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Memristor-based Bionic Decision-making Circuit Inspired by Self-awareness
Zilu Wang (wangzilu@hit.edu.cn)

School of Mechanical Engineering and Automation
Harbin Institute of Technology (Shenzhen)

Shenzhen, 518055 China

Abstract

Advancing intelligent systems requires efficient computational
architectures built on emerging electronic computing devices,
as well as effective biomimetic function simulation to improve
overall intelligence. Here we design a memristor-based circuit
inspired by self-awareness concepts. It effectively achieves
bionic adaptive decision-making by mimicking habituation
learning mechanisms. Memristors serve as foundational units
in the circuit, facilitating the simulation of functions akin to
biological neurons and synapses. They help implement key
features such as information filtering, integration, and synaptic
plasticity through concise circuit structures and efficient com-
puting methods. Experimental results indicate that our cir-
cuit is capable of rapid and efficient information processing
through in-memory analog computing, and it can make more
reasonable and intelligent adaptive decisions by incorporating
self-awareness concepts and biomimetic mechanisms. Extend-
ing this work to large-scale decision-making systems holds
potential for intelligent platforms aiming to achieve advanced
cognitive capabilities.

Keywords: self-awareness; memristor; bionic circuit; adap-
tive decision-making; habituation learning

Introduction
The recent advancements in Artificial Intelligence (AI) have
largely focused on leveraging efficient, high-speed computa-
tion to replicate bionic perception and cognitive functions.
However, more research is required to simulate advanced
cognitive abilities, such as intelligent learning, decision-
making, and reasoning (Xie, 2023; Kugele & Franklin, 2020).
Achieving such intelligent functions often entails high energy
consumption, in stark contrast to the biological brain’s capac-
ity to perform intelligent behaviors with ultra-low power us-
age (Kaushik, Akhilesh, & Priyadarshini, 2019). Thus, there
is a need to find an effective way to achieve more efficient
and biomimetic cognitive function simulations.

Memristors, as emerging two-terminal elements, have
shown potential in implementing novel compute-in-memory
architectures due to their inherent in-memory computing
characteristics (Zhang et al., 2020). Their biomimetic prop-
erties, such as memory capacity and plasticity, demonstrate
advantages in simulating biological neural network structures
(S. Chen, Zhang, Tappertzhofen, Yang, & Valov, 2023) like
neurons, synapses, etc. In light of this, researching an appro-
priate approach to map the realization of these cognitive func-
tions onto memristor-based computational modules or hard-
ware circuits is expected to lead to the effective achievement
of more advanced biomimetic functionalities.

The self-aware computational framework (Lewis et al.,
2015), an architecture inspired by the concept of self-
awareness in psychology, is a promising approach that can
guide the aforementioned mapping. Self-awareness is a fun-
damental concept in psychology refers to an individual’s
ability to reflect upon and recognize their own thoughts,
emotions, and behaviors (Diener & Srull, 1979; Morin,
2006). When endowing computational systems with capa-
bilities such as adaptability, autonomy, etc., concepts of self-
awareness are often involved (Schlatow et al., 2017; Elhab-
bash, Salama, Bahsoon, & Tino, 2019). That is, by integrat-
ing the self-awareness concepts into a unified framework, AI
systems that are not only more capable and adaptive but also
more transparent and reliable can be created. This will ul-
timately enhance human-AI collaboration and provide valu-
able insights for future research on more biomimetic and
efficient intelligent systems. As a result, by incorporating
the self-aware computational framework into the design of
memristor-based biomimetic functional circuits (Xia & Yang,
2019; Zhang et al., 2020), it is possible to realize an intelli-
gent system that possesses both efficient computational capa-
bilities and reliable biomimetic functionalities. Therefore, in
this work:

1) Inspired by the concept of self-awareness in psychology
and incorporating the self-aware computational framework,
we implement an adaptive decision-making circuit using a
bionic circuit design approach based on memristors.

2) A habituation learning mechanism is introduced in our
circuit supported by the memristor-based bionic modules at
the underlying circuit, aimed at delivering more efficient and
reasonable intelligent decision-making.

