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Abstract

Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which 

aging confers this risk are largely unknown.1 Recently, the age-related acquisition of somatic 

mutations in regenerating hematopoietic stem cell populations leading to clonal expansion was 

associated with both hematologic cancer 2–4 and coronary heart disease5, a phenomenon termed 

‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP).6 Simultaneous germline and somatic 

whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. 

Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse 

ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify 

associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. 

Association of a genome-wide set of germline genetic variants identified three genetic loci 

associated with CHIP status, including one locus at TET2 that was African ancestry specific. In 
silico-informed in vitro evaluation of the TET2 germline locus identified a causal variant that 

disrupts a TET2 distal enhancer resulting in increased hematopoietic stem cell self-renewal. 

Overall, we observe that germline genetic variation shapes hematopoietic stem cell function 
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leading to CHIP through mechanisms that are both specific to clonal hematopoiesis and shared 

mechanisms leading to somatic mutations across tissues.

The U.S. National Heart, Lung, and Blood Institute (NHLBI) Trans-omics for Precision 

Medicine (TOPMed) project seeks to use high-coverage (>35x) whole genome sequencing 

(WGS) and molecular profiling to improve fundamental understanding of heart, lung, blood, 

and sleep disorders.7 Within the TOPMed program, we designed a study to detect CHIP 

from blood DNA-derived WGS in 97,691 individuals across 52 largely observational 

epidemiologic studies to discover the inherited genetic causes and phenotypic consequences 

of CHIP (Supplementary Table 1).

To confidently identify somatic mutations in blood-derived DNA, we applied a somatic 

variant caller8 to TOPMed WGS data. We identified CHIP carriers on the basis of a pre-

specified list of leukemogenic driver mutations (see Methods, Supplementary Table 2).5

In total, we identified 4,938 CHIP mutations in 4,229 individuals (Supplementary Table 3). 

The median variant allele fraction (VAF) of the CHIP mutations observed was 16%. 

Consistent with prior reports, >75% of these CHIP mutations were in one of three genes, 

DNMT3A, TET2, and ASXL1. Approximately 15% of these CHIP mutations were in the 

five next most frequent genes (PPM1D, JAK2, SF3B1, SRSF2 and TP53, Figure 1). 

Amongst these 8 genes, there was marked heterogeneity in clonal fraction. For example, 

DNMT3A and TET2 CHIP clonal fraction of the peripheral blood was ~25% smaller (p= 1.3 

× 10−15) and ~14% smaller (p=2.1 × 10−4), respectively, than ASXL1 clonal fraction, 

implicating the presence of driver mutation gene-specific differences in clonal selection 

(Extended Data Figure 1a). 90% of individuals with CHIP driver mutations had only one 

identified mutation (Extended Data Figure 1b).

CHIP phenotypic associations

CHIP prevalence was strongly correlated with age at blood draw (p < 10−300, Figure 1 inset). 

CHIP prevalence was highly consistent across studies and comparable to previous reports2–4 

using whole exome sequencing (Extended Data Figure 1c,d). Consistent with prior studies, 

history of smoking was associated with increased CHIP odds (OR = 1.18, p=5 × 10−5) 

whereas Hispanic ancestry and East Asian ancestry were each associated with reduced CHIP 

odds (OR = 0.50, p=0.008 and OR = 0.56, p=0.001 respectively) after adjusting for age 

(Supplementary Table 4).

Carriers of frameshift CHIP mutations were on average older individuals than carriers of 

single nucleotide CHIP mutations (Wilcox rank sum test: p=0.01). In the subset of 

individuals with ASXL1 CHIP mutations, which are exclusively loss-of-function single 

nucleotide stop-gain mutations or frameshift mutations, ASXL1 frameshift mutation carriers 

were similarly older (Wilcox rank sum test: p=0.009, Extended Data Figure 3a).

JAK2 CHIP carriers were the youngest among CHIP carriers. Relative to JAK2, ASXL1 and 

TET2 carriers were 3.3 (p=0.01) and 3.9 (p=9.1 × 10−4) years older, respectively, while 
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PPM1D, SF3B1 and SRSF2 carriers were 5.0, 6.9 and 7.7 years older (p=5.7 × 10−4, 1.8 × 

10−6, 1.3 × 10−4), respectively (Extended Data Figure 3b).

To evaluate the overlap between CHIP and large-scale mosaic chromosomal 

rearrangements9, we evaluated a subset of 855 samples with both WGS and array 

genotyping data. The two somatic events did not co-occur more than expected by chance 

(hypergeometric p=0.25, Extended Data Figure 3c).

CHIP is distinguished from other clonal hematologic disorders based on the absence of 

cytopenia, dysplasia, and neoplasia.6 We observed a modest increase in total white blood 

cell count (p=1.1 × 10−5) and a modest decrease in hemoglobin (p=0.04), among those with 

CHIP compared to those without (Extended Data Figure 3a, Supplementary Table 5). In 

aggregate, CHIP driver mutations were associated with increased red blood cell distribution 

width (RDW, p=3.0 × 10−5) consistent with prior observations.10 Notably, RDW is a 

hematologic parameter that increases with age and predicts overall mortality and poor 

clinical outcomes in the setting of CVD and in older adults.11

Given the prior association of CHIP with atherosclerotic cardiovascular disease5,12, we 

asked whether CHIP carriers had altered lipid profiles. Consistent with prior reports5, we 

observed negative correlations of JAK2 CHIP carrier status with total cholesterol (p=5.1 

×10−4) and LDL cholesterol (p=0.0014) but no other significant associations (Extended Data 

Figure 3b, Supplementary Table 6).

We characterized the human inflammatory profile of CHIP carriers (Extended Data Figure 

3c, Supplementary Table 7). In aggregate, CHIP was associated with increased IL-6 

(p=0.0035). There was no association of CHIP with quantitative C-reactive protein (CRP) 

and elevated CRP did not reliably identify carriers of CHIP (AUC: 0.55; for cutoff of 

CRP>2 mg/L: PPV=6.3%, sensitivity=60%). Driver gene-specific analyses highlighted the 

association of TET2 CHIP with increased IL-1b (p=2.4 × 10−4), while JAK2 and SF3B1 
were associated with increased circulating IL-18 (p=1.3×10−4 and 1.27 ×10−20 respectively).

To identify underlying determinants of the somatic mutational spectrum, we performed 

COSMIC mutational signature analysis13 on passenger somatic mutations identified in CHIP 

carriers and non-carriers (see Methods). Among CHIP carriers, we observe enrichment of 

signature 4, which has been associated with smoking, as well as signature 6, which has been 

associated with defective DNA mismatch repair. (Extended Data Figure 5).

