. B) Each graph represents the proportion of time the child
fixated on any object (for the longest six looks) for scenes belonging to each of the 5 clusters. Dotted lines indicate

the mean proportion of looks to the target object.

(toy size >7%), the average number of toys per scene
dropped from 4.38 toys to 2.47 toys (SD=1.65, range
0—11).

We used mean shift clustering to identify groups of
similar scenes in the data. Here, scenes are represented
as a vector of the top six largest toy sizes. For exam-
ple, the scene in Fig.5 would be coded as [0.20, 0.06,
0.05, 0.04, 0.03, 0.02], while a scene with only one toy in
view would be [0.25, 0, 0, 0, 0, 0]. There were 23 clus-
ters identified, though the majority of the clusters were
outlying single scenes (18 had less than 10 scenes per
cluster, 4 had less than 60 scenes, and one included 1194
scenes). Due to being too idiosyncratic, those outlying
clusters with less than 10 instances were not included in
the following analyses.

From the clusters, we then extracted “prototypical”
scene compositions of naming events. Figure 7A shows
the prototypical scenes as identified by the mean shift
clustering, where each subplot is an example scene from
the data which is closest to its cluster’s center point.
Cluster 1 had the most instances (n=1194) and rep-
resents scenes in which several toys are approximately
equally-sized and none take up more than 12% of the
child’s visual field. Cluster 2 (n=51) represents scenes
in which one object takes up a large proportion of the
visual field (near 40%) and there are several other toys in
the background (<10% of view). Cluster 3 (n=38) repre-
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sents scenes in which two toys take up a large proportion
of the visual field, with another medium size object and
the rest in the background. Cluster 4 is the second most
common (n=>55) and represents scenes in which there is
more variability in the sizes of toys in the child’s view,
most of which are of medium size. Finally, cluster 5
(n=31) represents naming instances with a large, single
toy in the child’s visual field.

The dashed lines in Fig. 7 indicate the most frequent
rank of the toy labelled by the parent among the sorted
toy sizes, along with their count. With the exception of
cluster 3, the labelled toy was most frequently the largest
of the six toys in view (1: 379/1194, 2: 27/51, 4: 13/55,
5: 23/31). For scenes with one toy in focus (clusters 2
and 5), the labelled toy is the largest for just over half
of the instances.

We quantified child attention regarding their overall
gaze behavior (regardless of toy identity) and their at-
tention on the named toy. For their overall gaze be-
havior, we sorted their gaze proportions (of the longest
six looks) for each scene and calculate the mean pro-
portions by rank. Figure 7B shows these distributions
of gaze proportions based on each cluster. Even though
the prototypical scenes are quite different in their scene
composition, the children’s gaze patterns are quite sim-
ilar; one long look, with a few short looks. Likewise,
the mean proportions of target attention are similar as



well (range 0.36—0.57). For all clusters, the mean pro-
portions of gaze to the target are lower than the longest
look proportion suggesting that children did not always
look longest at the target during a naming event.

Target size rank significantly predicted whether the
child looked at the target (b = —0.24, SE = 0.017,
p <2e-16) such that the probability of fixation was larger
for objects which were relatively larger. Children were
also more likely to fixate the target when the scene
composition belonged to cluster 3 relative to cluster 1
(b=1.09, SE =0.54, p = 0.045).

In sum, during naming events, toys are distributed in
the scenes such that only a few toys occupy the fore-
ground of the scene (M=4.38 toys/scene) when we use
a size cut-off of >5%. Through mean shift clustering,
we identified five prototypical scene compositions. For
most of these prototypical scenes, the target was fre-
quently the largest toy, however, only in those with one
object in focus (clusters 2 & 5) did it occur for more
than half of the naming events. Children’s overall look-
ing behavior during a naming event was similar across
clusters. Children were more likely to look at the named
object when it was large relative to the other objects in
the scene and slightly more so when the composition of
the scene consisted of two larger toys with other toys in
the background.

General Discussion

In the current study, we quantified the statistical regular-
ities of parent naming and child attention in naturalistic
toy play data. We demonstrated that parent naming ten-
dencies (repeat same vs. name different toy) change as
a function of the time between naming events. We also
observed that the majority of naming events were ac-
companied by scenes in which several toys only occupied
an equal, small proportion. Furthermore, we found that
the child’s gaze distribution is consistent based on these
regularities and, based on our models, identified the size
rank of the target toy as the most significant predictor of
child attention. These findings extend previous work on
learners’ sensitivity to co-occurrence statistics of visual
and auditory input (Kachergis et al., 2009).

Our results reveal statistical regularities that are sim-
ilar to those found in cross-situational learning stud-
ies (Yu & Smith, 2007; Smith & Yu, 2008; Fitneva &
Christiansen, 2011; Kachergis et al., 2009). For exam-
ple, the average naming frequencies of each toy reflected
some of the conditions typical of the lab studies (3.09 vs
3/6/9), but the range was much broader (1—19). Like-
wise, with two of the toy size cut-offs (>5%, >7%), the
average number of toys in the foreground of the child’s
view matched the typical number presented on screen
(4.38, 2.47 vs. 4, 2). However, the mean shift clus-
tering analysis identified prototypical scenes with either
one or two large toys with a gradient of sizes, as op-
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posed to the n equal-sized objects typical of CSL exper-
iments. The overall input statistics in the real world are
similar to those found in the CSL studies, giving cre-
dence to their derived accounts of statistical learning.
Whether learning in CSL studies could be improved by
adapting the exposure to more closely match properties
of the child’s real-world experience (e.g., scene composi-
tions where candidate referents are not all equally-sized
and targets are more likely to be relatively big) is an
open question.

Trueswell, Gleitman, and colleagues’” HSP work did
use real-world data. However, previous research (Yu
& Smith, 2012; Bambach et al., 2018) showed differ-
ences in the visual information generated by the child’s
field of view compared to other views (e.g. 3rd-person
views). Therefore, we specifically chose the current data
set for it’s child view recordings in a naturalistic play
environment. The lab area was decorated to be similar
to a home, with carpets, furniture, and stuffed animals.
Based on the instructions, the parents and caretakers
played similarly to how they would at home. Yet, since
it was a controlled lab environment, researchers were
able to record much more information than would be
available at the participants’ actual homes through the
use of multiple room cams, head cams, and eye-trackers.
While certain aspects of the child’s everyday play context
cannot be wholly replicated (i.e., it is not their home)
and the presence of recording equipment may impact
their behavior in some way, these data balance ecological
validity with dense, high-quality, multi-modal measure-
ments which uniquely afford the type of analysis pre-
sented here.

To better understand the robustness and generalizabil-
ity of the patterns observed here, these analyses should
be extended to similar datasets collected from other envi-
ronments. The relationship between the timing of parent
naming events and the spatial properties of the visual in-
put, as well as whether /how it is linked causally to child
attention, also remains unclear. Based on the current
data, we cannot conclude whether it is the parent or the
child leading the interaction to generate these regular-
ities. For instance, it may be the case that the parent
chooses to name the object which they think appears
largest to the child in that moment. In contrast, parents
may be more focused on what is in their own field of view
and the naming instance may draw the child’s attention
to particular objects. Future analyses could integrate the
parent’s view and explore the relationship between the
spatial and temporal regularities. Lastly, when design-
ing CSL experiments, the supporting regularities can be
informed by this type of analysis, such that they incor-
porate more variations in the naming frequency and toy
sizes or scene composition, or even use the first-person
videos as stimuli (Zhang, Amatuni, Cain, & Yu, 2020;
Zhang et al., 2021).
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