
UC Berkeley
Recent Work

Title
Improving City Mobility through Gridlock Control: an Approach and Some Ideas

Permalink
https://escholarship.org/uc/item/7w6232wq

Author
Daganzo, Carlos F.

Publication Date
2005-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w6232wq
https://escholarship.org
http://www.cdlib.org/


 
 

 
 
 

 
 
 
Improving City Mobility through Gridlock Control:  
an Approach and Some Ideas 
 
Carlos F. Daganzo 
 
WORKING PAPER 
UCB-ITS-VWP-2005-1 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
July 2005 

 



 

 

IMPROVING CITY MOBILITY THROUGH 

GRIDLOCK CONTROL:  

AN APPROACH AND SOME IDEAS 
 

 

Carlos F. Daganzo 
Berkeley Center of Excellence on Future Urban Transport 

Working Paper 
Institute of Transportation Studies 

University of California, Berkeley, CA 94720 
 

July 5, 2005 
 
 

ABSTRACT 
 

This paper examines the effect of gridlock on urban mobility. It defines gridlock and 

shows how it can be modeled, monitored and controlled with parsimonious models that 

do not rely on detailed forecasts. The proposed approach to gridlock management should 

be most effective when based on real-time observation of relevant spatially aggregated 

measures of traffic performance. This is discussed in detail. The ideas in this paper 

suggest numerous avenues for research at the empirical and theoretical levels. An 

appendix summarizes some of these.  



1. INTRODUCTION 
 

The current paradigm for the development and evaluation of transportation policies in 

cities all over the world relies heavily on forecasting models. Government agencies often 

stipulate by law the outputs that evaluation models must produce before a policy can be 

rolled out—even the kind of model in some countries (Muñoz, 2004).  But the objective 

of these laws may not be achieved if the models and data used to produce the outputs are 

unreliable. Unfortunately, unreliability is the order of the day for the reasons explained 

below. 

The level of detail and complexity of available urban transportation models have 

steadily increased over decades: from the static and largely aggregate “four-step” models 

of the 1950 and 60’s; to the “disaggregate demand” and “network equilibrium” 

extensions of the 1970’s and 80’s; and now the “multi-modal” and “dynamic” models of 

the 1990’s and 2000’s.  Given correct inputs, the most recent computer models have the 

capacity to predict almost anything on a multi-modal transportation network in minute 

detail.  But for this to be a reality, some inputs must be first obtained.  They include: (i) 

highly disaggregated, and time-dependent, origin-destination data; and if the model is 

traffic responsive (ii) a psychological model of driver information acquisition and 

reaction to existing and anticipated route congestion conditions.   

Input-set (i) is customarily constructed with econometric models that use data 

from a variety of sources (census; home interviews, etc.) Unfortunately, the estimation 

problem is formidable for the level of resolution required by a detailed model. A model 

with reasonable spatio-temporal resolution should have no more than 104 people per 

zone, and a time slice many times smaller than the average trip time. According to these 

criteria a medium-size metropolitan area with 1 million people should be modeled with 

100 zones and a 5-minute time slice—small compared with a 30-minute commute. The 

study of a two-hour period including the rush would then require an origin-destination 

table with 240,000 entries; a large number.  For a large metropolitan area with 10 million 
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people, the same considerations show that the number would be 24 million;1 more than 

the city’s population! Estimating all these numerical values is obviously problematic.  

The difficulty is compounded by requirement (ii) because people do not just 

decide at one point in time when, how, where and whether to travel, but they re-evaluate 

their route choice (how to travel) in real-time, and may change routes as conditions 

change. Nobody really knows how they make these continuing decisions, but the 

possibilities are troublesome. As pointed out in Heydecker and Addison (1996), to 

minimize travel time, “rational” drivers would try to anticipate the congestion level along 

their possible paths at the relevant (future) times when they would traverse them. But to 

predict these conditions, they would need to know the decisions of “rational” drivers 

from other origins (e.g., traveling in the opposite direction) who may not have yet left 

their origins but could arrive at the location in question before them. Conversely, these 

new drivers may face the same conundrum, in reverse, trying to guess the decisions of 

drivers from the first origin. In essence, drivers from the two origins would be engaged in 

an unpredictable game of “poker.” 

It should be clear from the above that, although sophisticated models for 

mechanical prediction exist, reliable data to support them cannot be obtained. Yet, 

current practice for policy development and evaluation continues the tradition of strong 

reliance on model predictions. We can continue the tradition, hoping that model 

predictions match reality in the aggregate despite the imperfection of the model inputs, 

but we should then candidly admit that our policy evaluations are hope-based. 

Unfortunately, this hope is not soundly based because highly congested networks can 

exhibit chaotic behavior—where slight changes to the input O-D table, or perturbations to 

drivers’ route choices, can drastically change the aggregate outputs; see Daganzo (1998) 

for a discussion. Thus, model predictions for large systems cannot always be trusted. This 

suggests that the model-based forecasting approach for mobility assessment should be 

complemented with more reliable approaches.  

                                                           
1  Our estimate assumes that the number of time slices remains the same. This is reasonable. A study period 
including the rush would now have to be longer, but we could also use wider time slices since the typical 
commute should also be longer.  
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Fortunately, one such approach is close at hand. Cities can benefit significantly if 

we succeed in understanding and applying this approach. The idea is that implementation 

priority should go to (robust) policies, whose benefits and disbenefits can be measured 

directly in the field, without questionable data inputs. The advent of new technologies for 

sensing, vehicle-tracking and web-based data processing expands the kinds of things that 

can be measured. Improved measurements in turn expand the feasible set of (robust) 

policies that can be accurately tested.  

