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ABSTRACT OF THE DISSERTATION

Visual Learning with Weak Supervision: Applications in Video Summarization and Person
Re-identification

by

Rameswar Panda

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2018

Dr. Amit K. Roy-Chowdhury, Chairperson

Many of the recent successes in computer vision have been driven by the availability

of large quantities of labeled training data. However, in the vast majority of real-world

settings, collecting such data sets by hand is infeasible due to the cost of labeling data

or the paucity of data in a given domain. One increasingly popular approach is to use

weaker forms of supervision that are potentially less precise but can be substantially less

costly than producing explicit annotation for the given task. Examples include domain

knowledge, weakly labeled data from the web, constraints due to physics of the problem or

intuition, noisy labels from distant supervision, unreliable annotations obtained from the

crowd workers, and transfer learning settings. In this thesis, we explore two important and

highly challenging problems in computer vision, namely video summarization and person re-

identification, where learning with weak supervision could be extremely useful but remains

as a largely under-addressed problem in the literature.

One common assumption of many existing video summarization methods is that

videos are independent of each other, and hence the summarization tasks are conducted

viii



separately by neglecting relationships that possibly reside across the videos. In the first

approach, we investigate how topic-related videos can provide more knowledge and useful

clues to extract summary from a given video. We develop a sparse optimization framework

for finding a set of representative and diverse shots that simultaneously capture both impor-

tant particularities arising in the given video, as well as, generalities identified from the set

of topic-related videos. In the second approach, we present a novel multi-view video sum-

marization framework by exploiting the data correlations through an embedding without

assuming any prior correspondences/alignment between the multi-view videos, e.g., uncal-

ibrated camera networks. Via extensive experimentation on different benchmark datasets,

we validate both of our approaches and demonstrate that our frameworks are able to extract

better quality video summaries compared to the state-of-the-art alternatives.

Most work in person re-identification has focused on a fixed network of cameras.

However, in practice, new camera(s) may be added, either permanently or on a temporary

basis. In the final part of the dissertation, we show that it is possible to on-board new

camera(s) to an existing network using domain adaptation techniques with limited addi-

tional supervision. We develop a domain perceptive re-identification framework that can

effectively discover and transfer knowledge from the best source camera (already installed)

to a newly introduced target camera(s), without requiring a very expensive training phase.

Our approach can greatly increase the flexibility and reduce the deployment cost of new

cameras in many real-world dynamic camera networks.
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Chapter 1

Introduction

Many of the recent successes in computer vision have been driven by the availabil-

ity of large quantities of labeled training data. However, in the vast majority of real-world

settings, collecting such data sets by hand is infeasible due to the cost of labeling data or the

paucity of data in a given domain. Let us consider the case of video summarization [170]

which aim to automatically extract a brief informative summary from a given video, as

an example. Majority of the recent works leverage human-crafted training data in form of

video-summary pairs or importance annotations for summarizing long videos. These ap-

proaches assume the availability of large amount of human-created video-summary pairs,

which are in practice difficult to obtain for unconstrained web videos. Without supervision,

summarization methods rely on different heuristically designed criteria in an unsupervised

way but often fail to produce semantically meaningful video summaries. Similarly, person

re-identification [279], which has become a very active research area in the last few years,

has relied mostly on a supervised training phase where a transformation between the obser-
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vations at two cameras is learned from labeled data. However, relying on manually labeled

data for each camera pair limits scalability to large networks and adaptability to changing

environmental conditions, application domains, and network configurations, due to the bur-

den of obtaining extensive manual labels. Thus, there is an urgent need to develop methods

with limited supervision which can be scaled up as more and more new data are generated.

In recent years, one increasingly popular approach is to use weaker forms of super-

vision that are potentially less precise but can be substantially less costly than producing

explicit annotation for the given task. There exists many different forms of weak supervi-

sion that can be efficiently utilized for a specific task in hand. Examples include domain

knowledge, weakly labeled data from the web, constraints due to physics of the problem or

intuition, noisy labels from distant supervision, unreliable annotations obtained from the

crowd workers, and transfer learning settings. The difficulties associated with fully super-

vised learning and the availability of weak supervision in many different forms motivate us

to develop efficient algorithms and frameworks which can obtain equivalent performance of

fully supervised methods by only leveraging limited human supervision.

In this thesis, we explore two important and highly challenging problems in com-

puter vision that are video summarization and person re-identification, where learning with

weak supervision could be extremely useful but remains as a largely under-addressed prob-

lem in the literature. In the first chapter, we investigate how topically close videos can

provide more knowledge and useful clues to extract summary from a given video with-

out requiring human-crafted training data in form of video-summary pairs or importance

annotations. Existing works summarize videos by either exploring different heuristically
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designed criteria in an unsupervised way [110, 58, 214, 39], or developing fully supervised

algorithms [126, 86, 77, 194]. However, unsupervised methods are blind to the video cat-

egory and often fail to produce semantically meaningful video summaries. On the other

hand, acquisition of large amount of training data in supervised approaches is non-trivial

and may lead to a biased model. Different from existing works, we introduce a weakly su-

pervised approach that exploits visual context from a set of topic-related videos to extract

an informative summary of a given video. Our method is motivated by the observation that

similar videos have similar summaries. For instance, suppose we have a collection of videos

of “surfing”. It is quite likely good summaries for those videos would all contain segments

corresponding to riding with surfboard, floating on water, and off the lip surfing, etc. Thus,

we hypothesize that additional topic-related videos can provide visual context to identify

the important parts of the video being summarized. We develop a sparse optimization ap-

proach for finding a set of representative and diverse shots that simultaneously capture both

important particularities arising in the given video, as well as, generalities identified from

the set of topic-related videos. Specifically, we formulate the task of finding summaries as an

`21-norm optimization problem where the nonzero rows of a sparse coefficient matrix repre-

sent the relative importance of the corresponding shots. We conduct rigorous experiments

on two challenging benchmark datasets to demonstrate the effectiveness of our framework.

An important advantage of our method is that it learns the notion of importance from a

set of videos belonging to a category (weak supervision) which are readily available on the

web, and hence provides much greater scalability in extracting summaries from web videos.

Most traditional video summarization methods (including our approach in chap-
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ter 2 are designed to generate effective summaries for single-view videos [194, 273, 50, 111,

120]. However, with the proliferation of surveillance cameras, a major problem is to figure

out how to extract useful information from the videos captured by these cameras. Most of

the prior works simply extend the single-view video summarization approaches to extract an

informative summary from the multi-view videos. However, they fail to produce an optimal

summary because of the large amount data correlations due to the locations and fields of

view of the cameras. Moreover, these videos are captured with different view angles, and

depth of fields, for the same scenery, resulting in a number of unaligned videos. Some recent

approaches have focused on utilizing strong supervision in form of inter-camera frame cor-

respondence while summarizing multi-view videos [178, 119, 182]. It becomes infeasible and

unrealistic to manually align the long and unstructured videos in uncontrolled settings. To

address the challenges encountered in a camera network, we propose a novel summarization

framework in chapter 3 by exploiting the data correlations as one form of weak supervi-

sion without assuming any prior correspondences/alignment between the multi-view videos,

e.g., uncalibrated camera networks. Our underlying idea hinges upon the basic concept of

subspace learning [37, 173], which typically aims to obtain a latent subspace shared by

multiple views by assuming that these views are generated from this subspace. Specifically,

to better characterize the multi-view structure, we first project the data points into a latent

embedding which is able to preserve both the correlations and then propose a sparse repre-

sentative selection method over the learned embedding to summarize the multi-view videos.

Finally, to better leverage the multi-view embedding and the selection mechanism, we learn

the embedding and optimal representatives jointly. Experiments on six challenging datasets
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demonstrate that our framework achieves superior performance over some mono-view sum-

marization approaches as well as state-of-the-art multi-view summarization methods.

Continuing on learning with weak supervision, the third work addresses multi-

camera person re-identification from a different perspective. In particular, we investigate

how the re-identification models can be updated as new cameras are added, with limited

additional supervision. Existing approaches for person re-identification have concentrated

on either designing the best feature representation or learning optimal matching metrics in

a static setting where the number of cameras are fixed in a network [248, 164, 259]. Most

approaches have neglected the dynamic and open world nature of the problem, where one

or multiple new cameras may be temporarily on-boarded into an existing system to get

additional information or added to expand an existing network. Given a newly introduced

camera, traditional re-identification methods will try to relearn the inter-camera transforma-

tions/distance metrics using a costly training phase. This is impractical since labeling data

in the new camera and then learning transformations with the others is time-consuming,

and defeats the entire purpose of temporarily introducing the additional camera. Thus, we

propose a novel approach for adapting existing multi-camera re-identification frameworks

with limited supervision. First, we formulate a domain perceptive re-identification method

based on geodesic flow kernel that can effectively find the best source camera (already in-

stalled) to adapt with newly introduced target camera(s), without requiring a very expensive

training phase. Second, we introduce a transitive inference algorithm that can exploit the

information from best source camera to improve the accuracy across other camera pairs in

a network of multiple cameras. Third, we develop a target-aware sparse prototype selection
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strategy for finding an informative subset of source camera data for data efficient learning in

resource constrained environments. We perform extensive experiments on five benchmark

datasets, which well demonstrate the efficacy of our proposed framework for on-boarding

camera(s) without requiring any labeled data from the newly introduced camera(s).

Organization of the Thesis. The rest of the thesis is organized as follows. In chapter 2,

we present a collaborative representative selection approach using sparse `21 optimization

and evaluate the framework for summarizing topic-related videos. We propose our multi-

view video summarization approach without assuming any prior correspondences/alignment

between multi-view videos in chapter 3. Finally, in chapter 4, we propose a domain percep-

tive re-identification method based on geodesic flow kernel to discover and transfer knowl-

edge from existing source cameras to a newly introduced target camera, without requiring a

very expensive training phase. We conclude the thesis in chapter 5 by providing some future

directions related to the problem of video summarization and person re-identification.
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Chapter 2

Collaborative Video

Summarization

2.1 Introduction

With the recent explosion of big video data over the Internet, it is becoming in-

creasingly important to automatically extract brief yet informative video summaries in order

to enable a more efficient and engaging viewing experience. As a result, video summariza-

tion, that automates this process, has attracted intense attention in the recent years.

Much progress has been made in developing a variety of ways to summarize videos,

by exploring different design criteria (representativeness [110, 58, 273, 41, 214, 39], inter-

estingness [64, 160, 195], importance [84, 252]) in an unsupervised manner, or developing

supervised algorithms [126, 86, 77, 194, 219]. However, with the notable exception of [39],

one common assumption of existing methods is that videos are independent of each other,
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(a)

(b)

(c)

Figure 2.1: Consider three videos of the topic “Eiffel Tower”. Each row shows six uniformly
sampled shots represented by the middle frame, from the corresponding video. It is clear
that all these videos have mutual influence on each other since many visual concepts tend
to appear repeatedly across them. We therefore hypothesize that such topically close videos
can provide more knowledge and useful clues to extract summary from a given video. We
build on this intuition to propose a summarization algorithm that exploits topic-related
visual context from video (b) & (c) to automatically extract an informative summary from
a given video (a). Best viewed in color.

and hence the summarization tasks are conducted separately by neglecting relationships

that possibly reside across the videos.

Let us consider the video in Fig. 2.1.a. The video is represented by six uniformly

sampled shots. Now consider the videos in Fig. 2.1.b and 2.1.c along with the video in

Fig. 2.1.a. Are these videos independent of each other or something common exists across

them? The answer is clear: all of these videos belong to the same topic “Eiffel Tower”. As

a result, the summaries of these videos will have significant common information with each

other. Thus, the context of additional topic-related videos can be beneficial by providing

more knowledge and additional clues for extracting a more informative summary from a

specified video. We build on this intuition, presenting a new perspective to summarize a
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video by exploiting the neighborhood knowledge from a set of topic-related videos.

In this work, we propose a Collaborative Video Summarization (CVS) approach

that exploits visual context from a set of topic-related videos to extract an informative

summary of a given video. Our work builds upon the idea of collaborative techniques [9,

149, 253] from information retrieval (IR) and natural language processing (NLP), which

typically use the attributes of other similar objects to predict the attribute of a given

object. We achieve this by finding a sparse set of representative and diverse shots that

simultaneously capture both important particularities arising in the given video, as well as,

generalities identified from the set of topic-related videos. Our underlying assumption is

that a few topically close videos actually have mutual influence on each other since many

important visual concepts tend to appear repeatedly across them. Note that in this work,

we assume that additional topic-related videos are available beforehand. One can easily use

either clustering [217] or additional video meta data to obtain such topic-relevant videos.

Our approach works as follows. First, we segment each video into multiple non-

uniform shots using an existing temporal segmentation algorithm and represent each shot

by a feature vector using a mean pooling scheme over the extracted C3D features (Sec-

tion 2.3.1). Then, we develop a novel collaborative sparse representative selection strategy

by exploiting visual context from topic-related videos (Section 2.3.2). Specifically, we for-

mulate the task of finding summaries as an `2,1 sparse optimization where the nonzero rows

of sparse coefficient matrix represent the relative importance of the corresponding shots.

Finally, the approach outputs a video summary composed of the shots with the highest im-

portance score (Section 2.3.3). Note that the summary will be of the one video of interest
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only, while exploiting visual context from additional topic-related videos.

The main contributions of our work are as follows:

• We propose a novel approach to extract an informative summary of a specified video

by exploiting additional knowledge from topic-related videos. The additional topic-

related videos provide visual context to identify what is important in a video.

• We develop a collaborative representative selection strategy by introducing a consen-

sus regularizer that simultaneously captures both important particularities arising in

the given video, as well as, generalities identified from the topic-related videos.

• We present an efficient optimization algorithm based on half-quadratic function theory

to solve the non-smooth objective, where the minimization problem is simplified to

two independent linear system problems.

• We demonstrate the effectiveness of our approach in two video summarization tasks–

topic-oriented video summarization and multi-video concept visualization. With ex-

tensive experiments on both CoSum [39] and TVSum50 [214] video datasets, we show

the superiority of our approach over competing methods for both summarization tasks.

2.2 Related Work

Video summarization has been studied from multiple perspectives. Here, we fo-

cus on some representative methods closely related to our work. Interested readers can

check [170, 227] for a more comprehensive survey. While the approaches might be super-

vised or unsupervised, the goal of summarization is nevertheless to produce a compact
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visual summary that encapsulates the most informative parts of a video.

Much work has been proposed to summarize a video using supervised learning.

Representative methods use category-specific classifiers for importance scoring [194, 219] or

learn how to select informative and diverse video subsets from human-created summaries [86,

77, 208, 270] or learn important facets, like faces and objects [126, 156, 20]. Although these

methods have shown impressive results, their performance largely depends on huge amount

of labeled examples which are difficult to collect for unconstrained web videos. In addition,

it is generally feasible to have only a limited number of users to annotate training videos,

which may lead to a biased summarization model. Our CVS approach, on the other hand,

exploits visual context from topic-related videos without requiring any labeled examples,

and thus can be easily applied to summarize large scale web videos with diverse content.

Without supervision, summarization methods rely on low-level visual indices to

determine the relevance of parts of a video. Various strategies have been studied, includ-

ing clustering [3, 50, 82], interest prediction [160, 84], and energy minimization [196, 65].

Leveraging crawled web images is also another recent trend for video summarization [110,

214, 111]. However, all of these methods summarize videos independently by neglecting

relationships that possibly reside across them. The use of neighboring topic-related videos

to improve summarization still remains as a novel and largely under-addressed problem.

The most relevant work to ours is the video co-summarization approach (Co-

Sum) [39]. It aims to find visually co-occurring shots across videos of the same topic based

on the idea of commonality analysis [38]. However, CoSum and our approach have signif-

icant differences. CoSum constructs weighted bipartite graphs for each pair of videos in
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order to find the maximal bicliques, which can be computationally inefficient given a large

collection of topic-related videos. Our approach, on the other hand, offers a more flexible

way to find most representative and diverse video shots through a collaborative sparse op-

timization framework that can be efficiently solved to handle large number of web videos

simultaneously. In addition, CoSum employs a computationally-intensive shot-level feature

representation, namely a combination of both observation and interaction features [98],

which involves extracting low-level features such as CENTRIST, Dense-SIFT and HSV

color moments. By contrast, our approach utilizes deep learning features which are more

computationally efficient and more accurate in characterizing both appearance and motion.

Our focus on the sparse coding as the building block of CVS is largely inspired by

its appealing property in modeling sparsity and representativeness in data summarization.

In contrast to prior works [41, 58, 273], we develop a novel collaborative sparse optimization

that finds shots which are informative about the given video, as well as, the set of of topic-

related videos. In addition, we introduce a novel regularizer in the optimization to obtain

a diverse set of representatives, instead of manually filtering redundant shots from the

extracted summary as some existing methods.

In recent years, collaborative techniques have been successfully applied to sev-

eral IR and NLP tasks: collaborative recommendation [9, 204], collaborative filtering [253],

collaborative ranking [10] and text summarization [233, 231, 232]. The common idea under-

lying all of these works, including ours, is to make use of the interactions among multiple

objects under the assumption that similar objects will have similar behaviors and char-

acteristics. An earlier work [8] uses a collaborative system by merging results of various
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segmentation approaches to obtain a summary. By contrast, our approach builds on the

idea of collaboration among the topic-related videos to efficiently summarize a given video.

2.3 Collaborative Video Summarization

A summary is a condensed synopsis that conveys the most important details of the

original video. Specifically, it is composed of several shots that represent most important

portions of the input video within a short duration. Since, importance is a subjective notion,

we define a good summary as one that has the following properties.

• Representative. The original video should be reconstructed with high accuracy

using the extracted summary. We extend this notion of representative as finding a

summary that simultaneously minimizes reconstruction error of the given video, as

well as the set of topic-related videos.

• Sparsity. Although the summary should be representative of the input video, the

length should be as small as possible.

• Diversity. The summary should be collectively diverse capturing different aspects of

the video—otherwise one can remove some of them without losing much information.

The proposed approach, CVS, decomposes into three steps: i) video representation;

ii) collaborative sparse representative selection; iii) summary generation.
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2.3.1 Video Representation

Video representation is a crucial step in summarization for maintaining visual

coherence, which in turn affects the overall quality of a summary. It basically consists of

two main steps, namely, (i) temporal segmentation, and (ii) feature representation. We

descibe these steps in the following.

Temporal Segmentation. Our approach starts with segmenting videos using an existing

algorithm [39]. We segment each video into multiple shots by measuring the amount of

changes between two consecutive frames in the RGB and HSV color spaces. We added

an additional constraint in the algorithm to ensure that the number of frames within each

shot lies in the range of [32,96]. The segmented shots serve as the basic units for feature

extraction and subsequent processing to extract a video summary.

Feature Representation. Deep convolutional neural networks (CNNs) have recently

been successful at large-scale object recognition [200, 118]. Beyond the object recognition

task itself, recent advancement in deep learning has revealed that features extracted from

a CNN are generic features that have good transfer learning capabilities across different

domains [210, 286, 108]. An advantage of using deep learning features is that there exist

accurate, large-scale datasets such as Imagenet [200], and Sports-1M [108] from which they

can be extracted. Moreover, GPU-based extraction of such features are much faster than

that for the traditional hand crafted features such as CENTRIST, and Dense-SIFT.

