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Abstract 

The continuous growing demand for water, prolonged periods of drought, and climatic uncertainties attributed 

mainly to climate change mean surface water reservoirs more than ever need to be managed efficiently. Several 

optimization algorithms have been developed to optimize multi-reservoir systems operation, mostly during 

severe dry/wet seasons, to mitigate extreme-events consequences. Yet, convergence speed, presence of local 

optimums, and calculation-cost efficiency are challenging while looking for the global optimum. In this paper, 

the problem of finding an efficient optimal operation policy in multi-reservoir systems is discussed. The 

complexity of the long-term operating rules and the reservoirs’ upstream and downstream joint-demands 

projected in recursive constraints make this problem formidable. The original Coral Reefs Optimization (CRO) 

algorithm, which is a meta-heuristic evolutionary algorithm, and two modified versions have been used to 

solve this problem. Proposed modifications reduce the calculation cost by narrowing the search space called a 

constrained-CCRO and adjusting reproduction operators with a reinforcement learning approach, namely the 

Q-Learning method (i.e., the CCRO-QL algorithm). The modified versions search for the optimum solution in 

the feasible region instead of the entire problem domain. The models’ performance has been evaluated by 

solving five mathematical benchmark problems and a well-known continuous four-reservoir system (CFr) 

problem. Obtained results have been compared with those in the literature and the global optimum, which 

Linear Programming (LP) achieves. The CCRO-QL is shown to be very calculation-cost-effective in locating 

the global optimum or near-optimal solutions and efficient in terms of convergence, accuracy, and robustness. 
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1. Introduction 

Reservoirs are usually designed to serve multiple users: urban, environmental, industrial, agricultural, and 

hydropower. Optimizing a reservoir’s operation while considering the quantitative flow characteristics and 

water demands along with climatic conditions is a complex process that deals with several parameters. Adding 

these parameters to long-term planning and management would result in a variety of decision criteria and 

objective functions that include hundreds of variables and constraints.  

In a multi-reservoir water supply system, joint operating rules should address the total release from the 

system and the amounts to be released from each reservoir in all periods according to the reservoir’s upstream 

and downstream demands. This optimization problem in water resources systems is too complex to be solved 

using classical optimization methods. With dimensionality and non-linearity as the primary causes of 

complexity, researchers have now used heuristic optimization methods to derive policies that best serve 

multiple water uses and help identify the tradeoffs between various objectives. Since classical optimization 

approaches are limited in managing search space structure, modern meta-heuristic methods have been the core 

of recent research dealing with “hard” optimization problems. For example, bioinspired algorithms have been 

developed that use the aspects of natural evolution, based on the continued survival of the fittest individuals, 

to find an optimal or near-optimal solution. 

Ehteram et al. (2017a, b) applied the Shark Algorithm and a new hybrid algorithm by combining the GA 

with the Krill Algorithm to maximize the generated hydropower and water supply benefits in four-reservoir 

and ten-reservoir benchmark systems [16,17]. Samadi-koucheksaraee et al. (2019) applied a Gradient 

Evolution (GE) algorithm to optimize single- and multi-reservoir systems. GE is employed to optimize several 

case studies demonstrating the proposed method’s superior ability [41]. Mohammadi et al. (2019) applied the 

TOPSIS technique to compare the genetic algorithm’s performance with a Hybrid Whale-Genetic Algorithm 

(HWGA) for optimizing multi-reservoir systems, which shows the advantage of the hybrid method over GA 
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and Whale Optimization Algorithm (WOA) alone [27]. In the most recent studies [7,26], a constrained version 

of the Improved Artificial Bee Colony (IABC) algorithm and a hybrid Cellular Automata-Simulated Annealing 

(CA-SA) method implemented to optimize reservoir operation and hydropower operation, respectively. Both 

proposed methods show relative improvements in benchmark problems and real-world case studies. Yet 

evolutionary optimization algorithms significantly contribute to flood control and susceptibility assessment 

[13,29] and uncertainty assessment methods [4,5].  

A wide variety of meta-heuristic methods have been proposed and investigated since they are approximate 

and usually non-deterministic. However, meta-heuristic algorithms do not guarantee a globally optimal 

solution, especially in certain classes of problems. As such, further approaches are being investigated, which 

may provide a sufficiently good solution to an optimization problem, especially for complex problems for 

which limited computational capacity is available [44]. 

As a novel bio-inspired algorithm, the Coral Reefs Optimization (CRO) algorithm was first introduced in 

2013 by Salcedo-Sanz et al. [34,37]. This new method has been used to solve several continuous and discrete 

benchmark problems and practical ones.  

Yang et al. (2016) reduced the prediction time and obtained better performance for training original ELM 

by hybridizing Differential Evolution (DE) with CRO [50]. Salcedo-Sanz et al. (2017) proposed the CRO with 

the substrate layer (CRO-SL) as a competitive co-evolution algorithm to control structures’ vibration via tuned 

mass dampers. This approach provides benefits by exploiting the combination of different types of searching 

mechanisms [32]. Some recent research has improved the CRO’s efficiency using hybridizing techniques to 

modify exploration and exploitation abilities. Most of them have focused on CRO-SL as a co-evolutionary 

algorithm [9,23,31,43]. Some others have combined CRO with: game theory [18], statistical approaches [14], 

simulated annealing [48], and memetic strategy [15], while some are still using the original version of CRO 

[3,6,19].  
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An expanding list of the CRO algorithm applications on top of generating reliable results in various fields 

reveals its potential capability in water resources optimization problems. At the same time, the proposed 

modifications are another confirmation of the correctness of the No Free Lunch (NFL) theorems in search [47] 

and optimization [46] problems. While almost all previous studies have focused on problem-solving methods, 

current research has also attempted to address how to describe the problem mathematically. 