As a first exploratory step of this alternative paradigm, we show below that two 

key determinants of city mobility are the aggregate vehicular accumulations and 

cumulative flows by district and time-of-day. These indicators are ideal policy beacons 

because they can be measured directly (without modeling) if sufficient sensors are 

deployed, and because they correlate extremely well with measures of interest to the 

public such as the aggregate number of vehicle-hrs (VHT), vehicle-km (VMT), emissions 

or noise.2  We also show that parsimonious models can be constructed to predict how 

some (robust) policies affect these beacons. But this is less important. If a city is properly 

instrumented, the effects of the (robust) policies can be measured by the detection system 

immediately after implementation. The policies can then be fine-tuned over a period of 

weeks with real data feedback, to achieve real benefits. In essence, the instruments 

constantly take a city’s pulse and can replace the model. 

Section 2 below discusses what our two determinants reveal, and how they relate 

to each other. Section 3 describes the physics of gridlock in terms of these determinants, 

and how to control it in an idealized scenario. Section 4 shows how the gridlock ideas can 

be applied on a city-wide scale, and proposes policies to improve mobility. An appendix 

discusses qualitatively other research ideas related to the new paradigm. 

 

                                                           
2 The indicators also yield important people-based measures such as the people-hrs and people-km of 
travel—since the contribution of automobile trips toward the measures can be obtained by factoring into 
our indicators passenger occupancy data, and the contribution of transit trips is independently available 
from ridership and vehicle timetable data. 
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2.  ACUMULATION (VHT) AND FLOW-SUMS (VMT) 
 

Consider a city and let A be a set of directed links, i, describing its street network; i ∈ A.  

The city may be partitioned into sub-regions, r, with network links Ar, where every link 

belongs to only to one sub-region. Define ni(t) as the number of vehicles traveling on link 

i at time t.  (This excludes parked vehicles – with no occupants and engines off.) Also 

define Ai(t) and Li(t), respectively, as the cumulative number of vehicles to have arrived 

and left link i.by time t; and initialized in such way that ni(t) = Ai(t) - Li(t).  

Link arrivals and departures are either exogenous (from/to other links) or 

endogenous (from/to the origins/destinations in the link). The endogenous portions of Ai 

and Li will be respectively denoted Oi(t) and Ei(t), representing the trips originated and 

ended within i. The exogenous portions will be denoted Ui(t) and Di(t), respectively 

representing upstream arrivals and downstream departures. By definition, Ai(t) = Oi(t) + 

Ui(t),  and  Li(t) = Ei(t) + Di(t).  

 Before examining our two determinants, note that the total number of trips (TT) 

starting and ending in a region r is: Or(t) =∑i Oi(t) and Er(t) = ∑i Ei(t), where the sums are 

evaluated for i ∈ Ar.  We claim that Or(t)/Er(t) ≅ 1, regardless of when we start counting,  

for neighborhoods r with many people if t = 1 week. The basis for this assertion is that 

most people repeat their routines on a weekly basis, thus, the collective travel pattern of a 

large group should have a weekly cycle. Or putting it another way, if we were to inspect 

the number of vehicles in a neighborhood r on a weekly interval for a single season, e.g., 

each Tuesday at 3:00 AM during winter, we would likely find little variation in these 

numbers—and this of course implies balance between the number of trips originated and 

ended in r per week. The approximation Or(t)/Er(t) ≅ 1 may also be reasonable for the 24 

hour cycle and for shorter time periods during the middle of the day. We will soon find 

that if this approximation holds the formulae relating our determinants to VHT and VMT 

simplify considerably. 
 

Aggregate accumulations and VHT: The total VHT in link i during a short time 

interval (dt) when nobody enters or exits the link is simply ni(t)dt. If we partition a long 
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time interval into short time slices with this property, the total number of vehicle-hrs is 

the sum of the VHT for each slice, VHTi = ∑t ni(t)dt , where the sum is evaluated over 

the relevant slices.  In the limit of vanishing dt this is the integral: VHTi = ∫t ni(t)dt.  The 

total VHT in a sub-region of the city VHTr is the sum of the VHTi over the links in the 

region. In practice, an approximation for VHTr can be obtained by sampling ni(t) every ∆t 

time units and evaluating ∑t ∑i ni(t)∆t for i ∈ Ar.  Estimates can be substituted for the 

actual ni(t)’s.  

For links without endogenous flows such as freeway segments between ramps the 

ni(t)’s can be obtained from detectors that continually measure Ui and Di , since in this 

case ni(t) = Ui(t) - Di(t). (Methods that compensate for detector measurement errors have 

been developed.)  

City streets, however, are a different matter. Street links are rarely instrumented 

with detectors to measure their exogenous flows, let alone their endogenous flows. No 

reliable method seems to exist for determining accumulation on city streets. But if as we 

argue below accumulation is not just an informative measure of performance but also an 

important (and controllable) driver of congestion, this needs to be rectified. 
 

 Flow-sums and VMT: Let us now see how the number of vehicle-miles (VMT) 

in a link i of length li is related to the endogenous and exogenous curves of cumulative 

counts. Assume for now that the link is empty at both ends of a time interval of interest 

(0, t); hence, Ai(t) = Li(t).  We neglect (reasonably) the number of trips that both begin 

and end in the link, without crossing either of its ends. Then, the total number of 

endogenous link visits (i.e., with at least one end rooted in the link) by time t is Oi(t) + 

Ei(t). Since the total number of link visits is Ai(t) ≡ Oi(t) + Ui(t) = Li(t) ≡ Ei(t) + Di(t) , the 

number of through visits is: Ui(t) - Ei(t) = Di(t) - Oi(t) 

Each through visit contributes li distance units to VMT. If the average distance 

contribution of each endogenous link visit is li/2 (a reasonable assumption), the VMT for 

link i is then: li(Ui(t) + ½[Oi(t) - Ei(t)] ) ≡ li(Di(t) + ½[Ei(t)- Oi(t)] ). For major arterials 

and collector streets, the number of endogenous link visits should be much smaller than 

the number of exogenous visits. In this case VMT is roughly given by either liDi(t) or 
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liUi(t). But this approximation is not good for local streets—certainly not for cul-de-sacs, 

and may or may not hold for a neighborhood including many local streets.  

