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CROSSING OF AN INCOHERENT INTECRAL RESONANCE
IN THE ELECTRON RING ACCELERATOR*
Claudio P@llegriniT‘and Andrew M. Sessler
Lawrence Radiation Izaboratory
University of California

Berkeley, California

January 26, 1970

ABSTRACT

In one mode of operation of an electron ring accelerator (FRA),
at the end of compression rings are slowly moved through the radial
integral betatron resonance Qr = 1. Although the coherent radial
oscillation frequency of the ring as a whole remains below unity, the
oscillation frequencies of individual electron are (incoherently)
caused to pass through the resonance because of the additional focusing
from ions trapped in the ring. In this paper the effect of field errors
on ring major and minor radii is evaluated--theoretically--for the cases
in which the spread in the square of the electron oscillation frequency
(é?) is (a) much larger and (b) much smaller than the contribution to
the square of the oscillation frequency from the iong (Ag). It is
shown that for the ERA, where case (b) applies, the increase in ring
minor dimensions, for given field errors and rate of resonance crossing,
is less than in case (a) by a factor of (th)g. Numerical examples
show that the degradation of ring quality in case (b) should, with
suitable attention to the aesign and construction of the ERA apparatus,

be acceptably small.
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1. INTRODUCTION

In the electron ring accelerators (ERA) now being studied at
Dubna, Berkeley, Karlsruhe, and Garching,? an electron ring is
compressed in a magnetic field having field index n = - % %§ such
that O < n < 1. At the end of compression positive ions are captured
in the ring, which is subsequently extracted from the compressor and
brought into an accelerating column having a constant magnetic field
and hence n = O.

During the compression process the radial betatron freguency
ag =Q &, where & 1is the revolution freguency and Q 1is approximately
given by (1 - n)l/g, stays below £ or, equivalently, Q stays below
unity. The capture of ions in the electron ring introduces an additional
focusing force on the electron, which has the effect of increasing Q.
During the extraction process n goes to zero, so that, in the absence
of ions or other additional forces, Q would become equal to unity.

As a result of both effects Q crosses the value Q = 1.

As is well known, when Q = 1 an integer resonance is excited.
This can produce a large displacement of the electron orbits and hence
a beam loss. Moreover, even if the beam is not lost it is possible that
the crossing of the resonance could produce a large increase in beam
dimension and a corresponding decrease in the electric field that keeps
the ions inside the ring. As a conseguence, the external electric
field which is applied so as to accelerate the ring would have to be
lowered to an uninterestingly csmall value.

The increase in oscillation amplitude of a single particle

. . 2 . .
crossing an integral resonance at a rate r = da} /dt is given

approximately by
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< yl/Q 2 A BN
XS = <§—-IT) R & B j ’ (I'l)

where R 1is the beam radius, £ the revolution frequency, and (CB/B)

oo
the magnetic field perturbation driving the resonance 2

Formula (I-1) shows, using typical ERA parameters, that in order
to maintain the increase in amplitude within reasonable limits, the
requirements on the magnetic field are very strong; for instance,

-1

assuming x, = 0.1 cmy, R =3 cm and Q = 10 sec , one has

(AB/B) < 10-5. Various possibilities have been suggested for reducing
Q, so as to avoid crossing the resbnance: The use of Image forces
obtained by surrounding the elegtron ring with a dielectric cylinderéﬁ
or a slotted metallic cylinder7), or keeping Q > 1 throughout
compression and acceleration of the ring by using the azimuthal magnetic
field generated by a current along the axis of the ring,).