In the case where the input is a video clip, C3D features [226] have recently shown

better performance compared to the features extracted using each frame separately [225,

264]. We therefore extract C3D features, by taking sets of 16 input frames, applying 3D
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convolutional filters, and extracting the responses at layer FC6 as suggested in [226]. This

is followed by a temporal mean pooling scheme to maintain the local ordering structure

within a shot. Then the pooling result serves as the final feature vector of a shot (4096

dimensional) to be used in the sparse optimization. We will discuss the performance benefits

of employing C3D features later in our experiments.

2.3.2 Collaborative Sparse Representative Selection

We develop a sparse optimization framework that incorporates both information

content of the given video and the topic-related videos to extract an informative summary

of the specified video. Let v be a video to be summarized and ṽ denote the set of remaining

topic-related videos from the video collection. We represent each video by extracting the

shot-level C3D features as described above. Let the feature matrix of the video v and ṽ are

given by X ∈ Rd×n and X̃ ∈ Rd×ñ respectively. d is the dimensionality of the C3D features

and n represent the number of shots in the video v. ñ represent the total number of shots

in the remaining topic-related videos ṽ.

Formulation. Sparse optimization approaches [41, 58] find the representative shots from

a video itself by minimizing the linear reconstruction error as

min
Z∈Rn×n

1

2
‖X−XZ‖2F + λs‖Z‖2,1 (2.1)

where ||Z||2,1 =
∑n

i=1 ||Zi,.||2 and ||Zi,.||2 is the `2-norm of the i-th row of Z. λs > 0 is

a regularization parameter that controls sparsity in the reconstruction. Once the problem

(2.1) is solved, the representatives are selected as the points whose corresponding ||Zi||2 6= 0.

Clearly, the above formulation summarizes a video neglecting mutual relationships
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that possibly reside across the videos. Considering the relationships across the topic-related

videos, we aim to select a sparse set of representative shots that balances two main objec-

tives: (i) they are informative about the given video, and (ii) they are informative about the

complete set of topic-related videos. Specifically, we extract a summary that simultaneously

minimizes the reconstruction error of the specified video, as well as, the set of topic-related

videos. Given the above stated goals, we formulate the following objective function,

min
Z, Z̃

1

2

(
‖X−XZ‖2F + α‖X̃−XZ̃‖2F

)
+ λs

(
‖Z‖2,1 + ‖Z̃‖2,1

)
(2.2)

where parameter α > 0 balances the penalty between errors in the reconstruction of video v

and errors in the reconstruction of the remaining videos in the collection ṽ1. The objective

function is intuitive: minimization of (4.8) favors selecting a sparse set of representative

shots that simultaneously reconstructs the target video X via Z, as well as the set of topic

related videos X̃ via Z̃, with high accuracy.

Diversity Regularization. The data reconstruction and sparse optimization formulations

in (4.8) tend to select shots that can cover a specified video, as well as the set of topic-related

videos. However, there is no explicit tendency to select diverse shots capturing different

but also important information described in the set of videos. Prior works [41, 58] handle

this issue by manually filtering redundant shots from the extracted summary which can be

unreliable while summarizing large scale web videos. Recent works on sparse representative

selection [254, 239, 147] also addresses this diversity problem by explicitly adding non-convex

regularizers in the objective which makes it difficult to optimize.

Inspired by the recent work on convex formulation for active learning [59] and

1Note that we use a common α to weight the reconstruction term related to the topic-related videos
in (4.8) for simplicity of exposition. However, if we have some prior information on which video is more
informative about the topic or close to the given video, we can assign different αs for different videos.
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document compression [263], we introduce two diversity regularization functions, fd(Z)

and fd(Z̃) to select a sparse set of representative and diverse shots from the video. Our

motivation is that, rows in sparse coefficient matrices corresponding to two similar shots

are not nonzero at the same time. This is logical since the representative shots should be

non-redundant capturing diverse aspects of the input video.

Definition 1. Given the sparse coefficient matrices Z and Z̃, the diversity regularization

functions are defined as:

fd(Z) =
n∑
i=1

n∑
j=1

dijZij = tr(DTZ),

fd(Z̃) =

n∑
i=1

ñ∑
j=1

d̂ijZ̃ij = tr(D̃
T
Z̃)

(2.3)

where D is the weight matrix measuring the pair-wise similarity of shots in X and D̃

measures the similarity between shots in X and X̃. There are a lot of ways to construct

D and D̃. In this work, we employ the inner product to measure the similarity, since it

is simple to implement and it performs well in practice. Minimization of these functions

tries to select diverse shots by penalizing the condition that rows of two similar shots are

nonzero at the same time.

After adding the diversity regularization functions into problem (4.8), we have the

objective function as follows:

min
Z, Z̃

1

2

(
‖X−XZ‖2F + α‖X̃−XZ̃‖2F

)
+ λs

(
‖Z‖2,1 + ‖Z̃‖2,1

)
+ λd

(
tr(DTZ) + tr(D̃

T
Z̃)
)

(2.4)

where λd is a trade-off factor associated with the functions.

Consensus Regularization. The objective function (2.4) favors selecting a sparse set of

representative and diverse shots from a target video X by exploiting visual context from
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additional topic-related videos X̃. Specifically, rows in Z provide information on relative

importance of each shot in describing the video X, while rows in Z̃ give information on

relative importance of each shot in X in describing X̃. Given the two sparse coefficient

matrices, our next goal is to select a unified set of shots that simultaneously cover the

important particularities arising in the target video, as well as the generalities arising in the

video collection. To achieve the above goal, we propose to minimize the following function:

min
Z, Z̃

1

2

(
‖X−XZ‖2F + α‖X̃−XZ̃‖2F

)
+ λs

(
‖Z‖2,1 + ‖Z̃‖2,1

)
+λd

(
tr(DTZ) + tr(D̃

T
Z̃)
)

+ β||Zc||2,1 s.t. Zc = [Z|Z̃], Zc ∈ Rn×(n+ñ)

(2.5)

where `2,1-norm on the consensus matrix Zc enables Z and Z̃ to have the similar sparse

patterns and share the common components. The joint `2,1-norm plays the role of consensus

regularization as follows. In each round of the optimization algorithm developed later in this

work, the updated sparse coefficient matrices in the former rounds can be used to regularize

the current optimization criterion. Thus, it can uncover the shared knowledge of Z and Z̃

by suppressing irrelevant or noisy video shots, which results in an optimal Zc for selecting

representative video shots.

Optimization. Since problem (2.5) is non-smooth involving multiple `2,1-norms, it is

difficult to optimize directly. Half-quadratic optimization techniques [91, 92] have shown

to be effective in solving these sparse optimizations in several computer vision applica-

tions [236, 190, 242, 154, 16]. Motivated by such methods, we devise an iterative algo-

rithm to efficiently solve (2.5) by minimizing its augmented function alternatively. Specif-

ically, if we define φ(x) =
√
x2 + ε with ε being a constant, we can transform ‖Z‖2,1 to∑n

i=1

√
||Zi||22 + ε, according to the analysis of `2,1-norm in [91, 154]. With this transfor-
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mation, we can optimize (2.5) efficiently in an alternative way as follows.

According to the half-quadratic theory [91, 92, 75], the augmented cost-function

of (4.9) can be written as follows.

min
Z, Z̃

1

2

(
‖X−XZ‖2F + α‖X̃−XZ̃‖2F

)
+ λs

(
tr(ZTPZ) + tr(Z̃

T
QZ̃)

)
+λd

(
tr(DTZ) + tr(D̃

T
Z̃)
)

+ β
(
tr(ZTc RZc)

) (2.6)

where P, Q, R ∈ Rn×n are three diagonal matrices with the i-th element defined as

Pi,i =
1

2
√
||Zi||22 + ε

, Qi,i =
1

2
√
||Z̃i||22 + ε

,Ri,i =
1

2
√
||Zci||22 + ε

(2.7)

where ε is a smoothing term, which is usually set to be a small constant value. Optimizing

(2.6) over Z and Z̃ is equivalent to optimizing the following two problems.

min
Z

1

2
‖X−XZ‖2F + λdtr(D

TZ) + λstr(Z
TPZ) + βtr(ZTRZ) (2.8)

min
Z̃

α

2
‖X̃−XZ̃‖2F + λdtr(D̃

T
Z̃) + λstr(Z̃

T
QZ̃) + βtr(Z̃

T
RZ̃) (2.9)

Now with fixed P, Q, R, the optimal solution of (2.8) and (2.9) can be computed by solving

the following two linear systems:

(XTX + 2λsP + 2βR)Z = (XTX− λdD)

(αXTX + 2λsQ + 2βR)Z̃ = (αXT X̃− λdD̃)

(2.10)

Algorithm 1 summarizes the alternative minimization procedure to optimize (2.5).

In step 1, we compute the auxiliary matrices P, Q and R which play an important role in

representative selection, according to the half-quadratic analysis for `2,1-norm [91]. In step

2, we find the optimal sparse coefficient matrices Z and Z̃ by solving two linear systems as

defined in (2.10). Step 3 corresponds to the consensus matrix, which is expected to uncover

the shared knowledge of Z and Z̃ by enforcing same sparse pattern using a joint `2,1-norm.
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Algorithm 1 Algorithm for Solving Problem (2.5)

Input: Video feature matrices X and X̃;

Parameters α, λs, λd, β, set t = 0;

Construct D and D̂ using inner product similarity;

Initialize Z and Z̃ randomly, set Zc= [Z | Z̃] ;

Output: Optimal sparse coefficient matrix Zc.

while not converged do

1. Compute Pt, Qt and Rt using (3.15);

2. Compute Zt+1 and Z̃
t+1

using (2.10);

3. Compute Zt+1
c as: Zt+1

c = [Zt+1 | Z̃t+1
];

4. t = t+ 1;

end while

2.3.3 Summary Generation

Above, we described how we compute the optimal sparse coefficient matrix Zc by

exploiting visual context from the topic-related videos. The consensus matrix of coefficients,

Zc = [Z|Ẑ] provides information about the contribution of each shot in X to summarize

each video in the collection. To generate a summary, we first sort the shots by decreasing

importance according to the `2 norms of the rows in Zc (resolving ties by favoring shorter

video shots), and then construct the optimal summary from the top-ranked shots that fit

in the length constraint. Note that this also provides scalability to our approach as the

ranked list of shots can be used as a scalable representation to provide summary of different

lengths as per user request (analyze once, generate many).
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2.4 Convergence Analysis

In this section, we will first prove the convergence of our proposed algorithm and

then discuss the computational complexity of our method. Since, we have solved (2.5) using

an alternating minimization, we would like to show its convergence behavior.

Theorem 1. Algorithm 1 will monotonically decrease the objective value of (2.5) until it

achieves an optimal solution.

Proof. As seen from (2.6), when we fix {P,Q,R} as {Pt,Qt,Rt} in t-th iteration and

compute Zt+1, Z̃
t+1

, Zt+1
c , the following inequality holds,
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According to the Lemma in [174]:
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Subtracting Eq. (2.13) from Eq. (2.12), we have
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which establishes that the objective function (2.5) monotonically decreases in each itera-

tion. Note that the objective function has lower bounds, so it will converge. Empirical

results show that the convergence is fast and only a few iterations are needed to converge.

Therefore, the proposed method can be applied to large scale problems in practice.

Computational Complexity. For the computational cost of our method, the major

bottleneck lies on solving linear systems, where the time complexity is O(n3). It can be

reduced to O(n2.376) using the Coppersmith-Winograd algorithm [42]. Thus, the total

time complexity of our method is O(kn2.376) approximately, where k is the total number

of iterations needed to converge. Though developing scalable algorithm is not the main

concern of this work, it will be an interesting future work.

2.5 Experiments

In this section, we present various experiments and comparisons to validate the

effectiveness and efficiency of our proposed algorithm in summarizing videos.

Datasets. We evaluate the performance of our approach using two benchmark datasets: (i)

the CoSum dataset [39] and (ii) the TVSum50 dataset [214]. To the best of our knowledge,

these are the only two publicly available summarization datasets of multiple videos orga-
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nized into groups with a topic keyword. Both of the datasets are extremely diverse: while

CoSum dataset consists of 51 videos covering 10 topics from the SumMe benchmark [84], the

TVSum50 dataset contains 50 videos organized into 10 topics from the TRECVid task [212].

Implementation details. For all the videos, we first segment them into multiple shots

using the method described in Sec. 3.3.1. Raw features are extracted from the FC6 layer of

the C3D network [226]. We then apply temporal mean pooling within each shot to compute

a 4096 dimensional feature vector. Our results can be reproduced through the following

parameters. The regularization parameters λs and β are taken as λ0/γ where γ > 1 and λ0

is analytically computed from the data [58]. The other parameters α and λd are empirically

set to 0.5 and 0.01 respectively and kept fixed for all results.

Compared methods. We compare our approach to the following baselines. For all of the

methods, we use what is recommended in the published work.

• Clustering (CK and CS): We first clustered the shots using k -means (CK) and spectral

clustering (CS), with k set to 20 [39]. We then generate a summary by selecting shots

that are closest to the centroid of top largest clusters.

• Sparse Coding (SMRS and LL): We tested two approaches: Sparse Modeling Repre-

sentative Selection (SMRS) [58] and LiveLight (LL) [273]. SMRS finds the representative

shots using the entire video as the dictionary and selecting key shots based on the zero

patterns of the coding vector. Note that [41] also uses the same objective function

as in [58] for summarizing consumer videos. The only difference lies in the algorithm

used to solve the objective function (Proximal vs ADMM). Hence, we compared only

with [58]. LL generates a summary over time by measuring the redundancy using a
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dictionary of shots updated online. We implemented it using SPAMS library [163]

with dictionary of size 200 and the threshold ε0 = 0.15, as in [273].

• Co-occurrence Statistics (CoC and CoSum): We compared with two baselines

that leverage visual co-occurrence across the topic-related videos to generate a sum-

mary. Co-clustering (CoC) [54] generates a summary by partitioning the graph into

co-clusters such that each cluster contains a subset of shot-pairs with high visual sim-

ilarity. On the other hand, CoSum finds maximal bicliques from the complete bipartite

graph using a block coordinate descent algorithm. We generate a summary by select-

ing top-ranked shots based on the visual co-occurrence score and set the threshold to

select maximal bicliques to 0.3, following [39].

All methods (including the proposed one) use the same C3D feature as described

in Sec. 2.3.1. Such an experimental setting can give a fair comparison for various methods.

2.5.1 Topic-oriented Video Summarization

Goal: Given a set of web videos sharing a common topic (e.g., Eiffel Tower), the goal is

to provide the users with summaries of each video that are relevant to the topic.

Solution. The objective function (2.5) extracts summary of a specified video by exploiting

the visual context of topic-related videos. Given a set of videos, our approach can find

summaries of each video by exploiting the additional knowledge from the remaining videos.

Moreover, one can easily parallelize the computation for more computational efficiency given

our alternating minimization in Algorithm 1. This provides scalability to our approach in
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Table 2.1: Experimental results on CoSum dataset. Numbers show top-5 AP scores averaged
over all the videos of the same topic. We highlight the best and second best baseline
method. Overall, our approach, CVS, performs the best.

Humans Computational methods

Video Topics Worst Mean Best CK CS SMRS LL CoC CoSum CVS

Base Jumping 0.652 0.831 0.896 0.415 0.463 0.487 0.504 0.561 0.631 0.658

Bike Polo 0.661 0.792 0.890 0.391 0.457 0.511 0.492 0.625 0.592 0.675

Eiffel Tower 0.697 0.758 0.881 0.398 0.445 0.532 0.556 0.575 0.618 0.722

Excavators River Xing 0.705 0.814 0.912 0.432 0.395 0.516 0.525 0.563 0.575 0.693

Kids Playing in Leaves 0.679 0.746 0.863 0.408 0.442 0.534 0.521 0.557 0.594 0.707

MLB 0.698 0.861 0.914 0.417 0.458 0.518 0.543 0.563 0.624 0.679

NFL 0.660 0.775 0.865 0.389 0.425 0.513 0.558 0.587 0.603 0.674

Notre Dame Cathedral 0.683 0.825 0.904 0.399 0.397 0.475 0.496 0.617 0.595 0.702

Statue of Liberty 0.687 0.874 0.921 0.420 0.464 0.538 0.525 0.551 0.602 0.715

Surfing 0.676 0.837 0.879 0.401 0.415 0.501 0.533 0.562 0.594 0.647

mean 0.679 0.812 0.893 0.407 0.436 0.511 0.525 0.576 0.602 0.687

relative to avg human 83% 100% 110% 51% 54% 62% 64% 70% 74% 85%

processing large number of web videos simultaneously.

Evaluation. Motivated by [39, 110], we assess the quality of an automatically generated

summary by comparing it to human judgment. In particular, given a proposed summary

and a set of human selected summaries, we compute the pairwise average precision (AP)

and then report the mean value motivated by the fact that there exists not a single ground

truth summary, but multiple summaries are possible. Average precision is a function of both

precision and change in recall, where precision indicates how well all the representative shots

match with the reference summaries and recall indicates how many and how accurately are

the representative shots returned in the retrieval result.

For CoSum dataset, we follow [39] and compare each video summary with five

human created summaries, whereas for TVSum50 dataset, we compare each summary with

twenty ground truth summaries that are created via crowdsourcing. Since the ground truth

annotations in TVSum50 dataset contain frame-wise importance scores, we first compute
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Table 2.2: Experimental results on TVSum50 dataset. Numbers show top-5 AP scores
averaged over all the videos of the same topic. We highlight the best and second best
baseline method. Overall, our approach outperforms all the baseline methods.

Humans Computational methods

Video Topics Worst Mean Best CK CS SMRS LL CoC CoSum CVS

Changing Vehicle Tire 0.285 0.461 0.589 0.225 0.235 0.287 0.272 0.336 0.295 0.328

Getting Vehicle Unstuck 0.392 0.505 0.634 0.248 0.241 0.305 0.324 0.369 0.357 0.413

Grooming an Animal 0.402 0.521 0.627 0.206 0.249 0.329 0.331 0.342 0.325 0.379

Making Sandwich 0.365 0.507 0.618 0.228 0.302 0.366 0.362 0.375 0.412 0.398

ParKour 0.372 0.503 0.622 0.196 0.223 0.311 0.289 0.324 0.318 0.354

PaRade 0.359 0.534 0.635 0.179 0.216 0.247 0.276 0.301 0.334 0.381

Flash Mob Gathering 0.337 0.484 0.606 0.218 0.252 0.294 0.302 0.318 0.365 0.365

Bee Keeping 0.298 0.515 0.591 0.203 0.247 0.278 0.297 0.295 0.313 0.326

Attempting Bike Tricks 0.365 0.498 0.602 0.226 0.295 0.318 0.314 0.327 0.365 0.402

Dog Show 0.386 0.529 0.614 0.187 0.232 0.284 0.295 0.309 0.357 0.378

mean 0.356 0.505 0.613 0.211 0.249 0.301 0.306 0.329 0.345 0.372

relative to average human 71% 100% 121% 42% 49% 60% 61% 65% 68% 74%

the shot-level importance scores by taking average of the frame importance scores within

each shot and then select top 50% shots for each video, as in [39].

Apart from comparing with the baseline methods, we also compute the average

precision between human created summaries. We show the worst, average and best scores of

the human selections. The worst human score is computed using the summary which is the

least similar to the rest of the summaries whereas the best score represent the most similar

summary that contain most shots that were selected by many humans. This provides a

pseudo-upper bound for this task, and thus we also report normalized AP scores by rescaling

the mean AP of human selections to 100%.