To estimate VMT for a region r we have to add li(Ui(t) + ½[Oi(t) -Ei(t)]) for all i 

in the region with the result: VMTr = ∑i liUi(t) + ∑i ½ liOi(t) -∑i ½ liEi(t). If all links have 

unit length the above reduces to: VMTr = ∑i Ui(t) + ½∑i Oi(t) - ½∑i Ei(t).  This 

assumption is not outlandish; it applies if the city blocks are uniform in size, and also if 

we imagine artificial nodes uniformly spaced every unit distance along all the streets. 

(We can choose the unit of distance to be as big or small as convenient.)  With this 

convention, the first term of VMTr is the sum of all the cumulative flows at the sampled 

locations; i.e., the “flow-sum.” The second term is 50% of the trips generated in the 

region by time t, and the last term 50% of the trips attracted. We argued earlier, however, 

that the net trip generation Or(t) - Er(t) could be neglected for neighborhoods of sufficient 

size when the period of observation was either 1 day or 1 week.3 Thus, the flow-sum, ∑i 

Ui(t), is an accurate estimate of VMT. This should also be the case for shorter periods of 

time if the city region includes freeway portions, arterials and spans many blocks, e.g., 

with a diameter just a few times smaller than a typical trip, because in these cases, the 

flow-sum should be large compared with ∑i Oi(t) and ∑i Ei(t), even if ∑i Oi(t) ≠ ∑i Ei(t). 

Thus, VMT in large regions can be estimated with flow sums, without following vehicles 

around.  
 

Interpretation: Flow-sums at evenly spaced locations give an indication of 

VMT, which in turn is an indicator of system productivity.  Accumulation-sums, on the 

other hand, give VHT.  The ratio of VMT and VHT is an indicator of system 

performance.  We call it the “generalized” average speed or “space-mean” speed for the 

network and time period under consideration, in agreement with Edie’s definition of 

space-mean speed for single links (Edie, 1963). The excess vehicle-hours over the 

“nominal” time that would be consumed by a given VMT under smooth flowing 

conditions (e.g., at night time) are the VHT of delay.  VHT delay is a waste to society.   

                                                           
3 This is useful because endogenous trips are difficult to observe. 
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These aggregate measures of travel, and the total number of trips started (TT = 

∑iOi(t) ≅ ∑iEi(t)), are important because they also capture other resources wasted to 

society such as energy consumed and emissions generated.  We know for example (Evans 

et al, 1976) that the total energy consumed by vehicles in a city can be expressed as a 

linear combination of cold starts (TT), VMT and VHT.   

The definitions in this section can be extended to the movement of any objects 

that are conserved. Thus, truck and bus trips, miles and hours; and even people trips, 

miles and hours, can be treated in the same way.  We now show how these ideas can be 

used. 
 

 

3.  THE PHYSICS OF GRIDLOCK 
 

3.1 Definition 
 

We discuss here urban gridlock and policies to manage it. The term “gridlock” has a 

specific meaning in this paper. We apply it to “input/output” systems that can be modeled 

as reservoirs, or sets of interconnected reservoirs, where specific items flow into the 

system, spend some time in it and then flow out. There are many examples: checkout 

stands at supermarkets, water reservoirs, baggage carousels at airports, highway 

roundabouts, your desktop, restaurants, the Internet and, of course, a city street network. 

In some cases, such as supermarket checkout stands, the output rate is relatively 

independent of the number of items in the system. In most cases, though, including all the 

remaining examples in the list, there is some dependence between outflow and 

accumulation. For example, the outflow from a water reservoir with an open spillway 

increases monotonically with accumulation.  In all other examples, though, the output 

rate can decline with accumulation. The reason is that in these cases items must complete 

a task before leaving, and crowded conditions reduce the efficiency with which the tasks 

can be completed. Severe inefficiencies obviously reduce the system’s output rate.  
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 To recognize this effect more formally, we say that a single-reservoir system is 

subject to gridlock for a range of accumulations if its steady-state outflow, g = dL(t)/dt, 

declines with the steady-state accumulation, n, when n is within the range. (We imagine 

that the accumulation level is regulated by controlling the inflow, f.) The definition can 

be extended to sets of reservoirs. In this case, n is a (regulated) vector, and we say that 

gridlock exists if the combined steady-state system outflow declines with some 

component of n. 

When conditions change with time, the outflow g(t) could theoretically depend on 

the history of inflows {f(t)} and accumulations {n(t)}, and not just on n(t), but in many 

cases the dependence on history is weak.  We can then write  

dL(t)/dt ≡ g(t) ≅ G(n(t)),     (1) 

where G is a function of the accumulation alone. In some application contexts we may 

choose to track the accumulation of multiple item types; e.g., passengers and bags at 

carousels, or cars on different links on road networks.  The accumulation n is then treated 

as a vector. The existence and character of G has been examined for baggage carousels 

(Ghobrial et. al, 1982) and closed-loop roads (Daganzo 1995).  In both cases the function 

G is unimodal, increasing from the origin to a maximum and then declining toward zero. 

(We call the value at which it reaches zero the “jam accumulation,” the maximum 

outflow the “capacity.”)  We now examine the gridlock mechanism for unimodal G, and 

then show how to control it. 
 

3.2  Mechanism and control  
 

Assume that prior to t = 0 the system is in a steady state with A(t) = no +fot , L(t) = got, 

and fo = go = G(no). Consider now the evolution of n(t) from t = 0 onward when the 

arrival rate, f := dA/dt , is allowed to vary in a narrow range around fo; i.e.,  f(t) ≅ fo = 

G(no).   Since n = A – L, we can write dn/dt = f – g.  But g = G(n).  Thus, dn/dt = f(t) – 

G(n), which equals 0 for t < 0 but not thereafter. Thus, n(t) will in general differ from 

n(0) for t > 0. If n(0) is in the declining range of G and n(t) > n(0) for some t, then 

dn(t)/dt = f(t) – G(n) ≅ G(n(0)) – G(n) > 0.  The last inequality holds because G declines 
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for n ≥ n(0). This sets in motion a “positive feedback” cycle where accumulation 

increases at a rate that itself grows with accumulation. (Growth is exponential when G is 

linear.)  When the system reaches its jam accumulation it ceases to emit flow. 