3) Experimental results show that our circuit can adaptively
make intelligent decisions during task execution. It also ex-
cels in processing speed, hardware overhead, and power con-
sumption thanks to the in-memory analog computing capabil-
ities of the underlying memristive circuit.

Non-volatile Memristor Model
As an important member of the emerging non-volatile mem-
ory, memristor is a two-terminal ionic device that uses resis-
tance states to represent information (J. J. Yang, Strukov, &
Stewart, 2013). It possesses rich switching dynamics which
make it a suitable element to mimic the functions of neurons
and synapses in the biological neural network (S. Chen et al.,
2023). Additionally, it exhibits inherent capabilities such as
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computing-in-memory and analog computing, enabling the
realization of efficient parallel in-memory analog computing
systems (X. Yang, Taylor, Wu, Chen, & Chua, 2022).

Since HP Laboratory first presented the TiO2 memristor
model (Biolek, Biolek, & Biolkova, 2009), there emerged
various physical and mathematical memristor models such as
metal-oxide memristor model (Prezioso et al., 2015), VTEAM
model (Kvatinsky, Ramadan, Friedman, & Kolodny, 2015),
etc. But these models cannot well describe the informa-
tion integration or weight plasticity of neurons or synapses
in biological neural networks (Wang, Hong, & Wang, 2019).
Therefore, a non-volatile memristor (NVM) model is used
(Z. Chen, Zhang, Wen, Li, & Hong, 2021) in our work, which
matches the conductive property of the AgInSbTe memristor
(Li et al., 2014). Compared with the above memristor mod-
els, the NVM model can be used to mimic synaptic behav-
ior based on resistance plasticity, and can also simulate be-
haviors of neurons such as information integration and filter-
ing by using memory and threshold features. Thus, by refer-
ring to the structure and mechanism of the biological neural
network, this NVM model is beneficial for simulating corre-
sponding bionic functions in the following decision-making
circuit, while also providing efficient in-memory analog com-
puting capability. Of course, other memristor models with
similar functions as above are also suitable for the design of
our circuit. The i-v relationship of this NVM model can be
described as the following (Z. Chen et al., 2021):

v(t) = (Roff − x ·△R) · i(t), (1)

where the state variable x is a normalized width of the
conducting layer, whose derivative is matched to memris-
tor current-voltage data, and its range is [0, 1]. In addition,
△R=(Roff-Ron), Roff and Ron indicate the maximum resistance
and minimum resistance of the memristor, that is, the bounds
of device resistance. And the corresponding state variable is
x=1 and x=0. Therefore, the derivative of the state variable x
can be expressed as follows:

dx
dt

=

kon ·△R · i(t) · f (x), v(t)> von,
0, voff ≤ v(t)≤ von,
koff ·△R · i(t) · f (x), v(t)< voff,

(2)

f (x) =
{
(aon · (1− x))pon , v(t)> 0,
(aoff · x)poff , v(t)≤ 0, (3)

where f (x) is a speed adaptive state variable function. von and
voff represent positive and negative threshold voltages, only
when the applied input voltage meets the threshold condition,
the state of the memristor will be changed. aon, aoff, pon and
poff are scaling parameters, which determine the indirect ef-
fect drift speed. kon and koff represent the average ion mobility
of oxygen vacancies, similar to µv in HP model (Biolek et al.,
2009).

Based on the roles of above parameters in NVM model and
the functions to be realized in our decision-making circuit, the
parameter settings of NVM model are shown in Table 1. The
detailed uses of these two kinds of parameter settings of NVM

Table 1: The Parameter Settings of NVM Model
Parameters aon aoff kon koff pon poff Von(V ) Voff(V ) Ron(Ω) Roff(Ω)

Setting1 80 80 10 100 1.9 1.2 0.6 -0.6 1e2 5e3

Setting2 30 30 10 100 1.9 1.2 0.6 -0.6 1e2 5e3
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Figure 1: Memristances change of NVM model with two
kinds of parameter settings. The orange and yellow curves
indicate the change of memristances based on the parameters
of Setting1 and Setting2 in Table 1 respectively. The blue
curve represents the pulse that applied to the memristor.