Germline genetic determinants of CHIP

Germline genetic variants have been previously associated with clonal hematopoiesis, 

defined either by somatic mosaicism of SNVs and indels14 or by large scale chromosomal 

rearrangements9, in individuals of European ancestry, and identified variants at a single 

locus, TERT, that associates with clonal hematopoiesis. Given the distinct association of 

clonal hematopoiesis with known leukemogenic mutations (i.e., CHIP) with both 

cancer2,15,16 and atherosclerotic cardiovascular disease5,12, we sought to discover germline 

genetic variations conferring increased risk for CHIP acquisition. We performed a single 

variant genome-wide association analysis in a subset of 65,405 individuals (3,831 CHIP 
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cases) where the likelihood of having a CHIP mutation was >1% (see Methods). The trait 

heritability explained by the analysis with LD score-regression was 3.6%.

Our WGS-based association analysis of CHIP replicated the lead variant of the single locus 

previously associated at genome wide significance with clonal hematopoiesis (defined based 

on somatic mosaicism of SNVs and indels),14 rs34002450 (OR 1.2, p=2.0 × 10−13). 

rs34002450 is in strong LD (r2=0.55) with our lead variant at this locus rs7705526, a 

common variant (MAF 0.29) in the 5th intron of TERT, which encodes telomere enzyme 

reverse transcriptase. In TOPMed, carriers of the rs34002450-A (minor) allele have a 1.3-

fold risk of developing CHIP (p=8.4×10−24). This variant was previously significantly 

associated with increased leukocyte telomere length17, myeloproliferative neoplasms (MPN, 

Bao, co-submitted manuscript) and clonal chromosomal mosaicism9. In a phenome-wide 

association analysis (PheWAS) of rs34002450-A in UK Biobank, we identified significant 

increased risk of MPN (p=2.6 × 10−13), uterine leiomyoma (p=3.2 × 10−9) and brain cancer 

(p=3.6 × 10−8).

We performed a conditional analysis at the TERT locus, and identified a second intronic 

TERT variant rs13167280 (MAF 0.11, r2=0.2 with rs7705526) that independently associates 

with CHIP status (OR 1.3, p=6.1×10−10; conditional OR: 1.1, p=4.7 × 10−4).

In the TOPMed single-variant association analysis, we additionally identified 2 other novel 

genome-wide significant genetic loci, including one locus on chromosome 3 in an intergenic 

region spanning KPNA4/TRIM59 and one locus on chromosome 4 near TET2 (Figure 3, 

Extended Data Figure 6, Supplementary Table 8).

rs1210060191 is a common variant (MAF 0.54) in a locus with an association signal that 

spans a 300kb region that includes KPNA4, TRIM59, IFT80, and SMC4. The lead variant is 

a 1 bp intronic deletion in TRIM59. Carriers of the del(T) allele have a 1.16-fold increased 

risk of CHIP (p=5.3×10−10). Variants in LD with this variant have been identified as 

associated with MPN (Bao et al, co-submitted manuscript). No other significant phenotypic 

associations were noted in UK Biobank PheWAS analyses.

rs144418061 is an African ancestry specific variant (MAF 0.035 in African Ancestry 

samples, not present in non-African-ancestry samples) in an intergenic region near TET2. 
Carriers of the A allele have a 2.4-fold increased risk for CHIP (p=4.0×10−9). We replicated 

this association in an additional set of 570 TOPMed CHIP cases and 8,819 TOPMed 

controls (OR: 2.1, p=0.026). The association is equally robust for DNMT3A CHIP, TET2 
CHIP and ASXL1 CHIP, suggesting that the germline variant does not specifically 

predispose to TET2 CHIP. Although other variants in the vicinity of TET2 have been 

associated with MPN (Bao et al, co-submitted manuscript), this variant has not been 

previously identified as associated with any traits in the literature likely due to the under-

representation of African ancestry genomes in published association studies.

We considered whether there might be germline variants that predispose to specific CHIP 

driver mutations by separately performing a GWAS on DNMT3A CHIP and TET2 CHIP. 

We identified a single novel locus for DNMT3A chip at rs2887399 in an intron of T-cell 

leukemia/lymphoma 1A (TCL1A). Carriers of the T allele (MAF 0.26) are at 1.23-fold risk 
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of acquiring a DNMT3A CHIP mutation (p=3.9 × 10−9). Intriguingly carriers of the T allele 

are at decreased risk of acquiring a TET2 CHIP mutation (OR: 0.82, p=0.0012), and 

consequently it was not identified in the primary CHIP GWAS analysis. This variant is also 

associated with mosaic loss of chromosome Y.18

We evaluated whether our associations between germline loci and CHIP clones were robust 

across CHIP clone size spectrum, using the association between the JAK2 46/1 haplotype 

(tagged by rs1327494) and JAK2 CHIP.19 We find that rs1327494 associates with JAK2 
CHIP presence across VAF thresholds. We evaluated whether this observation generalized 

beyond JAK2 CHIP to encompass all CHIP. Intriguingly, we find that the TERT locus 

(tagged by rs7705526) is associated with CHIP presence across all VAF thresholds 

(Supplementary Table 9). These observations imply that our genetic associations are not 

dependent on clone size detectable by deep-coverage whole genome sequencing.

As single-variant analyses have limited power to detect rare-variant associations, we next 

performed several types of variant aggregation association tests. First, we performed a 

transcriptome-wide association analysis to quantify the relationship between changes in 

gene expression and genetic predisposition to CHIP20 (see Methods). This approach 

identified the Chr3 KPNA4/TRIM59 locus and six additional loci including: AHRR, ASL, 

KREMN2, LEAP2, JSRP1, RASEF. (Extended Data Fig. 7–8) AHRR directs hematopoietic 

progenitor cell expansion and differentiation.21

We also performed gene-based association tests for aggregations of rare (MAF<0.1%) 

putative loss-of-function (pLOF) germline variants within genes for CHIP presence. 

Although no genes reached exome-wide significance, the top associated gene was DNA 

damage repair gene CHEK2 (OR 1.7, p=1.3×10−5, Supplementary Table 10). Rare germline 

variants in CHEK2 are implicated in a diverse set of hematologic and solid tumor 

malignancies.22,23 Common variants in CHEK2 are associated with MPN19 and a low 

frequency frameshift CHEK2 is associated with somatic chromosomal mosaicism9. In recent 

experimental work, suppression of CHEK2 in human cord blood Lin−CD34+ cells increased 

cellular proliferation in long term culture. (Bao et al, co-submitted manuscript) These results 

suggest that while CHEK2 while may ordinarily limit hematopoietic stem cell expansion, 

loss of CHEK2 function may promote self-renewal increasing risk of CHIP.

