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ABSTRACT OF THE DISSERTATION 

 

Toward Critical Data-Scientific Literacy: 

An Intersectional Analysis of the Development of Student Identities in an 

Introduction to Data Science Course 

 

by 

 

María Concepción Olivares Pasillas 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2017 

Professor Thomas M. Philip, Co-Chair 

Professor Douglas M. Kellner, Co-Chair 

 

 

The national imperative to increase the presence of women and people of color in science, 

technology, engineering, and mathematics (STEM) coupled with the growing presence of 

Latinos in the United States has led to the dramatic rise of programs and initiatives aimed at 

improving access to and equity in STEM careers and education for Latino youth. Through the 

use of critical social theory and critical theory of education as guiding frameworks, the 

dissertation examines an instantiation of STEM reform efforts to analyze the classroom 

participation structure that emerged in a piloted introduction to data science course at a local 

high school in one of the largest school districts in the country. The study is particularly 
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concerned with identifying emergent classroom norms and practices, and understanding whether 

and how they came to support and/or hinder students’ opportunities to learn richly with data 

through an analysis of the development of student learning identities. This qualitative case study 

draws on audio-recorded student interviews, video-recorded classroom observations, and field 

notes collected during the second year of the curriculum’s implementation. To identify 

classroom norms and practices as they relate to the development of student identities as data 

science doers, the study examines the classroom participation structure (Cobb and Hodge, 2002) 

and employs Cobb, Gresalfi, and Hodge’s (2009) interpretive scheme for analyzing the 

development of mathematical student identity (also see Cobb & Hodge, 2010). While the 

multiperspectival approach of this study will provide innovatively insightful contributions to a 

number of fields including education, cultural studies, data and computer science, the study will 

also push how educators, learning science researchers, curriculum writers, and policymakers 

think about the pursuit of equity in STEM education in general and data science-oriented 

programs and initiatives in particular as they relate to STEM reform efforts. 
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CHAPTER ONE 

The STEM Imperative 

In 2002, then president George W. Bush announced his promotion of the No Child Left 

Behind Act, a “framework for bipartisan education reform that…called for bipartisan solutions 

based on accountability, choice, and flexibility in Federal education programs” (2003). A main 

feature of the law was the call for increased accountability for student performance via mandated 

annual student testing. In 2004, the Bush Administration also put forth a series of measures 

known as “A New Generation of American Innovation.” The primary goal of this agenda was to 

promote American technological innovation by focusing on three areas of technological 

development: hydrogen fuel, health information, and broadband (Promoting Technology and 

Innovation: President Bush’s Technology Agenda).  

Over a decade later, the United States continues to push for technological innovation and 

education reform that will increase the presence of women and underrepresented minorities in 

the fields of science, technology, engineering, and mathematics (STEM). Today’s national 

STEM efforts are characterized by an urgency to remain globally competitive; diversify STEM 

careers and education; and capitalize on the US minority population which has reached 

unprecedented levels, slated to represent upwards of 50% of the total US population by 2050 

(U.S. Census Bureau as cited in ASHE Higher Education Report, 2011). The Latino presence 

alone now accounts for over 17.6% of the U.S. population (The United States Census Bureau, 

2015). Latinos are easily the largest and fastest growing ethnic minority in the US, expected to 

account for “60 percent of our nation’s population growth between 2005 and 2050,” (White 

House Initiative on Educational Excellence for Hispanics). Moreover, not only are Latinos now 

the largest minority groups in the U.S., as the youngest ethnic group in the country, Latinos are 
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characterized by their youth (See Figure 1.1), making improvements to K-12 education more 

pressing than ever before and vital to the future of STEM fields and innovation.  