Comparison with baseline methods. Tab. 2.1 shows the AP on top 5 shots included in

the summaries for CoSum dataset. We can see that our method significantly outperforms

all baseline methods to achieve an average performance of 85%, while the closest published

competitor, CoSum, reaches 74%. Moreover, if we compare to the human performance, we
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can see that our method even outperforms the worst human score of each topic in most

cases. This indicates that our method produces summaries comparable to human created

summaries. Similarly, for the top-15 results, our approach achieved the highest average

score of 83% compared to 69% by the CoSum baseline.

Our approach performed particularly well on videos that have their visual concepts

described well by the topic-related videos, e.g., a video of the topic Eiffel Tower contains

shots that shows the night view of the tower and the remaining videos in the collection

also depicts this well (see Fig. 2.1). While our method overall produces better summaries,

it has a low performance for certain videos, e.g., videos of the topic Surfing. These videos

contain fast motion and subtle semantics that define representative shots of the video, such

as surfing on the wave or sea swimming. We believe these are difficult to capture without

an additional semantic analysis [168]. Tab. 2.2 shows top-5 AP results for the TVSum50

datset. Summarization in this dataset is more challenging because of the unconstrained

topic keywords. Our approach still outperforms all the alternative methods significantly to

achieve an average performance of 74%. Similarly for top-15 results, our approach achieved

highest score of 75% compared to 66% by the CoSum baseline.

Test of Statistical Significance. We have done t-test of our results and observe that our

approach, CVS, statistically significantly outperforms all six compared methods (p < .01),

except for worst human. To further interpret the not-statistically significant result with

respect to worst human, we performed a statistical power analysis (α = 0.01) and see that

the power computed for top-5 mAP results on CoSum dataset is 0.279, while on combining

with top-15 results, it reaches to 0.877. Similarly, the power reaches 1 for a test that
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Table 2.3: Performance comparison between 2D CNN(VGG) and 3D CNN(C3D) features.
Numbers show top-5 AP scores averaged over all the videos of the same topic. * abbreviates
topic name for display convenience. See Tab. 2.1 for full names.

Methods Base* Bike* Eiffel* Excv* Kids* MLB NFL Notre* Statue* Surf* mean

CVS(Features[39]) 0.580 0.632 0.677 0.614 0.598 0.607 0.575 0.612 0.655 0.623 0.618

CVS(VGG) 0.591 0.626 0.724 0.638 0.617 0.642 0.615 0.604 0.721 0.649 0.643

CVS(C3D) 0.658 0.675 0.722 0.693 0.707 0.679 0.674 0.702 0.715 0.647 0.687

Table 2.4: Ablation analysis of the proposed approach with different constraints on (4.9).
Numbers show top-5 AP scores averaged over all the videos of the same topic.

Methods Base* Bike* Eiffel* Excv* Kids* MLB NFL Notre* Statue* Surf* mean

CVS-Neighborhood 0.552 0.543 0.551 0.583 0.510 0.529 0.534 0.532 0.516 0.527 0.538

CVS-Diversity 0.643 0.650 0.678 0.672 0.645 0.653 0.619 0.666 0.688 0.609 0.654

CVS 0.658 0.675 0.722 0.693 0.707 0.679 0.674 0.702 0.715 0.647 0.687

combines both top-5 and top-15 results of both of the datasets. Since, power of a high

quality test should usually be > 0.80, we can conclude that our approach statistically

outperforms the worst human for a large sample size.

Effectiveness of C3D features. We investigate the importance and reliability of C3D

features by comparing with 2D shot-level deep features, and found that the later produces

inferior results, with a top-5 mAP score of 0.643 on the CoSum dataset (Tab. 2.3). We utilize

Pycaffe [100] with the VGG net pretrained model [211] to extract a 4096-dim feature vector

of a frame and then use temporal mean pooling to compute a single shot-level feature vector,

similar to C3D features described in Sec. 2.3.1. We also compare with the shallow feature

representation presented in [39] and observe that C3D features performs significantly better

over shallow features in summarizing videos (0.618 vs 0.687). We believe this is because

C3D features exploit the temporal aspects of activities typically shown in videos.

Performance of the individual components. To better understand the contribution
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Eiffel Tower Attempting Bike Tricks

Figure 2.2: Role of topic-related visual context in summarizing a video. Top row: CVS

w/o topic-related visual context, and Bottom row: CVS w/ topic-related visual context. We
show two exemplar summaries of the topic Eiffel Tower and Attempting Bike Tricks from
the CoSum and TVSum50 dataset respectively. As can be seen, CVS w/o visual context
often selects some shots that are irrelevant and not truly related to the topic. CVS w/
visual context, on the other hand, automatically select the maximally informative shots by
exploiting the information from additional neighborhood videos. Best viewed in color.

of various components in (4.9), we analyzed the performance of the proposed approach,

by ablating each constraint while setting corresponding regularizer to zero (Tab. 2.4).

With all the components working, the mAP for the CoSum dataset is 0.687. By turn-

ing off the neighborhood information from topic-related videos, the mAP decreases to 0.538

(CVS-Neighborhood). This corroborates the fact that additional knowledge of topic-related

videos help in extracting better summaries, closer to the human selection (see Fig. 2.2 for

qualtitative examples). Similarly, by turning off the diversity constraint, the mAP becomes

0.654 (CVS-Diversity). We can see that additional knowledge of topic-related videos con-

tributes more than the diversity constraint in summarizing web videos.

2.5.2 Multi-video Concept Visualization

Goal: Given a set of topic-related videos, can we generate a single summary that describes

the collection altogether? Specifically, our goal is to generate a single video summary that

better estimates human’s visual concepts.

Solution. A simple option would be to combine the individual summaries generated from
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Figure 2.3: Summaries constructed by different methods for the topic Eiffel Tower. We
show the top-5 results represented by the central frame of each shot. CoSum often select
shots that are non-informative about the concept. Our approach selects a diverse set of
informative shots that better visualizes the concepts of Eiffel Tower (bottom row).

Section. 2.5.1 and select top ranked shots, regardless of the video, as in the existing existing

method [39]. However, such choice will produce a lot of redundant events which eventually

reduces the quality of the final summary. We believe this is because, although the individ-

ual summaries are informative and diverse, there exists redundancy across the extracted

summaries that are relevant to the topic. Our approach can handle this by combining the

summaries into a single video, say X and then extracting a single diverse summary using

the final objective function (4.9) with setting (α, β, D̃) equal to zero.
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Table 2.5: User Study—Average expert ratings in concept visualization experiments. Our
approach significantly outperforms other baseline methods in both of the datasets.

Datasets CK CS SMRS LL CoC CoSum CVS

CoSum 3.70 4.03 5.60 5.63 6.64 7.53 8.20

TVSum50 2.46 3.06 4.02 4.20 4.8 5.70 6.36

Evaluation. To evaluate multi-video concept visualization, we need a single ground truth

summary of all the topic-related videos that describes the collection altogether. However,

since there exists no such ground truth summaries for both of the datasets, we performed

human evaluations using 10 experts. Given a video, the study experts were first shown

the topic key word (e.g., Eiffel Tower) and then shown the summaries constructed using

different methods. They were asked to rate the overall quality of each summary by assigning

a rating from 1 (worst) to 10 (best). We did not maintain the same order of the summaries

across different topics of the dataset. This is to ensure that the users will not be biased

from the previous order and ratings while providing ratings for the current topic.

Results. Tab. 2.5 shows average expert ratings for both CoSum and TVSum50 datasets.

Similar to the results of topic-oriented summarization, our approach significantly outper-

forms all the baseline methods which indicates that our method generates a more informative

summary that describes the video collection altogether. Furthermore, we note that the rela-

tive rank of the different approaches are largely preserved as compared to the topic-oriented

summarization results. We show a visual comparison between the summaries produced by

different methods in Fig. 2.3. As can be seen, our approach, CVS, generates a summary that

better estimates human’s visual concepts related to the topic.
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2.6 Conclusion

We presented a novel video summarization framework that exploits visual context

from a set of topic-related videos to extract an informative summary of a given video.

Motivated by the observation that important visual concepts tend to appear repeatedly

across videos of the same topic, we developed a collaborative sparse optimization that finds

a sparse set of representative and diverse shots by simultaneously capturing both important

particularities arising in the given video, as well as, generalities arising across the video

collection. We demonstrated the effectiveness of our approach on two standard datasets,

significantly outperforming several baseline methods.
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Chapter 3

Multi-View Surveillance Video

Summarization

3.1 Introduction

Network of surveillance cameras are everywhere nowadays. The volume of data

collected by such network of vision sensors deployed in many settings ranging from security

needs to environmental monitoring clearly meets the requirements of big data [99, 199]. The

difficulties in analyzing and processing such big video data is apparent whenever there is an

incident that requires foraging through vast video archives to identify events of interest. As

a result, video summarization, that automatically extract a brief yet informative summary

of these videos has attracted intense attention in the recent years.

Although video summarization has been extensively studied during the past few

years, many previous methods mainly focused on developing a variety of ways to summarize
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Figure 3.1: An illustration of a multi-view camera network where six cameras C1, C2, . . . ,
C6 are observing an area (black rectangle) from different viewpoints. Since the views are
roughly overlapping, information correlations across multiple views along with correlations
in each view should be taken into account for generating a concise multi-view summary.

single-view videos in form of a key-frame sequence or a video skim [194, 58, 273, 50, 111,

110, 120]. However, another important problem and rarely addressed in this context is to

find an informative summary from multi-view videos [67, 132, 178, 119, 182]. Multi-view

video summarization refers to the problem of summarization that seeks to take a set of input

videos captured from different cameras focusing on roughly the same fields-of-view (fov) from

different viewpoints and produce a video synopsis or key-frame sequence that presents the

most important portions of the inputs within a short duration (see Fig. 3.1). In this work,

given a set of videos and its shots, we focus on developing an unsupervised approach for

selecting a subset of shots that constitute the multi-view summary. Such a summary can

be very beneficial in many surveillance systems equipped in offices, banks, factories, and
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crossroads of cities, for obtaining significant information in short time.

Multi-view video summarization is different from single-video summarization in

two important ways. First, although the amount of multi-view data is immensely chal-

lenging, there is a certain structure underlying it. Specifically, there is large amount of

correlations in the data due to the locations and fields of view of the cameras. So, content

correlations as well as discrepancies among different videos need to be properly modeled

for obtaining an informative summary. Second, these videos are captured with different

view angles, and depth of fields, for the same scenery, resulting in a number of unaligned

videos. Hence, difference in illumination, pose, view angle and synchronization issues pose

a great challenge in summarizing these videos. So, methods that attempt to extract sum-

mary from single-view videos usually do not produce an optimal set of representatives while

summarizing multi-view videos.

To address the challenges encountered in a camera network, we propose a novel

multi-view video summarization method, which has the following advantages.

• First, to better characterize the multi-view structure, we project the data points into a

latent embedding which is able to preserve both intra and inter-view correlations with-

out assuming any prior correspondences/alignment between the multi-view videos, e.g.,

uncalibrated camera networks. Our underlying idea hinges upon the basic concept of

subspace learning [37, 173], which typically aims to obtain a latent subspace shared by

multiple views by assuming that these views are generated from this subspace.

• Second, we propose a sparse representative selection method over the learned embedding

to summarize the multi-view videos. Specifically, we formulate the task of finding sum-
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maries as a sparse coding problem where the dictionary is constrained to have a fixed

basis (dictionary to be the matrix of same data points) and the nonzero rows of sparse

coefficient matrix represent the multi-view summaries.

• Finally, to better leverage the multi-view embedding and selection mechanism, we learn

the embedding and optimal representatives jointly. Specifically, instead of simply using

the embedding to characterize multi-view correlations and then selection method, we

propose to adaptively change the embedding with respect to the representative selection

mechanism and unify these two objectives in forming a joint optimization problem. With

joint embedding and sparse representative selection, our final objective function is both

non-smooth and non-convex. We present an efficient optimization algorithm based on

half-quadratic function theory to solve the final objective function.

3.2 Related Work

There is a rich body of literature in multimedia and computer vision on summa-

rizing videos in form of a key frame sequence or a video skim (see [170, 227] for reviews).

Single-view Video Summarization. Much progress has been made in developing a vari-

ety of ways to summarize a single-view video in an unsupervised manner or developing super-

vised algorithms. Various strategies have been studied, including clustering [3, 50, 82, 202],

attention modeling [160, 84], saliency based linear regression model [126], kernel tem-

poral segmentation [194], crowd-sourcing [110], energy minimization [196, 65], storyline

graphs [111], submodular maximization [86], determinantal point process [77, 269], archety-

pal analysis [214], long short-term memory [270] and maximal biclique finding [39].
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Recently, there has been a growing interest in using sparse coding (SC) to solve

the problem of video summarization [58, 273, 41, 169, 56, 167] since the sparsity and recon-

struction error term naturally fits into the problem of summarization. In contrast to these

prior works that can only summarize a single video, we develop a novel method that jointly

summarizes a set of videos to find a single summary for describing the collection altogether.

Multi-view Video Summarization. Generating a summary from multi-view videos is

a more challenging problem due to the inevitable thematic diversity and content overlaps

within multi-view videos than a single video. To address the challenges encountered in

multi-view settings, there have been some specifically designed approaches that use random

walk over spatio-temporal graphs [67] and rough sets [132] to summarize multi-view videos.

A recent work in [119] uses bipartite matching constrained optimum path forest clustering to

solve the problem of multi-view video summarization. An online method can also be found

in [178]. However, this method relies on inter-camera frame correspondence, which can be a

very difficult problem in uncontrolled settings. The work in [128] and [129] also addresses

a similar problem of summarization in non-overlapping camera networks. Learning from

multiple information sources such as video tags [237], topic-related web videos [185, 186]

and non-visual data [289, 238] is also a recent trend in multiple web video summarization.

3.3 Proposed Methodology

In this section, we start by giving main notations and definition of the problem

and then present our detailed approach to summarize multi-view videos.

Notation. We use uppercase letters to denote matrices and lowercase letters to denote

37



vectors. For matrix A, its i-th row and j-th column are denoted by ai and aj respectively.

||A||F is Frobenius norm of A and tr(A) denote the trace of A. The `p-norm of the vector

a ∈ Rn is defined as ||a||p = (
∑n

i=1 |ai|p)1/p and `0-norm is defined as ||a||0 =
∑n

i=1 |ai|0.

The `2,1-norm can be generalized to `r,p-norm which is defined as ||A||r,p = (
∑n

i=1 ||ai||
p
r)1/p.

The operator diag(.) puts a vector on the main diagonal of a matrix.

Multi-View Video Summarization. Given a set of videos captured with considerable

overlapping fields-of-view across multiple cameras, the goal of multi-view video summariza-

tion is to compactly depict the input videos, distilling its most informative events into a

short watchable synopsis. Specifically, it is composed of several video shots that represent

most important portions of the input video collection within a short duration.

Our approach can be roughly described as the set of three main tasks, namely (i)

video representation, (ii) joint embedding and representative selection, and (iii) summary

generation. In particular, our approach works as follows. First, we segment each video

into multiple non-uniform shots using an existing temporal segmentation algorithm and

represent each shot by a feature vector using a mean pooling scheme over the extracted

C3D features (Section 3.3.1). Then, we develop a novel scheme for joint embedding and

representative selection by exploiting the multi-view correlations without assuming any

prior correspondence between the videos (Sections 3.3.2, 3.3.3, 3.3.4). Specifically, we

formulate the task of finding summaries as an `2,1 sparse optimization where the nonzero

rows of sparse coefficient matrix represent the relative importance of the corresponding

shots. Finally, the approach outputs a video summary composed of the shots with the

highest importance score (Section 3.5).
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3.3.1 Video Representation

Video representation consists of two main steps, namely, (i) temporal segmenta-

tion, and, (ii) feature representation. We describe these steps in the following sections.

Temporal Segmentation. Our approach starts with segmenting videos using an existing

algorithm [39]. We segment each video into multiple shots by measuring the amount of

changes between two consecutive frames in the RGB and HSV color spaces. A shot boundary

is determined at a certain frame when the portion of total change is greater than 75% [39].

We added an additional constraint to the algorithm to ensure that the number of frames

within each shot lies in the range of [32,96]. The segmented shots serve as the basic units

for feature extraction and subsequent processing to extract a summary.

Feature Representation. Recent advancement in deep feature learning has revealed that

features extracted from upper or intermediate layers of a CNN are generic features that

have good transfer learning capabilities across different domains [210, 108]. An advantage

of using deep learning features is that there exist accurate, large-scale datasets such as

Imagenet [200] and Sports-1M [108] from which they can be extracted. For videos, C3D

features [226] have recently shown better performance compared to the features extracted

using each frame separately [226, 264]. We therefore extract C3D features, by taking sets

of 16 input frames, applying 3D convolutional filters, and extracting the responses at layer

FC6 as suggested in [226]. This is followed by a temporal mean pooling scheme to maintain

the local ordering structure within a shot. Then the pooling result serves as the final feature

vector of a shot (4096 dimensional) to be used in the sparse optimization.
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3.3.2 Multi-view Video Embedding

Consider a set of K different videos captured from different cameras, where X(k) =

{x(k)
i ∈ RD, i = 1, · · · , Nk}, k = 1, · · · ,K. Each xi represents the feature descriptor of a

video shot in D-dimensional feature space. We represent each shot by extracting the shot-

level C3D features as described above. As the videos are captured non-synchronously, the

number of shots in each video might be different and hence there is no optimal one-to-one

correspondence that can be assumed. We use Nk to denote the number of shots in k-th

video and N to denote the total number of shots in all videos.

Given the multi-view videos, our goal is to find an embedding for all the shots into

a joint latent space while satisfying some constraints. Specifically, we are seeking a set of

embedded coordinates Y (k) = {y(k)
i ∈ Rd, i = 1, · · · , Nk}, k = 1, · · · ,K, where, d (<< D)

is the dimensionality of the embedding space, with the following two constraints: (1) Intra-

view correlations. The content correlations between shots of a video should be preserved

in the embedding space. (2) Inter-view correlations. The shots from different videos with

high feature similarity should be close to each other in the resulting embedding space as

long as they do not violate the intra-view correlations present in an individual view.

Modeling Multi-view Correlations. To achieve an embedding that preserves the above

two constraints, we need to consider feature similarities between two shots in an individual

video as well as across two different videos.

Inspired by the recent success of sparse representation coefficient based methods to

compute data similarities in subspace clustering [62], we adopt such coefficients in modeling

multi-view correlations. Our proposed approach has two nice properties: (1) the similarities
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computed via sparse coefficients are robust against noise and outliers since the value not

only depends on the two shots, but also depends on other shots that belong to the same

subspace, and (2) it simultaneously carries out the adjacency construction and similarity

calculation within one step unlike kernel based methods that usually handle these tasks

independently with optimal choice of several parameters.