This study is the first to apply the CRO algorithm to solve water resources system optimization-problems 

to the best of the authors’ knowledge. This work investigates the CRO algorithm’s effectiveness in reservoir 

operation problems by solving a hypothetical multi-reservoir system. Two new modifications to the algorithm 

are proposed to reduce the calculation cost by narrowing the search space when the algorithm deals with 

recursive equations. Moreover, the reproduction operators have adjusted by applying a reinforcement learning 

approach (i.e., the Q-Learning method). This method can improve solutions in terms of convergence, accuracy, 

and calculation costs. The proposed model’s performance was investigated by solving five mathematical 

benchmark problems and applying them to a multi-reservoir system. 

2. Methodology 

2.1. Coral Reefs Optimization (CRO) model description 

The CRO is a novel meta-heuristic search approach based on coral reef formation and reproduction [40]. It 

simulates different types of corals reproduction (i.e., internal/external and sexual/asexual) and reef formation, 

including competition between new corals to settle in the reef and depredation of the weak ones.  

The algorithm is based on a coral reef’s artificial modeling, (Λ) consisting of an M×N square grid. Each 

square (i,j) can allocate a coral (Ξi,j), representing a possible solution to the optimization problem at hand. The 

primary reef forms by assigning some squares in Λ to be occupied by corals that are random solutions to the 

problem, and some other squares in the grid to be empty where new corals (polyps) in the next generations can 

freely settle and grow [34,35]. 
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Each coral is associated with a function that denotes its health status, indicating the fitness of the solution 

at hand (𝑓(Ξ𝑖,𝑗): I   ℝ). The reef will progress if better corals or fitter solutions outlive the inferior ones. In 

iterative-based generations, new corals reproduce by sequentially applying several operators until a given stop 

criterion is met, for instance, a maximum number of iterations or a maximum number of objective function 

evaluations [40]. Such operators are used for modeling sexual reproduction (broadcast spawning and 

brooding), asexual reproduction (budding), and polyps depredation. 

2.1.1. Broadcast spawning (External Sexual Reproduction, ESR) 

The ESR operation consists of the following steps [30,36]: 

1. At a given step k of the reef formation phase, a fraction of the existing corals is selected uniformly at 

random to be broadcast spawners (Fb). Corals that are not selected for broadcast spawning will reproduce 

later via brooding during the algorithm execution.  

2. Each of the couples permitted to be parents will breed one or two coral larvae (depending on the 

operator) by sexual crossover. The couple selection can be either uniform random or any fitness 

proportionate selection approach. 

2.1.2. Brooding (Internal Sexual Reproduction, ISR) 

The fraction of corals that will reproduce via brooding is 1-Fb. The modeling consists of forming a coral 

larva by a random mutation in the brooder coral (i.e., self-fertilization in hermaphrodite corals). The produced 

larvae are then released into the water as well as the offspring generated in step 2 [33]. 

2.1.3. Larvae setting 

Once all larvae are formed at step k either through broadcast spawning or by brooding, they will try to settle 

and grow in the reef, based on their health function. The struggle for survival starts when each larva tries to 

settle on a random square (i,j) of the reef. If this square is empty, the coral grows therein independently of the 

value of its health function. Otherwise, when the given position is already occupied, the new larva will set if it 
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is healthier than the existing coral. Each larva has a limited chance to compete with the existing ones. After 𝜅 

unsuccessful attempts, it will be discarded and eliminated from the population [34]. 

2.1.4. Budding or fragmentation  

In this asexual reproduction process, a small fraction of healthier corals (Fa) duplicates itself and tries to 

settle in a different part of the reef, following the configuration process described in step 2.1.3. A predefined 

maximum number (μ) of equal corals are allowed in the reef. Mutations are also introduced with probability 

Pa to obtain variability [40]. 

2.1.5. Depredation 

A small number of corals (applying a very small probability Pd, exclusively to a fraction Fd of the least fit 

corals) drops at the end of each iteration k for the sake of liberating space in the reef for the next generation. 

 Figure 1 illustrates the flowchart of the CRO algorithm, along with the operators described above. External 

sexual reproduction (i.e., broadcast spawning process) has the primary role of exploration, whereas internal 

sexual reproduction (i.e., brooding) is essential for local search. The budding (or asexual reproduction) ensures 

that the best solutions replicate and span over the reef; so, this process facilitates the exploitation characteristic 

of the CRO algorithm while maintaining elitism. 
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Figure 1: Flow diagram of the proposed CRO algorithm [40] 

2.2. CRO evaluation in Continuous Benchmark Problems (CBP) 

In applied mathematics, test functions, known as artificial landscapes, are used to evaluate optimization 

algorithms’ characteristics. This includes the convergence rate, precision, robustness, and general performance. 

Five well-known continuous benchmark functions (Table 1) have been applied for evaluating the proposed 

CRO algorithm compared to other evolutionary algorithms [21]. Figure 2 illustrates the unimodality of all 

functions, while the f4 and f5 have many local minima. For the sake of visualization, a fixed number of 

variables (n=2) has been applied for f2 ~ f5. Table S.1 in Appendix A (Supplementary Information) illustrates 

all CRO parameters’ values and the operators following the guidelines provided by Salcedo-Sanz et al. (2014). 