 
NOTE: Whites, Blacks and Asians include only those who are single race and not Hispanic. Hispanics 

are of any race. Figures may not add to 100% due to rounding. Source: Pew Research Center analysis 

of 2014 American Community Survey (IPUMS). “The Nation’s Latino Population is Defined by its 

Youth” 

 

Figure 1.1 “Nearly six-in-ten Hispanics are Millennials or younger” is a replication of the table provided by the Pew 

Research Center: Hispanic Trends retrieved from http://www.pewhispanic.org/2016/04/20/the-nations-latino-

population-is-defined-by-its-youth/ph_2016-04-20_latinoyouth-01/ 

The urgent call to the improve STEM education and career opportunities for Latinos 

positions the fastest growing and largest racial/ethnic minority group as “vastly underused 

resources and a lost opportunity for meeting our nation’s technology needs” (National Academy 

of Sciences, National Academy of Engineering, and the Institute of Medicine, 2011 as cited in 

Gonzalez & Kuenzi, 2012). Increasing the presence of women and underrepresented groups in 

STEM is imperative not only to ensuring a thriving tech and engineering industry, but also to 

upholding a global perception of the United States’ economic prosperity and military prowess 

(Gonzalez and Kuenzi, 2012). Underscoring a national focus on global perception of American 

prosperity and power, The Business-Higher Education Forum stated that “increased global 
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competition, lackluster performance in mathematics and science education, and a lack of national 

focus on renewing its science and technology infrastructure have created a new economic and 

technological vulnerability as serious as any military or terrorist threat” (Cited in ASHE Higher 

Education Report, 2011). As a result, there is a clear and general agreement over “problems 

posed by racial, ethnic, and gender disparities in STEM education and employment [yet this] has 

not translated into widespread agreement on either the causes of underrepresentation or policy 

solutions” (Gonzalez and Kuenzi, 2012, p. 24). Capitalizing on “lost talent” and preventing 

further losses in STEM is essential to maintaining the nation’s economic viability, but we must 

also examine the nuances that underpin this lack of representation and participation in ways that 

humanize so-called “underused resources” by acknowledging, valuing, and incorporating 

epistemologies and learning processes of non-dominant groups by and large excluded from 

notions of legitimate STEM learning and doing. Despite decades-long efforts to both improve 

educational outcomes for students of color and diversify STEM fields, the lack of quality 

educational opportunities for students of color is emblematic of deep-seated and long-standing 

educational inequity that characterizes the American education system today. It is important to 

note that although educational inequity affects a number of non-dominant groups including 

African-American and Latino students, I am particularly oriented toward a focus on Latino 

students as the largest and fastest growing non-dominant group in the U.S. In an effort to 

contextualize Latino educational attainment in the U.S., in the next section I will discuss pressing 

issues related to Latino education and educational attainment in K-12 and beyond, with a 

particular focus on STEM education and equity-oriented initiatives that seek to increase access to 

STEM for historically non-dominant groups. 
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Latinos and Educational Inequity 

Studies indicate that attrition rates for Latinos have dropped to an all-time-low. For 

Latinos ages 18-24, the proportion of those who left high school without a high school diploma 

or equivalent decreased from 33 percent in 1993 to 12 percent by October of 2015 (Krogstad, 

2016). The significance of this drop is further magnified by the fact that while the rate for 

Latinos dropped 21 percentage points, drop-out rates for Black, White, and Asian students 

dropped by only single-digits—nine, four, and four percentage points, respectively (Krogstad, 

2016). While it is important to acknowledge the strides made in reducing attrition rates among 

Latinos, Latinos continue to withdraw from high school at higher rates than all other ethnic 

groups (Krogstad, 2016; Covarrubias, 2011). Of those who enroll in college, about 17 out of 100 

enroll at a public two-year college, and about 18 enroll at a four-year-institution in pursuit of a 

bachelor’s degree (Krogstad, 2016). Ultimately, only 15 out of 100 Latinos ages 25-29 complete 

college with a bachelor’s degree or higher (Krogstad, 2016).  