The use of image forces seems to provide a practical way to
avoid the resonance crossing when there are only few ions in the ring,
but not when the ring is charged with more ions than of the order of
1% of the electrons. The use of an azimuthal magnetic field to keep
Q@ always above unity requires currents in the conductor on the axis
of the crder of lO5 A ~-an inconvenient, but possible, design require-
ment.

ol

It ha;, however, been pointed out by Van der Meer’f, on the

basis of qualitative arguments, that the application to the ERA of the

formula for the single-particle increase of amplitude during the

resonance crossing may be incorrect. In this paper we study the effect
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of resonance crossing in detail. In particular we consider the case
when & would stay below unity in the absence of ions (i.e., the
coherent integral resonance is not crossed ), but is shifted above unity
by the ion focusing force (i.e., the incoherent integral resonance is
crossed). We find that in this case the formula (I-1) is not valid and
that the behavior of the beam in crossing the incoherent resonance
depends on the ratio of the spread in the square of the frequency in
the electron ring, é@, to the shift in the square of the frequency,
AE, induced by the ions.

The results described by (I-1) applies only when the condition

2
£ > 1, (1-2)

oy

since in this case each electron behaves as a single electron having a

)1/2

frequency (w2 + A2 , where o 1is the frequency dué to the external
magnetic field and image forces, and A is the shift in frequency
caused by the ions. Thus resonance crossing leads to an increase in
beam minor dimensions, but no change in the beam center of mass.

On the contrary, in the case more often encountered in the ERA,

when

2
A
o<1, (1-3)

there is a (sma2ll) change in the local beam center of mass, but the

beam minor dimension increase is smaller, by a factor of (Z?/Ag), than
that expected on the basis of (I-1). Hence the limit on the tolerable
magnetic field imperfections, ZB/B (which is set by the strong require-

ment of small minor dimensions of the ring), is lowered and can more
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conclusions of Van der Meer and is in qualitative agreement with
observatn‘.onlO .

That the simple formula (1-1) does not apply to circular
electron beams partially or totally neutralized by ions is of importance,
also, for electron storage rings. In this case, too, due to the long
beam lifetime, a large number of ions are captured by the beam, when
clearing field electrodes are not used. Once again, the freguency shift
introduced by the lons can cause a crossing of an integer resonance.
Both the conditions that Q remain below the nearest integer during the
ion loading process and condition (I-3) are well satisfied in storage
rings. However, in this paper we have considered only azimuthally
uniform beams, while the electron beam of a storage ring is bunched.
Hence, we cannot directly apply our results to storage rings. Notwith-
standing, we think that, at least to a first approximation, the results
of this work indicate that also in the case of the storage ring the
crossing of the rescnance produces only a2 beam widening, and that this
widening is not too dangerous because of the strong reduction introduced
by the factor Ag/Ae . This conclusion is in agreement with the experi-

mental observations performed on electron storage rings.

2, FORMULATION OF THE FPROBLEM

We assume that the electrons move on a circular orbit with a
constant angular velocity & , and that they oscillate in a direction
orthogonal to this orbit under the action of the focusing forces due
to the external magnetic field and to the ions. The ions are assumed

to have zero angular velocity and to oscillate in the same direction as
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the electrons under the action of the focusing force due to the electro-
static field of the electrons. We ignore ion-ion forces, since in
practice the ion density is sufficiently low that these terms are
negligible.

Let us call x ) and gj, Wj the transverse and the

¥ Tk

azimuthal coordinates of the kth electron and jth ion. The equations

of motion can be written as

.o 2 (

< (6) « (0 (6) + AR (6) - T8,

+ Aée)g(t)[xk(t) - x(t,8)] = a cos(Hek +8) ,
6, = ft+o,
€ (2) + Mjg[éj(t) - X(5¥)] = 0,
¥, = const, (11-1)

wkgxk is the focusing force due to the magnetic field, the

term describes the force of electron on electrons,

where

(e)2
Ay

(i) — 2 —

A - -

K [Xk é(t,ek)] and Mj [gj X(t;Wj)] are the forces between
ions and electrons and @& cos(ﬁ'ek + $) is the perturbation in the

guide magnetic field. Note that we consider only field bump errors
and do not include gradient error terms as they are--in practice--

\
negligible J. We consider only the n-Fourier component in the magnetic

field perturbation, where n & = &k .