model in Table 1 will be introduced in the following section.
The memristance change curves of NVM model under param-
eter settings in Table 1 are shown in Figure 1. When the mem-
ristor is applied to a positive pulse that satisfies the threshold
condition voltage (Von), the resistance of the memristor starts
to drop and stabilizes when it reaches Ron. After that, a neg-
ative pulse that satisfies the threshold condition (Voff) is ap-
plied at 5µs, and the resistance of the memristor begins to rise
to Roff to stabilize. Therefore, the resistance of memristor can
be written to an appropriate value by controlling the duration
of the applied input pulse across the memristor. The orange
and yellow curves in Figure 1 correspond to the parameters
of Setting1 and Setting2 in Table 1 respectively, which reflect
that different parameter settings can change the memristance
change rate of the memristor, and can be used to realize cor-
responding functions in the following circuit.

Memristor-based Bionic Circuit Design
In real-life driving, drivers can quickly decide how to avoid
obstacles based on their perceptions and past experiences.
Inspired by this scenario and functionality, we have imple-
mented a memristor-based circuit based on the self-aware
computational framework (Lewis et al., 2015). This circuit
can adaptively learn and make reasonable decisions based
on the corresponding perception information, guiding the car
to successfully avoid obstacles. The scenario schematic and
specific circuit are shown in Figures 2-4.

In the scenario depicted in Figure 2, we have set up a
task where a smart car equipped with decision-making circuit
modules enters a circular area and needs to make decisions
based on distance information perceived by the front sensor.
The smart car controls actions such as advancing, reversing,
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Figure 2: The schematic of the scene for a smart car ob-
stacle avoidance navigation (Experiment 1). The smart car
is equipped with decision-making circuit modules, so as to
make decisions adaptively based on the corresponding per-
ception information. The circuit implementation is shown in
Figure 3, it can adaptively learn and make reasonable deci-
sions based on the perceived distance information between
car and obstacle, thereby guiding the car to navigate out of
the circular area.

and changing direction in order to gradually navigate out of
the circular area. Specifically, once the smart car enters the
circular region, it will first be guided to move forward. Its
front distance sensor continuously detects the distance to the
obstacle ahead. When the smart car is about to hit the circu-
lar wall, it will first be guided to back up a certain distance,
then the steering gear will control the car’s direction to make
it rotate counterclockwise by a certain angle. After this, the
drive will continue to guide the smart car to move forward.
This cycle repeats until the car exits the circular area.

As shown in Figure 3, the overall decision-making circuit
is designed based on the self-aware computational framework
(Lewis et al., 2015). Modules 1-5, highlighted in dashed
boxes of different colors, represent modular circuits inspired
by corresponding elements of the framework. The stimulus
awareness element (i.e., inspiring the design of Module 1) is
modeled after the dendritic neuron structures in Biological
Neural Networks (BNNs), which is used to filter, integrate,
and process analog signals from external sensors into spik-
ing signals circulating within the system. The time aware-
ness element (i.e., inspiring the design of Module 4) is based
on soma/axon structures in BNNs, performs spatio-temporal
fusion of external and internal feedback information. This
enables the system to learn from historical events and pre-
dict future occurrences. The interaction awareness element
(i.e., inspiring the design of Module 2) draws inspiration from
synapse structures in BNNs, processes external and internal
feedback information using brain-inspired learning rules. The
self-expression element (i.e., inspiring the design of Module
3) generates intelligent decision outputs based on task objec-
tives and the processed information from previous elements,
aided by external processors. It is inspired by neuron struc-

Figure 3: The schematic of the memristor-based decision-
making circuit. Inspired from the self-awareness in psy-
chology, the overall design of our circuit follows the self-
aware computational framework (Lewis et al., 2015). Mem-
ristors M1 and M2, through collaboration with their respec-
tive cascaded modules, simulate functions akin to biological
dendritic neurons and synapses. This enables the circuit to
achieve the required bionic functionalities with a concise cir-
cuit structure and efficient in-memory analog computing. In
this way, a bionic habituation learning mechanism can be eas-
ily introduced. That is, by adjusting the parameter settings
of M1 and M2, the circuit can enter a state of habituation
learning, resulting in more intelligent navigation trajectories
as shown in Figure 4.

tures in BNNs. The internal actuator element (i.e., inspir-
ing the design of Module 5) processes signals from the self-
expression element and feeds them back to the other three el-
ements/modules to complete system-level tasks, functioning
similarly to synapse structures in BNNs.