Accumulation could continue to grow, but at some point would prevent further inflows.4 

The system would then have reached a static state of gridlock.  

Similar considerations show that the vicious cycle leading to gridlock becomes 

“virtuous” if we start with n(t) < n(0). In this case, the self-sustaining mechanism 

involves outflow increases and accumulation reductions until capacity is reached. 

Consideration also shows that vicious and virtuous cycles do not arise if no is on the 

rising branch of G.  The system is then stable.  

 We see from the above that if a system is in an unstable equilibrium state (i.e., on 

the declining portion of G and hence susceptible to gridlock) then minor perturbations on 

opposite sides of its equilibrium input flows will have vastly different effects. This 

strongly suggests that systems susceptible to gridlock can be improved significantly by 

gently controlling their inputs. In particular, as the previous footnote suggests, they can 

be improved by releasing inputs at a “metered” rate, holding items outside the system if 

necessary. This can be easily understood with a queuing diagram; see Fig. 1a. We assume 

that A(t) and n(0) are given and that L is given by (1). The function G is as we stipulated 

earlier: unimodal with maximum outflow gm, declining between nm and the jam 

accumulation ng, and equal to 0 for n ≥ ng; see Fig. 1b.  Note from Fig. 1a how the slope 

of L becomes shallower as n increases, and eventually flattens when n reaches the jam 

value. The metering approach uses a curve A* of released arrivals into the system such 

that A*(0) = A(0) and A*(t) ≤ A(t) for all t. Items between curves A and A* would be 

held outside the system. The idea is to generate a “higher” departure curve, L*, such that 

L*(t) ≥ L(t) for all t. This is would be good since the items between L* and L at any time 

                                                           
4 Input restrictions have been observed in empirical data of baggage carousels (Ghobrial et al, 1982); for 
these systems, f(n) is bounded from above by a function of n, F(n), which declines toward zero but exceeds 
G(n) for large n. For traffic links obeying the kinematic wave theory of Lighthill and Whitham (1955) and 
Richards (1956) a bound of the form F(n) ≅ G(n) can be justified when n is on the declining branch of the 
fundamental diagram (FD). The results in Newell (1993) justify its use for triangular FDs, and those in 
Daganzo (1993) for general FDs under slow-varying conditions.  
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would have been served with the new control scenario but not the old. The shaded area 

between L* and L would indicate the total number of item-hours saved.  

Figure 1a illustrates the following “bang-bang” strategy: Choose dA* = 0 if n > 

nm; and otherwise, set dA* as large as possible without exceeding the optimum 

accumulation or curve A. The idea is to avoid accumulation growth when n > nm. The 

recursion for the points of A* is then: 

A*(t+dt)  =  A*(t)      if n(t) > nm  (2a)

        =  L*(t) + n(t)  if n(t) = nm  (2b) 

    =  A(t)                          if n(t) < nm.  (2c)  

Curve L* continues to be given by (1); i.e., L*(t+dt)  =  L*(t) + G(n)dt. 

Note from the dashed curves how A* = A(0) until the optimum accumulation is 

reached, as per (2a). From this point until the outside queue vanishes A* and L* increase 

at the maximum rate, gm, with A* − L* = nm, as per (2b). In the final dissipation regime, 

n < nm and A = A*, as per (2c).  The benefit of the bang-bang strategy is very large for 

this example, since the area between L and L* is unbounded.   

Although, benefits could be smaller in other cases, it is possible to show—but we 

don’t do it here—that the bang-bang strategy A* is uniformly optimal in the following 

sense. Let A’ be another strategy and L’ its exit curve according to (1). Then, we have: 
 

Theorem 1.  If  A’ ≠ A*, then  L’(t) ≤ L*(t)  for all t.     � 

 

Theorem 1 shows that in a FIFO system the proposed policy gives every item the most 

advanced departure time possible. Thus, it distributes benefits widely. The proposed 

policy is also powerful because, as we can see from (1) and (2), it does not rely on 

forecasts; only on current values of A*(t), A(t) and n(t), which can be readily measured.  

Thus, it is robust.  
 

 Performance with spillovers: In practical applications reservoirs have finite 

capacity, and spillbacks can prevent flows from entering the system.  If spillbacks are a 
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possibility, we should make sure that the proposed control strategy accounts for this 

feature.  We saw in footnote 4 that the inflow f(t) into a single traffic link (without 

endogenous flow) is approximately bounded by  F(n) ≅ G(n)  if n > nm.  But the 

constraint {f(t) ≤ G(n) if n > nm} never comes into play with our bang-bang strategy, 

since rule (2a) automatically sets f(t) ≡ dA/dt = 0 for n > nm. Thus, the bang-bang policy 

automatically avoids spillovers when applied to a single link. Since the policy solves 

optimally the (less constrained) problem without spillovers, it must be optimal too if 

spillovers are allowed.  Obviously, this is also true for any F(n) ≥ 0 that does not restrict 

inflows for n ≤ nm.  Actually, it can be more generally shown that the bang-bang policy is 

optimal for any F(n) ≥ 0—although its restrictions for n  ≤ nm may generate spillovers.  

Thus, the bang-bang policy is indeed quite robust. 

 

4.  URBAN MOBILITY AND GRIDLOCK CONTROL 
 

4.1 Complications for cities 
 

We are interested in applying the ideas of Sec. 3 to cities by decomposing them into 

districts that can be modeled as interconnected reservoirs obeying the physics underlying 

Theorem 1. Information from the real world can then be used to control the flows in and 

across reservoirs to improve mobility. Control can be exercised with street closures, 

pricing, signing, metering, signal timing and suitable combinations of these measures.  