Furthermore, data collected by the National Center for Education Statistics (NCES) 

indicate that out of all bachelor’s degrees conferred by postsecondary institutions in 2014, an 

estimated 10.8 percent were conferred on Latinos, up from 6.8 percent a decade earlier. With 

regards to bachelor degrees in STEM1 in particular, only 9 percent were awarded to Latino 

students in 2014, up from 5.8 percent in 2004 (NCES). Although on the rise, these figures must 

be measured against the proportion of Latinos in the U.S. population and can only be considered 

“equitable” when gains achieve parity with the presence of Latinos nationwide (Pérez Huber, 

Vélez, and Solórzano, 2014). U.S. Census Bureau population estimates indicate that as of 2014, 

                                                      
1 I calculated STEM field totals by adding degrees conferred for the following major fields of study according to 

NCES tabulations: biological and biomedical sciences; computer and information sciences; engineering; engineering 

technologies and engineering related fields; mathematics and statistics; and physical sciences and science 

technologies. For an example of 2012-2013 and 2013-2014 tabulations see the NCES—Digest of Education 

Statistics website https://nces.ed.gov/programs/digest/d15/tables/dt15_322.30.asp 
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Latinos represent 17.3 percent of the total population (see Figure 1.2). Given the rapid nation-

wide growth of Latinos in the U.S., slow growth in educational gains will not suffice in closing 

an educational gap that is sure to widen.  

 
Figure 1.2 Source: For bachelor’s degrees conferred, see National Center for Education Statistics—Digest of 

Education Statistics, retrieved from https://nces.ed.gov/pubsearch/getpubcats.asp?sid=091#061.  Data on the Latino 

share of the population reflects figures reported in Stepler and Brown’s (2016) “Statistical Portrait of Hispanics in 

the United States,” retrieved from http://www.pewhispanic.org/2016/04/19/statistical-portrait-of-hispanics-in-the-

united-states-key-charts/#hispanic-rising-share. Please note that Stepler and Brown (2016) do not provide statistical 

data for the Latino population from 2001 to 2005. 

Figure 1.2 above provides a proportional comparison of the percentage of Latinos in the U.S. 

population against the percentage of bachelor’s degrees, both for all fields of study and STEM 

fields in particular, awarded to Latinos from 2000-2014. A promising finding here is that the 

estimated growth rate for bachelor’s degrees conferred on Latinos is higher (11.4 percent 

increase per year) than the estimated growth rate of the Latino population nationwide (2.4 

percent increase per year). In other words, given the growth rate, it is possible that over time 

Latinos will earn bachelor’s degrees in proportion to their national presence and eventually 

achieve degree conferral rates that surpass their national presence. Another, less promising, 
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finding is that the growth rate for Latinos earning bachelor’s degrees in STEM (an estimated .9 

percent yearly increase) is nearly three times less than the Latino population growth rate and 

nearly 13 times less than the growth rate for Latinos earning bachelor’s degrees overall. 

Moreover, from 2000-2015 bachelor degrees conferred on Latinos have been predominantly 

concentrated in the field of business, which alone exceeds the number of degrees conferred to 

Latinos in all STEM fields. An exploration of why Latinos have earned more bachelor degrees in 

business and not STEM fields is beyond the scope of this study, but these findings indicate two 

things: firstly, for more than over a decade, Latinos have consistently and overwhelmingly 

earned bachelor degrees in a particular field unrelated to STEM; and secondly, postsecondary 

educational attainment in STEM has not seen substantial changes—despite the widely 

acknowledged imperative to increase the presence of Latinos in these fields.  