Memristors M1 and M2 are used to simulate functions sim-
ilar to biological dendritic neurons and synapses respectively.
When combined with related modules, they enable the circuit
to process information, learn, and make decisions. This is
achieved through a concise circuit structure and efficient in-
memory analog computing. In addition, we also introduced
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Figure 4: The schematic of the scene for a smart car obstacle
avoidance navigation (Experiment 2). The habituation learn-
ing mechanism in there is introduced, which can more intel-
ligently guide the smart car to drive out of the circular areas.
In other words, after executing several cycles of “forward-
backward-turn” operations, it appears to realize that it is in a
circular area. As a result, the car no longer explores along the
wall but instead reverses for a shorter distance and turns at a
larger angle, thereby quickly exiting the circular area.

a bionic habituation learning mechanism (Boisseau, Vogel, &
Dussutour, 2016) in the circuit. This means that by adjust-
ing the parameter settings of the memristors M1 and M2, the
circuit can enter a state of habituation learning easily. The ha-
bituation learning posits that organisms will gradually adapt
to repeated similar stimuli, becoming less sensitive than when
they first encountered such stimuli. Specifically, we take the
signals from the distance sensor as the circuit’s input (i.e., INd
signal in Figure 3). When the smart car continuously checks
the distance while navigating around the circular area, the cir-
cuit repeatedly receives similar stimuli. With the introduction
of habituation learning, the circuit’s output gradually reflects
this habituation to the input information, that is, the circuit’s
output (i.e., OUT signal in Figure 3) will gradually decrease.
Since we control the car’s backing distance and turning angle
based on the strength of the circuit’s output signal, the intro-
duction of habituation learning will cause the corresponding
output signal strength to gradually decrease when the circuit
repeatedly receives similar stimuli. As a result, the car’s tra-
jectory during circular navigation will become more intelli-
gent, as shown in Figure 4.

The circuit schematic shown in Figure 3 involves three dis-
crete components: memristors, transistors, and resistors. The
memristors used in the circuit are the NVM model mentioned
in above section, where the parameter setting for the mem-
ristor M1 is specified as Setting1 in Table 1, and for M2 as
Setting2 in Table 1. The introduction of habituation learn-
ing mechanism by adjusting the parameter settings of mem-
ristors M1 and M2 primarily involves tuning the parameters
Von, Voff, etc., as indicated in Table 1, which leads to cor-
responding changes in memristance. The specific parameter
settings should be adjusted based on the desired degree of ha-

bituation learning and the current state of the circuit, among
other circuit factors. The transistor models primarily consist
of TN (N-channel enhancement type, e.g., 2N7000) and TP
(P-channel enhancement type, e.g., 2N6806). The remain-
ing components are resistors, whose parameter settings are
determined based on the desired computational functions to
be implemented. These functions mainly include IPO (In-
verse Proportional Operation), ADDER (Addition Operation),
COMP (Voltage comparator), and others shown in Figure 3.
These functions are achieved through the collaboration be-
tween transistors and resistors, which are utilized to imple-
ment the corresponding peripheral circuits to assist the rele-
vant memristor-based circuit modules in performing the re-
quired bionic functions. Additionally, the parameter settings
of resistors in Figure 3 also consider the resistance range of
the associated memristors, compatibility with transistor com-
ponents, and overall power consumption of the circuit.

Experimental Result and Analysis
We first conduct Experiment 1 without introducing the habit-
uation learning mechanism into our implemented decision-
making circuit. As shown in Figure 2, a smart car enters a
circular area and needs to navigate and avoid obstacles under
the guidance of the equipped decision-making circuit mod-
ules in order to exit the circular area. Assuming the diameter
of this circular ring is 10 meters, if we follow conventional
thinking (i.e., without introducing the habituation learning
mechanism), the car will adaptively navigate and avoid ob-
stacles along the path shown in Figure 2.