The parameters controlling the CRO model were identical to those in the previous study [40]. The number of 
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function evaluations used was the same for all compared algorithms: 20,000 in f1, f2, f4, and 10,000 in f3 and f5. 

The number of function evaluations (NFE), as a hardware-independent index, was used to evaluate and assess 

the computational cost (effort) and the complexity in different CRO versions. 

Figure 2: The five continuous mathematical functions in a 3-dimensional coordinate system (n=2) 

Due to the non-deterministic nature of the studied algorithms, comparisons should be made on a large set 

of results obtained from each algorithm’s independent executions. The Kruskal-Wallis test can validate the 

statistical significance of the obtained results by different algorithms. It is a non-parametric method as an 

extension to the Mann–Whitney U test for testing whether samples originate from the same distribution [45]. 

At each simulation, 30 executions of each algorithm are launched to obtain well-sampled performance statistics 

(best, average, and standard deviation for all iterations).  

The original version of CRO takes advantage of Gaussian and Cauchy mutations (G+C) [40]. In this 

research, a simulated binary crossover (SBX) operator, which uses polynomial probability distribution (𝒫) [12] 

is studied for brooding of the corals. 
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Table 1. Summary of the CBP functions considered in the current study [51] 

f1: Rosenbrock 𝑓(𝑥) = 100(𝑥1
2 − 𝑥2)2 + (1 − 𝑥1)2  2 [−2.048,2.048]𝑛  = 0

f2: Schwefel 2.22 𝑓(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

+ ∏|𝑥𝑖|

𝑛

𝑖=1

 30 [−10,10]𝑛  = 0

f3: Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 30 [−100,100]𝑛  = 0

f4: Rastrigin 𝑓(𝑥) = 10. 𝑛 + ∑[𝑥𝑖
2 − 10. cos(2𝜋𝑥𝑖)]

𝑛

𝑖=1

 10 [−5.12,5.12]𝑛  = 0

f5: Quartic 𝑓(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1

 30 [−1.28,1.28]𝑛  
= 0 + 𝑟𝑎𝑛𝑑

 

 

𝒫(𝛿) = 0.5(𝜂 + 1)(1 − |𝛿|)𝜂            𝛿 ∈ (−1,1) (1) 

𝛿 =  {
(2𝑢)

1
𝜂+1 − 1,                𝑖𝑓 𝑢 < 0.5

1 − [2(1 − 𝑢)]
1

𝜂+1 ,    𝑖𝑓 𝑢 ≥ 0.5

 (2) 

𝑐 = 𝑏 +  𝛿∆𝑚𝑎𝑥          𝛿 ∈ (−1,1) (3) 

Where 𝒫(𝛿) is the polynomial probability distribution, 𝛿 is the perturbance factor, u is a random number in 

the range (0,1), c is the mutant coral, b is the brooder, and Δmax is the maximum permissible range for decision 

variable. The polynomial distribution produces neighbors by keeping its mean at the current value and its 

variance as a function of the distribution index 𝜂. A large value of 𝜂 makes brooding more exploitative, and a 

small value of 𝜂 makes it more explorative [11]. 

2.3. Multi-reservoir benchmark problem 

Larson first formulated the hypothetical continuous four-reservoir (CFr) problem in 1968 [24] and later 

adopted by Heidari in 1971 [22]. The current benchmark problem is the one modified by Chow and Cortes-

Rivera (1974) [10] and resolved using differential dynamic programming by Murray and Yakowitz (1979) 

[28]. 
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As shown in Figure 3, the water resources system consists of four reservoirs controlling the flow in two 

streams, primarily for hydropower production and irrigation purposes. The reservoirs’ operation is subject to 

seasonal storage requirements for flood control, dictating the reservoirs’ maximum storage capacity and 

recreation and fish conservation requirements, imposing a minimum storage capacity. The objective is to 

maximize the total benefit (B) from the system over 12 months of operation periods defined as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐵 = ∑ ∑ 𝑏𝑟(𝑡) 𝑅𝑒𝑟(𝑡)

𝑇

𝑡=1

𝑅

𝑟=1

 (4) 

Where R is the total number of reservoirs, T is the total number of periods, 𝑏𝑟(𝑡) is the benefit function in 

period t for rth reservoir and 𝑅𝑒𝑟(𝑡) is releases in period t from reservoir r. The fundamental constraints include 

the continuity equation for each reservoir over each operating period t and defined as: 

𝑆𝑟(𝑡 + 1) = 𝑆𝑟(𝑡) + 𝑄𝑟(𝑡) + 𝑅𝐶𝑀𝑅×𝑅 𝑅𝑒𝑟(𝑡) (5) 

𝑅𝐶𝑀4×4 = [

−1 0 0 0
0 −1 0 0
0 1 −1 0
1 0 1 −1

] (6) 

Where 𝑆𝑟(𝑡) and 𝑆𝑟(𝑡 + 1) are storages in reservoir r at time t and t+1 respectively and 𝑄𝑟(𝑡) is the inflow 

volume at period t into reservoir r. Constraints on releases from the reservoirs and constraints on reservoir 

storage are: 

𝑅𝑒𝑟
𝑚𝑖𝑛(𝑡) ≤ 𝑅𝑒𝑟(𝑡) ≤ 𝑅𝑒𝑟

𝑚𝑎𝑥(𝑡)           𝑟 = 1, … , 𝑅 ; 𝑡 = 1, … , 𝑇 (7) 