To understand the factors at play here, we need to look at educational opportunities and 

resources available to Latino students prior to entering postsecondary education. At the 

postsecondary level, STEM courses show a pattern of negatively affecting continued interest and 

motivation of students of color—this is particularly the case for “gateway” courses like 

Chemistry 101, known colloquially by students as “weeder courses” (Barr, Gonzalez, and Wanat, 

2008; Mervis, 2010). For example, a study that measured changes in student interest in 

premedical study notes significant decreases in interest among women, African American, and 

Latino students surveyed. The study asserts,  

the negative influence of chemistry courses on continued interest in premed is 

experienced more so by women and URM [underrepresented minority] students. In light 

of the fact that 74% of URM premedical students at Stanford are women, it is not at all 

surprising that Stanford’s URM students are less than half as likely as non-URM students 
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to persist in their interest in premed and eventually apply to medical school. (Barr et al., 

2008, p. 510-511)  

Thus, unless students have a strong STEM-related background that precedes postsecondary 

education, the pursuit of STEM-related study at the postsecondary level is not likely to prove 

promising or welcoming. Thus, it is necessary to look at issues of access, exposure, and quality 

learning opportunities in STEM available to Latino students at the primary and secondary levels 

of education. 

Examining the underrepresentation of women and people of color in computer science 

professions in California, a report from the Level Playing Field Institute (Martin, McAlear, and 

Scott, 2015) posits that one of the leading causes of underrepresentation is the lack of access to 

computer science courses in public high schools. Their study finds that the availability of 

computer science courses, any computer science course including AP computer science, is higher 

in public schools with the lowest presence of students of color (0-50 percent), while the inverse 

is true for schools with the highest presence of students of color (Martin et al., 2015). A similar 

pattern was found in schools with the highest percentage of low-income2 students in the total 

student body. Only four percent of all schools with a 76-100 percent low income student 

population offered AP computer science, compared to 43 percent of all schools with a 1-25 

percent low-income student population (Martin et al., 2015). Figure 1.3 provides a breakdown of 

the availability of computer science courses in California public high schools based on the 

percentage of low-income students in the student body.

                                                      
2 Martin et al. (2015) define “low income” as “Free/Reduced Price Lunch eligibility (through federally-determined 

poverty guidelines) for the National School Lunch Program” (p. 21). 
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Availability of Computer Science Courses in California Public Schools by Percentage of Low-
Income Students 

Percentage Low-Income 
students in total student 

body 

Number of CA 
public high 

schools 

Number and percent of schools 
offering AP Computer Science 

Number and percent of schools 
offering any computer science 

1-25% 198 85 43% 120 61% 

26-50% 305 43 14% 101 33% 

51-75% 403 33 8% 130 32% 

76-100% 378 14 4% 92 24% 

 

Figure 1.3 Source: This table is a replication of the table presented in Martin et al. (2015, p. 21) 

These figures highlight the disparities in educational opportunities for low-income high 

school students and indicate that schools with fewer low-income students provide their student 

body with greater opportunities to engage in some sort of computer science study. Among the 

largest school districts in California, the top three with the highest percentage of 

underrepresented students of color enrolled a combined three percent of students in the districts 

in some sort of computer science course. With regards to AP Computer Science course offerings 

in particular, schools with the lowest percentage of low-income students offered AP Computer 

Science at a rate (43%) that exceeds that of all schools with 26-100 percent low-income students 

put together (26%) (Martin et al., 2015). This finding indicates that increasing the presence of 

Latino students in STEM requires complex and intersectional approaches to address complex and 

intersectional issues that go beyond a simple lack of tech resources in the classroom.  

While some STEM reform efforts focus on providing low-resourced schools with new 

technologies (Gazzar and Jones, 2014; Szymanski, 2015; Yarbrough, 2014; Philip and Garcia, 

2013a, 2013b, 2014; Margolis and Suarez Orozco, 2014), others introduce students to innovative 

STEM curriculum and experiences in hopes of piquing student interest in STEM at a young age 

and ultimately lead to equitable outcomes and participation in STEM fields. There is much to be 

said for introducing students to new technology, resources, and curriculum, but STEM equity 
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scholars argue for the need to carefully consider assumptions and underpinnings that frame 