Specifically, as the car starts moving, the distance sensor
mounted on the front of the car continuously detects distance
information. When it reaches the predefined threshold (i.e.,
the distance between the car’s front and the circular wall is
smaller than our defined safety distance), the sensor gener-
ates a fixed-duration spiking pulse signal (as shown in the
small figure on the right of the upper subgraph in Figure 5(a))
to engage the car’s motor and apply brakes, thus preventing
the car from colliding with the circular wall. Simultaneously,
this spiking pulse signal is input to the equipped decision-
making circuit for processing. Based on the output signal of
the circuit (as shown in the lower subgraph in Figure 5(a)),
the car’s motor controls the car to reverse a corresponding
distance, and after completing the backward movement, the
circuit further controls the steering servo to turn the car at the
appropriate angle. This completes the first round of “forward-
backward-turn” actions.

Subsequently, the distance sensor of the car is reset, the
spiking pulse signal disappears, and the car’s motor contin-
ues to control the car to move forward under the guidance
of the equipped decision-making circuit. The process repeats
the similar “forward-backward-turn” actions of the first round
until the car successfully exits the circular area. As shown in
the lower subgraph in Figure 5(a), we can observe that the
output intensity generated by our circuit is similar every time
it receives a spiking pulse signal from the distance sensor.
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Figure 5: The experimental results of the decision-making
circuit for the scene of the smart car avoidance navigation.
(a). The results of Experiment 1, where the habituation learn-
ing mechanism is not introduced in the circuit. (b). The re-
sults of Experiment 2, where the habituation learning mech-
anism is introduced in the circuit. It can be observed that
due to the introduction of habituation learning, our circuit
gradually exhibits habituation to similar input signals INd
after receiving them repeatedly, i.e., the output signal OUT
strength of the circuit gradually decreases as shown in (b).
(c). Adjusting the parameters of M1 and M2 allows the circuit
to incorporate a habituation learning mechanism for smarter
decision-making. With this mechanism, M2’s memristance
decreases, causing M1’s memristance to increase and sig-
nal output strength to diminish, enabling intelligent, energy-
efficient car movement. Without it, M2’s memristance re-
mains unchanged, leading to conventional movement deci-
sions.

This is because habituation learning was not introduced in
our circuit for Experiment 1. Thus, even if the signal is simi-
lar each time, the circuit responds to it with the same intensity

Figure 6: The navigation data from Experiment 1 (its nav-
igation trajectory shown in Figure 2) and Experiment 2 (its
navigation trajectory shown in Figure 4). According to the
statistical results, it can be observed that both sets of exper-
iments are capable of making decisions based on the corre-
sponding input information and successfully navigating the
car out of the circular area. The difference lies in that, in Ex-
periment 2, due to the introduction of habituation learning,
the car can be able to exit the circular area in just 4.5 cycles,
which is a 58.82% reduction compared to the 15.5 cycles re-
quired in Experiment 1, which demonstrate a more efficient
and reasonable intelligent decision-making.

as it did when it received the signal for the first time. Con-
sequently, under the guidance of such output signals, the car
backs up the same distance and turns at the same angle each
time, resulting in a trajectory as shown in Figure 2. In our
experiments, we normalized the range of the output signal
OUT to be between 0V and 1V. Based on the magnitude of
the output signal, starting from 1V, the distance for the car
to reverse decreases by half compared to the previous reverse
distance for every 0.1V reduction in the output signal (the ini-
tial reverse distance for the car is set to 1.5m). Similarly, the
angle for the car to turn in place increases by double com-
pared to the previous turning angle for every 0.1V reduction
in the output signal (the initial turning angle for the car is set
to 15◦).