Intra-view Similarities. Intra-view similarity should reflect spatial arrangement of fea-

ture descriptors in each view. Based on the self-expressiveness property [62] of an individual

view, each shot can be sparsely represented by a small subset of shots that are highly cor-

related in the dataset. Mathematically, for k-th view, it can be represented as

x
(k)
i = X(k)c

(k)
i , c

(k)
ii = 0, (3.1)

where c
(k)
i = [c

(k)
i1 , c

(k)
i2 , ..., c

(k)
iNk

]T , and the constraint c
(k)
ii = 0 eliminates the trivial solution

of representing a shot with itself. The coefficient vector c
(k)
i should have nonzero entries for

a few shots that are correlated and zeros for the rest. However, in (3.1), the representation

of xi in the dictionary X is not unique in general. Since we are interested in efficiently

finding a nontrivial sparse representation of xi, we consider the tightest convex relaxation

of the `0 norm, i.e.,

min ||c(k)
i ||1 s.t. x

(k)
i = X(k)c

(k)
i , c

(k)
ii = 0, (3.2)

It can be rewritten in matrix form for all shots in a view as

min ||C(k)||1 s.t. X(k) = X(k)C(k), diag(C(k)) = 0, (3.3)

where C(k) = [c
(k)
1 , c

(k)
2 , ..., c

(k)
Nk

] is the sparse coefficient matrix whose i-th column corre-

sponds to the sparse representation of the shot x
(k)
i . The coefficient matrix obtained from

41



the above `1 sparse optimization essentially characterizes the shot correlations and thus it

is natural to utilize as intra-view similarities. This provides an immediate choice of the

intra-view similarity matrix as C
(k)
intra = |C(k)|T where i-th row of matrix C

(k)
intra represents

the similarities between the i-th shot to all other shots in the view.

Inter-view Similarities. Since all cameras are focusing on roughly the same fovs from

different viewpoints, all views have apparently a single underlying structure. Following this

assumption in a multi-view setting, we find the correlated shots across two views on solving

a similar `1 optimization as in intra-view similarities. Specifically, we calculate the pairwise

similarity between m-th and n-th view by solving the following optimization problem:

min ||C(m,n)||1 s.t. X(m) = X(n)C(m,n), (3.4)

where C(m,n) ∈ RNn×Nm is the sparse coefficient matrix whose i-th column corresponds to

the sparse representation of the shot x
(m)
i using the dictionary X. Ideally, after solving

the proposed optimization problem in (3.4), we obtain a sparse representation for a shot in

m-th view whose nonzero elements correspond to shots from n-th view that belong to the

same subspace. Finally, the inter-view similarity matrix between m-th and n-th view can

be represented as C
(m,n)
inter = |C(m,n)|T where i-th row of matrix C

(m,n)
inter represent similarities

between i-th shot of m-th view and all other shots in the n-th view.

Objective Function. The aim of embedding is to correctly match the proximity score

between two shots xi and xj to the score between corresponding embedded points yi and

yj respectively. Motivated by this observation, we reach the following objective function on
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the embedded points Y .

J (Y (1), ..., Y (K)) =
∑
k

Jintra(Y (k)) +
∑
m,n
m 6=n

Jinter(Y
(m), Y (n))

=
∑
k

∑
i,j

||y(k)
i − y

(k)
j ||

2C
(k)
intra(i, j) +

∑
m,n
m 6=n

∑
i,j

||y(m)
i − y(n)

j ||
2C

(m,n)
inter (i, j) (3.5)

where k, m and n = 1, · · · ,K. Jintra(Y (k)) is the cost of preserving local correlations within

X(k) and Jinter(Y
(m), Y (n)) is the cost of preserving correlations between X(m) and X(n).

The first term says that if two shots (x
(k)
i , x

(k)
j ) of a view are similar, which happens when

C
(k)
intra(i, j) is larger, their locations in the embedded space, y

(k)
i and y

(k)
j should be close

to each other. Similarly, the second term tries to preserve the inter-view correlations by

bringing embedded points y
(m)
i and y

(n)
i close to each other if the pairwise proximity score

C
(m,n)
inter (i, j) is high. Problem (3.5) can be rewritten using one similarity matrix defined over

the whole set of video shots as

J (Y ) =
∑
m,n

∑
i,j

||y(m)
i − y(m)

j ||
2C

(m,n)
total (i, j) (3.6)

where the total similarity matrix is defined as

C
(m,n)
total (i, j) =


C

(k)
intra(i, j) if m = n = k

C
(m,n)
inter (i, j) otherwise

(3.7)

This construction defines a N × N similarity matrix where the diagonal blocks

represent the intra-view similarities and off-diagonal blocks represent inter-view similarities.

Note that an interesting fact about our total similarity matrix construction in (3.7) is that

since each `1 optimization is solved individually, a fast parallel computing strategy can be

easily adopted for efficiency. However, the matrix in (3.7) is not symmetric since in `1
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optimization (3.2, 3.4), a shot xi can be represented as a linear combination of some shots

including xj , but xi may not be present in the sparse representation of xj . But, ideally,

a similarity matrix should be symmetric in which shots belonging to the same subspace

should be connected to each other. Hence, we reformulate (3.6) with a symmetric similarity

matrix W = Ctotal + CTtotal as

F(Y ) =
∑
m,n

∑
i,j

||y(m)
i − y(m)

j ||
2W (m,n)(i, j) (3.8)

With the above formulation, we make sure that xi and xj get connected to each

other if either xi and xj is in the sparse representation of the other. We normalize W as

wi ← wi/||wi||∞ to make sure the weights in the similarity matrix are of same scale.

Given this construction, problem (3.8) reduces to the Laplacian embedding [13] of

shots defined by the similarity matrix W . So, the optimization problem can be written as

Y ∗ = argmin
Y,Y Y T =I

tr
(
Y LY T

)
(3.9)

where L is the graph Laplacian matrix of W and I is an identity matrix. Minimizing (3.9) is

a generalized eigenvector problem and the optimal solution can be obtained by the bottom

d nonzero eigenvectors. Note that our approach is agnostic to the choice of embedding

algorithms. Our method is based on graph Laplacian because it is one of the state-of-the-

art methods in characterizing the manifold structure and performs satisfactorily well in

several vision and multimedia applications [70, 155, 175].

3.3.3 Sparse Representative Selection

Once the embedding is obtained, our next goal is to find an optimal subset of all

the embedded shots, such that each shot can be described as weighted linear combination of
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a few of the shots from the subset. The subset is then referred as the informative summary

of the multi-view videos. In particular, we are trying to represent the multi-view videos by

selecting only a few representative shots. Therefore, our natural goal is to establish a shot

level sparsity which can be induced by performing `1 regularization on rows of the sparse

coefficient matrix [41, 58]. By introducing row sparsity regularizer, the summarization

problem can now be succinctly formulated as

min
Z∈RN×N

||Z||2,1 s.t. Y = Y Z (3.10)

where ‖Z‖2,1 ,
∑N

i=1‖zi‖2 is the row sparsity regularizer i.e., sum of l2 norms of the

rows of Z. The self-expressiveness constraint (Y = Y Z) in summarization is logical as

the representatives for summary should come from the original frame set. Using Lagrange

multipliers, (3.10) can be written as

min
Z
‖Y − Y Z‖2F + λ‖Z‖2,1 (3.11)

where λ balances the weight of the two terms. Once (3.11) is solved, the representative

shots are selected as the points whose corresponding ||zi||2 6= 0.

Remark 1. Notice that both sparse optimizations in (3.3) and (3.10) look similar; however,

the nature of sparse regularizer in both formulations are completely different. In (3.3), the

objective of `1 regularizer is to induce element wise sparsity in a column whereas in (3.10),

the objective of `2,1 regularizer is to induce row level sparsity in a matrix.

Remark 2. Given non-uniform length of shots, (3.11) can be modified to a weighted

`2,1-norm based objective to consider length of shots while selecting representatives as

min
Z
‖Y − Y Z‖2F + λ‖QZ‖2,1 (3.12)
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where Q = [diag(q)] and q ∈ RN represent the temporal length of each video shot. It is easy

to see that problem (3.12) favors selection of shorter video shots by assigning a lower score

via Q. In other words, problem (3.12) tries to minimize the number of shots by considering

the temporal length of video shots, such that the overall objective turns to minimizing the

length of the final video summary.

3.3.4 Joint Embedding and Sparse Representative Selection

We now discuss our proposed method to jointly optimize the multi-view video em-

bedding and sparse representation to select a diverse set of representative shots. Specifically,

the performance of sparse representative selection is largely determined by the effectiveness

of graph Laplacian in embedding learning. Hence, it is a natural choice to adaptively change

the graph Laplacian with respect to the following sparse representative selection, such that

the embedding can not only characterizes the manifold structure, but also indicates the

requirements of sparse representative selection. By combining the objective functions (3.9)

and (3.11), the joint objective function becomes:

min
Y,Z,Y Y T=I

tr(Y LY T ) + α
(
||Y − Y Z||2F + λ||Z||2,1

)
(3.13)

where α > 0 is a trade-off parameter between the two objectives. The first term of the

cost function projects the input data into a latent embedding by capturing the meaningful

structure of data, whereas the second term helps in selecting a robust set of representatives

by minimizing the reconstruction error and the sparsity. Note that the proposed method

is also computationally efficient as the sparse representative selection is done in the low-

dimensional space by discarding the irrelevant part of a data point represented by a high-
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dimensional feature, which can derail the representative selection process.

3.4 Optimization

The optimization problem in (3.13) is non-smooth and non-convex. Solving it is

thus more difficult due to the non-smooth `2,1 norm and the additional embedding variable

Y . Half-quadratic optimization techniques [91, 92] have shown to be effective in solving

these sparse optimizations in several vision and multimedia applications [236, 242, 190, 154].

Motivated by such methods, we devise an iterative algorithm to efficiently solve (3.13) by

minimizing its augmented function alternatively1. Specifically, if we define φ(x) =
√
x2 + ε

with ε being a constant, we can transform ‖Z‖2,1 to
∑n

i=1

√
||zi||22 + ε, according to the

analysis of `2,1-norm in [91, 154]. With this transformation, we can optimize (3.13) efficiently

in an alternative way as follows.

According to the half-quadratic theory [91, 92, 75], the augmented cost-function

of (3.13) can be written as

min
Y,Z,Y Y T =I

tr(Y LY T ) + α
(
||Y − Y Z||2F + λtr(ZTPZ)

)
(3.14)

where P ∈ RN×N is a diagonal matrix, and the corresponding i-th element is defined as

Pi,i =
1

2
√
||zi||22 + ε

(3.15)

where ε is a smoothing term with small constant value. With this transformation, note that

the problem (3.14) is convex separately with respect to Y,Z, and P . Hence, we can solve

1We solve all the sparse optimization problems using Half-quadratic optimization techniques [91, 92].
Due to space limitation, we only present the optimization procedure to solve (3.13). However, the same
procedure can be easily extended to solve other sparse optimizations (3.3, 3.4).
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(3.14) alternatively with the following three steps with respect to Z, Y , and P , respectively.

(1) Solving for Z: For a given P and Y , solve the following objective to estimate Z:

min
Z
α
(
tr((Y − Y Z)(Y − Y Z)T ) + λtr(ZTPZ)

)
(3.16)

By setting derivative of (3.16) with respect to Z to zero, the optimal solution can

be computed by solving the following linear system.

(Y TY + λP )Z = Y TY (3.17)

(2) Solving for Y : For a given P , and Z, solve the following objective to estimate Y :

min
Y,Y Y T =I

tr(Y LY T ) + αtr((Y − Y Z)(Y − Y Z)T )

= min
Y,Y Y T =I

tr(Y (L+ α(I − 2Z + ZZT ))Y T )

(3.18)

Eq. 3.18 can be solved by eigen-decomposition of the matrix (L + α(I − 2Z + ZZT )). We

pick up the eigenvectors corresponding to the d smallest eigenvalues.

(3) Solving for P : When Z is fixed, we can update P by employing the formulation in

Eq. 3.15 directly.

We continue to alternately solve for Z, Y , and P until a maximum number of

iterations is reached or a predefined threshold is reached. Since the alternating minimization

can stuck in a local minimum, it is important to have a sensible initialization. We initialize

Y by solving (3.9) using an Eigen decomposition and P by an identity matrix. Experiments

show that the alternating minimization converges fast by using this kind of initialization. In

practice, we monitor the convergence within less than 25 iterations. Therefore, the proposed

method can be applied to large scale problems in practice.
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3.5 Summary Generation

Above, we described how we compute the optimal sparse coefficient matrix Z by

jointly optimizing the multi-view embedding learning and sparse representative selection.

We follow the following rules to extract a multi-view summary:

• We first generate a weight curve using `2 norms of the rows in Z since it provides

information about the relative importance of the representatives for describing the

whole videos. More specifically, a video shot with higher importance takes part in

the reconstruction of many other video shots, hence its corresponding row in Z has

many nonzero elements with large values. On the other hand, a shot with lower

importance takes part in reconstruction of fewer shots in the whole videos, hence, its

corresponding row in Z has a few nonzero elements with smaller values. Thus, we can

generate a weight curve, where the weight measures the confidence of the video shot

to be included in the final video summary.

• We detect local maxima from the weight curve, then extract an optimal summary of

specified length from the local maximums constrained by the weight value and full

sequence coverage assumption. Note that the shots with low or zero weights cannot

be inserted into final video summary. Furthermore, the weigh curve in our framework

allows users to choose different number of shots in summary without incurring addi-

tional computational cost. In contrast, many other multi-view video summarization

methods need to preset the number of video shots that should be included in the

final summary and any change will result in a re-calculation. Therefore, the proposed

approach is scalable in generating summaries of different lengths and hence provides

49



Table 3.1: Dataset Statistics

Datasets # Views Total Durations (Mins.) Settings Camera Type

Office 4 46:19 Indoor Fixed

Campus 4 56:43 Outdoor Non-fixed

Lobby 3 24:42 Indoor Fixed

Road 3 22:46 Outdoor Non-fixed

Badminton 3 15:07 Indoor Fixed

BL-7F 19 136:10 Indoor Fixed

more flexibility for practical applications. More details on the summary length and

scalability are included in experiments.

3.6 Experiments

In this section, we present various experiments and comparisons to validate the

effectiveness and efficiency of our proposed algorithm in summarizing multi-view videos.

3.6.1 Datasets and Settings

We conduct rigorous experiments using 6 multi-view datasets with 36 videos in

total, which are from [67, 178] (see Tab. 3.1). The datasets are captured in both indoor and

outdoor environments with overall 360 degree coverage of the scene, making it more difficult

to be summarized. All these datasets are standard in multi-view video summarization and

have been used by the prior works [67, 119, 132]. It is important to note that experiments

in our prior work [183] was limited to only 3 datasets, whereas in the current work, we

conduct experiments on 6 datasets including BL-7F which is one of the largest publicly
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available dataset for multi-view video summarization.

We maintain the following conventions during all our experiments. (i) All our

experiments are based on unoptimized MATLAB codes on a desktop PC with Intel(R)

core(TM) i7-4790 processor with 16 GB of DDR3 memory. We used a NVIDIA Tesla K40

GPUs to extract the C3D features. (ii) Each feature descriptor is L2-nominalized. (iii)

Determining the intrinsic dimensionality of the embedding is an open problem in the field

of manifold learning. One common way is to determine it by grid search. We determine it

as in most traditional approaches, such as [24]. (iv) The sparsity regularization parameter

λ is computed as λ0/ρ and λ0 is analytically computed from the embedded points [58]. (v)

We empirically set α to 0.05 and kept fixed for all results.

3.6.2 Performance Measures

To provide an objective comparison, we compare all the approaches using three

quantitative measures, including Precision, Recall and F-measure (2×Precision×Recall
Precision+Recall ) [67,

119]. For all these metrics, the higher value indicates better summarization quality. We

set the same summary length as in [67] to generate our summaries and employ the ground

truth of important events reported in [67] to compute the performance measures. More

specifically, the ground truth annotations contain a list of events with corresponding start

and end frame for each dataset. We took an event as correctly detected if our framework

produces a video shot between the start and end of the event. We follow the prior works [67,

119, 178] and consider an event to be redundant if we detect the event simultaneously from

more than one camera. Such an evaluation setting gives a fair comparison with the previous

state-of-the-art methods [67, 132, 119, 182, 183].
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3.6.3 Comparison with State-of-the-art Multi-view Methods

Goal. This experiment aims at evaluating our approach compared to the state-of-the-art

multi-view summarization methods presented in the literature.

Compared Methods. We contrast our approach with several state-of-the-art methods

which are specifically designed for multi-view video summarization as follows.

• RandomWalk [67]. The method first create a spatio-temporal shot graph and then use

random walk as a clustering algorithm over the graph to extract multi-view summaries.

• RoughSets [132]. The method first adopt a SVM classifier as the key frame abstraction

process and then applies rough set to remove similar frames.

• BipartiteOPF [119]. This method first uses a bipartite graph matching to model the

inter-view correlations and then applies optimum path forest clustering on the refined

adjacency matrix to generate multi-view summary.

• GMM [178]. An online Gaussian mixture model clustering is first applied on each view

independently and then a distributed view selection algorithm is adopted to remove

the content redundancy in the inter-view stage.

Implementation Details. To report existing methods results, we use prior published num-

bers when possible. In particular, for the multi-view summarization methods (RandomWalk,

BipartiteOPF and GMM), we report the available results from the corresponding papers and

implement RoughSets ourselves using the same video representation as the proposed one

and tune their parameters to have the best performance.
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Table 3.2: Performance comparison with several baselines including both single and multi-
view methods applied on the three multi-view datasets. P: Precision in percentage, R:
Recall in percentage and F : F-measure. Ours perform the best.

Office Campus Lobby

Methods P R F P R F P R F Reference

Attention-Concate 100 46 63.01 40 28 32.66 100 70 82.21 TMM2005 [160]

Sparse-Concate 100 50 66.67 56 55 55.70 91 70 78.95 TMM2012 [41]

Concate-Attention 100 38 55.07 56 48 51.86 95 72 81.98 TMM2005 [160]

Concate-Sparse 93 58 71.30 56 62 58.63 86 70 77.18 TMM2012 [41]

Graph 100 26 41.26 50 48 49.13 100 58 73.41 TCSVT2006 [191]

RandomWalk 100 61 75.77 70 55 61.56 100 77 86.81 TMM2010 [67]

RoughSets 100 61 75.77 69 57 62.14 97 74 84.17 ICIP2011 [132]

BipartiteOPF 100 69 81.79 75 69 71.82 100 79 88.26 TMM2015 [119]

Ours 100 81 89.36 84 72 77.78 100 86 92.52 Proposed

Results. Table 3.2 shows the results on three multi-view datasets, namely Office, Campus

and Lobby datasets. We have the following key observations from Table 3.2: (i) Our

approach produces summaries with same precision as RandomWalk and BipartiteOPF for

both Office and Lobby datasets. However, the improvement in recall value indicates the

ability of our method in keeping more important information in the summary compared

to both of the approaches. As an illustration, in Office dataset, the event of looking for a

thick book by a member while present in the cubicle is absent in the summary produced

by RandomWalk whereas it is correctly detected by our proposed method. Fig. 3.2 in this

connection explains the whole sequence of events detected using our approach as compared

to RandomWalk. (ii) For all methods, including Ours, performance on Campus dataset is

not that good as compared to the other datasets. This is obvious since the Campus dataset

contains many trivial events as it was captured in an outdoor environment, thus making
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Figure 3.2: Sequence of events detected related to activities of a member (A0) inside the
Office dataset. Top row: Summary produced by method [67], and Bottom row: Summary
produced by our approach. Sequence of events detected in top row: 1st: A0 enters the
room, 2nd: A0 sits in cubicle 1, 3rd: A0 leaves the room. Sequence of events detected in
bottom row: 1st: A0 enters the room, 2nd: A0 sits in cubicle 1, 3rd: A0 is looking for a
thick book to read (as per the ground truth in [67]), and 4th: A0 leaves the room. The
event of looking for a thick book to read (as per the ground truth in [67]) is missing in
the summary produced by method [67] where as it is correctly detected by our approach
(3rd frame: bottom row). This indicates our method captures video semantics in a more
informative way compared to [67]. Best viewed in color.

the summarization more difficult. Nevertheless, for this challenging dataset, F-measure of

our approach is about 6% better than that of the recent BipartiteOPF. (iii) Table 3.2 also

reveals that for all three datasets, recall is generally low compared to precision because users

usually prefer to select more extensive summaries in ground truth, which can be verified

from the ground truth events from [67]. As a result, number of events in ground truth

increases irrespective of their information content. (iv) Overall, on the three datasets, our

approach outperforms all compared methods in terms of F-measure. This corroborates the

fact that the proposed approach produces informative multi-view summaries in contrast to

the state-of-the-art methods (see Fig. 3.3 for an illustrative example).
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E1 E2 E3 E4 E6 E7 E8 E9 E10 E11

V1 V2V1 V4V2 V3V2 V1 V3 V1

Figure 3.3: Summarized events for the Office dataset. Each event is represented by a key
frame and is associated with two numbers, one above and below of the key frame. Numbers
above the frame (E1, · · · , E26) represent the event number whereas the numbers below (V1,
· · · , V4) indicate the view from which the event is detected. Limited to the space, we only
present 10 events arranged in temporal order, as per the ground truth in [67].