We next sought to determine whether rare variants in non-coding regions associate with 

CHIP acquisition (see Methods). One set of variants in HAPLN1 enhancers exceeded a p-

value threshold of p<0.05 after Bonferroni-correction (OR: 6.8, p=1.96 × 10−5, 

Supplementary Table 11). HAPLN1 is an extracellular matrix protein, produced in bone 

marrow stromal cells that has previously been implicated in NF-κB signaling.24

We asked whether germline genetic variants might be associated with CHIP clonal 

expansion. No single variants or aggregated rare variants exceeded Bonferroni significance 

(Supplementary Table 12–13).
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TET2 CHIP risk locus characterization

Lastly, we bioinformatically and experimentally characterized the mechanism by which the 

non-coding African American-specific variant at the TET2 locus influenced risk for CHIP. 

First, iterative conditional analyses at the locus suggested that there was most likely only a 

single causal variant. Fine-mapping prioritized 25 variants in the credible set (>99% 

posterior probability), none of which overlaps the coding sequence or promoter of a protein-

coding gene.

We hypothesized that the causal variant affects an enhancer for TET2 in hematopoietic stem 

cells, because heterozygous Tet2 knockout in mice increases the self-renewal of 

hematopoietic stem cells in vivo25 and recapitulates the clonal expansion observed in 

humans with somatic mutations in TET2. 5,10 Accordingly, we used the Activity-by-Contact 

(ABC) model to predict which noncoding elements act as enhancers in CD34+ 

hematopoietic stem and progenitor cells (HSPC, see Methods). Only a single variant 

(rs79901204) in this credible set overlapped an element predicted to regulate any gene, and 

that element was indeed predicted to regulate TET2 expression. (Figure 3a, Supplementary 

Table 14) The T risk allele disrupts a consensus GATA/E-Box motif, likely resulting in 

reduced binding of the activating transcription factors GATA1 and GATA2 (Figure 3b,c).

We then evaluated whether rs79901204 affected TET2 expression in vivo in human 

peripheral blood samples. We utilized whole blood RNAseq from 247 African American 

individuals, 16 of whom were heterozygotes for rs79901204 and one who was a 

homozygote. In these samples, the T risk allele led to a dose-dependent decrease in whole 

blood TET2 expression (Beta: −0.27, SE: 0.11, two-sided linear mixed model p=0.012, 

Figure 3d). Therefore, we sought to test our hypothesis that that the rs79901204 risk allele 

acts to decrease the activity of this TET2 enhancer and that decreased enhancer activity 

reduces expression of TET2 in vitro.

To test whether rs79901204 affects enhancer activity, we tested a 600 base pair region 

containing the regulatory element using a plasmid-based luciferase enhancer assay in 

hematopoietic cells. The reference sequence activated luciferase expression by 118-fold 

(versus control constructs with no enhancer sequence), while the T risk allele activated 

expression by only 27-fold (two-sided t-test p=0.007, Figure 3e).

To test whether deletion of this enhancer would alter TET2 gene expression, we performed 

deletion of the enhancer element in CD34+ HSPCs using a pair of CRISPR/Cas9 guides 

introduced as ribonucleoproteins, which resulted in decreased TET2 expression after 48 

hours (Figure 3f).

We then sought to establish the effect of decreased TET2 expression on HSPC expansion 

using a colony forming unit cellular assay. Human HSPCs were electroporated with Cas9 

targeting a coding region of TET2 and AAVS1 (a control locus) and plated for primary and 

secondary colony-forming assays (Figure 3g). To establish a dose response relationship, two 

TET2 guides were used with differential editing efficiency (Figure 3h, Extended Data Figure 

9). TET2 coding disruption resulted in expanded secondary colony formation compared to 

AAVS1 controls, with greater expansion identified in the TET2 guide with greater editing 
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efficiency (Figure 3i). Thus, we demonstrate that reduction of TET2 activity promotes self-

renewal and proliferation of HSPCs, illustrating how both germline noncoding and somatic 

coding variation at this locus converge to affect TET2 and influence the development of 

CHIP.

Given the established role of TET2 in DNA de-methylation and our finding that rs79901204 

is associated with decreased TET2 expression (Figure 3d), we hypothesized that carriers of 

rs79901204 T allele may have altered peripheral blood methylation profiles. We performed a 

methylation-QTL analysis of 1747 African Americans and identified 597 genes across the 

genome with differentially methylated CpG loci associated with rs79901204 T carrier status. 

The most strongly differentially methylated sites were at the TET2 locus itself. (Extended 

Data Fig. 10, Supplementary Table 15)

Our observations permit several conclusions. First, our sample size which is nearly an order 

of magnitude larger than prior CHIP analyses2,3,14 enables refinement of CHIP phenotype 

associations at the level of CHIP driver genes. We find that considerable heterogeneity exists 

across CHIP phenotypes by driver gene. For example, IL-1b and IL-18 both activate through 

the inflammasome and increase IL-6. However, while TET2 CHIP is associated with 

increased levels of IL-1b, JAK2 and SF3B1 CHIP are associated with IL-18.

Second, our work highlights multiple mechanisms through which germline genetic variation 

can shape somatic variation in hematopoietic stem cells. A set of the germline loci are 

associated with increased propensity to acquire mutations due to failure of genes that 

maintain genome integrity (e.g. TERT and CHEK2) and which have been implicated in stem 

cell maintenance/self-renewal (Bao et al, co-submitted manuscript). These loci are 

associated with acquisition of somatic mutations resulting in neoplasm in multiple tissues. 

Other germline loci are associated with increased hematopoietic stem cell self-renewal (e.g. 

TET2). While the TET2 locus is associated with increased risk of acquiring any CHIP driver 

mutations, it is not associated with cancer outside of the hematopoietic stem cell 

compartment. A third set of germline loci are associated with the acquisition of CHIP 

mutations in specific driver genes. This previously was described in the JAK2 46/1 

haplotype leading to JAK2 p.V617F via a cis haplotype effect.26–28 We now identify a novel 

DNMT3A CHIP specific locus at the TCL1A promoter specifically associated with 

increased risk of DNMT3A CHIP, but not other CHIP subsets.