𝑆𝑟
𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑟(𝑡) ≤ 𝑆𝑟

𝑚𝑎𝑥(𝑡)                   𝑟 = 1, … , 𝑅 ; 𝑡 = 1, … , 𝑇 (8) 

𝑆𝑟(1) =   𝑆𝑟
𝑖𝑛𝑖𝑡𝑖𝑎𝑙         𝑟 = 1, … , 𝑅  (9) 

𝑆𝑟(𝑇 + 1) =   𝑆𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

        𝑟 = 1, … , 𝑅 (10) 
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Where 𝑅𝑒𝑟
𝑚𝑖𝑛(𝑡), 𝑅𝑒𝑟

𝑚𝑎𝑥(𝑡), 𝑆𝑟
𝑚𝑖𝑛(𝑡), and 𝑆𝑟

𝑚𝑎𝑥(𝑡) are the minimum and the maximum release 

from/storage of reservoir r at time t, respectively. 𝑆𝑟
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑆𝑟

𝑡𝑎𝑟𝑔𝑒𝑡
 are the initial/target volume of the rth 

reservoir at the beginning of the operation period and the end of the operation period, respectively.  

Table 2: The monthly net inflows into reservoirs, maximum allowable reservoir storages, and benefits data of the CFr problem 

  Period 
Data Reservoir 1 2 3 4 5 6 7 8 9 10 11 12 

 

1 0.5 1 2 3 3.5 2.5 2 1.25 1.25 0.75 1.75 1 
2 0.4 0.7 2 2 4 3.5 3 2.5 1.3 1.2 1 0.7 
3 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 

 

1 - 12 12 10 9 8 8 9 10 10 12 12 
2 - 15 15 15 12 12 12 15 17 18 18 18 
3 - 8 8 8 8 8 8 8 8 8 8 8 
4 - 15 15 15 15 15 15 15 15 15 15 15 

 

1Hp* 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 
2 Hp 1.4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 
3 Hp 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1 
4 Hp & Irr** 2.6 2.9 3.6 4.4 4.2 4 3.8 4.1 3.6 3.1 2.7 2.5 

* Hydropower,  ** Irrigation 

 

Table 3: Constraint parameters ranges for the CFr problem 

 Minimum storage 

(unit) 

Initial storage 

(unit) 
Target storage 

(unit) 
Minimum release 

(unit) 
Maximum release 

(unit) 

Reservoir Smin Sinitial Starget Remin Remax 

1 1 6 6 0.005 4 
2 1 6 6 0.005 4.5 
3 1 6 6 0.005 4.5 
4 1 8 8 0.005 8 

 

The reservoirs connectivity matrix (RCM) describes how releases from upstream reservoirs accrue to 

downstream ones. Data required for modeling the system, such as inflows, reservoir storages, and constraints 

posed on the CFr problem, are presented in Table 2 and Table 3. Further details for this problem can be found 

in Murray and Yakowitz (1979) [28]. Since the reported value for global optimum varies in some literature 

[1,8,16,20], a linear optimization tool (with several release versions) via a couple of different coding 

approaches (Appendix A) has been applied to ensure that the coding syntax and the tool version do not affect 

the result when looking for the right global optimum point. 
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Figure 3: Schematic of the four-reservoir system 

 

2.3.1. Optimization model according to the problem variables 

Formulation of the reservoir operation, as an optimization problem, requires the selection of decision 

variables. Two different sets of decision variables can be considered in reservoir operation problems: storage 

volumes (𝑆) and release volumes (𝑅𝑒) at each period. These variables are bounded by the recursive continuity 

equation (5). In a recursive formula, each term is defined as a function of its preceding term(s). The process of 

recursion can be thought of as climbing a ladder. To get to each rung on the ladder, you must step on the 

previous rung, whether climbing up or down. Similarly, the two decision variables are both subject to box 

constraints defined by Eqs. (7)-(10). Therefore, Eq. (5) could be altered in terms of each decision variable, 

with respect to Eqs. (9) and (10), starting with the first time period or the last one. However, the selection of 

storage volumes as decision variables leads to easy enforcement of predefined storage volumes at the beginning 

and at the end of the operation period. By considering release volumes as decision variables, the constrained 

optimization approach performs much better due to the variable range reduction [1]. Therefore, the number of 

decision variables would be R×T as far as the release volumes are considered. The decision variables’ sequence 

to construct the trial solutions will be an R by T matrix as [Re1, Re2, …, ReT]R. 
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According to the search domain, two approaches have been studied to solve constrained optimization 

problems. The first is searching in a broader domain by applying a penalty method as the most common 

approach. This could be done by taking some of the constraints into account via adding a term to the objective 

function that prescribes a relatively high cost for violation constraints. In this approach, the search algorithm 

may offer not acceptable solutions in terms of violating constraints. However, the feasible direction method 

(primal direction method) works on the original problem by considering all restrictions via searching the 

feasible region for an optimal solution. Therefore, the search domain would be as narrow as possible. 

Formulating the problem and setting up the algorithm to deal with the feasible space is challenging, especially 

in non-convex optimization problems, like the one at hand. 