Table 3.3: Performance Comparison with GMM baseline on BL-7F Dataset

Methods Precision(%) Recall(%) F-measure(%) Reference

GMM 58 61 60.00 JSTSP2015 [178]

Ours 73 70 71.29 Proposed

Table 3.3 shows results of our method on a larger and more complex BL-7F dataset

captured with 19 surveillance cameras in the 7th floor of the BarryLam Building in National

Taiwan University [178]. From Table 3.3, it is clearly evident that our approach significantly

outperforms GMM in generating more informative multi-view summaries. The F-measure of

our method is about 11% better than that of GMM [178]. This indicates that the proposed

method is very effective and can be applied to large scale problems in practice. We follow

the evaluation strategy of [178] and compute the performance measures in the unit of frames

instead of events as in Table 3.2 to make a fair comparison with the GMM baseline.

3.6.4 Comparison with Single-view Methods

Goal. The objective of this experiment is to compare our method with some single-view

summarization approaches to show their performance on multi-view videos. Specifically, the
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purpose of comparing with single-view summarization methods is to show that techniques

that attempt to find summary from single-view videos usually do not produce an optimal

set of representatives while summarizing multiple videos.

Compared Methods. We compare our approach with several baseline methods, namely,

Attention-Concate [160], Sparse-Concate [41], Concate-Attention [160], Concate-Sparse [41],

and Graph [191] that use single-video summarization approach over multi-view datasets to

generate summary. Note that in the first two baselines (Attention-Concate, Sparse-Concate),

a single-video summarization approach is first applied to each view and then resulting

summaries are combined to form a single summary, whereas the other three baselines

(Concate-Attention, Concate-Sparse, Graph) concatenate all the views into a single

video and then apply a single-video approach to summarize multi-view videos. Both

Sparse-Concate and Concate-Sparse baselines use (3.11) to summarize multi-view videos

with out any embedding. The purpose of comparing with these two baseline methods is to

explicitly show the advantage of our proposed multi-view embedding in generating infor-

mative and diverse summaries while summarizing multi-view surveillance videos.

Implementation Details. We implement Sparse-Concate and Concate-Sparse our-

selves with the same temporal segmentation and C3D feature representation as the proposed

one whereas for rest of the single-view summarization methods, we report the available re-

sults from the published papers [67, 119].

Results. We have the following key findings from Table 3.2 and Fig. 3.4: (i) The proposed

method significantly outperforms all the compared single-view summarization methods by

a significant margin on all three datasets. We observe that directly applying these methods
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View 1 View 2 View 3

Figure 3.4: Some summarized events for the Lobby dataset. Top row: summary produced
by Sparse-Concate [41], Middle row: summary produced by Concate-Sparse [41], and
Bottom row: summary produced by our approach. It is clearly evident from both top
and middle rows that both of the single-view baselines produce a lot of redundant events
as per the ground truth [67] while summarizing multi-view videos, however, our approach
(bottom row) produces meaningful representatives by exploiting the content correlations
via an embedding. Redundant events are marked with same color borders. Note that both
Sparse-Concate and Concate-Sparse summarize multiple videos without any embedding
by either applying sparse representative selection to each video separately or concatenating
all the videos into a single video. Best viewed in color.

to summarize multiple videos produces a lot of redundant shots which deviates from the fact

that the optimal summary should be diverse and informative in describing the multi-view

concepts. (ii) It is clearly evident from the Fig. 3.4 that both of the sparse representative se-

lection based single-view summarization methods (Sparse-Concate and Concate-Sparse)

produce a lot of redundancies (simultaneous presence of most of the events) while sum-

marizing videos on Lobby dataset. This is expected since both of the approaches fail to

exploit the complicated inter-view content correlations present in multi-view videos. (iii)

By using our multi-view video summarization method, such redundancy is largely reduced

in contrast. Some events are recorded by the most informative summarized shots, while the

most important events are reserved in our summaries. The proposed approach generates

highly informative and diverse summary in most cases, due to its ability to jointly model
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(a)

(b)

(c)

Figure 3.5: The figure shows an illustrative example of scalability in generating summaries of
different length based on the user constraints for the Office dataset. Each shot is represented
by a key frame and are arranged according to the l2 norms of corresponding non-zero rows
of the sparse coefficient matrix. (a): Summary for user length request of 3, (b): Summary
for user length request of 5 and (c): Summary for user length request of 7.

multi-view correlations and sparse representative selection.

3.6.5 Scalability in Generating Summaries

Scalability in generating summaries of different length has shown to be effective

while summarizing single videos [93, 184]. However, most of the prior multi-view summa-

rization methods require the number of shots to be specified before generating summaries
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which is highly undesirable in practical applications. Concretely speaking, the algorithm

need to be rerun for each change in the number of representative shots that the user want to

see in the summary. By contrast, our approach provides scalability in generating summaries

of different length based on user constraints without any further analysis of the input videos

(analyze once, generate many). This is due to the fact that non-zero rows of the sparse

coefficient matrix Z can generate a ranked list of representatives which can be subsequently

used to provide a scalable representation in generating summaries of desired length without

incurring any additional cost. Such a scalability property makes our approach more suitable

in providing human-machine interface where the summary length is changed as per the user

request. Fig. 3.5 shows the generated summaries of length 3, 5 and 7 most important shots

(as determined by the weight curve described in Sec. 3.5) for Office dataset.

3.6.6 Performance Analysis with Shot-level C3D Features

We investigate the importance and reliability of the proposed video representation

based on C3D features by comparing with 2D shot-level deep features, and found that the

later produces inferior results, with a F-measure of 84.01% averaged over three datasets

(Office, Campus and Lobby) compared to 86.55% by the C3D features. We utilize Pycaffe

with the VGG net pretrained model [211] to extract a 4096-dim feature vector of a frame

and then use temporal mean pooling to compute a single shot-level feature vector, similar

to C3D features described in Sec. 3.3.1. The spatio-temporal C3D features perform best,

as they exploit the temporal aspects of activities typically shown in videos.
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3.6.7 Performance Analysis with Video Segmentation

We examined the performance of our approach by replacing the temporal seg-

mentation algorithm [39] by a naive approach that uniformly divides video into several

segments of equal length. We use uniform segments with a length of 2 seconds and kept

other components fixed while generating summaries. By using the video segmentation al-

gorithm of [39], the proposed approach achieves a F-measure of 86.55% averaged over three

datasets (Office, Campus and Lobby). On the other hand, with the use of uniform length

segments, our approach obtains a mean F-measure 85.43%. This shows that our approach

is relatively robust with the change in segmentation algorithm. Note that our proposed

sparse optimization is highly flexible to incorporate more sophisticated temporal segmen-

tation algorithms, e.g., [193] in generating video summaries—we expect such advanced and

complex video segmentation algorithms will only benefit our proposed approach.

3.6.8 Performance Comparison with [183]

We now compare the proposed approach with [183] to explicitly verify the effec-

tiveness of video representation and joint optimization for summarizing multi-view videos.

Table 3.4 shows the comparison with [183] on Office, Campus and Lobby datasets. Follow-

ing are the analysis of the results: (i) The proposed framework consistently outperforms

[183] on all three datasets by a margin of about 5% in terms of F-measure (maximum

improvement of 8% in terms of precision for the office dataset). (ii) We improve around

3% in terms of F-measure for the more challenging Campus dataset which demonstrates

that the current framework is more effective in summarizing videos with outdoor scenes.
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Table 3.4: F-measure Comparison with [183]

Methods Office Campus Lobby Reference

[183] 84.48 75.42 88.26 ICPR2016 [183]

Ours 89.36 77.78 92.52 Proposed

Table 3.5: User Study—Mean Expert ratings on a scale of 1 to 10. Our approach signifi-
cantly outperforms other automatic methods.

Methods Office Campus Lobby Road Badminton

RandomWalk 6.3 5.2 6.6 5.7 6.5

BipartiteOPF 7.1 5.8 7.4 6.0 7.2

Ours 7.6 6.5 8.2 6.7 7.9

(iii) We believe the best performance in the proposed framework can be attributed to two

factors working in concert: (a) more flexible and powerful video representation via C3D

features, and (b) joint embedding learning and sparse representative selection. Moreover,

to better understand the contribution of joint optimization, we analyzed the performance

of the proposed approach with shot-level C3D features and a 2 step process similar to [183],

and found that the mean F-measure on three datasets (Office, Campus and Lobby) de-

creases from 86.55% to 83.85%. We believe this is because adaptively changing the graph

Laplacian with respect to the sparse representative selection helps in better exploiting the

multi-view correlations and also indicates the requirement of optimal representative shots

to be included in the summary. It also important to note that the approach in [183] is

limited to key frame extraction only and hence may not be suitable for many surveillance

applications where video skims with motion information seems better suited for obtaining

significant information in short time.
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3.6.9 User Study

With 5 study experts, we performed human evaluation of the generated summaries

to verify the results obtained from the automatic objective evaluation with F-measure. Our

objective is to understand how an user perceive the quality of the summaries according to

the visual pleasantness and information content of the system generated summary. Each

study expert watched the videos at 3x speed and were then shown 3 sets of summaries

constructed using different methods: RandoWalk, BipartiteOPF and Ours for 5 datasets

(Office, Campus, Lobby, Road and Badminton). Study experts were asked to rate the over-

all quality of each summary by assigning a rating from 1 to 10, where 1 corresponded to

“The generated summary is not at all informative” and 10 corresponded to “The summary

very well describes all the information present in the original videos and also visually pleas-

ant to watch”. The summaries were shown in random order without revealing the identity

of each method and the audio track was not included to ensure that the subjects chose the

rating based solely on visual stimuli. The results are summarized in Table 3.5. Similar

to the objective evaluation, our approach significantly outperforms both of the methods

(RandomWalk, BipartiteOPF). This again corroborates the fact that the proposed frame-

work generates a more informative and diverse multi-view summary as compared to the

state-of-the-art methods. Furthermore, we note that the relative rank of the different al-

gorithms is largely preserved in the subjective user study as compared to the objective

evaluation in Table 3.2.
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3.6.10 Discussions

Abnormal Event Detection. Abnormal event detection and surveillance video summa-

rization are two closely related problem in computer vision and multimedia. In a surveillance

setting, where an abnormal event took place, the proposed approach can select shots to rep-

resent the abnormal event in the final summary. This is due to the fact that our approach

selects representative shots from the mult-view videos such that set of videos should be

reconstructed with high accuracy using the extracted summary. Specifically, the proposed

approach in (3.13) favors selecting a set of shots as representatives for constructing the

summary which can reconstruct all the events in the input with low reconstruction error.

Consider a simple example for an illustration. Let us assume a surveillance setting equipped

in a place with only pedestrian traffic. People are walking as usual and suddenly, a car is

speeding. In order to reconstruct the part where the car is speeding, our method will choose

a few shots from this portion; otherwise the reconstruction error will be high.

Multi-View Event Capture. In general, the purpose of overlapping field of view is to

facilitate users to check objects/events from different angles. For an event captured with

multiple cameras having a large difference in view angles, the proposed method often selects

more than one shot to represent the event in the summary. This is due to the fact that

our approach selects representative shots from the multi-view videos such that the whole

input can be reconstructed with low error. In our experiments, we have observed a similar

situation while summarizing videos on Campus dataset. The summary produced by our

approach contains three shots captured with cameras 1, 3, and 4 in an outdoor environment

which essentially represent the same event (E23 in the ground truth [67]). However, note
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that although including shots representing same event from more than one camera in the

summary may help an user to check events from different angles, it increases the summary

length which often deviates from the fact that length of the summary should be as small

as possible. Thus, the objective of our current work is on generating an optimal summary

that balances the two main important criteria of a good summary, i.e., maximizing the

information content via representativeness and minimizing the length via sparsity.

3.7 Conclusion

In this work, we addressed the problem of summarizing multi-view videos via joint

embedding learning and `2,1 sparse optimization. The embedding helps in capturing content

correlations in multi-view datasets without assuming any prior correspondence between

the individual videos. On the other hand, the sparse representative selection helps in

generating multi-view summaries as per user length request without requiring additional

computational cost. Performance comparisons on six standard multi-view datasets show

marked improvement over some mono-view summarization approaches as well as state-of-

the-art multi-view summarization methods.
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Chapter 4

On-boarding New Camera(s) in

Person Re-identification

4.1 Introduction

Person re-identification (re-id), which addresses the problem of matching people

across non-overlapping views in a multi-camera system, has drawn a great deal of attention

in the last few years [105, 229, 279]. Much progress has been made in developing methods

that seek either the best feature representations (e.g., [248, 143, 11, 146]) or propose to

learn optimal matching metrics (e.g., [179, 140, 251, 258, 34, 267, 7]). While they have

obtained reasonable performance on commonly used benchmark datasets (e.g., [73, 45, 278]),

we believe that these approaches have not yet considered a fundamental related problem:

Given a camera network where the inter-camera transformations/distance metrics have been

learned in an intensive training phase, how can we incorporate new camera(s) into the
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Re-Identification Model

C1

C2

Training Images

Model Training

Existing Camera Network

C3

C4

No Labels

Newly Introduced Cameras

How can we on-board one or multiple camera(s) with same or 
different sets of people into the existing re-identification
framework with no or minimal additional supervision?

Figure 4.1: Consider an existing network with two cameras C1 and C2 where we have learned
a re-id model using pair-wise training data from both of the cameras. During the operational
phase, two new cameras C3 and C4 are introduced to cover a certain area that is not well
covered by the existing 2 cameras. Most of the existing methods do not consider such
dynamic nature of a re-id model. In contrast, we propose an unsupervised approach for
on-boarding new camera(s) into the existing re-identification framework by exploring: what
is the best source camera(s) to pair with the new cameras and how can we exploit the best
source camera(s) to improve the matching accuracy across the other existing cameras?

installed system with minimal additional effort? This is an important problem to address

in realistic open-world re-identification scenarios, where one or multiple new cameras may

be temporarily inserted into an existing system to get additional information.

To illustrate such a problem, let us consider a scenario with N cameras for which

we have learned the optimal pair-wise distance metrics, so providing high re-identification

accuracy for all camera pairs. However, during a particular event, a new camera may

be temporarily introduced to cover a certain related area that is not well-covered by the
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existing network of N cameras (see Fig. 4.1 for an example). Despite the dynamic and

open nature of the world, almost all work in re-identification assume a static and closed

world model of the re-id problem where the number of cameras are fixed in a network.

Given a newly introduced camera, traditional re-id methods will try to relearn the inter-

camera transformations/distance metrics using a costly training phase. This is impractical

since labeling data in the new camera and then learning transformations with the others is

time-consuming, and defeats the entire purpose of temporarily introducing the additional

camera. Thus, there is a pressing need to develop unsupervised approaches for integrating

new camera(s) into an existing re-identification framework with limited supervision.

Domain adaptation [121, 188] has recently been successful in many vision problems

such as object recognition [201, 80] and activity classification [161, 261] with multiple classes

or domains. The main objective is to scale learned systems from a source domain to a

target domain without requiring prohibitive amount of training data in the target domain.

Considering newly introduced camera(s) as target domain, we pose an important question

in this work: Can unsupervised domain adaptation be leveraged upon for on-boarding new

camera(s) into person re-identification frameworks with limited supervision?

Unlike object recognition [201], domain adaptation for person re-identification has

additional challenges. A central issue in domain adaptation is which source to transfer

from. When there is only one source of information available which is highly relevant to

the task of interest, then domain adaptation is much simpler than in the more general and

realistic case where there are multiple sources of information of greatly varying relevance.

Re-identification in a dynamic network falls into the latter, more difficult case. Specifically,
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given multiple source cameras (already installed) and a target camera (newly introduced),

how can we select the best source camera to pair with the target camera? The problem can

be easily extended to multiple additional cameras being introduced.

Moreover, once the best source camera is identified, how can we exploit this infor-

mation to improve the re-identification accuracy of other camera pairs? For instance, let

us consider C1 being the best source camera for the newly introduced camera C3 in Fig. 4.1.

Once the pair-wise distance metric between C1 and C3 is obtained, can we exploit this in-

formation to improve the re-identification accuracy across (C2–C3)? This is an especially

important problem because it will allow us to now match data in the newly inserted target

camera C3 with all the previously installed cameras.

Given a network with thousands of cameras involving large number of images,

finding the best source camera for a newly introduced camera can involve intensive com-

putation of the pair-wise kernels over the whole set of images. Thus, it is important to

automatically select an informative subset of the source data to pair with the target do-

main data. Specifically, can we select an informative subset of source camera data that

share similar characteristics as target camera data and use those for model adaptation in

resource constrained environments? This is crucial to increase the flexibility and decrease

the deployment cost of newly introduced cameras in large-scale dynamic camera networks.

Overview of Solution Strategy. We first propose an approach based on geodesic flow

kernel [78, 80] that can effectively find the best source camera to adapt with a target camera.

Given camera pairs, each consisting of 1 (out of N ) source camera and a target camera, we

first compute a kernel over the subspaces representing the data of both cameras and then
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use it to find the kernel distance across the source and target camera. Then, we rank the

source cameras based on the average distance and choose the one with lowest distance as the

best source camera to pair with the target camera. This is intuitive since a camera which is

closest to the newly introduced camera will give the best re-identification performance on

the target camera and hence, is more likely to adapt better than others. In other words, a

source camera with lowest distance with respect to a target camera indicates that both of

the sensors could be similar to each other and their features may be similarly distributed.

Note that we learn the kernel with the labeled data from the source camera only.

We then introduce a transitive inference algorithm for person re-identification that

can exploit information from best source camera to improve accuracy across other camera

pairs. Reminding the previous example in Fig. 4.1 in which source camera C1 best matches

with target camera C3, our proposed transitive algorithm establishes a path between camera

pair (C2 – C3) by marginalization over the domain of possible appearances in best source

camera C1. Specifically, C1 plays the role of a “connector” between C2 and C3. Experiments

show that this approach consistently increases the overall re-identification accuracy in mul-

tiple networks by improving matching performance across camera pairs, while exploiting

side information from best source camera.