The electron-ion forces are written, in the linear approximation,

as proportional to the distance of the kth particle from the local

center of mass of the particles of the other species, x(t,9) and
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t(t,¥). The local center of mass can be defined, with the help of the

step function S(G), as
T x, (t) s(e, - 8) s(e + ds - ek)

et

;(t,e) = —— p)
Ls(ek-e)s(ewe-ek)
k
Zgj(fs) s(wj - ¥) s(¥ + av - wj)
E(t,¥) = = .
Z S(w‘j - vy) s(y + av - wj)
J (11-2)

The nonlinearities of this force, as well as the nonlinearities in the
external focusing force, are taken into account approximately by

allowing a dependence of a?. M2. A(e)2’ and A(i)2 on som

r=Y
[0 i

of the

parameters of the particles such as oscillation amplitude or energy.

Newton's third law implies a subsidiary condition amongst the .Aﬁl)

and Mj’ We need not invoke this relation, as well be seen below.

(1)

Aﬁe), and Ay are functions of

The quantities &k’ Mj’
time, because of the changes in the external magnetic field and in the
number of ions with time. Z2REoth these variations are assumed to be
very slow compared with the electron and ion oscillation period.

We are only interested in studying the closed-orbit perturbatiogs
due to the magnetic field- imperfections, i.e., the particular solution
of the nonhomogenous (II-1).

(e)

We will first consider the case in which W Ak , M, and

(

A.Ki )

are constant in time. BSince the driving force, a cos(ﬁé + ﬁ),
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is periodic with respect to © , we look for a solutlon having the same

periodicity. Let us assume

i

- x, ()

AL cos(n 6, + B,

Il

gj(t) B cos(n b+ ). (11-3)

The local centers of mass are then given by

it

x(t,8) A cos(ne + p),

E(t,¥) = 3B cos(ny + B) . (II-4)

The amplitudes B; B are given, in the case of & beam containing

N electron and Ni ilons uniformly distributed along the circumference,
and assuming that the distribution of the Ak’ Bk is independent of
the azimuthal position, by

N
—
- 1
A=(N“)Z/A~K;
€ k=1
N.
1
B = ( ﬁ; ) Bj . (11-5)
Jj=1

Substituting (II-3) and (II-4) into (II-1), we obtain

3 ﬁg ; Jx . A J. 'K‘ .
L J (11-6)
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By use of (II-5), the system of (II-6) can be reduced to

(II-7)

The first of (II-6), together with (II-5), shows simply that, under the
action of the external perturbation, the local ion center of mass

undergoes the same displacement as the local electron center of mass.

(&)

This result is also valid for slow changes of A, Mk’ X

and Aél), so that in general we can reduce the equations of (II-1) to

an equation for the electrons only, namely

%+ o (e + A5(E)x, - %) - a cos(@e, + B), (11-8)
wheré we have set Ak2 = Aﬁe)E + Aii)e . When ak and Ak are

constant in time this clearly reduces to (II-7).

3. NORMAL MODE ANALYSIS

We have reduced the problem to solving (II-8), which task is
accomplished in this and the next two sections. We can limit ourselves
to the case in which the variation in time of ak and Ak is small
compared with n2. It is then possible to perform a power-series
expansion of these quantities, and to consider only'termglup ?o first

order, namely, to write

akg ='luk?(to) + r(t - to) ,
Ak? - Ak?(to) sori(e - ty) (ITI-1)

We also assume that r and r' are different from zero only in a time
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interval to - tl during which the resonance is crossed, and that the
initial and final values of ake and uk? + Ak2 are respectively well
below and well above the resonant value 5232. Notice, also, that we
have assumed r and r' +to be equal for all particles., This is a
good apmroximation when the frequency spreads for both @ and A are

small compared with nf.

We can now obtain a solution of (I1I-8), assuming Xy to be of

the form
N
e
xk(t) = Z{: An(t) ck(n) exp[i(ﬁék + M, (I1I.2)
n=1
where the An(t) are unknown functions and the Ck(n) are a complete

orthonormal set of vectors defined as the eigenvectors of the linear

system of equations

[“k?(to) * Ake(to)]ck(n) y Akg(to) ot

e (n)
= T C s n:l,"', NJ
(1’1) k e (111_3)
where E(n) is defined as
N
=(n) _ 1 (n)
c TN . Ck ’
e
k=1

as follows from (II-2) and (ITI-2); and P%n) is an eigenvalue.