STEM equity initiatives. Scholars argue that reframing how we view scientific inquiry; what 

counts as scientific knowledge; and who can do science is foundational to promoting actual 

equity in STEM education (Brickhouse, 1994; Stanley and Brickhouse, 1994; Calabrese Barton, 

1998; Calabrese Barton & Yang, 2000). The same can be said for new data science and data 

science-oriented programs that have begun to indicate positivist continuities with parent fields of 

computer science and mathematics (Ebach, Michael, Shaw, Goff, Murphy, and Matthews, 2016; 

Ekbia, Mattioli, Kouper, Arave, Ghazinejad, Bowman, Suri, Tsou, Weingart, and Sugimoto, 

2015; Couldry, 2014). Genuine efforts aimed at improving Latino education in the 21st century 

must acknowledge and address the causes of historical educational inequity; and promote the 

learning of critical literacies necessary for democratic participation in a tech-driven society 

(Philip & Garcia, 2013a; Philip, Olivares-Pasillas, & Rocha, 2016; Philip, Schuler-Brown, & 

Way, 2013).  

In this dissertation, I draw from scholarship critical of traditional STEM fields and their 

positivist roots to contextualize my understanding of dominant treatments of STEM knowledge 

and scientific inquiry in schools. I recognize that data science differs from traditional STEM 

fields like biology and physics in that it draws heavily from mathematics and computer science, 

but at the core of data science lies a strong fidelity to positivist treatments of knowledge and the 

scientific method foundational in traditional STEM fields (Ebach et al., 2016; Ekbia et al., 2015). 

Given that data science is a relatively new field of study undergoing rapid development due in 

large part to incessant technological innovation and evolution, I find it highly necessary to 

contextualize data science as a hybridized extension of traditional STEM fields which center 

positivist treatments of knowledge, inquiry, and scientific discovery. In Chapter Two, I will 
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review existing literature as it pertains to fields that focus on the study and use of data and attest 

to the persistence of the myth of objectivity within data science-related fields. In this chapter, 

however, I pull from existing scholarship that addresses issues of equity in traditional school 

science for the purpose of introducing and situating my research as a critical project for STEM 

equity in the 21st century. I will expound on this work in the context of the myth of scientific 

objectivity in Chapter Two as well. 

Statement of the Problem 

Traditional notions of science and, necessarily, school science have directly contributed 

to the exclusion of women and people of color in STEM and in newer fields like data and 

computer science which build on traditional foundations of science to examine technological 

phenomena and foster technological innovation. According to Brickhouse (1994), the main 

reasons that account for the scant representation of non-dominant groups in the sciences are 1) 

deficit thinking about the intellectual abilities of non-dominant groups, and 2) their unfair 

treatment in schools. She argues that while well-intentioned, programs aimed at increasing the 

participation of women and people of color in science remain shortsighted in their treatment of 

science and scientific knowledge as value-free. Calabrese Barton (1998) finds that even in 

science teaching that strives for cultural relevance, “it is the teaching methods and applications 

of science that are challenged, not the underlying scientific concepts and principles,” which are 

treated as enduring and objective rather than epistemologically informed (p. 529). The very 

framing of science and scientific knowledge—premised on a white, male, middle-upper class 

epistemology—upholds harmful views of excluded groups, their intellectual abilities, and their 

epistemologies (Brickhouse, 1994; Stanley & Brickhouse, 1994; Calabrese Barton, 1998; 

Calabrese Barton & Yang, 2000).  
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For example, in their deconstruction of the “culture of power” embedded in school 

science and the implications that it has for the STEM education of and opportunities for non-

dominant groups, Calabrese Barton and Yang (2000) argue that hegemonic notions of what 

counts as legitimate forms of science education undermine rich scientific learning opportunities 

for non-dominant students in school, and also delegitimize rich scientific learning that these 

students engage in outside of school. Citing Delpit (1988), Calabrese Barton and Yang (2000) 

write that “[t]he ‘culture of power’ represents a set of values, beliefs, ways of acting and being 

that for sociopolitical reasons, unfairly and unevenly elevate…people” from dominant groups 

and subordinate those from non-dominant groups such as women, people of color, and those 

from low socioeconomic backgrounds (p. 873).  