The idea is not so far fetched. The Swiss city of Zurich already does something 

along the lines of Theorem 1 (Cervero, 2004). The average speed of public buses in 

Zurich’s central area is used to regulate how much traffic is released into it. Ostensibly, 

this system ensures that the performance of large occupancy public vehicles is not 

adversely affected by interference from automobiles, but Theorem 1 also suggests that 

the restrictions could benefit automobile users. To assess this accurately would require 

information that is not being collected. The city of London has also implemented a 

congestion-pricing scheme for its central area, but as in the case of Zurich its policies 

have been implemented with incomplete feedback. More complete knowledge of Or(t), 
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Er(t) and nr(t) could open the door for policies that could target more precisely specific 

problems in time and space. 

These zonal-level data would also allow us to verify our theories. But more 

importantly, even if the theories fail, real-time zonal data would allow policy developers 

to test their ideas immediately, accurately and with a fair amount of detail.  

Problems with multiple reservoirs can sometimes be treated on an aggregate level 

as if they consisted of a single reservoir. As we show below, the spillover constraint may 

need modification but the optimization framework remains the same.  
 

4.2. Rings, symmetry and aggregation  
 

Consider a closed-loop freeway system of length C with a symmetric O-D table and 

closely spaced ramps. Let the distribution of trip lengths be exponential with mean c << 

C.  We divide the freeway into sections from on-ramp to on-ramp. Each section can be 

viewed as a reservoir that is fed by its upstream on-ramp and upstream neighboring 

section. The reservoir discharges into off-ramps and a downstream section. Because the 

system is symmetric we can study it as a single reservoir, recognizing that the inter-

reservoir transfers cancel out by symmetry.  

 The total demand along the perimeter of the loop is assumed to be A(t) = MH(t), 

where M is the user population size (assumed to be very large) and H(t) is the Heaviside 

unit step function. We also assume that if the loop contains n < ng vehicles uniformly 

distributed along its perimeter, then the speed of traffic along the loop is approximately 

uniform: v(n). This function declines with n and is such that v(ng) = 0. The VMT per unit 

time is therefore, v(n)n. Since trip distances are exponential, the exit rate per unit time is: 

G(n) := nv(n)/c. Experiments show that v(n) is relatively close to a constant vf  (called the 

free-flow speed) if n ≤ nm .  Thus, G(n) = nvf/c if n < nm . Experiments also show that 

G(n) is roughly linear for n ≥ nm and approximately triangular overall; i.e. G(n) = nvf/c if 

n < nm , and G(n) = (ng − n)/β otherwise. (The constant β is proportional to c.) The merge 

model in Daganzo (1996) indicates that the rate at which the system can admit new 
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vehicles is bounded by F(n) = (ng − n)/α if n > nm , where α is a constant that increases 

with the number of lanes.  

Assume that the system includes nm vehicles at t = 0. The freeway is so narrow 

and trips so long that β > α. Thus, F(n) > G(n).  Since the demand is heavy, more 

vehicles would enter than exit the system if left uncontrolled. In this case, dn/dt = 

γ(ng − n), where γ = 1/α − 1/β. The solution of this ordinary differential equation for n(t)  

is: (ng − n)/( ng − nm) = exp(−γt). The cumulative number of entrances is the integral of 

F(n) = (ng − n)/α = [(ng − nm)/α] exp(−γt) from 0 to t.  For t → ∞ the result is: 

[(ng − nm)/αγ]. Thus, there is an upper bound to the number of cars that the system can 

serve. If the population of users is so large that M > [(ng − nm)/αγ], the queue would 

never dissipate. 

On the other hand, if the system is controlled with strategy (2), the inflow would 

equal A*(t) = L(t) = (ng − n)/β as long as n = nm. This state of affairs would persist until 

the last person enters the system; i.e. until t = Mβ/(ng − nm) < ∞. Therefore, with strategy 

(2) the queue would dissipate even if M is arbitrarily large. 

Simulations (and analytical considerations) show that this result is qualitatively 

valid even if the symmetry assumptions of the example are only approximately true. But, 

cases with strong asymmetry exhibit complex features that can be exploited and should 

be studied as such. This is done next. 
 

4.3 Time-independent behavior of asymmetric rings 
 

We now examine the performance of a closed loop with an asymmetric O-D travel 

demand pattern.  We assume that the demand arises from an “intervening opportunities 

model” with a homogeneous driver population. Drivers look for “opportunities” at the 

various exits, and take the first exit that satisfies their need. Opportunities are distributed 

along the road with density λ(x). All opportunities are equally likely to satisfy a driver’s 

need (with probability p << 1) independently of where s/he comes from. We assume that 

that the total number of opportunities, N, is so large that Np >> 1.   
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 If we denote by N(x) the cumulative number of opportunities along the road 

starting from a reference point x = 0 (i.e., N(x) is the definite integral of λ(⋅) from 0 to x) 

then the probability that a driver finds its opportunity in the interval (x, y) given that it 

did not find it before x  is a function of the intervening opportunities, N(y) −N(x):  p(x, y) 

= 1−(1−p)[N(y)−N(x)] = 1−exp(−p[N(y)−N(x)]).  If x > y, i.e. the reference point is between 

x and y, then the intervening opportunities are N(y)−N(x)+N instead of N(y)−N(x) but 

the formula is the same. If (x, y) is the segment containing opportunities for exit j , p(x, y) 

will approximate the fraction of vehicles taking the exit, pj. Given our assumptions, this 

probability is independent of the driver’s origin and can be viewed as a property of the 

road.  

Let k(x) be the density at x, Q(k(x), x) be the flow at x as predicted by the 

kinematic wave (KW) theory of Lighthill and Whitham (1955) and Richards (1956). 

Assume that Q is concave in k, and that the system is in a steady state with balanced 

inflows and outflows. The function Q is called the fundamental diagram (FD) in traffic 

lingo.  Off-ramps have significant capacity to discharge the desired outflows. Define too 

the density of opportunities at x, p(x), with p(x)dx = p(x, x+dx). The desired outflow in 

(x, x+dx) is then Q(k(x), x)p(x)dx, and the total desired outflow in an interval (y, y’) the 

definite integral 

g(y, y’) = ∫ Q(k(x), x)p(x)dx,                       (3a) 

evaluated over the interval. If the interval in question is long compared with the 

separation between ramps, this will also be the actual outflow. If integral (3a) is taken for 

the whole length of the road we obtain the total outflow.  