2.3.2. CFr operation using CRO algorithm with the penalty method 

All initial corals in the reef would be generated in the interval [𝑅𝑒𝑟
𝑚𝑖𝑛, 𝑅𝑒𝑟

𝑚𝑎𝑥] satisfying the corresponding 

constraint in Eq. (7) when using the penalty approach. During sexual reproduction, this range is similarly used 

to limit the reproduced larvae. For this purpose, each larva enters a procedure named larvae correction to apply 

the associated limitation by projecting the outbound solutions on edge. For those temporary solutions that 

violate the state variable’s constraints defined by Eqs. (8) and (10), a lower benefit allocates by the operation 

policy. This can be achieved by a penalty method in which the operation’s total cost is considered as the sum 

of the operation cost defined by Eq. (4) and a penalty cost defined as: 

𝐵′ = ∑ ∑ ∑ 𝑏𝑟(𝑡) 𝑅𝑒𝑟(𝑡) − 𝑃𝑡
𝑖(𝑟)

3

𝑖=1

𝑇

𝑡=1

𝑅

𝑟=1

 (11) 

𝑃𝑡
𝑖(𝑟) = 𝑔 × 𝑉𝑡

𝑖(𝑟), ∀𝑖 ∈ {1,2,3} (12) 

𝑉𝑡
1(𝑟) = {

𝑆𝑟
𝑚𝑖𝑛(𝑡) − 𝑆𝑟(𝑡) ;  𝑖𝑓  𝑆𝑟(𝑡) < 𝑆𝑟

𝑚𝑖𝑛(𝑡)

0 ;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 
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𝑉𝑡
2(𝑟) = {

𝑆𝑟(𝑡) − 𝑆𝑟
𝑚𝑎𝑥(𝑡) ;  𝑖𝑓  𝑆𝑟

𝑚𝑎𝑥(𝑡) < 𝑆𝑟(𝑡)

0 ;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

𝑉𝑡
3(𝑟) = {

|𝑆𝑟(𝑇 + 1) − 𝑆𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

| ;  𝑖𝑓  𝑆𝑟(𝑇 + 1) ≠ 𝑆𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

0 ;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (15) 

Where, 𝐵′ is the total penalized benefit function, 𝑃𝑡
𝑖(𝑟) is a penalty function related to constraints in Eqs. (8) 

and (10), 𝑉𝑡
𝑖(𝑟) is the violation function and, 𝑔 represents the penalty parameter with a large enough positive 

value to force the search into a feasible region. It doesn’t worth mentioning that the penalty term in Eq. (11) 

will be zero for feasible solutions. 

2.3.3. CFr operation using constrained CRO algorithm 

Search in a set of feasible solutions has been used in the PSO algorithm [1,2] by adapting velocity vectors, 

which makes keeping solutions inside the feasible-space easy. In contrast, the CRO algorithm belongs to a 

class of search methods (like genetic algorithms) in which the offspring solutions are constructed incrementally 

by recombination of old solutions. This can be a challenge for optimization problems with recursive constraints 

since constraints’ violation is very likely; hence, newly generated larvae should be modified based on all the 

constraint equations. For this purpose, a new set of bounds is constructed to initialize the reef considering the 

continuity Eq. (5) and storage volume constraints (8) at the end of the period t. Replacing Sr(t+1) from Eq. (5) 

in Eq. (8) leads to the following constraints for the release amount, assuming a known value of Sr(t) for storage 

volume at the beginning of period t:  

𝑆𝑟(𝑡) + 𝑄𝑟(𝑡) − 𝑆𝑟
𝑚𝑎𝑥(𝑡 + 1) ≤ 𝑅𝑒𝑟(𝑡) ≤ 𝑆𝑟(𝑡) + 𝑄𝑟(𝑡) − 𝑆𝑟

𝑚𝑖𝑛(𝑡 + 1) (16) 

Combining Eq. (16) with the original box constraint of (7) leads to the following constraints for the release 

volumes for period t. 

𝑀𝑎𝑥(𝑆𝑟(𝑡) + 𝑄𝑟(𝑡) − 𝑆𝑟
𝑚𝑎𝑥(𝑡 + 1) , 𝑅𝑒𝑟

𝑚𝑖𝑛(𝑡) )   ≤   𝑅𝑒𝑟(𝑡)   ≤ (17) 
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      𝑀𝑖𝑛 (𝑆𝑟(𝑡) + 𝑄𝑟(𝑡) − 𝑆𝑟
𝑚𝑖𝑛(𝑡 + 1) , 𝑅𝑒𝑟

𝑚𝑎𝑥(𝑡)) 

At the larvae correction step, the offspring corals should be examined for breached rates after reproductive 

operators have been applied through a local search. The treatment should be based on the bits of the solution 

string that caused the violation. For instance, if the last decision variable, Rer(12), did not preserve Eq. (10) 

(i.e., a violation in the final storage amount), the deviation will be distributed on previous variables due to their 

permitted space.  In the case of violations by an intermediate variable, the same process applies to antecedent 

variables. While letting the solutions thrive in the feasible space, these operators provide a proper local search 

(exploitation).  

This approach could achieve better solutions and improved convergence characteristics by reducing the 

search space size. Furthermore, it eliminates the problem of tuning the penalty parameter for better method’s 

performance. Since the Larvae Correction operator always produces permissible solutions, the constrained 

CRO’s search effort to converge to an optimal or a near-optimal solution is expected to be much smaller than 

other approaches where any value is allowed during the optimization process. 