\

Substituting (III-2) into (II-8) and using (III-1) and (III-3), we get
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=
Pl
>

e
2
.. — - 2 (n)
¢ T - " ' -
§ A +2inA o+ ( (n) - 78+ (r +r'")(t to)]An C,

Cris - ty) ji: RO (171-1)

n)

s We obtain

B o~

Using the orthonormality property of the C

L0

i . 2 LR Ot -
An + 2inf An + (n) n s+ (r+1r) to)]An

1=

=(n)

, < =(m) z(n) _
- r'(t - tO)Ne \ A C C = al .

r\

=1
(111-5)

We assume that An(t) is a function varying slowly with respect to the
characteristic oscillation periods, so that it is possible to neglect

the second derivative of An(t) in (III-5) and write it as

2ing A+ [rﬁn) S 4 (r o+ ) - t,)1A

N
e

IR jg:; A g gl _ N, glm)
=1 (111-6)

The problem is now reduced to finding the cén) and A (t), i.e., to

solving (III-3) and (III-6).
2
The solution will depend on the ratio é&/Aog s Where 4 is

2 2
the width of the distribution of the fregquencies Q and AO is the

average value of A (We assume that the widths of the distribution

x °
of aq and Ak are small compared with the average values of uk and

A.)
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In the remainder of this paper we will study only the two cases

2
A
(8.) -5 << 1,
AO
and
2
A
(b) —'_2' > 1,
A
0

for both of which solutions of (III-3) and (III-6) can be obtained.

We also notice that we are interested in the determination of

the two quantities

Fe ) wl o) ame® (xr-1)
k n
and
1/2 1/2
o ) - FEp - ;-e-Z;Anmle- 20
k n

(111-8)

which are the local center-of-mass amplitude and the root-mean-square

(rms) beam size. Both x and 6?, as well as (III-6), depend on the

Cin) only through the average values E(H) .
4, DETERMINATION OF THE EICENVECTORS

In this section we determine the eigenvectors and eigenvalues

2 2 2
of (III-3) in the two cases: (a) AQ/AO <1, and (b) /a7 >> 1,
We consider case (a) first; case (b) is rather trivial and is discussed
at the end of this section. It is convenient to start by solving (III-3)
o)

for the case of zecro frequency spread. The eigenvectors Cén are

given, for 4O = 0, by
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2nink/
c}({n)o = \/l—_ eIr & , (1v-1)
N
g(n)o _ . -
C = \fﬁ Bn,o , (Tv-2)

where we have employed N as a notation for Ne' The corresponding

eigenvalues are

I‘%n)o ) “’02. * A02[1 - 80! - (Iv.3)

Notice that all the f?n) are equal, with the exception of P%O) .

For a small frequency spread, we can use perturbation theory

to determine the cl({n). Let us rewrite Eq. (III-3) as

50, H(l)> ) o 2 o) (Tv-1)
A X (n) <
(n) (n)
where g‘ ’ is a vector of components Ck 5
A 2
(0) 2 2 0
B, = g +47) 8%, - 5 (1v-5)
2 2
. ! - A
(1) = 2 + A 2 W 2 | A 2) 5 - ﬁE____Jz_
Hp P k 0 07 "k N ’
(Iv-6)
d o e and A 2 th 1 f e A e F
an 0 o are e average values of @ , X or

,{I(l) _ g(n)O

0, g(n) is equal to as given by (IV-1), and P?n) = %i)o

as given by (IV-3)