We now ask: Given an accumulation, n, what is the distribution of cars that 

maximizes total outflow?  The answer is the function k(x) that maximizes (3a) (evaluated 

over the whole road), subject to the accumulation constraint (also evaluated over the 

whole road): 

n = ∫k(x)dx.      (3b) 

Going through Lagrange multipliers we find that the solution of this optimization 

problem, k*(x), must satisfy: 
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 p(x)w(k(x), x) = constant .     (4) 

where w(k, x) is the partial derivative of Q(k, x) with respect to k.  This is the kinematic 

“wave-speed”. The constant on the right side of (4) is the value for which k*(x) satisfies 

(3b); the constant can be positive or negative, depending on n.  

If the constant is positive, then w must be positive, indicating that the road is 

uncongested for all x; if the constant is negative w is negative and the road is congested 

everywhere.  If the constant is zero the road is at capacity everywhere.  This leads to the 

following insight:  
 

ROBUST PROPERTY 1: If conditions are not changing rapidly with time a 

road should not have both, congested and uncongested portions. 
 

We say that the property is robust because it holds independently of the distribution of 

opportunities and the O/D table. 

 We also see from (4) that locations with the largest p (the most popular) should 

have the smallest “w” in absolute value; i.e., the flows closest to capacity. In the limit of 

a triangular Q (a good approximation for reality) these flows would be capacity flows.  

Thus, (4) is saying that accumulation should be managed so as to ensure that flow is 

maximum on the stretches of road that contain the maximum number of desired 

destinations. We encapsulate this as follows: 
 

ROBUST PROPERTY 2: If conditions do not change rapidly with time, 

system output is maximized when flow is at capacity only along road 

stretches with the greatest density of destinations. 
 

Metering strategies should aim for the goals of Properties 1 and 2, which suggest 

practical strategies for queue storage in congested roads. Essentially, we want to have 

pockets of congestion where exit rates are low, and maximize flow where exit rates are 

high. The idea is simple, but current traffic management schemes do not make it explicit.  

We believe that strategies explicitly built on these principles should be very practical 
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because they can be monitored from readily observable data: accumulations and 

outflows. We now examine whether they can be extrapolated to complex networks. 

 

4.4  Practical impacts for cities.  

The ideas of Sec. 4.3 are quite generic because we never used in our derivation the 

geometry of the road; we simply parameterized position by “x”.  We just assumed that 

each opportunity was associated with a unique point on the road.  But as long as this 

continues to be roughly true for a new (more complex) geometry our conclusions should 

continue to apply. They should apply to very large networks; e.g., corresponding to a 

whole city.  Thus, we state: 
 

NETWORK PROPERTY 3: If conditions do not change rapidly with time, 

the rate at which trips are served in a metropolitan area is maximized when 

capacity flows are observed in the neighborhoods with the greatest density 

of destinations, and elsewhere the network is either congested or 

uncongested. 
 

This suggests that in a congested city—as in an asymmetric ring—we should strive for 

having pockets of congestion where exit rates are low and high flows where exit rates are 

high.  Therefore, there could be some merit in treating a city as a system of large, 

neighborhood-sized, interconnected reservoirs containing origins, destinations and 

travelers, and then controlling the flows across reservoirs so as to approach the ideal of 

property 3. A two-reservoir approach to improve mobility is currently being used in 

London and Zurich.  London restricts travel into the city center through a time-dependent 

pricing mechanism; and Zurich through a state-dependent metering mechanism informed 

by the real-time speeds of its bus fleet.   

Perhaps we could improve on the experience of these cities by monitoring and 

controlling the performance of more reservoirs, which could be better adapted to city 

structure.  This generalization could be particularly fruitful if models existed to create 

managemnt schemes for parking, signal timing, bus flow and pricing in a multi-reservoir 
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context.  The development of such models should receive some priority. Unfortunately, 

this may not be easy if it turns out that management measures change accumulations in 

complicated ways.  We conjecture that this is not always the case, and that some dynamic 

models can succeed at the aggregate reservoir level (at least for some measures) if the 

number of reservoirs is small.  

To gain some insight into the level of aggregation we can get away with, we now 

quantify the error introduced when a complex network, perhaps representing a whole 

neighborhood, is reduced to a single reservoir. If the errors are small for large 

neighborhoods, then models with few reservoirs may succeed. If this is not the case, a 

reservoir-based control method may still improve on the status-quo—since a system with 

few reservoirs could be monitored easily in real time and would have few degrees of 

freedom. 

Let L be the total length of the network,  L = ∑i li , and P(x) denote the least upper 

bound to the number of destinations found in all portions of the network with total length 

x (x ≤ L).  By construction, this function is increasing, concave and satisfies: P(x) ≥ N(x), 

and P(L) = N(L).  Note that the minimum number of destinations across all network 

portions with length x (x  ≤  L) is P(L-x), and that P(x) ≥ P(L-x). The difference ε(x) = 

P(x)-P(L-x), and its maximum across x, ε,  measure uniformity. If the density of 

destinations is uniform, then P(x) = N(x) = N(L)(x/L), and ε = 0.  The following insight 

pertains to homogeneous networks with uniformly distributed destinations. 
 

AGGREGATION INSIGHT 4: If a network is homogeneous and the 

density of destinations along its links does not change much over space 

(i.e., ε is small) then the total outflow is roughly given by the number of 

vehicles on the network, independently of where they are. 
 

It is in fact possible to show that for triangular FD’s, conditional on the accumulation, n, 

the actual outflow must be in the interval [Q(n/L) ± ε] pN(L) for any distribution of 

density. Recall that p is the probability that a trip chooses a specific single opportunity. 