Next, we conduct Experiment 2 by introducing the habit-
uation learning mechanism into our decision-making circuit.
The experimental results are shown in Figures 4 and 5(b).
From Figure 5(b), it can be observed that due to the introduc-
tion of habituation learning, our circuit gradually exhibits ha-
bituation to similar input signals after receiving them repeat-
edly. This means that the output signal intensity of the circuit
gradually decreases with each repetition of the received sig-
nal, instead of producing similar intensity output as in the
previous Experiment 1 where the circuit did not incorporate
habituation learning. Therefore, based on the output signal
OUT shown in Figure 5(b) and according to the rules we
have set for the reverse distance and turning angle, the car
follows the trajectory depicted in Figure 4. It can be observed
that the smart car, as if possessing self-awareness, after a few
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rounds of “forward-backward-turn” operations, seems to re-
alize that it is in a circular area. As a result, it no longer ex-
plores paths along the walls, but instead reverses for a shorter
distance and turns at a larger angle to quickly exit the cir-
cular area. The reason for these results is precisely due to
the memristors in our circuit. As shown in Figure 5(c), by
adjusting the parameters of M1 and M2, our circuit can incor-
porate a habituation learning mechanism to facilitate smarter
decision-making. That is, after introducing the habituation
learning mechanism, the memristance of M2 gradually de-
creases during the process. This, in collaboration with other
circuit modules, causes the memristance of M1 to gradually
increase. The increase in M1’s memristance leads to a gradual
reduction in signal output strength, enabling more intelligent
and energy-efficient decisions regarding the movement of the
car. Conversely, without the habituation learning mechanism,
the memristance of M2 remains unchanged throughout the
process and does not affect M1’s memristance and the sig-
nal strength output. Thus, the decision-making regarding car
movement remains conventional.

We statistically analyzed the driving data from Experiment
1 and Experiment 2, as shown in Figure 6. It can be seen that
by introducing the habituation learning mechanism into the
circuit, the adaptive decision-making behaviors become more
efficient and reasonable. That is, in Experiment 1, the circuit
is able to make adaptive decisions based on the correspond-
ing input information and successfully navigate the car out
of the circular area. However, in Experiment 2, the car only
required 4.5 cycles to exit the circular area due to the incor-
poration of habituation learning, which is a 58.82% reduction
compared to the 15.5 cycles in Experiment 1. This demon-
strates that such adaptive decision control is more intelligent
and resembles human-like decision-making behavior.

In addition, in terms of computational speed during the
decision-making process, it can be seen from Figure 5 that
the execution time for each cycle is 0.2µs. It follows that our
circuit can make decisions within microseconds. The primary
factor determining the decision-making speed is the operat-
ing frequency of the memristor-based circuit. In our experi-
ments, the circuit operates at a frequency of 50MHz, enabling
it to make decisions within microseconds. The read and write
speeds of the memristor determine the operating frequency
of the circuit. That is, the faster the read and write speeds,
the higher the frequency at which the circuit can operate, al-
lowing for quicker and more effective responses (Choi et al.,
2016).

In terms of hardware overhead and power consumption, we
estimated them by counting the number of the main compo-
nents used in our circuit (Shi, Minku, & Yao, 2022). From
Figure 3, it can be seen that approximately 92 two-terminal
components (including memristors, resistors, and transistors)
are needed in the circuit. Assuming each two-terminal com-
ponent has a size of 10 nm (nanometre) (Shi et al., 2022), the
area of one component would be about 100 nm2. Therefore,
92 × 100 nm2 = 0.0092 (µm2) (square microns), so we can

see that the area of this system is roughly 0.01µm2. More-
over, according to the power measurement data of the circuit
simulation platform, by calculating the average power con-
sumption of two-terminal components like memristors, tran-
sistors, and resistors in the circuit, it can be estimated that the
average power consumption of the entire circuit is approxi-
mately 1.05mW. In general, it can be observed that the hard-
ware overhead of our circuit is on the order of square micron
and the power consumption is on the order of milliwatt, indi-
cating good hardware efficiency.

Conclusion
In this work, based on a self-aware computational framework,
we have effectively mapped memristor-based circuit design
with biomimetic module simulation, which can achieve a
bionic circuit with adaptive decision-making capabilities.
When this circuit was applied to a simulated obstacle avoid-
ance navigation scenario, it was found to not only make rapid
and effective adaptive decisions based on current information
but also to introduce a bionic habituation learning mechanism
by adjusting circuit parameters, thereby enabling more ef-
ficient and reasonable intelligent decision-making. Further-
more, through hardware overhead and power consumption
analysis, our circuit exhibits hardware-friendliness. In the
future, we will further optimize the performance of our cir-
cuit, so as to realize a larger scale and higher performance
autonomous decision-making hardware system.
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