(

To apply perturbation theory when H l)';£ 0, one must remember

that the unperturbed solution is degenerate (all eigenfunctions,

0)0
except g( ) , belong to the same eigenvalue), and use instead of
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the g(n)o's , for n # O, a linear combination of these vectors such
that E(l) is dingonalized. Calling these new #ectors é(n), one has
819 - o, | (1v-7)
and
N-1
@(“) Z Btn g(t)o for nf o), (1v-8)
t=1
where o
B” = ——ys Sl (17-9)
g (® - 1)7""

4

It is easy to varify that

(é*(n) g(l) é(m) > :"O{ nmf 0 ard n £ om,

V(IV-lO)
and
N-1 N-1
(é*(n) 5(1) @(n)) . 3 ; . (wke + Ak2 - (002 - 85)
X0  t-1
x (exp 2nis [Nr_li + %}1 nto,
j (Iv-11)
and that
N-1  N-1
EO ) 1SS g e
X ~ - N 4 . < hd
k=0 t=

1 el m k3
X /2<f;xp iﬁlt’ﬁ~—-+ Tl (Tv,lo)
_ } w-1 N - =
(v - 1772 J

1

e
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The solution of (IV-4) is now given by

g(n) _ é(n) . 7 An@(m), (1V-15)

and, to first order in the perturbation, one has

i ( *(m) (l)é(n)>

. F% (Tv-14)

n) (m)o

’ * () {4 _
I‘g(n) - I\2(.4)0 " @ Y E‘(l) éb)) : (1v-15)

Notice Lrat with our choice of w one has also

o’ "o

<é*(o) 5(1) é(o) )

so that there is no first-order correction to the coherent freguency

2
- s g E(H)

P(O) . The gquantities are now easily obtained, and, to first

order, one has

c = + first order term, (Iv-16)

L
Vo
) L (@ 0 g6y

C = 5 (1v-17)
= A

/ N o
*-I N-1

N 2 - o 2)

= é O
- %=1
1 (k n 1
eq)EﬂltLﬁ + T I
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We can now use these results to simplify (III-6). In the case

n = 0 the equation contains zero-order terms and first-order terms in

2
[?/AO . Neglecting the first-order terms, one has

Il Ay = a0 . (1v-18)

For n # 0 (III-6) contains first- and second-order terms in A?/Aoe .

Keeping only lowest-order terms, one has
2 b e+ -t)] A
¢ n

..br'(t ~tNE g(n) A, = al gla) | (Iv-19)

In case (b) the coupling between particles is negligible and

the elgenvalues are almost equal to the single particle frequencies, i.e.,

Pg(n) = wng + An2 + o[(AOQ/Ag)E] . (TV~20)

The corresponding eigenfunctions are

cl({n) =0, 7 o[(AOE/AE)] , (1v-21)

and the E(n) are given, to lowest order, by

z(n) . (1Tv-22)

=2

Equation (III-6) now becomes, neglecting the coupling between particles,

N
N
S

F v (r+r)(t - t)la - a . (1v-23)
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5. DETERMINATION OF THE AMPLITUDE FULCTIONS
In this section we solve (IV-10), (IV-19), (IV-23) for the
functions An(t).

5.1. Case b

We start from (IV-23%), which we write in the form

A(t)-ig(t)A(t) = -ia, (v-1)
where
1 2 .2 =22 ,
gn(t) = 55 [uh + A7 - a4 (r +r'){(t - to)] , (v-2)
- a
a = — . V-
s (v-3)
The solution of (V-1), with the initial condition A(ty) = O,
is
- A ] '
r t } ¢ f’t
— _'_— ] s ! t} t 4 " 1"
An(t) = -ia ( exp Ll gn(t )dt-J '/ at!' exp 1uj gn(t )dt
ty t t,
(V-4)

Evaluating the integrals, and using the notation

2 2 £ 2 -
= A -
D (uh + A n-9°)/ena ,

p = (r+r')/ona, (v-5)