Moreover, we also propose a source-target selective adaptation strategy that uses

a subset of source camera data instead of all existing data to compute the kernels for

finding the best source camera to pair with a target camera. Our key insight is that not

all images in a source camera are equally effective in terms of adaptability and hence using

an informative subset of images from the existing source cameras whose characteristics are
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similar to those of the target camera can well adapt the models in resource constrained

environments. We develop a target-aware sparse prototype selection strategy using `2,1-

norm optimization to select a subset of source data that can efficiently describe the target

set. Experiments demonstrate that our source-target selective learning strategy achieves

the same performance as the full set while only using about 30% of images from the source

cameras. Interestingly, our approach with prototype selection outperforms the compared

methods that use all existing source data by a margin of about 8%-10% in rank-1 accuracy

while only requiring about 10% of source camera data while introducing new cameras.

Contributions. We address a novel and very practical problem—how to on-board new

camera(s) to an existing re-identification framework without adding a very expensive train-

ing phase. Towards solving this problem, we make the following contributions.

• We develop an unsupervised approach based on geodesic flow kernel that can find the

best source camera to adapt with the newly introduced target camera(s).

• We propose a transitive inference algorithm to exploit side information from the best

source camera to improve the matching accuracy across other camera pairs.

• We also develop a target-aware sparse prototype selection strategy using `2,1-norm

optimization to select an informative subset of source camera data for data-efficient

learning in resource constrained environments.
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4.2 Related Work

Person re-identification has been studied from different perspectives (see [279] for

a survey). Here, we focus on some representative methods closely related to our work.

Supervised Re-identification. Most existing person re-identification techniques are

based on supervised learning. These methods either seek the best feature representa-

tion [248, 143, 11, 164, 277] or learn discriminant metrics/dictionaries [115, 189, 140, 283,

189, 139, 141, 222, 221, 97, 106, 276, 259, 34, 267, 7] that yield an optimal matching score

between two cameras or between a gallery and a probe image. By learning listwise [31]

and pairwise [283] similarities as well as mixture of polynomial kernel-based models [30],

different solutions yielding similarity measures have also been investigated.

Recently, deep learning methods have shown significant performance improvement

on person re-id [266, 256, 249, 55, 35, 246, 148, 287, 40, 274, 131, 197, 288]. Combining

feature representation and metric learning with an end-to-end deep neural networks is also

a recent trend in person re-identification [1, 135, 250]. Considering that a modest-sized

camera network can easily have hundreds of cameras, these supervised re-id models will

require huge amount of labeled data which are difficult to collect in real-world settings.

In an effort to bypass tedious labeling of training data in supervised re-id models, there

has been recent interest in using active learning for labeling examples in an interactive

manner [144, 243, 46, 165, 235]. However, all these approaches consider a static camera

network unlike the problem domain we consider.

Unsupervised Re-identification. Unsupervised learning models have received little at-

tention in re-identification because of their weak performance on benchmarking datasets
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compared to supervised methods. Representative methods along this direction use ei-

ther hand-crafted appearance features [159, 145, 158, 36, 151] or saliency statistics [275]

for matching persons without requiring huge amount of labeled data. Dictionary learn-

ing based methods have also been utilized in an unsupervised setting [113, 150, 114, 4].

Recently, Generative Adversarial Networks (GAN) has also been used in semi-supervised

settings [285, 244]. Although being scalable in real-world settings, these approaches have

not yet considered the dynamic nature of the re-identification problem, where new cameras

can be introduced at any time to an existing network.

Open World Re-Identification. Open world recognition has been introduced in [15] as

an attempt to move beyond the static setting to a dynamic and open setting where the

number of training images/classes are not fixed in recognition. Recently there have been

few works in re-identification [284, 26, 290] which try to address the open world scenario

by assuming that gallery and probe sets contain different identities of persons. Unlike such

approaches, we consider another yet important aspect of open world re-identification, i.e.

the intrinsic dynamic network of cameras where a new camera has to be incorporated in

the system with minimal additional effort. Unlike such approaches, we consider another yet

important aspect of open world re-identification where the camera network is dynamic and

the system has to incorporate a new camera with minimal additional effort.

Domain Adaptation. Domain adaptation [188], which aims to adapt a source domain to

a target domain, has been successfully used in many areas of computer vision and image

processing, e.g., object classification, and action recognition. Despite its applicability in

classical vision tasks, domain adaptation for re-identification still remains as a challenging
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and under addressed problem. Recently, domain adaptation for re-id has begun to be

considered [134, 282, 124, 241, 157]. However, these studies consider only improving the

re-id performance in a static camera network with fixed number of cameras. Furthermore,

most of these approaches learn supervised models using labeled data from the target domain.

In contrast, we propose an unsupervised approach that permit re-identification in a newly

introduced camera without any labeled data.

4.3 Proposed Methodology

To on-board new camera(s) into an existing re-identification framework, we first

formulate an unsupervised approach based on geodesic flow kernel which effectively finds

the best source camera (out of multiple installed ones) to pair with newly introduced target

camera(s) with minimal additional effort (Sec. 4.3.2). Then, to exploit information from the

best source camera, we propose a transitive inference algorithm that improves the matching

performance across other source-target camera pairs in a network (Sec. 4.3.3). We describe

the details on target-aware sparse prototype selection to select an informative subset of

source camera data in Sec. 4.3.4. Finally, we present extensions of our proposed approach

to more realistic scenarios where multiple cameras are introduced to an existing network at

the same time (Sec. 4.3.5) and labeled data from the newly introduced camera is available

for semi-supervised adaptation (Sec. 4.3.6).
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4.3.1 Initial Setup

Our proposed framework starts with an installed camera network where the dis-

criminative distance metrics between each camera pairs is learned using a off-line intensive

training phase. Let there be N cameras in a network and the number of possible camera

pairs is
(N

2

)
. Let {(xAi ,xBi )}mi=1 be a set of training samples, where xAi ∈ RD represents

feature representation of a training sample from camera view A and xBi ∈ RD represents

feature representation of the same person in a different camera view B.

Given the training data, we follow KISS metric learning (KISSME) [116] and

compute the pairwise distance matrices such that distance between images of the same

individual is less than distance between images of different individuals. The basic idea of

KISSME is to learn the Mahalanobis distance by considering a log likelihood ratio test of

two Gaussian distributions. The likelihood ratio test between dissimilar pairs and similar

pairs can be written as

R(xAi ,x
B
j ) = log

1
CD exp(−1

2xTijΣ
−1
D xij)

1
CS exp(−1

2xTijΣ
−1
S xij)

(4.1)

where xij = xAi −xBj , CD =
√

2π|ΣD|, CS =
√

2π|ΣS |, ΣD and ΣS are covariance matrices of

dissimilar and similar pairs respectively. With simple manipulations, (4.1) can be written

as R(xAi ,x
B
j ) = xTijMxij , where M = Σ−1

S − Σ−1
D is the Mahalanobis distance between

covariances associated to a pair of cameras. We perform an Eigen-analysis to ensure M

is positive semi-definite, as in [116]. Note that our approach is agnostic to the choice

of metric learning algorithm used to learn the optimal metrics across camera pairs in an

existing network. We adopt KISSME in this work since it is simple to compute and has

shown to perform satisfactorily on the person re-identification problem.
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4.3.2 Discovering the Best Source Camera

Objective. Given an existing camera network where matching metrics across all camera

pairs are computed using the above training phase, our first objective is to select the best

source camera which has the lowest kernel distance with respect to the newly inserted

camera. Towards this, we adopt an unsupervised strategy based on geodesic flow kernel [78,

80] to compute the distances without requiring any labeled data from the target camera.

Approach Details. Our approach for discovering the best source camera consists of the

following steps: (i) compute geodesic flow kernels between the new (target) camera and

other existing cameras (source); (ii) use the kernels to determine the distance between

them; (iii) rank the source cameras based on distance with respect to the target camera

and choose the one with the lowest as best source camera.

Let {X s}Ns=1 be the N source cameras and X T be the newly introduced target

camera. To compute the kernels in an unsupervised way, we extend a previous method [78]

that adapts classifiers in the context of object recognition to the re-identification in a dy-

namic camera network. The main idea of our approach is to compute the low-dimensional

subspaces representing data of two cameras (one source and one target) and then map them

to two points on a Grassmanian1. Intuitively, if these two points are close by on the Grass-

manian, then the computed kernel would provide high matching performance on the target

camera. In other words, both of the cameras could be similar to each other and their features

may be similarly distributed over the corresponding subspaces. For simplicity, let us assume

we are interested in computing the kernel matrix KST ∈ RD×D between the source camera

1Let d being the subspace dimension, the collection of all d-dimensional subspaces form the Grasssmanian.
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X S and a newly introduced target camera X T . Let X̃ S ∈ RD×d and X̃ T ∈ RD×d denote

the d-dimensional subspaces, computed using Partial Least Squares (PLS) and Principal

Component Analysis (PCA) on the source and target camera, respectively. Note that we

can not use PLS on the target camera since it is a supervised dimension reduction technique

and requires label information for computing the subspaces.

Given both of the subspaces, the closed loop solution to the geodesic flow kernel

across two cameras is defined as

xSi
T
KST xTj =

∫ 1

0
(ψ(y)TxSi )T (ψ(y)xTj ) dy (4.2)

where xSi and xTj represent feature descriptor of i-th and j-th sample in source and target

camera respectively. ψ(y) is the geodesic flow parameterized by a continuous variable

y ∈ [0, 1] and represents how to smoothly project a sample from the original D-dimensional

feature space onto the corresponding low dimensional subspace. The geodesic flow ψ(y)

over two cameras can be defined as [78],

ψ(y) =



X̃ S if y = 0

X̃ T if y = 1

X̃ SU1V1(y)− X̃ So U2V2(y) otherwise

(4.3)

where X̃ So ∈ RD×(D−d) is the orthogonal matrix to X̃ S and U1,V1,U2,V2 are given by the

following pairs of Singular Value Decompositions (SVDs),

X STX T = U1V1PT , X So
TX T = −U2V2PT (4.4)
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With the above defined matrices, KST can be computed as

KST =

[
X̃ SU1 X̃ So U2

]
G

UT1 X S
T

UT2 X So
T

 (4.5)

where G =

diag[1 + sin(2θi)
2θi

] diag[ (cos(2θi)−1)
2θi

]

diag[ (cos(2θi)−1)
2θi

] diag[1− sin(2θi)
2θi

]

 and [θi]
d
i=1 represents the principal angles

between source and target camera. Once we compute all pairwise geodesic flow kernels

between a target camera and source cameras using (4.5), our next objective is to find the

distance across all those pairs. A source camera which is closest to the new camera is more

likely to adapt better than others. We follow [192] to compute distance between a target

camera and a source camera pair. Specifically, given a kernel matrix KST , the distance

between data points of a source and target camera is defined as

DST (xSi ,x
T
j ) = xSi

T
KST xSi + xTj

T
KST xTj − 2xSi

T
KST xTj (4.6)

where DST represents the kernel distance matrix defined over a source and target camera.

We compute the average of a distance matrix DST and consider it as the distance between

two cameras. Finally, we chose the one that has the lowest distance a best source camera to

pair with the newly introduced camera. Algorithm 2 summarizes the procedure to discover

best source camera for a newly introduced target camera.

Remark 1. Note that we do not use any labeled data from the newly introduced target

camera to either compute the geodesic flow kernels in (4.5) or the kernel distance matrices

in (4.6). Hence, our approach can be applied to on-board new cameras in a large-scale

camera network with minimal additional effort.
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Algorithm 2 Discovering the Best Source Camera

Input: Set of N source cameras {X s}Ns=1,;

A newly introduced target camera X T ;

Output: Best source camera X S?.

for s = 1, . . . ,N do

1. Compute kernel matrix KST using (4.5);

2. Compute distance matrix DST using (4.6);

3. Compute average distance using mean(DST ) ;

end for

4. Rank cameras based on average distance and chose the one with lowest distance as

the best source camera X S?;

Remark 2. We assume that the newly introduced camera will be close to at least one of the

installed ones since we consider them to be operating in the same time window with same

set of people appear in all camera views, as in most prior works except the work in [284].

However, our adaptation approach is not limited to this constrained setting as we compute

the view similarity in a completely unsupervised manner and hence can be easily applied

in real-world settings where different sets of people appear in different camera views. To

the best of our knowledge, this is first work which can be employed in fully open world re-

identification systems considering both dynamic network and different identity of persons

across cameras (see illustrative experiments in Sec. 4.4.10).
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4.3.3 Transitive Inference for Re-identification

Objective. In the previous section we have presented an unsupervised approach that

can effectively find a best source camera to pair with the target camera. Once the best

source camera is identified, another question that remains is: can we exploit the best source

camera information to improve the re-identification accuracy across other camera pairs?

More specifically, our objective is to exploit KS
?T and pair-wise optimal metrics learned in

Sec. 4.3.1 to improve the overall matching accuracy of the target camera in a network.

Approach Details. Let {Mij}Ni,j=1,i<j be the optimal pair-wise metrics learned in a net-

work of N cameras following Section 4.3.1 and S? be the best source camera for a newly

introduced target camera T following Sec. 4.3.2.

Motivated by the effectiveness of Schur product for improving the matrix consis-

tency and reliability in multi-criteria decision making [117], we develop a simple yet effective

transitive algorithm for exploiting information from the best source camera. Our problem

naturally fits to such decision making systems since our goal is to establish a path between

two cameras via the best source camera. Given the best source camera S?, we compute the

kernel matrix between remaining source and target camera as follows,

K̃ST = MSS? �KS
?T , ∀[S]Ni=1, S 6= S? (4.7)

where K̃ST represents the updated matrix between source S and target camera T by ex-

ploiting information from best source camera S?. The operator � denotes Schur product of

two matrices. Eq. 4.7 establishes an indirect path between camera pair (S,T ) by marginal-

ization over the domain of possible appearances in best source camera S?. In other words,

camera S? plays a role of connector between target camera T and all other source cameras.
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Summarizing, to incorporate new camera(s) in an existing network, we use the

kernel matrix KS
?T in (4.5) to obtain the matching accuracy across the new camera and

best source camera, whereas we use the updated kernel matrices, computed using (4.7) to

find the matching accuracy across the target camera and remaining source cameras.

Remark 3. While there are more sophisticated strategies to incorporate the side informa-

tion, the reason to adopt a simple weighting approach as in problem (4.7) is that by doing so

we can scale the re-identification models easily to a large scale network involving hundreds

to thousands of cameras in real-time applications. Furthermore, the proposed transitive

algorithm performs satisfactorily in several camera networks as illustrated in Sec. 4.4.

4.3.4 Learning Kernels with Prototype Selection

Objective. For many applications with limited computation and communication resources,

there is an imperative need of methods that could extract an informative subset from the

source camera data for computing the kernels instead of all existing data. Thus, our main

objective in this section is to develop a target-aware sparse prototype selection strategy

for finding a subset of source camera data that share similar characteristics as the target

camera and then use those for discovering the best source camera in Sec. 4.3.2.

Approach Details. Motivated by sparse subset selection [58, 41], we develop an efficient

optimization framework to extract a sparse set of images from each source camera that

balances two main objectives: (a) they are informative about the given source camera, and

(b) they are also informative about the target camera. Given the above stated goals, we
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formulate the following objective function,

min
Zs,ZT

1

2

(
‖X s −X sZs‖2F + α‖X T −X sZT ‖2F

)
+ λ

(
‖Zs‖2,1 + ‖ZT ‖2,1

)
(4.8)

where α balances the penalty between errors in the reconstruction of source camera data

X s and errors in the reconstruction of target camera data X T . ||Zs||2,1 =
∑m

i=1 ||Zsi ||2 and

||Zsi ||2 is the `2-norm of the i-th row of Zs. λ > 0 is a sparsity regularization parameter.

The objective function is intuitive: minimization of (4.8) favors selecting a sparse

set of prototypes that simultaneously reconstructs the source camera data X s via Zs, as well

as the target camera data X T via ZT , with high accuracy. Specifically, rows in Zs provide

information on relative importance of each image in describing the source camera X s, while

rows in X T give information on relative importance of each image in X s in describing target

camera X T . Given the two sparse coefficient matrices, our next goal is to select a unified

set of images from source camera that share similar characteristics with target camera. To

achieve the above goal, we propose to minimize the following objective function:

min
Zs,ZT

1

2

(
‖X s −X sZs‖2F + α‖X T −X sZT ‖2F

)
+λ
(
‖Zs‖2,1 + ‖ZT ‖2,1

)
+ β||Zc||2,1 s.t. Zc = [Zs|ZT ]

(4.9)

where `2,1-norm on the consensus matrix Zc enables Zs and ZT to have the similar sparse

patterns and share the common components. In each round of the optimization, the up-

dated sparse coefficient matrices in the former rounds can be used to regularize the current

optimization criterion. Thus, it can uncover the shared knowledge of Zs and ZT by sup-

pressing irrelevant images, which results in an optimal Zc for selecting representative source

images to pair with target camera.
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Optimization. Since problem (4.9) is non-smooth involving multiple `2,1-norms, it is

difficult to optimize directly. Motivated by the effectiveness of Half-quadratic optimization

techniques [91], we devise an iterative algorithm to efficiently solve (4.9) by minimizing its

augmented function alternatively. Specifically, if we define φ(x) =
√
x2 + ε with ε being

a constant, we can transform ‖Zs‖2,1 to
∑n

i=1

√
||Zsi ||22 + ε, according to the analysis of

`2,1-norm in [91, 154]. With this transformation, we can optimize (4.9) efficiently in an

alternative way as shown in Algorithm 3.

Once the problem (4.9) is solved, we first sort the source camera images by decreas-

ing importance according to the `2 norms of the rows of Zc and then select the top-ranked

images that fit in the budget constraint. To summarize, we learn the pair-wise kernels

across all the unlabeled target camera data and selected prototypes from the source camera

to discover the best camera as in Sec. 4.3.2. Second, we adopt the same transitive inference

algorithm mentioned in Sec. 4.3.3 to exploit the information from best source camera to

improve re-identification accuracy across other source-target camera pairs.

4.3.5 Extension to Multiple Newly Introduced Cameras

Our approach is not limited to a single camera and can be easily extended to

even more realistic scenarios where multiple cameras are introduced to an existing network

at the same time. Given multiple newly introduced cameras, one can follow two different

strategies to adapt re-id models in dynamic camera networks. Specifically, one can easily

find a common best source camera based on lowest average distance to pair with all the new

cameras or multiple best source cameras, one for each target camera, in an unsupervised
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Algorithm 3 Algorithm for Solving Problem (4.9)

Input: Feature matrices X s and X T

Parameters α, λ, β, set t = 0

Initialize Zs and ZT randomly, set Zc = [Zs|ZT ]

Output: Optimal sparse coefficient matrix Zc.

while not converged do

1. Compute P t, Qt and Rt as:

Pii =
1

2
√
||Zsi ||22 + ε

, Qii =
1

2
√
||ZTi ||22 + ε

, Rii =
1

2
√
||Zci||22 + ε

2. Compute Zst+1 and ZT t+1
as:

Zs = (X sTX s + 2λP + 2βR)
−1X sTX s

ZT = (αX sTX s + 2λQ+ 2βR)
−1
αX sTX T

3. Compute Zt+1
c as: Zt+1

c = [Zst+1 | ZT t+1
];

4. t = t+ 1;

end while

way similar to the above approach. Experiments on a large-scale network of 16 cameras

show that our approach works better with multiple source cameras, one for each target

camera compared to the case where a common best source camera is used for all target

cameras (see illustrative experiments in Sec. 4.4.4).