We identify a convergence of common and rare germline genetic predisposition to leukocyte 

telomere length, MPN, large scale somatic chromosomal mosaicism and CHIP, suggesting 

shared causal mechanisms. Importantly, to date, only CHIP with leukemogenic driver 

mutations (as opposed to somatic chromosomal mosaicism9 or CHIP with unknown driver 

mutations14) has been robustly associated with non-oncologic diseases independently of age. 

The partially overlapping genetic predisposition we observe across these three clonal 

phenomena suggest that although there may be similar genetic architecture that predispose 

individuals to acquiring a somatic mutation, the specific change may be particularly relevant 

to atherosclerotic disease as opposed to the general phenomenon of clonal hematopoiesis 

itself.
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Third, our work underscores the benefits of studying genomes from individuals of diverse 

ancestries. The inclusion of a significant number of African Ancestry samples in TOPMed 

permitted the discovery of the TET2 locus which was not present in other ancestries. Further 

inclusion of diverse individuals in genomic analyses is likely to highlight additional new 

biological pathways.

Important limitations of our study include reduced sensitivity for detecting CHIP with low 

allele fractions (VAF 2–5%) even with high-coverage whole genome sequencing. 

Ultrasensitive targeted sequencing can facilitate detection of such leukemogenic mutations at 

exceedingly low VAFs but the clinical consequences of this much more pervasive 

phenomenon, as well as determinants of progression to CHIP is not well understood 

currently.29 Furthermore, the cross-sectional analyses of CHIP with non-genetic risk factors 

and biomarkers limit conclusions regarding temporal relationships between CHIP and these 

features; however, these observations still permit risk prediction for CHIP presence. Notably, 

inflammatory biomarker analyses are concordant with prior model experiments indicating 

elevations of observed inflammatory biomarkers as a consequence of CHIP.5,10 Lastly, given 

the age-dependence of CHIP, it is likely that many individuals not observed to have CHIP in 

this study will develop CHIP in the future.

Overall, comprehensive simultaneous germline and somatic analyses of blood-derived whole 

genome sequence data demonstrates that germline variation influences the acquisition of 

somatic mutations in blood cells. Importantly, we anticipate that the TOPMed CHIP dataset 

defined here will be a valuable tool in establishing associations of CHIP with diverse heart, 

lung, blood and sleep traits.

Methods

Study Samples

Whole genome sequencing (WGS) was performed on 97,691 samples sequenced as part of 

52 studies contributing to the NHLBI TOPMed research program Freeze 6 release as 

previously described for discovery analyses.7 An additional distinct set of 9,389 WGS 

sequenced samples from the NHLBI TOPMed Freeze 8 release were used for replicating the 

TET2 genetic association. Study designs include prospective cohorts, families, population 

isolates, and case-only collections. A subset of the studies focus on heart (~40%) or lung 

(~30%) phenotypes, with the remainder representing prospective population cohorts or 

electronic health record linked cohorts which have been assessed for many diverse 

phenotypes. None of the studies which comprise TOPMed selected individuals for 

sequencing on the basis of hematologic malignancy. Approximately 82% of participants are 

U.S. residents with diverse ancestry and ethnicity (40% European, 32% African, 16% 

Hispanic/Latino, 10% Asian). Each of the constituent studies provided informed consent on 

the participating samples. Details on participating cohorts and samples is provided in 

Supplementary Table 1. The age of participants at time of blood draw was obtained for a 

subset of 82,807 of the samples. The median age was 55, the mean age 52.5, and the 

maximum age 98. The age distribution varied across the constituent cohorts.
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Written informed consent was obtained from all human participants by each of the studies 

that contributed to TOPMed with approval of study protocols by ethics committees at 

participating institutions as summarized in Supplementary Table 1. Each study received 

institutional certification prior to deposition in dbGaP which certified that all relevant 

institutional ethics committees approved the individual studies and that the genomic and 

phenotypic data submission was compliant with all relevant ethical regulations. This 

certification was deposited in dbGaP along with the data. Secondary analysis of the 

TOPMed dbGaP data as described in this manuscript was approved by the Partners 

Healthcare Institutional Review Board. All relevant ethics committees approved this study 

and this work is compliant with all relevant ethical regulations.

WGS Processing, Variant Calling and CHIP annotation

BAM files were remapped and harmonized through a previously described unified protocol.
30 SNPs and short indels were jointly discovered and genotyped across the TOPMed 

samples using the GotCloud pipeline.31 An SVM filter was trained to discriminate between 

true variants and low-quality sites. Sample quality was assessed through pedigree errors, 

contamination estimates, and concordance between self-reported sex and genotype inferred 

sex. Variants were annotated using snpEff 4.3.

Putative somatic SNPs and short indels were called with GATK Mutect28 (https://

software.broadinstitute.org/gatk). Briefly, Mutect2 searches for sites where there is evidence 

for variation, and then performs local reassembly. It uses an external reference of recurrent 

sequencing artifacts termed a “panel of normal samples” to filter out these sites, and calls 

variants at sites where there is evidence for somatic variation. The panel of normal samples 

used for our study included 100 randomly selected individuals under the age of 40 years. 

Absence of a hotspot CHIP mutation was verified prior to inclusion in the panel of normal 

set. An external reference of germline variants32 was provided to filter out likely germline 

calls. We deployed this variant calling process on Google Cloud using Cromwell (https://

github.com/broadinstitute/cromwell). The caller was run individually for each sample with 

the same settings. The Cromwell WDL configuration file is available from the authors upon 

request.

Samples were annotated as having CHIP if the Mutect2 output contained one or more of a 

pre-specified list of putative CHIP variants as previously described2,5 (Supplementary Table 

2) at a VAF >2%.

WGS sensitivity to detect CHIP

To empirically demonstrate the sensitivity of CHIP detection and VAF, we re-analyzed 

sequence data from 30 samples with CHIP from a previously published cohort.33 These 

samples were sequenced to >400x depth. We bioinformatically down-sampled the reads to 

the range of sequencing depths compatible with whole exome and whole genome 

sequencing. The TOPMed WGS samples were sequenced to a median depth of ~40x, 

although sequencing of any particular region was typically 30x-50x. Across this range of 

sequencing depths we observe robust ability to call CHIP with VAF >10%, which is the 

most clinically actionable subset of CHIP. We also capture approximately half of the CHIP 
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calls in the VAF 5–10% range. To reliably capture CHIP in the 5–10% range requires ~100x 

sequencing depth commonly done in whole exome sequencing, but even at this sequencing 

depth the majority of the VAF 2–5% CHIP calls are not reliably detected. (Extended Data 

Figure 11)

Amplicon sequencing validation

To evaluate the fidelity of our TOPMed WGS CHIP dataset, we performed technical 

validation of 76 CHIP mutations in 72 samples using targeted deep sequencing. All 76 of 76 

CHIP mutations identified with WGS were also identified with targeted deep sequencing. 