For non-triangular FDs the distribution of traffic should matter even less. Thus, equation 
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(1) with G(n) := Q(n/L)pN(L) is a good approximation in our case if ε is small.  Note that 

the aggregate FD (G) is geometrically similar to the FD (Q). 

A version of Insight 4 is also true for an important class of inhomogeneous 

networks.  We say that a network is “self-similar” if Q(k, x) can be expressed as the 

product of the number of lanes β(x) and a homogeneous FD with the normalized density 

per lane as its argument; i.e., if:  Q(k, x) = β(x)Qo(k/β(x)).  Then we have the following: 

 

AGGREGATION INSIGHT 5: If a network is self-similar and the density of 

destinations normalized by the number of lanes is space-independent, then 

(1) holds approximately with G(n) := (pN(L)/L)∫ Q(n/L,x)dx..   

 

Now, the relation between G and Q is no longer one of similarity, but exit rates can still 

be predicted independent of the density distribution.  It is not a great leap of faith to 

assume that inhomogeneous road networks should exhibit a fundamental aggregate 

relation G(n) when uniformly congested.  

 These aggregation insights should also apply to time-dependent networks (e.g., 

controlled by traffic signals), if conditions are monitored on a coarse scale of observation 

where the time-dependence is averaged out (e.g., every several minutes). On such a scale, 

a single link and signal have a reproducible steady-state accumulation-flow relationship. 

This relationship can be shown to be of the form gi = βiQ(ni/liβi) and to depend on the 

length of the link, the number of lanes and the timing of the signal. Our aggregation 

insights can and should be tested empirically. If accurate, they would provide a strong 

basis for the reservoir-based modeling approach. 
 

4.5 Discussion  

 

The results of Secs. 3 and 4 suggest that the inner reservoir of a two-reservoir problem 

(as in Zurich or London) can be managed with the bang-bang approach of Theorem 1, 

where flows into the inner core are freely permitted when its accumulation is sub-critical 

and restricted just enough to maintain a steady critical accumulation when/if the critical 

level is reached.  By monitoring accumulation closely over time, the times when metering 
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starts and ends--and the metering-rate itself--could be set more precisely. This could 

refine the results currently achieved by these cities. 

The two-reservoir approach essentially prevents queues from forming in the inner 

core by holding them outside.  According to Network Property 3 it should be most 

effective if the density of destinations is much higher in the inner core than outside. But, 

the approach can be improved if destinations are not so neatly clustered. 

If destinations are highly distributed over a metropolitan area, one should partition 

it into quasi-homogeneous neighborhoods with similar destination densities--treating 

them as storage “cells” in an aggregate storage network--and still apply Network Property 

3.  The idea now is to control traffic most closely in the neighborhoods with the highest 

density of destinations—trying to maintain “optimal” accumulations there as long as 

possible, without exceeding the critical levels, by controlling the transfer of flows from 

abutting neighborhoods. One has now more degrees of freedom than in the two-reservoir 

problem--since one has a choice of locations for storing queues--but the decision process 

should be manageable if the number of neighborhoods is small.  Decision support tools 

should be developed to deal with aggregate reservoir networks. Since such networks 

should be quite simple and observable, and since the decisions to be made are quite basic, 

we are hopeful that the support tools envisioned will avoid the route choice and O-D 

conundrums of traditional models, even in large-scale application contexts.  Preliminary 

simulations with just a few reservoirs suggest that mobility can be enhanced quite 

significantly with this approach. The appendix presents eight mobility-enhancing ideas 

with varying degrees of connection to the macroscopic modeling and management 

paradigm just discussed. 
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APPENDIX:  SOME MOBILITY-ENHANCING IDEAS 

This appendix discusses eight ideas to improve mobility that should receive some 

attention in the near future. A common thread is their non-reliance on detailed forecasts. 

Some require new uses of sensing and communication technology. The ideas are: 

  

1. Gridlock management 
2. Smart parking 
3. Green logistics 
4. Self-organizing bus systems 
5. Intelligent special lanes 
6. Best transit system for a given city  
7. Flexible staffing 
8. Land use and congestion pricing 
 

 
A.1. Gridlock management  
 

Problem: Conventional forecasts are unreliable and so detailed they do not provide useful 

insights to guide policies for congestion abatement. 
 

Solution: Focus on robust macroscopic policies (a la London/Zurich) using aggregate 

models based on observable measures (regional accumulation and outflow). Benefits: 

Immediate feedback, robustness and transparency.  
 

Needed activity: (a) Mathematical theory of city dynamics; (b) measurement/observation 

procedures; and (c) field work, verification and fine-tuning of the basic ideas.  
 

Rationale: The ideas in sections 1-3 suggest that two key determinants of mobility in 

cities are the “aggregate vehicular accumulation” and “length-weighted-cumulative flow” 

for each city-district and time-of-day. These indicators can be measured directly (without 

modeling) if sufficient sensors are deployed.  The indicators turn out to be ideal beacons 

for policy guidance because they correlate well with measures of interest to the public 

such as the aggregate number of trips ended and started, total vehicle-hrs, vehicle-kms, 

emissions and noise. Key to the success of this activity is an ability to collect, process, 

store, communicate and display relevant data in real-time.  
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Two-way communication gadgetry has achieved a penetration bordering on 10% 

of the automobile fleet in Japan. This makes Japanese cities (Nagoya, being the prime 

example) an ideal laboratory to determine how vehicle probe data can enrich the 

information that would otherwise only be available from roadside sensors. With our 

Japanese partners (Kuwahara, 2005), we are designing data-fusion algorithms that 

combine data from different sources (including probe vehicles) and will test their 

predictions against reality in settings where “reality” is known. This research will tell us 

which type of data should be collected and how it should be processed in cities that are 

not so well instrumented.   
 

A.2 Smart parking 
 

Problem:  increased congestion, delay and energy consumption caused by (i) vehicles 

looking for parking, and (ii) parked vehicles.   
 

Solution:  (i) parking meters reserved remotely; and (ii) dynamic allocation of on street 

parking spaces, regulated according to traffic conditions. 
 