2.4. Improving the CCRO algorithm using the Q-Learning method (CCRO-QL) 

Reinforcement learning is an area of machine learning focused on how learning agents should take actions 

in an environment to achieve a goal, such as maximizing cumulative reward. The agent, during its course of 

learning, experiences various situations in the environment (States). The agent in each state may choose an 

allowable action that may get a reward (or penalty). Over time, the agent learns to maximize these rewards to 

behave optimally at any given state. In problems where a model of the environment is not available or cannot 

be learned, model-free methods as an explicit trial-and-error algorithm should be used. “Q-learning is a model-

free reinforcement learning algorithm to learn the quality of actions telling an agent what action to take under 

what circumstances” [42]. Q-Learning uses Q-values (also called Action-Values) to improve the behavior of 

the learning agent iteratively. Q-Values, Q(S, 𝐴), is an estimation of how good it is to take action A at the state 
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S. This estimation will be iteratively computed using the Temporal Difference (TD) Update rule. The TD-

Update rule, which is applied at every time step of the agents’ interaction with the environment, can be 

represented as follows: 

Q(S, 𝐴) ← Q(S, 𝐴) + 𝛼(R+ 𝛾 max
𝐴′

Q(S′, 𝐴′) − Q(S, 𝐴)) (18) 

Where S is the agent’s current state, and A is the current action picked according to some policy. S′ is the next 

state where the agent ends up, 𝐴′ is the next best action to be selected using current Q-value estimation, and R 

is the current reward observed from the environment. γ is a parameter, 0 ≤ 𝛾 ≤ 1, called the discount rate that 

determines the present value of the future reward. α is a positive constant step-size parameter that influences 

the rate of learning. 

As was mentioned in section 2.3.3, the recombination of old solutions to build offspring solutions is not an 

effective strategy in recursive optimization problems since the constraints’ violation is common. If the operator 

used for the external sexual reproduction (ESR) is not carefully selected, the rate of change in larvae as a result 

of the larvae correction phase will be such that larvae will not benefit from their broadcast spawners, as if the 

crossover has led to a random offspring. Under such conditions, the exploitation part of the algorithm will be 

lost. As a solution to this issue, the authors proposed a hybrid method to make the exploitation phase more 

efficient using a machine learning approach. The authors believe that eliminating the ESR operator alongside 

upgrading the ISR operator using the Q-Learning method can improve the CRO algorithm’s exploitation 

efficiency. The aim is to select some bits purposefully in a brooder to participate in the ISR process instead of 

random selection. The brooding operator remains a polynomial probability distribution (Eq. (1)). Since the 

broadcast spawning operator is removed, all corals in the reef will enter the brooding stage in every iteration.  

Assume that each solution for the problem (i.e., water release amount) is a state (S). The possible actions 

are sets of some nominated bits out of a coral’s bits (4×12=48). For each coral, Q-Values is another 4×12 

matrix that indicates the importance of each bit in the solution’s matrix. The benefit rate in Table S.2 would be 
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a proper beginning action-values after the reef initialization. The agent is reward-motivated and will learn how 

to pick bits through feedback from the environment; hence, certain rewards (including penalties) and their 

magnitude are needed accordingly. The agent will receive a positive reward if the objective function is 

improved, ΔB, (i.e., total benefit in Eq.(4)); otherwise, it will be penalized for decreasing the total benefit. 

Accordingly, the reward can be defined as the normalized ratio of ΔB to the bit’s shift amount. Also, it should 

be noted that a high value for the discount factor (𝛾) captures the effective long-term award, whereas a low 

discount factor makes the agent consider an immediate reward.  

The tradeoff between exploration and exploitation is controlled by a policy called 𝜀, preventing possible 

overfitting during training. In an 𝜀-greedy policy, most of the time, the algorithm chooses an action with 

maximal estimated action-values. Yet with a small probability (𝜀), the action might be selected randomly. The 

values of α, 𝛾, and 𝜀 are mostly based on intuition and some based on hit and trial. Generally, all three should 

decrease over time because it builds up more resilient priors as the agent continues to learn. Figure 4 illustrates 

the pseudo-code of the CCRO-QL algorithm with different phases. 

Due to the interaction between the learning agent and its environment in terms of states, actions, and 

rewards, the CCRO-QL method uses the formal framework of Markov decision processes (MDP). This 

framework represents the artificial intelligence problem’s essential features, such as a sense of cause and effect, 

uncertainty and nondeterminism, and an explicit goal [42]. In CCRO-QL, all agents’ population learn 

according to a common policy; therefore, it can be considered multi-agent reinforcement learning. 

3. Hyperparameters optimization 

The conventional way to achieve hyperparameter optimization is to perform a grid search or a parameter 

sweep; an exhaustive search through a manually designated subset of the feasible space. In grid search, the set 

of trials is formed by assembling a discrete combination of possible values. In both approaches (CRO and 

CCRO), a two-stage grid search has been performed for the model operators and their parameters. In the first 



 

18 

 

stage, based on the CRO evaluation of mathematical test functions, three selection methods (i.e., roulette wheel 

selection, tournament selection, and uniform random selection) are used to choose broadcast spawners. Two 

conventional methods, geometric and arithmetic crossover operators, were investigated as well. Three well-

known probability distributions, the Gaussian, Cauchy, and polynomial distributions, were designated for the 

brooding operator. In the second stage, a search through a fine grid was performed for all parameters mentioned 

in Table S.1. Another full grid search under the CCRO-QL model was used to optimize the step-size and 

discount-rate parameters, applying the same principles. Table S.4 displays allowable ranges and the best values 

chosen for each parameter.  