CHIP mutations were validated by single-molecule molecular inversion probe sequencing 

(smMIPS).34 Capture probes were designed to tile all coding exons (+/− 5 bp) for 12 of the 

mostly highly prevalent CHIP genes plus four recurrent mutation hotspots, totaling 44.5 kb. 

Probes were synthesized as a pool by CustomArray, Inc., amplified using Q5 DNA 

polymerase (NEB) using outer flanking primers, and digested with BbsI-HF (NEB) to 

remove adaptors. For each sample, captures were performed with 500 ng gDNA and 

converted to dual-barcoded Illumina sequencing libraries as described.35 Sequence capture 

libraries were pooled for paired-end 150 bp sequencing on a Hiseq 4000 lane. Resulting 

reads were aligned with bwa mem and processed using the mimips pipeline (source code at 

https://github.com/kitzmanlab/mimips) to trim capture probe sequences, and to remove reads 

with duplicated unique molecular identifiers. Somatic variants were called by MuTect2 as 

described above and confirmed by manual inspection with IGV.

Somatic Chromosomal Mosaic Detection

In order to assess the relationship between CHIP and clonal mosaicism reflecting 

chromosomal mutation, we sought to characterize large (megabase-scale) acquired 

chromosomal alterations leading to allelic imbalance using existing SNP array data on a 

subset of the samples in this analysis. To do so, we compared statistically reconstructed 

haplotypes (using MaCH36) with the patterns of “B allele” frequencies (BAFs), measured 

via SNP array. Regions of nonrandom similarities between the estimated haplotypes and 

BAFs were detected with hapLOH37, and indicate acquired chromosomal alterations. We 

identified genomic allelic imbalance events using a threshold of a posterior probability for 

allelic imbalance > 0.8 and event size > 1Mb. We excluded allelic imbalance events with 

fewer than ten markers and removed potential germline duplications if a detected event 

exhibited the following: 1) 50% reciprocal overlap with database of genomic variants (DGV) 

and 2) was not determined to be a deletion or LRR deviations > 0.08, size < 5Mb and BAF 

deviations > 0.1. Phasing and event detection was performed in SyQADA.38

Blood traits

Conventionally measured blood cell counts and indices were selected for analysis including: 

hemoglobin, hematocrit, red blood cell count, white blood cell count, basophil count, 

eosinophil count, neutrophil count, lymphocyte count, monocyte count, platelet count, mean 

corpuscular hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular 

volume, mean platelet volume and red cell distribution width. Phenotypes were collected by 

each cohort, centrally harmonized by the TOPMed Data Coordinating Center (DCC). 

Additional documentation about harmonization algorithms for each specific trait is available 
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from the TOPMed DCC and accompanies the data on the dbGaP TOPMed Exchange area. 

Up to 37,653 individuals from 10 cohorts where utilized for this analysis that had one or 

more blood traits measured concurrently or following the blood draw used for CHIP 

ascertainment. Traits were first log2 normalized and then analyzed using a general linear 

regression model with CHIP status, age, sex, study and the first 10 ancestry principal 

components as covariates.

Lipid phenotypes

Conventionally measured plasma lipids, including total cholesterol, LDL-C, HDL-C, and 

triglycerides, were included for analysis. LDL-C was either calculated by the Friedewald 

equation when triglycerides were <400 mg/dl or directly measured. Given the average effect 

of statins, when statins were present, total cholesterol was adjusted by dividing by 0.8 and 

LDL-C by dividing by 0.7. Triglycerides were natural log transformed for analysis. 

Phenotypes were harmonized by each cohort and deposited into dbGaP TOPMed Exchange 

area as previously described.39 Up to 28,310 individuals from 19 cohorts where utilized for 

this analysis that had one or more lipid trait measured concurrently or following the blood 

draw used for CHIP ascertainment. Lipid traits were first normalized for age, sex and 

ancestry principal components and then analyzed using a general linear regression model 

with CHIP status, age, sex, study and the first 10 ancestry principal components as 

covariates.

Inflammatory Markers

A set of makers previously implicated in mediating cardiometabolic disease were analyzed 

including: CD-40, CRP, E-Selectin, ICAM-1, IL-1b, IL-6, IL-10, IL-18, 8-epi PGF2a, Lp-

PLA2 mass and activity, MCP1, MMP9, MPO, OPG, P-selectin, TNF-Alpha, TNF-Alpha 

Receptor 1, TNF-receptor 2. Phenotypes were collected by each cohort, centrally 

harmonized by the TOPMed DCC and then deposited into dbGaP TOPMed Exchange area. 

Additional documentation about harmonization algorithms for each specific trait is available 

from the TOPMed DCC and accompanies the data on dbGaP. Up to 22,092 individuals from 

10 cohorts were utilized for this analysis that had one or more inflammatory marker 

measured concurrently or following the blood draw used for CHIP ascertainment. 

Inflammatory markers were first normalized using a log2(x+1) transformation and then 

analyzed using a general linear regression model with CHIP status, age, sex, study and the 

first 10 ancestry principal components as covariates.

Mutational Signatures

We identified all putatively somatic singleton mutations in a subset of the TOPMed samples 

that included 3,764 cases with a single CHIP driver mutation and a randomly sampled set of 

5,000 controls. Variants were filtered to ensure a depth >=25 reads, a VAF < 35% and no 

overlap with the germline variant site list from TOPMed Freeze 5 (available: https://

bravo.sph.umich.edu/freeze5/hg38/). Multiallelic variants and indels were excluded. We 

used https://cancer.sanger.ac.uk/cosmic/signatures_v2 as a reference for mutation signatures 

and the MutationalPatterns R package to estimate the contributions of the signatures.13,40,41 

We defined a signature as being “differentially observed” if at least 99% of its observations 
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are in CHIP cases, or if at most 1% of its observations are in cases (i.e., one of cases or 

controls contains at least 99% of the signature observations).

Single Variant Association

Single variant association for each variant in Freeze 8 with MAF > 0.1% and MAC > 20 was 

performed with SAIGE42, and analysis was performed using the TOPMed Encore analysis 

server (https://encore.sph.umich.edu). CHIP driver status was dichotomized into a case-

control phenotype based on the presence of at least one driver mutation. Prior to running 

single variant association tests, a logistic mixed model was fit using the lme4 R package43 to 

estimate the probability of the CHIP case control status conditional on a spline 

transformation of the centered age, genotype inferred sex, and cohort. The cohort was 

included as a random intercept which represents study specific contributions to the log-odds 

of CHIP at the mean sample age. Age was modeled with a spline to capture the non-linearity 

of the relationship between age and CHIP. This model was chosen over comparable models 

based on its AIC. Combining the age, inferred sex, and study into a single quantity aided the 

convergence of SAIGE compared to the inclusion of these terms separately. The first 10 

principal components were also included as covariates.