4.3.6 Extension to Semi-supervised Adaptation

Although our framework is designed for unsupervised adaptation of re-id models,

it can be easily extended if labeled data from the newly introduced camera become available.

Specifically, the label information from target camera can be encoded while computing sub-
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spaces. That is, instead of using PCA for estimating the subspaces, we can use Partial Least

Squares (PLS) to compute the discriminative subspaces on the target data by exploiting

the labeled information. PLS has shown to be effective in finding discriminative subspaces

by projecting labeled data into a common subspace [74, 205]. This essentially leads to

semi-supervised adaptation in a dynamic camera network (see experiments in Sec 4.4.5).

4.4 Experiments

In this section, we evaluate the performance of our approach by performing several

illustrative experiments on multiple benchmark datasets.

4.4.1 Datasets and Settings

Datasets. We conduct experiments on five different publicly available benchmark datasets

to verify the effectiveness of our framework, namely WARD [166], RAiD [45], SAIVT-

SoftBio [19], Shinpuhkan2014 [109], and and Market-1501 [278]. Although there are number

of other datasets (e.g. ViPeR [81], CAVIAR4REID [36], PRID450S [96], and CUHK [133]

etc.) for evaluating the performance in re-id, these datasets do not fit our purposes since they

have only two cameras or specifically designed for video-based person re-identification [240].

• WARD [166] has 4786 images of 70 different people captured in a real surveillance

scenario from 3 non-overlapping cameras. This dataset has a huge illumination vari-

ation apart from resolution and pose changes.

• RAiD [45] was collected with a view to have large illumination variation that is not

present in most of the publicly available benchmark datasets. In the original dataset
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43 subjects were asked to walk through 4 cameras of which two are outdoor and two

are indoor to make sure there is enough variation of appearance between cameras.

• SAIVT-SoftBio [19] includes annotated sequences (704 × 576 pixels, 25 frames per

second) of 150 people, each of which is captured by a subset of 8 different cameras,

providing various viewing angles and varying illumination conditions.

• Shinpuhkan2014 [109] dataset consists of more than 22,000 images of 24 people

which are captured by 16 cameras installed in a shopping mall. All images are man-

ually cropped and resized to 48 ×128 pixels, grouped into tracklets with annotation.

The number of tracklets of each person is 86. To the best of our knowledge, this is

the largest publicly available dataset for re-id with 16 cameras.

• Market-1501 [278] is one of the biggest dataset containing 32,668 images of 1501

persons that are collected by 6 cameras in front of a supermarket in Tsinghua Univer-

sity. Each annotated identity is present in at least two cameras, so that cross-camera

search can be performed. Apart from large variations in pose and illuminations, the

size of the dataset itself introduces a new level of computational challenge.

Feature Extraction and Matching. The feature extraction stage consists of extracting

Local Maximal Occurrence (LOMO) feature [143] for person representation. The descriptor

has 26,960 dimensions. We follow [116, 179] and apply principle component analysis to

reduce the dimensionality to 100 in all our experiments. Without low-dimensional feature,

it is computationally infeasible to inverse covariance matrices of both similar and dissimilar
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Figure 4.2: CMC curves for WARD dataset with 3 cameras. Plots (a, b, c) show the
performance of different methods while introducing camera 1, 2 and 3 respectively to a
dynamic network. Please see the text in Sec. 4.4.2 for the analysis of the results.

pairs as discussed in [116, 179]. To compute distance between cameras, as well as, matching

score, we use kernel distance [192] (Eq. 4.6) for a given projection metric.

Performance Measures. We show results using Cumulative Matching Characteristic

(CMC) curves and normalized Area Under Curve (nAUC) values [106, 45, 165, 275, 113].

CMC curve is a plot of recognition performance versus re-id ranking score and represents

the expectation of finding correct match in the top k matches. nAUC gives an overall score

of how well a method performs irrespective of the dataset size.

Experimental Settings. We maintain following conventions during all our experiments:

All the images for each dataset are normalized to 128×64 for being consistent with the

evaluations carried out by state-of-the-art methods [11, 45, 36]. Following the literature

[45, 116, 143], the train and test set are kept disjoint by picking half of the available data

for training set and rest of the half for testing. We repeated each task 10 times by randomly

picking 5 images from each identity both for train and test time. The subspace dimension

for all the possible combinations are kept 50.
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Figure 4.3: CMC curves for RAiD dataset with 4 cameras. Plots (a, b, c, d) show the
performance of different methods while introducing camera 1, 2, 3 and 4 respectively to a
dynamic network. Our method significantly outperforms all the compared baselines.

4.4.2 Re-identification by Introducing a New Camera

Goal. The goal of this experiment is to analyze the performance of our unsupervised

framework while introducing a single camera to an existing network where optimal distance

metrics are learned using an intensive training phase.

Compared Methods. We compare our approach with several unsupervised alternatives

which fall into two categories: (i) hand-crafted feature-based methods including CPS [36] and

SDALF [11], (ii) two domain adaptation based methods (Best-GFK and Direct-GFK) based
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Figure 4.4: CMC curves averaged over all target camera combinations, introduced one at a
time. (a) Results on SAVIT-SoftBio dataset, and (b) Results on Market-1501 dataset.

on geodesic flow kernel [78]. For Best-GFK baseline, we compute the re-id performance of a

camera pair by applying the kernel matrix, KS
?T computed between best source and target

camera [78], whereas in Direct-GFK baseline, we use the kernel matrix computed directly

across source and target camera using (4.5). The purpose of comparing with Best-GFK is

to show that the kernel matrix computed across the best source and target camera does

not produce optimal re-id performance in computing matching performance across other

source cameras and the target camera. On the other hand, the purpose of comparing with

Direct-GFK baseline is to explicitly show the effectiveness of our transitive algorithm in

improving re-id performance in a dynamic camera network.

Implementation Details. We use publicly available codes for CPS and SDALF and tested

on our experimented datasets. We use the same features as the proposed one and kept the

parameters same as mentioned in the published works. We also implement both Best-GFK

and Direct-GFK baselines under the same experimental settings as mentioned earlier to

88



Camera 1 Camera 2

O
ur

s
Be

st
-G

FK
D

ir
ec

t-G
FK

Camera 2 Camera 3

O
ur

s
Be

st
-G

FK
D

ir
ec

t-G
FK

(a) WARD (b) RAiD
Camera 7 Camera 8

O
ur

s
Be

st
-G

FK
D

ir
ec

t-G
FK

Camera 5 Camera 7

O
ur

s
Be

st
-G

FK
D

ir
ec

t-G
FK

(c) SAIVT-SoftBio (e) Shinpuhkan2014

Figure 4.5: Effectiveness of transitive algorithm in re-identification on different datasets.
Top row: Our matching result using the transitive algorithm. Middle row: matching the
same person using Best-GFK. Bottom row: matching the same person using Direct-GFK.
Visual comparison of top 10 matches shows that Ours perform best in matching persons
across camera pairs by exploiting information from the best source camera.

have a fair comparison with our proposed method. For all the datasets, we considered

one camera as newly introduced target camera and all the other as source cameras. We

considered all the possible combinations for conducting experiments. We first pick which

source camera matches best with the target one, and then, use the proposed transitive

algorithm to compute the re-id performance across remaining camera pairs.

Results. Fig. 4.2 and Fig. 4.3 show the results for all possible combinations on the 3 camera

WARD dataset and 4 camera RAiD dataset respectively, whereas Fig. 4.4 shows the aver-

age performance over all possible combinations by inserting one camera on SAIVT-SoftBio

dataset and Market-1501 dataset respectively. From all three figures, the following obser-
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vations can be made: (i) the proposed framework consistently outperforms all compared

unsupervised methods on all three datasets by a significant margin, including the Market-

1501 dataset with significantly large number of images and person identities. (ii) among the

alternatives, CPS baseline is the most competitive. However, the gap is still significant due

to the two introduced components working in concert: discovering the best source camera

and exploiting its information for re-identification. The rank-1 performance improvements

over CPS are 23.44%, 24.50%, 9.98%, and 2.85% on WARD, RAiD, SAIVT-SoftBio and

Market-1501 datasets respectively. (iii) Best-GFK works better than Direct-GFK in most

cases, which suggests that kernel computed across the best source camera and target camera

can be applied to find the matching accuracy across other camera pairs in re-identification.

(iv) Finally, the performance gap between our method and Best-GFK (maximum improve-

ment of 17% in nAUC on RAiD) shows that the proposed transitive algorithm is effective in

exploiting information from the best source camera while computing re-id accuracy across

camera pairs (see Fig. 4.5 for some illustrative examples on different datasets).

4.4.3 Model Adaptation with Prototype Selection

Goal. The main objective of this experiment is to analyze the performance of our approach

by using the selected prototypes from source camera while learning the geodesic flow kernels

in resource constrained environments.

Compared Methods. We compare our approach (denoted as Ours-Proto) with the same

methods (CPS, SDALF, Best-GFK and Direct-GFK) as we did in Sec. 4.4.2.

Implementation Details. The regularization parameters λ and β in (4.9) are taken as

λ0/γ where γ = 50 and λ0 is analytically computed from the data [58]. The other parameter
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Table 4.1: Model adaptation with prototype selection. Numbers show rank-1 recognition
scores in % averaged over all possible combinations of target cameras.

Methods SDALF CPS Direct-GFK Best-GFK Ours-Proto Ours

WARD 16.66 45.70 16.87 32.72 60.72 68.99

RAiD 26.80 35.35 17.63 24.74 53.67 59.84

α is empirically set to 0.5 and kept fixed for all results. For each datasets, we show average

rank-1 performance over all possible combinations by introducing one camera at a time.

Results. Tab. 4.1 shows the results on both WARD and RAiD datasets. We have the

following observations from Tab. 4.1: (i) Our approach with prototypes (Ours-Proto) sig-

nificantly outperforms all compared methods that use all existing source data on both

datasets. The rank-1 performance improvements over CPS are 15.02% and 18.32% on WARD

and RAiD datasets respectively. (ii) As expected, our approach works best with the use

of all existing source camera data (ideal case). However, performance using prototypes is

still close to the ideal case (a margin of 6%-8%) with only requiring 15%-20% of source

camera data while computing the kernels. This can greatly reduce the deployment cost of

new cameras in many resource constrained environments.

We also investigate the effectiveness of our target-aware sparse prototype selection

strategy by comparing with randomly selecting same number of prototypes, and found that

the later produces inferior results with rank-1 accuracy of 27.54% and 19.82% on WARD

and RAiD datasets respectively. We believe this is because our prototype selection strategy

efficiently exploits the information of target camera (see Eq. (4.9)) to select an informative

subset of source camera data which share similar characteristics as target camera.
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Figure 4.6: CMC curves for Shinpuhkan2014 dataset with 16 cameras. Plots (a, b, c) show
the performance of different methods while introducing 2, 3 and 5 cameras respectively at
the same time. We use one common best source camera for all the target cameras while
computing re-id performance across a network. Please see the text in Sec. 4.4.4 for the
analysis of the results. Best viewed in color.
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Figure 4.7: CMC curves for Shinpuhkan2014 dataset with 16 cameras. Plots (a, b, c) show
the performance of different methods while introducing 2, 3 and 5 cameras respectively at
the same time. We use multiple best source cameras, one for each target camera while
computing re-id performance across a network. Please see the text in Sec. 4.4.4 for the
analysis of the results. Best viewed in color.
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4.4.4 Introducing Multiple Cameras

Goal. The aim of this experiment is to validate the effectiveness of our proposed approach

while introducing multiple cameras at the same time in a dynamic camera network. As

described in Sec. 4.3.5, we investigate our performance in two different scenarios such as

(a) one common best source camera for all target cameras and (b) multiple best source

cameras, one for each target camera while computing re-id performance across a network.

Compared Methods. We compare our approach with the same methods (CPS, SDALF,

Best-GFK and Direct-GFK) as we did for single camera in Sec. 4.4.2.

Implementation Details. We conduct this experiment on Shinpuhkan2014 dataset [109]

with of 16 cameras. We randomly chose 2, 3 and 5 cameras as the target cameras while

remaining cameras as possible source cameras. For scenario (a), we pick the common best

source camera based on the average distance and follow the same strategy as in Sec. 4.4.2

while for scenario (b), instead of using the common best source camera, we use multiple

best source cameras, one for each target camera in the transitive inference.

Results. Fig. 4.6 and Fig. 4.7 show results of different methods in two different scenarios

while randomly introducing 2, 3 and 5 cameras respectively on Shinpuhkan2014 dataset.

The following observations can be made from the figs: (i) Similar to the results in Sec. 4.4.2,

our approach outperforms all compared methods in all three scenarios. This indicates that

the proposed method is very effective and can be applied to large-scale dynamic camera

networks where multiple cameras can be introduced at the same time. (ii) The gap between

ours and Best-GFK is moderate but still we improve by 4% in nAUC values, which corrob-

orates the effectiveness of transitive inference for re-identification in a large-scale camera
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network (see Fig. 4.6). (iii) The proposed adaptation approach works better with multiple

best source cameras compared to a common best source camera used for transitive inference

(about 5% improvement–see Fig. 4.7). This is expected since multiple best source cameras

can better exploit information from best source camera to improve the re-identification ac-

curacy. Our approach is quite generic which can handle either multiple best source cameras

or a common best source camera for transitive inference in a dynamic camera network.

4.4.5 Extension to Semi-supervised Adaptation

Goal. As discussed in Sec. 4.3.6, the proposed method can be easily extended to semi-

supervised settings when labeled data from the target camera become available. The ob-

jective of this experiment is to analyze the performance of our approach in such settings by

incorporating labeled data from the target camera.

Compared Methods. We compare the proposed unsupervised approach with four variants

of our method where 10%, 25%, 50% and 100% of the labeled data from target camera are

used for estimating kernel matrix respectively.

Implementation Details. We follow same strategy in finding average accuracies over a

camera network. However, we use PLS instead of PCA, to compute the discriminative sub-

spaces in target camera by considering 10%, 25%, 50% and 100% labeled data respectively.

Results. We have the following key findings from Fig. 4.8: (i) As expected, the semi-

supervised baseline Ours-Semi-100%, works best since it uses all the labeled data from target

domain to compute the kernel matrix for finding the best source camera. (ii) Our method

remains competitive to Ours-Semi-100% on both datasets (Rank-1 accuracy: 60.04% vs

59.84% on RAiD and 26.41% vs 24.92% on SAIVT-SoftBio dataset). However, it is impor-
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Figure 4.8: Semi-supervised adaptation with labeled data. Plots (a,b) show CMC curves
averaged over all target camera combinations, introduced one at a time, on RAiD and
SAIVT-SoftBio respectively. Please see the text in Sec. 4.4.5 for analysis of the results.

tant to note that collecting labeled samples from the target camera is very difficult in prac-

tice. (iii) Interestingly, the performance gap between our unsupervised method and other

three semi-supervised baselines (Ours-Semi-50%, Ours-Semi-25%, and Ours-Semi-10%) are

moderate on RAiD (see Fig. 4.8-a), but on SAIVT-SoftBio, the gap is significant (see

Fig. 4.8-b). We believe this is probably due to the lack of enough labeled data in the target

camera to give a reliable estimate of PLS subspaces.

4.4.6 Re-identification with LDML Metric Learning

Goal. The objective of this experiment is to verify the effectiveness of our approach by

changing the initial setup presented in Sec. 4.3.1. Specifically, our goal is to show the perfor-

mance of the proposed method by replacing KISSME [116] with LDML metric learning [83].

Ideally, we would expect similar performance improvement by our method, irrespective of
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the metric learning used to learn the distance metrics in an existing network of cameras.

Implementation Details. We use the publicly available code of LDML to test the per-

formances and set the parameters same as recommended in the published work.

Results. Fig. 4.9 shows results of our method on WARD and RAiD respectively. Following

are the analysis of the figures: (i) Our approach outperforms all compared methods in both

datasets which suggests that the proposed adaptation technique works significantly well

irrespective of the metric learning method used in the existing camera network. (ii) The

proposed adaptation approach works slightly better with LDML compared to KISSME on

the 3 camera WARD dataset (73.77% vs 68.99% in rank-1 accuracy). However, the margin

becomes smaller on RAiD (61.87 vs 59.84) which is relatively a complex re-id dataset with 2

outdoor and 2 indoor cameras. (iii) Although performance of LDML is slightly better than

KISSME, it is important to note that KISSME is about 40% faster than that of LDML

in learning the metrics in WARD dataset. KISSME is computationally efficient and hence

more suitable for learning pairwise distance metrics in a large-scale camera network.

4.4.7 Effect of Feature Representation

Goal. The goal of this experiment is to verify the effectiveness of our approach by chang-

ing the feature representation. Specifically, our goal is to show the performance of the

proposed method by replacing LOMO feature with Weighted Histograms of Overlapping

Stripes (WHOS) feature representation [143].

Implementation Details. We use the publicly available code of WHOS to test the per-
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Figure 4.9: Re-id performance with LDML as initial setup. Plots (a,b) show CMC curves
averaged over all target camera combinations, introduced one at a time, on WARD and
RAiD respectively. Please see the text in Sec. 4.4.6 for analysis of the results.

formances and set the parameters same as recommended in the published work. Except the

change in feature, we followed the same settings while comparing with other methods.

Results. Fig. 4.10 shows results for all possible 4 combinations (three source and one

target) on RAiD dataset. From Fig. 4.10, the following observations can be made: (i) our

approach outperforms all compared methods which suggests that the proposed adaptation

technique works significantly well irrespective of the feature used to represent persons.

(ii) Among the alternatives, Best-GFK is the most competitive. However, the gap is still

significant compared to Ours with an average margin of about 10%. (iii) The improvement

over Best-GFK shows that the proposed transitive algorithm is very effective in exploiting

information from the best source camera irrespective of the feature representation.
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Figure 4.10: Re-identification performance on RAiD dataset with WHOS feature represen-
tation. Plots (a, b, c, d) show CMC curves averaged over all camera pairs while introducing
camera 1, 2, 3 and 4 respectively to a dynamic network.

4.4.8 Effect of Subspace Dimension

Goal. The main objective of this experiment is to analyze the performance of our method

by changing the dimension of subspace used to compute the geodesic flow kernels across

target and source cameras. In ideal case, we would like to see a minor change in performance

with changing the dimension of subspace.

Implementation Details. We tested our approach with 5 cases of d, set to 10, 20, 30, 40

and 50. Except the change in dimension, we kept everything fixed while computing re-id
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Figure 4.11: Re-identification performance on WARD dataset with change in subspace
dimension. Plots (a, b, c) show the performance of different methods while introducing
camera 1, 2 and 3 respectively to a dynamic network.

performance in a dynamic camera network.

Results. We have the following observations from Fig. 4.11: (i) Dimensionality of the sub-

space has a little effect on the re-id performance of our method suggesting that our method

is robust to the change in dimensionality of the subspace used to compute the geodesic

kernels across target and source cameras. (ii) Performance of our method is comparatively

less when the dimension is set to 10. We believe this is because the principal angles com-

puted at a dimension of 10 for this dataset are very small in magnitude which suggests that

variances captured in the subspace corresponding to the source cameras would not be able

to transfer to the target subspace. (iii) Although we empirically set the dimension to 50

in all our experiments, we believe finding the optimal dimension specific to a dataset can

provide best re-id performance in a network of cameras.