0 r i .
= “w/%- exp[iDn%/(2p>3{h Pl t ) \ // \

| VfP /np/ 1
t // (v-6)
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where

h(x) = C(x) -1is(x), ‘ (v-7)

and C(x), S(x)r are the Fresnel integrals.
It is usuwally possible, when p 1is small and the integral
extends from well below to well above the resonance, to make the

approximation

D
2« -1,
¥ TP
p(t - t.) +D
9 20> 1, (v-8)
Vrp
Since C(f w) = 38(t @) = % % , one has in this case
-t
exp({~ifD (t' - £ ) + L p(t' - t )2] at’
0O 2 0
tO

1/2 '
" %g) exp [+i(Dn2/2p) - in/W]. (V-9)

The value of An after crossing the resonance 1s then given by

~ — QT(\'E 1/2 ’ ’L 2 .
AT ia | =3 exp ¢ i[Dn(t - to) + g (t - tof]{exp[+1(Dn /2p) - in/i)

r/ L J

~o 2
11/2 (t -t.)+D_
= -ig <2——7 exyp /’i i ? O “}g - iﬁ/u
{

b i ! W’Ep
(V-10)
The final amplitude after crossing the resonance is therefore
_ 1/2 _ 1/2
‘Anf = a (éﬂ/p) = ale/no(x + ') 1 (v-11)

a well-known result.
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5.2, Case a

In this case the frequency spread g? is small compared with
the frequency shift AOQ. The situation is described by (IV-18) and
(IV-19), and is élearly more complicated than case (b). The procedure
is to solve (IV-18) for A, substitute the result in (1v-19), and
solve for An' The result will be different according to whether the
coherent frequency, Doy does or dces not cross the resonance. We will
consider here only the case in which ub does not cross the resonance
(i.e., the coherent integral resonance is not crossed), since this is
the situation which usually confronts us in practice. Under this
assumption one can neglect the variation in time of the coherent
frequency and of A, and obtain from (1v-18)

2V

(¢ 2 - \2
Wy - (n Q)

>
]

]
—
<3
1

-
K
~—

Substituting this in (IV-19) one obtains

. . = =(n)
A i(d + p(t - to))An = -ia NC 1+ q(t - to)] ,
(Vv-13)
where
2 2 22
(Do -+ AO - N &
D = _ 3
2ns
r +r'
P = _ )
2ns
- a
a = —— ,
2n§
I" \
N (v-11)
w, - n
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The solution can again be written, assuming An(to) =0, as

t

An(t) S expji (D + p(t' - tO)]dt'

% t! 1
he at'{1 + qlt' - to)]exp -i D + p(t" - to)]dt"‘ .

(v-15)

The integrals of (V-15) can be evaluated by using (V-6) and

reo ( ]
j at'(t' - tg)exp {—i[D(t‘-tO) + g(t'-to)e}}
tg :
=§el(D/2p) D hp(t-t‘o)+D _h<_1?_:>
P oV V7o Vrp 7
( > - ]
t -t D o
+ % P ! + i cos gE-J . (v-16)

Assuming the conditions (V-8) to be satisfied, one obtains an amplitude,

after crossing the resonance,

2

. 1
An(t) X -ial C(n) (’2’t )1/2 j_ %%‘} exp (i Egiiilz;i;gg - in/b

I V2 1
b -
L J l )
(v-17)
where negligible contributions from the last term of (V-16) have been

dropped. By use of (V-1L4), (V-17) can be written as
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~ 2 0N D
— A hY

A (t) ® i a”\/rr; I\:C<n) 1 r' 1. ¢] i !
- — > T ! 2 2.2

n (nQ(r + r'))l/? wr ot @y - Q// J

2
2 2 -p2
[. {ab + AO -n &+ (r+r)(t - to)] ﬁ
X exp i - 1 n .
l knQ(r + r')
(v-18)

6. EVALUATICH OF RRAM FCSITION AYD STZE
We are now in a position to ewveluate the local center-of-mzss
disvlacement, x , and the rms beam width, 5, which were defined in

(II1-7) ard (11148).