Given that CHIP is unlikely to manifest in younger individuals, these individuals are 

effectively censored in our analysis set – that is, a young individual that does not presently 

have CHIP may still develop CHIP in the future. To avoid the power loss associated with 

misclassification of controls, we pruned these individuals from our analysis set. The single 

variant association analysis was run on a pruned set of samples that excluded those which 

had less than a 1% probability CHIP as estimated by the aforementioned model. This 

excluded 21,712 samples leading to a final analysis set of 65,405 which was used for 

downstream association analyses.

Fine mapping

We applied FINEMAP 1.344 to the summary statistics from SAIGE, using the z-score and 

LD matrices as input. We fine-mapped the TET2 locus using the summary statistics from the 

African ancestry single variant summary statistics and estimated LD on the same set of 

samples using Plink 1.9. We set the maximum number of causal SNPs in the region to 10 

and used a shotgun stochastic search.

Transcriptome-wide association analysis

Multi-tissue gene expression and eQTL data were retrieved from the Genotype-Tissue 

Expression (GTEx) project (https://www.gtexportal.org). We applied the unified test for 

molecular signatures (UTMOST)20 to perform cross-tissue transcriptome-wide association 

analysis for CHIP. We used cross-tissue gene expression imputation models trained from 44 

tissues in GTEx. Gene-level association meta-analysis was performed using the generalized 

Berk-Jones test implemented in UTMOST (https://github.com/Joker-Jerome/UTMOST). 

Statistical significance was determined using a Bonferroni corrected p-value cutoff 2.9 × 

10-6.
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Rare Variant Analyses

Collapsing burden tests were applied to specific variant grouping schemes using EPACTS 

(https://genome.sph.umich.edu/wiki/EPACTS). The same covariates as the single variant 

tests were used on the same set of samples. We used burden tests due to their limited 

compute requirements, which were considerable for the number of variants and samples 

tested. Two grouping schemes were specified: the first groups coding variation, and the 

second groups putative regulatory elements in a relevant cell line. The first used all putative 

LOF variants as identified by snpEff. Given that some variants were present in both the 

Mutect2 calls and the germline variant calls, we pruned the LOF variants to exclude variants 

that were present in both call sets. The second grouping scheme used all variants in regions 

that were predicted enhancers for CD34 cells that had CADD scores of at least 10. Predicted 

enhancers were identified by the activity-by-contact model.45

Predicting enhancer-gene regulation for TET2.

We used the Activity-by-Contact (ABC) model46 to predict which enhancers regulate which 

genes in CD34+ hematopoietic progenitor cells, with minor modifications as follows.

Briefly, this model predicts the effect of each putative regulatory element (defined as a 

DNase peak within 5Mb of a given promoter) by multiplying the Activity of each element 

(estimated from DNase-seq and H3K27ac ChIP-seq) by its Contact with a target promoter 

(estimated from Hi-C data). The ABC score of a single element on a gene’s expression is the 

predicted effect of that element divided by the sum of the predicted effects of all elements 

for a given gene.

We identified putative regulatory elements by using MACS2 to call peaks in DNase-seq data 

from mobilized CD34+ hematopoietic progenitor cells from the Roadmap Epigenome 

Project (downloaded from http://egg2.wustl.edu/roadmap/data/byFileType/alignments/

consolidated/E050-DNase.tagAlign.gz) Initially we considered all peaks with p-value < 0.1. 

To further refine this list, we kept the 100,000 peaks with the highest number of DNase-seq 

reads. We then resized these peaks to be 500 bp in length centered on the peak summit, 

merging any overlapping peaks, and removed any peaks overlapping ENCODE “blacklisted 

regions”47 (regions of the genome previously observed to accumulate anomalous numbers of 

reads in epigenetic sequencing experiments; downloaded from https://sites.google.com/site/

anshulkundaje/projects/blacklists). To this peak list, we added 500 bp regions centered on 

the transcription start site of all genes. Any overlapping regions resulting from these 

additions or extensions were merged.

Within each putative regulatory element, we estimated enhancer Activity as the geometric 

mean of read counts from DNase-seq and H3K27ac ChIP-seq data from the Roadmap 

Epigenome Project (http://egg2.wustl.edu/roadmap/data/byFileType/alignments/

consolidated/E050-DNase.tagAlign.gz, and E050-H3K27ac.tagAlign.gz).

We estimated enhancer-promoter Contact from the KR-normalized Hi-C contact maps in 

primary CD34+ cells. we then calculated effect of each putative enhancer-gene connection 

by multiplying the Activity and Contact for that element and gene. Dividing the effect of 

each element by the sum of effects for all elements for a given gene yields the ABC score:
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ABC scoreE − G =  
AE  × CE − G 

∑e within 5 MbAe × Ce − G

To call predicted enhancer-gene connections, we used a threshold on the ABC score of 

0.015. The rs79901204 variant overlapped an enhancer with ABC score of 0.0308 for TET2, 

which, based on comparison of ABC scores to large-scale enhancer perturbation datasets, 

corresponds to a positive predictive value of approximately 61%.

Functional Evaluation of TET2 locus

The genomic region containing risk and non-risk allele of the variant rs79901204 (600bp) 

was synthesized as gblocks (IDT Technologies) and cloned into the Firefly luciferase 

reporter constructs (pGL4.24) using NheI and EcoRV sites. The Firefly constructs (500ng) 

were co-transfected with pRL-SV40 Renilla luciferase constructs (50ng) into 100,000 K562 

cells (ATCC) using Lipofectamine LTX (Invitrogen) according to manufacturer’s protocols. 

Cells were harvested after 48 hours and the luciferase activity measured by Dual-Glo 

Luciferase Assay system (Promega). K562 cell identity was validated using STR analysis. 

Mycoplasma testing was routinely performed on all cells used in the study and confirmed to 

test negative.