4.4.9 Comparison with Supervised Re-identification

Goal. The objective of this experiment is to compare the performance of our approach

with supervised alternatives in a dynamic camera network.

99



Compared Methods. We compare with several supervised alternatives which fall into two

categories: (i) feature transformation based methods including FT [164], ICT [6], WACN [166],

that learn the way features get transformed between two cameras and then use it for match-

ing, (ii) metric learning based methods including KISSME [116], LDML [83], XQDA [143] and

MLAPG [141]. As mentioned in Sec. 4.4.6, our model can operate with any initial network

setup and hence we show our results with both KISSME and LDML, denoted as Ours-K

and Ours-L, respectively. Note that we could not compare with recent deep learning based

methods as they are mostly specific to a static setting and also their pairwise camera results

are not available on the experimented datasets. We did not re-implement such methods in

our dynamic setting as it is very difficult to exactly emulate all the implementation details.

Implementation Details. To report existing feature transformation based methods re-

sults, we use prior published performances from [45]. For metric learning based methods,

we use publicly available codes to test on our experimented datasets. Given a newly intro-

duced camera, we use the metric learning based methods to relearn the pair-wise distance

metrics using the same train/test split, as mentioned earlier in Sec. 4.4.1. We show the

average performance over all possible combinations by introducing one camera at a time.

Results. Table 4.2 shows the rank-1 accuracy averaged over all possible target cameras

introduced one at a time in a dynamic network. We have the following key findings from

Table 4.2: (i) Both variants of our unsupervised approach (Ours-K and Ours-L) outperforms

all the feature transformation based approaches on both datasets by a big margin. (ii) On

WARD dataset with 3 cameras, our approach is very competitive on both settings: Ours-K

outperforms KISSME and LDML whereas Ours-L overcomes MLAPG. This result suggests that
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Table 4.2: Comparison with supervised methods. Numbers show rank-1 recognition scores
in % averaged over all possible combinations of target cameras, introduced one at a time.

Methods WARD RAiD Reference

FT 49.33 39.81 TPAMI2015 [164]

ICT 42.51 25.31 ECCV2012 [6]

WACN 37.53 17.71 CVPRW2012 [166]

KISSME 66.95 55.68 CVPR2012 [116]

LDML 58.66 61.52 ICCV2009 [83]

XQDA 77.20 77.81 TPAMI2015 [143]

MLAPG 72.26 77.68 ICCV2015 [141]

Ours-K 68.99 59.84 Proposed

Ours-L 73.77 61.87 Proposed

our approach is more effective in matching persons across a newly introduced camera and

existing source cameras by exploiting information from best source camera via a transitive

inference. (iii) On the RAiD dataset with 4 cameras, the performance gap between our

method and metric-learning based methods begins to appear. This is expected as with a

large network involving a higher number of camera pairs, an unsupervised approach can not

compete with a supervised one, especially, when the latter one is using an intensive training

phase. However, we would like to point out once more that in practice collecting labeled

samples from a newly inserted camera is very difficult and unrealistic in actual scenarios.
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Figure 4.12: Re-identification performance on WARD dataset with different sets of people in
the target camera (0% Overlap). Plots (a, b, c) show the performance of different methods
while introducing camera 1, 2 and 3 respectively to a network.

4.4.10 Re-identification with Different Sets of People

Goal. The goal of this experiment is to analyze the performance of our approach with

different identities of person appearing in the target camera as in a real world setting.

Implementation Details. We consider first 15 persons in source camera and next 20

persons in target camera (0% Overlap) for training on WARD dataset while we use first

13 persons in source camera and next 10 persons in target camera for training on RAiD

dataset. We also consider a scenario where partial overlap of persons exists across source

and target cameras, i.e., all the persons appearing in the source camera are present in the

target camera but there exists some persons that only appear in target camera and not in

source cameras. We consider first 13 persons in source camera and all 23 persons in target

camera for training in this partial overlap setting (50% Overlap). Note that the train and

test set are still kept disjoint as in standard person re-identification setting.

Results. Fig. 4.12 shows the re-id performance of different methods on WARD dataset with

completely disjoint sets of people in the target camera. Following are the key observations
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Table 4.3: Performance comparison with different percentage of overlap in person identities
across source and target camera. Numbers show rank-1 recognition scores in % averaged
over all possible combinations of target cameras, introduced one at a time.

Datasets 0% Overlap 50% Overlap 100% Overlap

RAiD 50.83 56.81 59.84

from Fig. 4.12: (i) The proposed framework for re-identification consistently outperforms

all compared methods by a significant margin even though completely new persons appear

in the target camera. (ii) Similar to previous results with 100% overlap of persons across

source and target cameras (see Fig. 4.2), CPS is still the most competitive. However, our

approach outperforms CPS by a margin about 20% in rank-1 accuracy on WARD dataset.

(iii) Finally, the large performance gap between our method, Direct-GFK and Best-GFK

(improvement of more than 30% in rank-1 accuracy) shows that the proposed transitive

algorithm is also effective in real-world scenarios where completely new person identities

appear in the newly introduced camera.

Tab. 4.3 shows the performance of our approach with different percentage of over-

lap in person identities across source and target camera on RAiD dataset. As expected, the

performance increases with increase in the percentage of overlap and achieves the maximum

rank-1 accuracy of 59.84% when the same set of people appear in all camera views. This

is because kernel matrices are the best measure of similarity when there is complete over-

lap across two data distributions. Our approach outperforms all compared methods at 0%

overlap on both WARD and RAiD datasets showing it’s effectiveness in real-world systems

with both dynamic network and different identity of persons across cameras.
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4.5 Conclusion

In this work, we presented an effective framework to adapt re-identification models

in a dynamic network, where one or multiple new cameras may be temporarily inserted

into an existing system to get additional information. We developed a domain perceptive

re-identification method based on geodesic flow kernel to find the best source camera to

pair with newly introduced camera(s), without requiring a very expensive training phase.

We then introduced a simple yet effective transitive inference algorithm that can exploit

information from best source camera to improve the accuracy across other camera pairs.

Moreover, we develop a source-target selective adaptation strategy that uses a subset of

source data instead of all existing data to compute the kernels in resource constrained

environments. Extensive experiments on several benchmark datasets well demonstrate the

efficacy of our method over state-of-the-art methods.
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Chapter 5

Conclusions

5.1 Thesis Summary

In this thesis, we focused on one fundamental challenge in computer vision–how

to learn efficient models with limited supervision for two specific applications namely video

summarization and person re-identification. In the first two works, we focused on developing

weakly supervised frameworks for video summarization while on the last work, we developed

an effective approach for on-boarding new camera(s) into an existing person re-identification

framework with limited supervision. Our proposed frameworks show the way to scale video

summarization and re-identification to the sheer size of tomorrows available data or cameras.

We proposed a collaborative approach for summarizing topic-related videos in

chapter 2. Our framework exploits visual context from a set of topic-related videos to

extract an informative summary of a given video that simultaneously capture both impor-

tant particularities arising in the given video, as well as, generalities identified from the

set of topic-related videos. We show that our proposed framework while exploiting weak
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supervision in form of freely available topic-related videos from the web can generated high

quality video summaries by performing rigorous experiments on two standard summariza-

tion datasets. In chapter 3, we presented an unsupervised approach by exploiting data

correlations for summarizing multi-view videos in a camera network. The proposed multi-

view embedding helps in capturing correlations without assuming any prior correspondence

between the individual ones. A key advantage of the proposed approach with respect to

the state-of-the-art is that it can summarize multi-view videos without assuming any prior

alignment between them, e.g., uncalibrated camera networks. Performance comparisons on

six standard multi-view datasets show marked improvement over some mono-view summa-

rization approaches as well as state-of-the-art multi-view summarization methods.

In chapter 4, we presented a novel approach for adapting existing multi-camera per-

son re-identification frameworks with limited supervision through transfer learning. Specif-

ically, we focused on the problem of on-boarding new camera(s) by discovering and trans-

ferring knowledge from installed cameras without also adding a very expensive training

phase. We also developed a source-target selective adaptation strategy that uses a subset of

source data instead of all the existing data to compute the kernels in resource constrained

environments. This is crucial to increase the flexibility and decrease the deployment cost

of newly introduced cameras in large-scale dynamic camera networks. We demonstrated

that the proposed model significantly outperforms the state-of-the-art unsupervised learn-

ing based alternatives on five benchmark datasets involving large number of images and

cameras whilst being extremely efficient to compute.
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5.2 Future Research Directions

5.2.1 Joint Video Segmentation and Summarization

Our proposed approaches for video summarization in chapter 2 and chapter 3 use

video temporal segmentation as a preprocessing step and then use the shot-level features

to extract summaries. Our approach can be modified in two ways to optimize the tem-

poral segmentation for the task of video summarization. First, involving a human in our

current approach for giving feedbacks, similar to the concept of relative attributes in visual

recognition [187] can help us in adaptively changing the shot boundaries for generating bet-

ter quality summaries. Second, learning a dynamic agent using Markov Decision Process

(MDP) for moving the shot boundaries (forward or backward with temporal increments)

based on the performance of our proposed summarization algorithm is also a possibility

in this regard [25]. Developing an efficient framework for joint video segmentation and

summarization is an interesting practical problem—we leave this as future work, with no

existing work, to the best of our knowledge.

5.2.2 Personalized Video Summarization

Most summarization approaches follow the principle of “one summary fits all”

where video summaries are automatically generated without considering any user interest.

However, the best summary of a long video differs among different people due to its highly

subjective nature. Even for the same person, the best summary may change with time or

mood. Recently, the problem of personalized video summarization has gained attention in

the research community where the goal is to generate customized video summaries specific

107



to user interests. Many approaches has been developed with the use of attention [142],

user interest modeling [85] or by including a human in the loop [88]. However, most of

these approaches including our proposed works in chapter 2 and chapter 3 can only handle

explicit user interest which are unreliable to specify in many applications since an user may

not be interested to provide his/her interests all the time while summarizing long videos. An

important question we want to ask here is whether we can implicitly infer the user interests

for generating high quality personalized video summaries. With the rapid proliferation of

social media, we are now very active in many social platforms such as Facebook, Twitter

and many more. Thus, implicitly inferring user interest via social media analysis is an

interesting direction of future research in the context of video summarization. In future, we

plan to achieve this with three main steps, namely social context identification, user interest

discovery and personalized summary generation. Social context identification will focus on

different data mining techniques to extract related videos and like minded users from the

social media platforms. Once, the related videos along with like minded users have been

identified, we can perform clustering to discover latent concepts related to different users and

their associated activities in the social media (eg., tagging, re-tweeting in Twitter). Finally,

a factor representing correlation with the latent concepts can be integrated along with

representativeness and sparsity in any summarization framework to generate personalized

video summaries to enable a more efficient and engaging viewing experience.

5.2.3 Online and Distributed Video Summarization

In many applications, video summarization algorithms may be running on sensors

which are equipped with limited computational resources. In recent work [122], we introduce

108



a reinforcement learning agent to automatically fast-forward a single-view video and present

a subset of relevant frames to users on the fly. It does not require processing the entire

video, but just the portion that is selected by the agent, which makes the process very

computationally efficient. Fast-forwarding multi-view videos captured with different sensors

in a overlapping or non-overlapping camera network still remains as a novel and largely

under-addressed problem. Building upon these results for a single camera, we propose to

develop multi-agent reinforcement learning approaches for fast-forwarding through multiple

data streams captured using different sensors. Moreover, we expect the complexity of the

problem to be much higher for mobile networks where a wider variety of conditions can

be encountered. Develop scalable algorithms using Q-learning to solve these problems in

an efficient manner can be an interesting future research direction. Moreover, in many

applications, all the data may not be available in a central repository. Analysis would need

to happen by combining local information at different camera nodes or processing nodes that

assimilate information from groups of cameras. Such nodes would be able to communicate

locally and summaries would have to be generated via local communication. Developing

scalable algorithms using the theory of submodular maximization and MapReduce style

computations in a distributed fashion will also be an interesting direction for future research.

5.2.4 Knowledge Transfer across Networks

In chapter 4, we have shown that it is possible to add a new target camera to

an existing network of source cameras using transfer learning with no additional super-

vision for the new camera. However, transfer learning across networks is still a largely

under-addressed problem with many challenges. Given multiple existing source networks
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and a newly installed target network with limited labeled data, we first need to find the

relevance/similarity of each source network, or parts thereof, in terms of amount of knowl-

edge that it can transfer to a target network. Developing efficient statistical measures for

finding relevance in a multi-camera network with significant changes in viewing angle, light-

ing, background clutter, and occlusion can be a very interesting future work. Furthermore,

labeled data from source networks are often a subject of legal, technical and contractual

constraints between data owners and customers. Thus, existing transfer learning approaches

may not be directly applicable in such scenarios where the source data is absent. The ques-

tion we want to ask here is whether learned source models instead od source data can be

used as a proxy for knowledge transfer across networks. Compared to the source data, the

well-trained source model(s) are usually freely accessible in many applications and contain

equivalent source knowledge as well. In future, we plan to use distillation [95] for trans-

ferring knowledge across networks where data from the source network(s) are not either

readily available or subject of several data regulations. Attention transfer techniques [268]

along with distillation can also be adopted to transfer knowledge from a number of existing

labeled networks to an unlabeled target network containing targets which never appeared

in the source network.

5.2.5 Learning in Mobile Camera Networks

Existing re-identification works including ours in chapter 4 are conventionally for-

mulated as a one-to-one set-matching problem between two or more fixed cameras, for which

an effective model can be learned. Despite the success of these works in static platforms,

considering mobile cameras (e.g., network of robots) opens up exciting new research prob-
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lems in terms of thinking about learning such data association models. It is not possible

to learn transformation models between every possible pair of views in two mobile cameras

due to the constantly changing nature of the videos being captured. Thus, in order to

efficiently learn data association models, we need the data to represent the variety of sce-

narios that will be encountered by the mobile cameras. Towards this, we plan to develop a

semi-supervised pipeline that uses limited manual training data along with newly generated

data through a generative adversarial network (GAN) [79]. One initial approach could be

to use the unlabeled samples produced by a Multi-view Generative Adversarial Network

(Mv-GAN) [32] in conjunction with the labeled training data to learn view-invariant fea-

tures in a mobile network. Moreover, apart from generating samples, we may need to evolve

the learned models over time based on the observed features.
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[61] Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In CVPR, 2009.

[62] Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algorithm, theory,
and applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
35(11):2765–2781, 2013.

[63] Erhan Baki Ermis, Pierre Clarot, Pierre-Marc Jodoin, and Venkatesh Saligrama. Ac-
tivity based matching in distributed camera networks. Image Processing, IEEE Trans-
actions on, 19(10):2595–2613, 2010.

[64] S. Feng, Z. Lei, D. Yi, and S.Z. Li. Online content-aware video condensation. In
CVPR, 2012.

[65] Shikun Feng, Zhen Lei, and Stan.Z. Li. Online content-aware video condensation. In
CVPR, 2012.

[66] Yanwei Fu. Multi-View Metric Learning for Multi-View Video Summarization.
arXiv.org, 2014.

[67] Yanwei Fu, Yanwen Guo, Yanshu Zhu, Feng Liu, Chuanming Song, and Zhi-Hua Zhou.
Multi View Video Summmarization. IEEE Transactions on Multimedia, 12(7):717–
729, 2004.

[68] Marco Furini, Filippo Geraci, Manuela Montangero, and Marco Pellegrini. Stimo: Still
and moving video storyboard for the web scenario. Multimedia Tools and Applications,
46(1):47–69, 2010.

[69] Chuang Gan, Ting Yao, Gerard de Melo, Yi Yang, and Tao Mei. Improving action
recognition using web images. In IJCAI, 2016.

[70] Shenghua Gao, Ivor Wai-Hung Tsang, Liang-Tien Chia, and Peilin Zhao. Local fea-
tures are not lonely–laplacian sparse coding for image classification. In CVPR, 2010.

[71] Shenghua Gao, I.W.-H. Tsang, and Liang-Tien Chia. Laplacian Sparse Coding, Hy-
pergraph Laplacian Sparse Coding, and Applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(1):92–104, 2013.

[72] Jorge Garcıa, Niki Martinel, Gian Luca Foresti, Alfredo Gardel, and Christian Mich-
eloni. Person orientation and feature distances boost re-identification. 2014.

116



[73] Jorge Garcia, Niki Martinel, Christian Micheloni, and Alfredo Gardel. Person re-
identification ranking optimisation by discriminant context information analysis. In
ICCV, 2015.

[74] Paul Geladi and Bruce R Kowalski. Partial least-squares regression: a tutorial. Ana-
lytica chimica acta, 1986.

[75] Donald Geman and George Reynolds. Constrained restoration and the recovery of
discontinuities. TPAMI, 1992.

[76] R Glowinski and P Le Tallec. Augmented Lagrangian and operator-splitting methods
in nonlinear mechanics. SIAM, 1989.

[77] Boqing Gong, Wei-Lun Chao, Kristen Grauman, and Fei Sha. Diverse sequential
subset selection for supervised video summarization. In NIPS, 2014.

[78] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for
unsupervised domain adaptation. In CVPR, 2012.

[79] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[80] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for
object recognition: An unsupervised approach. In ICCV, 2011.

[81] Douglas Gray and Hai Tao. Viewpoint invariant pedestrian recognition with an en-
semble of localized features. In ECCV, 2008.

[82] Genliang Guan, Zhiyong Wang, Shaohui Mei, Max Ott, Mingyi He, and David Da-
gan Feng. A Top-Down Approach for Video Summarization. ACM Transactions on
Multimedia Computing, Communications, and Applications, 11(4):56–68, 2014.

[83] Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Is that you? metric
learning approaches for face identification. In ICCV, 2009.

[84] Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating
summaries from user videos. In ECCV, 2014.

[85] Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating
summaries from user videos. In ECCV, 2014.

[86] Michael Gygli and Helmut Grabner1 Luc Van Gool. Video summarization by learning
submodular mixtures of objectives. In CVPR, 2015.

[87] Michael Haenlein and Andreas M Kaplan. A beginner’s guide to partial least squares
analysis. Understanding statistics, 2004.

[88] Bohyung Han, Jihun Hamm, and Jack Sim. Personalized video summarization with
human in the loop. In WACV, 2011.

117



[89] Dongyoon Han and Junmo Kim. Unsupervised simultaneous orthogonal basis clus-
tering feature selection. In CVPR, 2015.

[90] A. Hanjalic and H. Zhang. An integrated scheme for automated video abstraction
based on unsupervised cluster validity analysis. IEEE Transactions on Circuit and
Systems for Video Technology, 9:1280–1289, 1999.

[91] Ran He, Tieniu Tan, Liang Wang, and Wei-Shi Zheng. l21 regularized correntropy
for robust feature selection. In CVPR, 2012.

[92] Ran He, Wei-Shi Zheng, Tieniu Tan, and Zhenan Sun. Half-quadratic-based iterative
minimization for robust sparse representation. TPAMI, 2014.

[93] Luis Herranz and Jos M Martinez. A framework for scalable summarization of video.
TCSVT, 2010.

[94] G. Hinton and S. Roweis. Stochastic neighbor embedding. In NIPS, 2002.

[95] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[96] Martin Hirzer, Csaba Beleznai, Peter M Roth, and Horst Bischof. Person re-
identification by descriptive and discriminative classification. In Scandinavian confer-
ence on Image analysis, 2011.
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