4. Results and discussions 

4.1. CRO evaluation in mathematical test functions 

Table 4 displays the statistical performance metrics achieved by two different CRO versions (with 

Polynomial and Gaussian-Cauchy internal reproduction, respectively) in the benchmark functions. It also 

includes the results obtained with the PSO algorithm [40]. It is noteworthy that the polynomial mutation-

CRO(P) version can obtain better results than the others, while the Kruskal-Wallis test shows positive statistical 

significance in all CBP functions. This observation demonstrates that the CRO algorithm offers a satisfactory 

performance level in continuous optimization problems, which supports the results presented by Li et al. [25], 

Yang et al. [49], Salcedo-Sanz et al. [38–40]. Figure 5 shows the evolution of PSO solutions and the two CRO 

versions for two functions out of the five CBP. 

Table 4: Comparison of obtained results (mean ± standard deviation) from PSO and CRO in different CBP functions of the 30 runs 

2.27 ∙ 10−6 ± 2 ∙ 10−6  2.1 ∙ 10−4 ± 7 ∙ 10−4  1.24 ∙ 10−3 ± 3 ∙ 10−3 4.719 ∙ 10−3 ± 2.32 ∙ 10−3 2 ∙ 10−2 ± 1 ∙ 10−2 

2.29 ∙ 10−6 ± 1 ∙ 10−6  1.83 ∙ 10−3 ± 3 ∙ 10−4  1.3 ∙ 10−3 ± 2 ∙ 10−4 2.27 ∙ 10−6 ± 2 ∙ 10−6 2 ∙ 10−2 ± 9 ∙ 10−3 

1.55 ∙ 10−6 ± 4.2 ∙ 10−6  4.3 ∙ 10−142 ± 1 ∙ 10−141  6.8 ∙ 10−132 ± 3 ∙ 10−131 0 ± 0 1.4 ∙ 10−4 ± 1.3 ∙ 10−4 

+ + + + + 
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4.2. CRO evaluations in the CFr problem 

Except for the reef size, the CRO parameters and operators’ values are initialized based on the previous step 

results, as shown in Table S.1. Since the number of decision variables is n=48, the initial population is assumed 

to be about n×10. Therefore, the artificial coral reef initially consists of a square grid of 22×22 cells, depicting 

the maximum number of solutions available for evaluation per generation. The objective function’s optimal 

value (B) obtained from linear programming implemented by the Lingo 12.0, 14.0, 17.0, 18.0 [52] (linear 

optimization tool) equals 308.2915 for all versions, and coding syntax illustrated in Appendix A. This is the 

same value reported in [20], and it could be assumed as the final global optimum. It doesn’t worth mentioning 

that the obtained solutions (𝑅𝑒) from all executions were identical as well. 

Almost all recent studies that applied meta-heuristic methods to solve the CFr benchmark problem are listed 

in Table S.6. This table summarizes the proposed methods, the number of function evaluations, the average, 

and the best results obtained in each study. The exact values of the optimal decision variables (i.e., monthly 

release volumes of each reservoir) are not reported in the cited research. According to the presented diagrams, 

there are differences in values in some instances that may be due to the presence of several optimal solutions 

or the provided numbers’ decimal accuracy, while no clear evidence to distinct these states has been provided 

yet. 

4.2.1. CCRO in comparison to the original CRO 

Initial corals produced solely by considering Eq. (7) in the CRO, while in the constrained CRO (CCRO), 

all Eqs. (7)-(10) should be met. Both forward and backward methods can do modification of the generated 

larvae. In the forward method, with the primary assumption 𝑆𝑟(1) =   𝑆𝑟
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 in each reservoir, the answers 

are generated using the continuity equation and constraints (7) and (8). In the backward method, these steps 

are inverted with the initial assumption 𝑆𝑟(𝑇 + 1) =   𝑆𝑟
𝑡𝑎𝑟𝑔𝑒𝑡

 and rewriting Eq. (5) in terms of 𝑆𝑟(𝑡). To keep 
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the diversity, both forward and backward approaches were used based on a generated uniform random number. 

Table S.4 displays the minimum, maximum, and step size for each CRO control parameter.  

The best values obtained through hyperparameter optimization have been used for all CRO versions solving 

the CFr problem. The number of function evaluations was 300,000 in each run, gained by trial-and-error to be 

competitive with the lowest NFE in the literature review and to reach the correct global optimum. 

 

 𝜅 Fa ε

 

  Q(S, 𝐴) Q(S, 𝐴)

  R  ∅  





 Q(S, 𝐴) ε


R

            Q(S, 𝐴) ← Q(S, 𝐴) + 𝛼(R+ 𝛾 max
𝐴′

Q(S′, 𝐴′) − Q(S, 𝐴))
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

 𝜅




Figure 4: Pseudo-code for the CCRO-QL algorithm 
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         (b) 

 

Figure 5: Evolution of a) Rosenbrock and b) Quartic objective 

functions obtained by the PSO, CROG+C, and CROP 



 

21 

 

Table 5. Performance comparison of the proposed methods for the four-reservoir problem 

Model 

 

Run # 

Total benefit   
 

CRO CCRO CCRO-QL 
LP  

(Global solution) 

1 301.77 307.38 308.2886 308.2915 

2 303.49 307.16 308.2216  

3 302.40 307.42 308.2533  

4 303.93 307.63 308.2879  

5 302.98 307.14 308.2576  

6 301.78 307.41 308.2858  

7 304.71 307.40 308.2889  

8 301.51 307.10 308.2906  

9 302.85 307.24 308.2886  

10 301.38 307.27 308.2899  

Best 304.71 307.63 308.2906  

Mean 302.68 307.31 308.275  

STD 1.118 0.162 0.023  

p-value - 1.4 e -10 3.4 e -13  

Table 5 presents the statistical results obtained by all CRO versions (i.e., the original CRO algorithm, 

CCRO, and CCRO-QL) for ten different algorithms’ independent runs. The best and average benefit show that 

the CCRO results are much better than those of the original CRO. The CRO and CCRO converged to the best 

objective function values of 304.71 and 307.63, respectively.  