CRISPR/Cas9 editing of CD34+ human HSPCs

Editing of TET2 enhancer and TET2 coding regions was performed by electroporation of 

Cas9 Ribonucleoprotein complex (RNP) into CD34+ human HSPCs. CD34+ HSPCs from 

adult donors obtained from the Fred Hutchinson Cancer Research Center, Seattle, USA were 

thawed 24 hours prior to electroporation and cultured in HSC expansion conditions 

throughout the experiment (Stemspan II media with CC100 cytokine cocktail from Stem 

Cell Technologies and TPO (50ng/ul) and small molecule UM171 (35nM)). The RNP 

complex was made by mixing Cas9 (50 pmol) and modified sgRNAs from Synthego (100 

pmol in total). HSPCs (3.75 × 10 5) resuspended in 20 μl P3 solution were mixed with RNP 

and transferred to Nucleocuvette strips for electroporation with program DZ-100 (Lonza 4D 

Nucleofector). TET2 gene expression was measured at 6 days post-electroporation.

For enhancer deletion experiments two guides targeting 5’ and 3’ ends of the enhancer 

element was used simultaneously (ENH_sgRNA_1: GGATTCTGTATTCGTCTGTG & 

ENH_sgRNA_2: TCTACTCACAGGGCCCAATG). For TET2 coding disruption 

experiments single guides were used (TET2_CDS1: TGGAGAAAGACGTAACTTCG & 

TET2_CDS2: TCTGCCCTGAGGTATGCGAT). For negative control, a guide targeting 

AAVS1 site was used (GGGGCCACTAGGGACAGGAT). Editing efficiency of TET2 CDS 

and AAVS1 guides were measured by Sanger sequencing followed by TIDE analysis. 

Editing efficiency of TET2 enhancer deletion was measured by PCR and agarose gel 

electrophoresis.

Colony-forming unit cell assays

3 days post RNP-electroporation, 500 CD34+ HSPCs were plated in 1ml methylcellulose 

media (# H4034, Stem Cell Technologies). Primary CFU-C colonies were counted after 14 
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days. For the colony replating experiments, 2 weeks after the primary plating, the colonies 

from three pates were pooled, washed with PBS, and the cells were plated in new 

methylcellulose media at 25,000 cells/ml for an additional 2 weeks.

RNA-Sequencing and eQTL Analysis:

RNA-Sequencing was performed on peripheral blood mononuclear cells from a subset of the 

MESA cohort. Alignment to the GRCh38 reference genome was done using STAR 2.5.3a.48 

Gene Quantification and quality control was performed using RNA-SeQC 1.19.49 For RNA-

SeQC, isoforms were collapsed into a single transcript per gene using the procedure 

described at https://github.com/broadinstitute/gtex-pipeline/blob/master/gene_model/. 

Samples that failed the RNA-Seq QC, fingerprinting, or expression-based sex check were 

filtered out. Further details on the RNASeq pipeline are available here: https://

www.nhlbiwgs.org/sites/default/files/TOPMed_RNAseq_pipeline_COREyr2.pdf

Analysis was performed using samples from 247 African Americans from MESA cohort 

Exam 1. Transcript expression was converted to TPM units (transcripts per million) and 

log2-transformed for analysis consistent with the GTEx consortium50 best practices. 

Analysis of rs79901204 with TET2 expression was performed using a linear mixed model 

adjusting for age at blood draw, sex, PC1–10 of population stratification from the WGS data, 

sequencing batch, and kinship relatedness matrix.

Genome-wide Methylation-QTL analysis of TET2 risk locus

Illumina Methylation EPIC 850K array data interrogating over 850,000 CpG DNA 

methylation sites was generated at the University of Washington’s Northwest Genomic 

Center from blood samples collected from African Americans at the Jackson Heart Study 

baseline exam. Fluorescent signal intensities were preprocessed with the R package minfi51 

using the normal-exponential out-of-band (noob) background correction method with dye-

bias normalization. N = 1747 total samples (1097 women and 650 men) remained after 

severe outliers were identified and removed. 71 individuals were positive for CHIP and 100 

were carriers of the rs79901204 variant.

Methylation levels at each CpG site were then quantified as β values, defined as the ratio of 

intensities between methylated (M) and unmethylated (U) signals where β = M/(M+U+100). 

Values therefore ranged from β = 0 (completely unmethylated) to β = 1 (completely 

methylated). Batch correction for assay plate position was performed on the β values via 

ComBat.52 Relative leukocyte cell counts (CD8+ T-lymphocytes, CD4+ T-lymphocytes, 

Natural Killer cells, B cells, Monocytes, and Granulocytes) were estimated as previously 

described by Houseman53 and Horvath52.

To investigate methylation in the TET2 locus, a linear mixed effects model was fitted using 

CpGassoc53 in R 3.6.0 with rs79901204 as the predictor and the batch-corrected methylation 

β levels as the dependent variable, adjusting for age, sex, estimated cell counts, the top 10 

principal components of genetic ancestry, and CHIP status. A Bonferroni corrected threshold 

of p = 5.8×10−8 was used to establish statistical significance.
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Extended Data

Extended Data Fig. 1|. Characterizing TOPMed CHIP.
a, There was marked heterogeneity of CHIP clone size as measured by variant allele fraction 

by CHIP driver gene. Violin plot spanning minimum and maximum values calculated on full 

dataset (Supplementary Table 3). Sample size for each element in violin plot displayed in 

Fig. 1, b, 90% of individuals with CHIP had only one CHIP driver mutation identified c, 
CHIP prevalence with age was highly concordant across sequenced cohorts. CHIP 
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prevalence was estimated from a logistic mixed model with spline-transformed age, sex, and 

cohort included as predictors. The cohort was included as a random intercept. Sample size 

for each cohort listed in Supplementary Table 1. d, CHIP prevalence with age in this study 

(blue triangles, N=82,807) was highly consistent with previously observed CHIP prevalence 

(dots represent mean point prevalence with shaded area represents 95% confidence interval; 

NGenovese=12,380; NJaiswal = 17,182; NXie = 2,728).

Extended Data Fig. 2|. CHIP age association by mutational mechanism, gene and overlap with 
somatic chromosomal mosaicism.
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a, cumulative density plot of CHIP incidence with age stratified by single nucleotide variant 

(SNV) vs frameshift mutations. SNVs were observed in younger individuals than Frameshift 

mutations (N=4,939; two-sided wilcox rank sum test p=0.01). b, cumulative density plot of 

CHIP incidence with age stratified by driver gene. c, 855 elderly WHI individuals (mean 

age: 70) with both whole genome and the array genotyping data available were interrogated 

for large-scale mosaic chromosomal rearrangements. The two somatic events did not co-

occur more than would be expected by chance (hypergeometric p=0.25).