Examining how the culture of power influences education in general, particularly science 

education, for non-dominant students, Calabrese Barton and Yang (2000) examine the 

educational experiences of and opportunities afforded to Miguel, a young Puerto Rican father 

living in a homeless shelter with his wife and daughter. Despite gaining personally meaningful 

scientific experiences outside of school, these experiences and his growing enthusiasm for 

science and nature were “neither acknowledged formally by his teachers nor cultivated in 

school” (Calabrese Barton & Yang, 2000, p. 872). For Miguel, not only did the culture of power 

that pervades school science education invalidate his out-of-school experiences in science and 

contribute to his leaving high school; it also instilled in him problematic notions regarding who 

can become a scientist, what counts as legitimate scientific knowledge, and that his own Puerto 

Rican culture was deficient for not promoting American assimilation via hegemonic standards 

for academic success, financial stability, and autonomy (Calabrese Barton & Yang, 2000).  
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The notion of an objectivist science, shaped and maintained by the existence of the 

culture of power, not only affects the educational opportunities afforded to non-dominant 

students, but also leaves long-lasting imprints of the nature of legitimate education and 

knowledge among these very students. The lack of criticality on the framing of scientific 

knowledge and inquiry supports the continued exclusion of particular groups from access to and 

equity in STEM education in ways that prove self-perpetuating, self-renewing, and detrimental to 

the lives and livelihoods of non-dominant groups (Stanley & Brickhouse, 1994). Moreover, the 

value-free framing of science has served to legitimate deficit views of the intellectual 

potentialities and capabilities of women and people of color, upholding the validity of 

standardized testing, and promoting tracking programs that have capped learning opportunities 

for many (Delgado Bernal, 1999; Oakes, 1985).  

The role of scientific objectivity in the perpetuation of educational inequity. By 

simultaneously obscuring and protecting the culture of power, the myth of science as objective 

endures as the core of standardized assessments premised on dominant understandings of what 

counts as valued and legitimate knowledge. Thus, the hegemonic ideology that informs the 

culture of power leads to the design of social institutions as projects that preserve the dominance 

of one homogenous group through the subjugation of all others. When we consider that the 

culture of power has long presided over science, technology, engineering, and mathematics, it 

becomes clear that the science that is overwhelmingly taught in schools and universities is not a 

science that is designed to value the ways of knowing and processes of learning of non-dominant 

groups. For this reason, critical scholars in the learning sciences are confronting the messiness 

and “desettling” settled expectations in STEM education (Bang, Warren, Rosebery, and Medin, 

2012).  
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Borrowing from Harris’ (1995) construct of “settled expectations” in critical race theory, 

Bang et al. (2012) apply this notion to schooling in reference to the deep-seated and normalized 

delineations of “acceptable meanings and meaning-making practices” in the classroom that while 

upholding understandings and ways of knowing of dominant groups, shape “deficit-oriented 

discourses concerning students from nondominant communities…[which] control the scope of 

what constitutes an acceptable explanation, argument, or analysis; what ‘smart’ looks and sounds 

like; whose narratives and experiences are valued and for what purposes” (p. 303). Settled 

expectations in STEM education are ideological in nature3 in that they promote valued (i.e. 

traditional) forms of scientific knowledge and ways of doing science through education, and 

“devalue and dismiss boundary expanding forms of knowledge, experience, and meaning-

making with which students approach scientific phenomena” (Bang et al., 2012, p. 304). This 

means that scientific discourses and practices that students like Miguel engage in are, by default, 

excluded from acceptable forms of school science in the absence of desettling interventions.  