Needed activity: (a) Implementation would require development of appropriate hardware 

(smart meters; car computers; sensing and communication devices.) and passage of 

ordinances for enforcement; (b) evaluation of these systems would have to consider, both, 

user (parking performance) and non-user (congestion reduction) issues; and the 

distribution of their impacts (positive and negative) across societal segments. 
 

Rationale:  In many cities all over the world, vehicles looking for on-street parking are a 

source of traffic congestion and accidents. Better parking management can therefore 

improve efficiency, safety and at the same time mitigate environmental impacts. Parking 

reservation systems could support better pre-trip plans, reducing unnecessary vehicle 

travel to find parking places. Some parking garages are already doing this, but the real 

benefit could come from on-street parking. Our partners in Barcelona (Robuste, 2004) 

and Tokyo (Kuwahara, 2005) have already begun to explore the idea. The number of 

ordinary meters and those available for reservation (and their rates) could be changed 

spatially and temporally according to traffic conditions to achieve a desired target of 
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efficiency and equity. Congestion improvements could be quantified and monitored with 

the methods of research topic 4.1.  

 

A.3 Green logistics 
 

Problem: Freight distribution in cities is inefficient and insufficiently coordinated. 
 

Solution: Coordination strategies can reduce VMT and VHT’s. In addition, “green” 

distribution vehicles can be given priority; e.g., to work in restricted areas at the most 

desired times. 
 

Needed activity:  (a) a survey of current practices; (b) understand groupings of goods that 

can be consolidated for joint-distribution; (c) develop logistics planning models to predict 

truck VMT’s and VMH’s as a function of the location of their depots; (d) integrate the 

LPM predictions with gridlock models to better choose a green-logistics structure. 
 

Rationale:  This is similar to the rationale of idea 5.2. Excess delivery truck miles (like 

excess miles by parking hunters) contribute to VMT and increase congestion. Therefore, 

a rationalization of this process has a double benefit. The benefit of proposed solutions 

for specific cities should be assessed from a life-cycle perspective with existing methods 

of logistics systems analysis, and traffic modeling. We plan to build on the preliminary 

work of our partner in Barcelona (Robuste, 2004). 
 

A.4.  Self-organizing bus systems 
 

Problem: Conventional approach to eliminate bus pairing does not work with high 

frequency systems. 
 

Solution:  Distributed control. “Car-following” concepts can be used to design algorithms 

in which buses would “talk” to their neighbors, and possibly to traffic signals.   
 

Needed activity: (a) Concept development of robust policies for complex networks; (b) 

mathematical modeling; (c) simulation and testing.  
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Rationale: Recent work on supply chains and car-following algorithms shows that these 

systems can be stabilized with distributed control even when under the influence of 

random exogenous disturbances. Work on distributed communication networks suggests 

that a centralized level of performance (avoiding clock-drift) can be achieved without a 

central communication node. The merging of these two ideas opens the door for control 

approaches to transit systems that are scalable and reliable. The transit system of Santiago 

(Chile) could be an excellent test-bed for this idea because it is extremely complex, large 

and has been proven difficult to control. Our Chilean partners are interested in pursuing 

this line of research (Muñoz, 2004).  

 

A.5  Intelligent special lanes 
 

Problem:  Lanes allocated to special vehicles are often underused or mismanaged.  
 

Solution:  Match time-space lane designations (active/inactive) with desired usage. 

Current communication, sensing and control technology make this a possibility. Two 

application contexts seem possible: (a) HOV lanes; (b) bus lanes.  
 

Needed activity: (a) survey current practices and ideas; (b) develop new control concepts; 

(c) understand the physics, evaluate with models and classify proper application contexts; 

(d) demonstrate with field tests.  
 

Rationale: HOV lanes that pass through a bottleneck without carrying saturation flows 

create unnecessary congestion. Strategies to increase bottleneck flow without penalizing 

HOV users should be used.  Currently, pricing schemes are in vogue, but dynamic control 

strategies that turn them on and off for a small length upstream of the bottleneck can 

achieve the same effect (Daganzo et al, 2002). HOV lanes can also create new 

bottlenecks if they induce lane changes (Menendez, 2005). Strategies that would 

minimize lane changes should be studied. When bus flows are low, dedicated bus lanes 

are inefficient. Intermittent bus lanes have also been proposed to alleviate this problem 

(Viegas and Lu, 2001); different ways to flush traffic out of the bus lane ahead of a bus 
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arrival (with minimal disruption to other traffic) should also be explored. Eichler and 

Daganzo (2005) evaluate these systems.  

   

The last three ideas are in the planning realm. They do not require special 

technologies but are also forecast-free. 

A.6. Best transit system for a given city  
 

Question:  How should a city with given critical statistics such as size (population and 

area); motorization; number of trips; trip length; trip orientation; and peaking be served 

by transit.  What level of service should one expect for a given level of investment? 
 

Answer approach: Describe all transit systems as a single multi-parameter family in terms 

of as few relevant variables as possible. Develop a formula to predict transit performance 

for a city with any set of critical variables. Use formula to predict what is possible.  

Modeling tools adapted from the field of logistics systems analysis can be used to 

develop “best designs” for bus and metro systems. 
 
A.7. Flexible staffing 
 

Problem:  Transit systems serve two peaks separated by the length of a workday. Staffing 

is difficult if workers work a workday. 
 

Solution:  J.C. Munoz showed in his PhD thesis (Muñoz, 2002) that a menu of work 

schedules solves this problem. We are refining and applying these ideas in Santiago 

(Chile).  

 

A.8. Land use and congestion pricing 
 

Problem: Commuting distances are long because people want to live separated from their 

neighbors. But the price of a lot does not include its true cost to society. 
 

Solution:  A. Lago showed in his thesis (Lago, 2003) the differential advantage that 

people living close to the city center of a mono-centric city enjoyed during the morning 

commute. Their advantage depended on location and density (sprawl), and could be 
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quantified. Lago’s model allows us to evaluate residential tax policies. This should be 

explored systematically. 
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