Extended Data Fig. 3|. CHIP associates with Blood, Lipid, and Inflammatory traits.
a, CHIP consistently associated with increased Red Cell Distribution Width (RDW). JAK2, 

SF3B1 and SRSF2 showed driver gene specific effects on blood traits (see Supplementary 

Table S5) b, CHIP status was not consistently associated with lipid traits, other than JAK2 
CHIP which was associated with decreased total cholesterol and a trend towards decreased 

LDL (see Supplementary Table S6) c, CHIP status is associated with inflammatory markers, 
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however notable heterogeneity existed across CHIP mutations (see Supplementary Table 

S7). Associations utilized a two-sided t-test from a multivariate general linear model 

including age, smoking, race and gender and study center and were not adjusted for multiple 

comparisons. Sample sizes and exact p-values for each phenotype are listed in 

Supplementary Tables 5–7.

Extended Data Fig. 4|. CHIP passenger somatic mutation spectrum.
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a, Singleton mutation counts by nucleotide context in CHIP Cases and Controls. b, 
Signature contribution in CHIP cases and controls identified differential enrichment

Extended Data Fig. 5|. CHIP Single variant association regional association plots.
a, TERT locus b, TRIM59/KPNA4 locus c, TET2 locus. Two-sided association testing 

performed using SAIGE (N=65,405 individuals, see methods)
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Extended Data Fig. 6|. CHIP transcriptome-wide association study (TWAS) results across 48 
tissues identified 7 significant loci.
UTMOST algorithm applied to CHIP genome wide association study results from n=65,405 

individuals (see methods). Genomic coordinates listed on x-axis. P-value from generalized 

Berk-Jones test on Y axis. Multiple hypothesis corrected threshold, p<2.9 × 10−6 displayed 

as dotted red line.
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Extended Data Fig. 7|. Tissue-specific results from the top 9 overall UTMOST-significant genes.
UTMOST algorithm applied to CHIP genome wide association study results from n=65,405 

individuals. P-value from generalized Berk-Jones test. eQTL z-scores for associations with 

P<0.05 are displayed in each bar. GTEX eQTL tissue listed on Y-axis.
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Extended Data Fig. 8 |. CRISPR/Cas9 editing efficiency of TET2 Enhancer deletion in primary 
CD34+ HSPCs.
a, Schematic showing the position of the two sgRNAs used to delete the TET2 enhancer 

(512bp) containing rs79901204. B, Gel electrophoresis image of PCR products from 

genomic DNA of edited HSPCs indicating unedited (WT) and deletion bands at sgRNA 

target site. Percentages of deletion alleles determined by band intensity and is shown below 

each lane. The experiment contains 3 biological replicates and was performed once.
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Extended Data Fig. 9 |. rs79901204 associated with genome wide differential methylation signal,
Methylation Quantitative Trait association results of rs79901204 variant with cpg 

methylation probes identify an altered peripheral leukocyte methylation profile genome wide 

in N = 1747 individuals. The strongest signal is at the chr4 TET2 locus. P-values on Y-axis 

derived from two-sided linear mixed effects model (see methods). To account for multiple 

hypothesis testing, a Bonferroni threshold of p < 5.8 × 10−8 was used to establish statistical 

significance.
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Extended Data Fig. 10 |. Sensitivity of CHIP detection at various VAFs across sequencing depths.
A set of 30 samples from a previously published CHIP cohort (Gibbons et al, 2017) were 

computationally down sampled to 30x, 40x, 50x, 100x and 400x sequencing depth. TOPMed 

WGS data was typically in the 40x depth range across CHIP genes. WGS data has excellent 

sensitivity to detect CHIP clones with VAF >10%, and ~50% sensitivity to detect CHIP VAF 

5–10%, with minimal ability to detect CHIP clones <5%.
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Fig. 1|. Identifying CHIP in TOPMed Genomes.
CHIP was identified in 97,631 whole genome sequenced peripheral blood samples through 

the curation of somatic driver mutations. Counts for 8 most common driver genes plotted. 

inset, CHIP prevalence increased with age. Center line represents general additive model 

spline, 95% confidence interval is shaded (n=82,807 individuals; two-sided t-test: p<10−300).
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Fig. 2|. Genetic Determinants of CHIP.
Single variant genetic association analyses of CHIP identified three genome wide significant 

loci. Two-sided association testing performed using SAIGE (n=65,405 individuals, see 

methods)
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Fig. 3|. African ancestry specific TET2 locus risk variant disrupts hematopoietic stem cell TET2 
enhancer decreasing TET2 expression and increasing self-renewal.
a, the TET2 locus with fine-mapped risk variants, Activity-by-Contact (ABC) hematopoietic 

stem and progenitor cell (HSPC) enhancers, DNase-Seq CD34+ HSPC and RefSeq genes. 

ABC model predicts that rs79901204 disrupts a TET2 enhancer resulting in decreased TET2 

expression (see methods). b, expanded view of TET2 enhancer element. c, rs79901204 

disrupts a GATA motif/E-Box motif. d, rs79901204 is associated with decreased TET2 

expression in human peripheral blood RNA-seq (NA/A=230, NA/T=16, NT/T=1, two-sided 

linear mixed model p=0.012). TPM, transcripts per million. Boxplot displays median, 25th 

and 75th percentiles, mean (diamond symbol) and outlier observations (black dots) e, 
luciferase assay in CD34+ primary cells demonstrates four-fold attenuation of enhancer 

activity by the rs79901204 T risk allele relative to the A reference allele (N=3, two-sided t-

test p=0.007). f, deleting the TET2 enhancer (ENH) in CD34+ primary cells results in 

decreased TET2 expression relative to deletion of control locus AAVS1 (N=3, two-sided t-

test, p=0.04). g, Human HSPCs were electroporated with Cas9 targeting a coding region of 

TET2 and AAVS1 (a control locus) and plated for primary and secondary colony-forming 

assays. h, two TET2 guides had differential editing efficiency. i, TET2 coding disruption 

leads to expanded secondary colony formation compared to AAVS1 controls (N=3, two-

sided t-test p=0.01, p=0.002 for g1 and g2 respectively, with greater expansion identified in 

the TET2 guide with greater editing efficiency (two-sided t-test p=0.04). Mean and standard 

deviation of number of each colony type plotted. CFU-M, colony forming unit-macrophage; 

CFU-GM, granulocyte macrophage; CFU-GEMM, granulocyte erythrocyte macrophage 

megakaryocyte; CFU-G, granulocyte; BFU-E, burst forming unit-erythroid. In e, f, h, points 

represent independent replicates, mean values and error bars represent standard error are 

plotted.
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