From Table 5, it can be deduced that CCRO is more robust than the original CRO because its STD value is 

seven times smaller than that of the CRO, which implies that the algorithm uncertainty decreased by taking the 

primal direction method. The p-value obtained from Student’s T-Test rejects the null hypothesis. Thus, there 

is a significant difference between the CRO results and the CCRO’s at the 99% confidence level. 

4.2.2. CCRO-QL Performance 

Statistics, including mean, standard deviation, and p-value in Table 5, depict that CCRO-QL outperforms 

other proposed methods. The agent learns to pick more effective bits in each step properly. In multi-agent 

reinforcement learning, the scenario in which all the agents try to maximize their own reward signal that they 

receive is known as a competitive setting. In this situation, conflicts of interest among the agents are likely, 
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implying that some agents’ proper actions are improper for others. That is why fixed hyperparameters (i.e., 

step-size, discount-rate, and 𝜀 probability) did better than adaptive ones in terms of converging to local 

minimums for the CFr problem. 

The best objective function obtained with the CCRO-QL method equaled 308.29 at two decimal accuracy, 

which is the same as the maximum global value achieved via linear programming (LP). Since the precise global 

optimum is guaranteed through linear programming, decimal accuracy is necessary to distinguish the local 

optimum. Figure 6 displays three different paths with an equal total benefit (B) at two decimal place accuracy, 

although two do not correspond to the global optimum. Figure 7 a and b compares the optimal release volume 

and storage volume, obtained using the CCRO-QL algorithm (with B =308.2906 and NFE=300,000) and those 

of the LP method. The fact that the constrained algorithm is a search method in the feasible region of the search 

space can be best illustrated by the convergence of the solutions shown in Figure 8. It is evident that both 

CCRO and CCRO-QL algorithms start with B above 275, while the CRO algorithm could produce this level 

of solution later in the search. The maximum and average results, respectively, with NFE100,000 were 

308.2628 and 308.0355, which is still reliable. The proposed method could obtain the exact global optimum 

(i.e., 308.2915) by performing 880,000 function evaluations. Table S.5 shows the release amount obtained by 

LP and CCRO-QL for the CFr problem, which has never been provided in the literature. As seen from the 

table, all decision variable values converge to those from LP. Therefore, it can be concluded that the CFR 

problem only has one global optimum (i.e., unimodal function), which is the same as a result obtained via LP. 

It should be noted that almost all literature results (Table S.6) as optimal have nearly the same decision-variable 

values according to the best fitness with two decimal places of accuracy. Yet, the results better than LP would 

be questionable since linear programming produces the final global optimum as a deterministic numerical 

method.  
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Figure 6: Three unequal solutions obtained from the CCRO-QL 

 

 
Figure 7: Comparison of the a) release volumes and b) storage volumes obtained using the CCRO-QL algorithm with the LP method 

 

 
Figure 8: Convergence curves of the total benefit for the CRO, CCRO, and CCRO-QL algorithm 
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5. Conclusions 

This paper has solved the continuous four-reservoir problem as a benchmark problem in surface water 

resources management. Three versions of a meta-heuristic algorithm have been used to tackle the problem, the 

so-called Coral Reefs Optimization algorithm that simulates reproduction and formation of coral reefs. The 

first step has shown that the proposed approach can deal with continuous problems through experiments carried 

out for five well-known benchmark functions. The CRO has obtained reliable and robust solutions, which is 

supported by previous research [39,40]. According to the problem’s characteristics, two modifications have 

been proposed to the original CRO. First, search in the feasible region instead of the entire solution domain to 

increase the calculation-cost efficiency of solving recursive functions. The applied search methodology is the 

primal direction method, which ensures the results’ consistency by producing possible solutions regarding the 

problem’s constraints. Thereafter, the previous approach was hybridized with the Q-Learning method to 

improve reproduction functions. This method outperformed other problem-solving heuristics in terms of the 

precision of the obtained solution and the number of objective function evaluations. The CCRO-QL algorithm 

showed excellent performance by yielding a solution equal to the global optimum. Overall, those results 

indicate that the optimized solutions’ uncertainty decreases after narrowing the search space and modifying 

the reproduction operators because the uncertainty was mainly caused by penalized offspring and an inefficient 

recombination method. 
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7. Supplementary Materials 

The following are available online at the Journal of Environmental Management website: Table S.1: Control 

parameters’ values used in the CRO algorithm to solve CBP, Table S.2: Monthly net inflows into reservoirs, 

maximum allowable reservoir storages, and benefits data of the CFr problem, Table S.3: Constraint parameters’ 

ranges for the CFr problem, Table S.4: Control parameters’ values used in the CRO algorithm to solve CFr 

problem, Table S.5: Value of decision variables obtained by the LP method and CCRO-QL algorithm, Table 

S.6: Comparison of reported benefits by evolutionary approaches for the continuous four-reservoir problem, 

and two Lingo sample codes for Continuous Four-reservoir Problem. 
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