Rosebery, Warren, and Tucker-Raymond (2016) provide another pointed example of how 

traditional school science, as a project of the culture of power delineated by settled expectations, 

is designed to exclude, and thus devalue, the epistemologies and learning discourses of students 

from non-dominant groups. They caution that sense-making practices of non-dominant groups 

can be misinterpreted in school settings in problematic ways, to the detriment of students and 

student learning (Rosebery et al., 2016). In their own work with Haitian American students, they 

found that what might be misconstrued as a verbal altercation among students in the classroom is 

actually “a form of intellectual theatre organized around claims and evidence [where] [s]tudents 

express, defend, and dispute various points of view on a question, deploying evidence and logic 

in a process [they] found similar to agreement and disagreement sequences documented in 

                                                      
3 This is not to say that settled expectations are not ideological in other disciplines. 
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professional scientific activity” (Rosebery et al., 2016, p. 1574; Warren & Rosebery, 1996). By 

adopting an “expansive view of human meaning-making as fundamentally heterogeneous and 

multivoiced, both within and between socially and historically constituted communities” (Bang 

et al., 2012), the project sought to desettle settled expectations established for school science by 

capitalizing on the ways of knowing and discourse practices that were central to the cultural lives 

of these students as members of a non-dominant group while exploring two science curricula on 

water. The teacher’s valuation and respect for students, their communities, and their intellectual 

contributions to the science classroom allowed students to go beyond the curriculum’s focus on 

water consumption and conservation and bring critical issues relevant to their lives into 

classroom discourse, emerging unanticipated and dynamic understandings of water. 

Significantly, by embracing emergent learning negotiated by the teacher and students in the 

classroom, students were able to begin thinking about the nature of water in ways that challenged 

what Bang et al. (2012) refer to as the settled “nature-culture divide” that pervades the sciences.  

Closely related to settled expectations, the nature-culture divide refers to settled beliefs 

that nature—that which science ultimately seeks to understand—exists apart from human culture 

and that the scientific meanings ascribed to objects of nature and natural phenomena are true, 

static, and have no connection to nor are they shaped by culture and cultural life. “Meaning,” 

however, must be conceptualized and constructed by individuals and is thus, in fact, influenced 

by culture. For Bang et al. (2012), desettling the nature-culture divide “entails imagining 

multivoiced meanings of core phenomena as open territory for sense-making in the science 

classroom, similar to the kinds of meaning-making opportunities that are available to scientists in 

the field” (p. 308). Thus, Bang et al.’s work supports the call for and centering of dialogue in the 
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Freirean sense to both make science more equitable and to expand our knowledge and 

interpretation of scientific phenomena. “True dialogue,” Freire (1970/2006) argues,  

cannot exist unless the dialoguers engage in critical thinking—thinking which discerns an 

indivisible solidarity between the world [nature] and the people [culture] and admits of 

no dichotomy between them—thinking which perceives reality as process, as 

transformation, rather than as a static entity—thinking which does not separate itself from 

action, but constantly immerses itself in temporality without fear of the risks involved. (p. 

92) 

This is not to say that we must do away with science as we know it, but we do need to 

reconceptualize what counts as science, science-doing, and science knowledge in ways that give 

credence to the rich learning norms and practices of students of color by encouraging and 

valuing classroom dialogue that welcomes the “multivoiced” contributions of students whose 

voices have traditionally been excluded in STEM (Brickhouse, 1994; Calabrese Barton, 1998; 

Calabrese Barton & Yang, 2000; Stanley & Brickhouse, 1994; Bang et al., 2012; Freire, 