6.1. Case a: ;?/AOQ < 1

Using (Iv-16), (Iv-17),(v-12), and (V-18), and initroducing the

quantities
N-1
2
L 1 2 2
A = % { © " - g ), (vi-1)
k=0
N-1 5
L1 T 2 2\ -oxik/y '
A= § J (" - w7 e , (VvI-2)
k=0

2 , . ; 5
so that 4 1is the rus spread in the sguare of the frequency shift,

one obtzins



and

2
@y - (n®
X exp (i

i/2
a :———E———_:\ 1 - ___EL____(E_
nl(r +r’)} alr + ')

4,2
» }“Aﬁi ] Iai | '¥
0

o J

' 1+ ———
:r(r+r)< )

(r4rt) (5-t)]

Ir

%ﬂ(r + r'

e

2
0

P2 -

2 2.2

AN
N
— D -~ 1a — ; 1 - ——
) ni(r + '), '

2
o ! -
W+ AT -0+ (rert)(t t:)}

522 (n

nQ(r + ')

l\

E

\1/2
nQ(r + r’)) {

)

2 2 22
[(DO + AO - n 8 +
l&r—;ﬂ(r + r")

1/2

n l
> ———————
D o - o

. T 17T
SR -
(VI-4)
(Vi-5)
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1/2 L '
(—-——“——— ——HA‘L P (vI-6)
— , -
nR(r + r') A 0l - n8gF
AN 0 0
then (VI-3) and (VI-4) become
- o a
X ¥ g (vI-7)
w, - n K
0]
/2, , A2
5 X a X £ S 1+ 9
- - z 15
nQ(r +r') 02 T+ r abg - gt

(vi-8)

Equation (VI-7) shows that, when the raté_of change of ® and
A and the frequency spread are such as to satisfy (VI-5) and (VI-6),
the local beam center of mass 1s essentially not influenced by the
resonance crossing (but only by the préximity of the coherent integral
resonance). However, and under the same conditions, the crossing of
the resonance can lead to an Increase of beam size, as shown by (VI-8).

It is interesting to compare these results with the increase in
amplitude of a single particle crossing the resonance. For a single

particle the amplitude after crossing is given by

\}/2

7 .
X = a
S e
nidr

1

Taking, for the sake of comparison, r' = O the increase in beam size,

5, is seen to be equal to X multiplied by the factor A?/Aoz, i.e.,

the ratio of frequency spread to frequency shift.
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As a numerical example consider the case of an ERA with parameters

= lOlo sec_l, R (ring radius) ® 3 cm, wy - Q= 2)(’10—2 Q,

- -1
2ay, (dwo/dt) S ><102LL sec 3, r' =0, (&Ar)=10",

i

r

a

-RQQ(AE/B) ~ 3 x 10°0 (c8/B) sec“z, o =1. The quantity r
corresponds to a case such that ./ ckanges by 0.1 in 10 psec, a
value typical for the ERA. One sees that (VI-5) and (VI—S) are
satisfied for these parameters. From (VI-7) and (VI-3) onc has

x = 30 (&3/32) e,

& ~ 37.5 (28/3) cm,

so that a vzlue of QE/B less thzn 10 5 srould suifice to ke=p the

effect of the resonance crossing within -Zolerable limits.

6.2. Case b: A?/AOE >> 1.

From (V-10), (IV-21), and (IV-22) and from (ITI-7) and (III-8),

we have
\1/2 N
x = af —= = ex il (O, + p(s - ¢ 1
nQ(r + r')/ . ZE_J ’ \. C) ( fO)) /e
(vi-9)
and .
— 2
2 { ) N ( D, + p(t -t )
52 - —_ar _ 1 - — ) exp:i £ [0)
AN | Vep

n(r + x')




become, to & good epproxiration,

~
~

ol

0,
: ) 1/2
a T . (Vi-12)
nQ(r +r')

These last results are eguivalent to saying that each particle
benaves as a single rarticle, so thzot, becauss of the large fregquency
difference belween particles, their center of rmass averages to zero

and one g:ts essontielly only a beam wideniag. But the width increase

. .
2 5 . .
is larger, by a factor of K?/AO , than that obtained in case (a).
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