1970/2006). By acknowledging and valuing non-traditional learning processes, ways of doing 

science, and “boundary expanding knowledge,” (Bang et al., 2012, p. 304) we expand 

opportunities for youth of color to participate in STEM in ways that are innovative. Moreover, 

without equitable access to rich and inclusive STEM learning opportunities, the constitutional 

right to democratic participation for students from non-dominant groups in a data-driven society 

is severely hampered (Philip et al., 2013). Given that we do not know enough about how data 

science, as a new field, includes or excludes diverse epistemologies, we must heed the warnings 

of critical scholars as they pertain to the foundations of scientific inquiry. Data science is not a 

field wholly new and never-before-seen. Instead, data science has emerged from established 
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STEM fields, and as such, is positioned to inherit foundational views of scientific inquiry and 

knowledge that persist in its parent fields unless there is an equity-driven effort to desettle 

mechanisms that function to exclude non-dominant groups and their epistemologies.  

In reality, adopting equity-driven efforts toward epistemological inclusion of non-

dominant groups in STEM fields is directly related to increasing opportunities for democratic 

participation of all citizens given that society is increasingly shaped by scientific discovery and 

technological innovation in the era of Big Data. Now, more than ever before, including youth 

from non-dominant groups in the process of scientific inquiry and knowledge construction are 

essential to achieving an egalitarian society that benefits and builds on dynamic understandings 

of ourselves and our ever-changing natural and technological world. Thus, in the next section I 

will engage in a discussion of the importance of STEM learning in general and of the cultivation 

of data-scientific literacy in particular for democratic participation in our increasingly tech-

driven world in order to convey the highly complex and multi-layered pursuit of educational 

equity in STEM for non-dominant students in the era of Big Data.  

STEM learning for democratic participation. Increasingly vital to STEM learning for 

democratic participation is examining the role that the scientific and technological innovation 

that now characterize society play in the lives of youth born into an era saturated with mobile 

technologies that collect an immense amount of user data. Every single student enrolled in the 

introduction to data science course that I observed owned a smart phone and enjoyed regular 

access to the Internet, not unlike American youth in general. A report by the Pew Research 

Center finds that youth from all ethnic groups ages 13-17 have access to and utilize mobile 

technologies quite regularly with 92 percent of teens reporting going online on a daily basis and 

24 percent reporting being online “almost constantly” (Lenhart, Duggan, Perrin, Stepler, Rainie, 
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and Parker, 2015). According to the same report, teen Internet use is primarily facilitated by 

smartphone use and ownership, and is more frequently accessed by African-American and 

Latino teens (Lenhart et al., 2015).  

Therefore, informed by the critical views presented earlier, my study considers the ways 

that settled expectations in data science, in a time of rapid technological innovation and mobile 

technology saturation, are perceived by students from non-dominant groups through a case study 

of an introductory data science course. Additionally, I identify whether and how this introduction 

to data science curriculum, as an instantiation of reform-oriented STEM initiatives, provided 

avenues for the Latino students who constituted the entire classroom student body to desettle 

notions of what it means to do data science and be a data scientist. In making a case for the 

significance of developing multi-literacies for democratic participation, particularly data science 

literacy, I now turn to a discussion of the role of data in our technological society. 

Data Science for a Data-Driven Society 

We produce data close to every second of our lives; every time we update our Facebook 

status, use our mobile phones to locate the nearest Starbucks, save a few dollars at the grocery 

store by using a loyalty card, and even while we sleep by using wearable technologies to track 

our sleep patterns. In one way or another we are [perhaps] willing participants in the compilation 

of not just data, but ‘Big Data’. Our constant and widespread use of internet-enabled technology 

has streamlined systematic data generation and sharing to the extent that researchers in numerous 

fields can now expeditiously access vast data repositories to reveal patterns previously unseen 

(Chong and Shi, 2015; Chen et al., 2016; Chen, Mao, and Liu, 2014; boyd and Crawford, 2012). 

Citing Manyika et al. (2011), Philip et al. (2013) write, “The colossal amount of data generated 

from transactions and sensors, and as byproducts from [online] activities…promises corporations 
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potential profits and savings in the tune of hundreds of billions of dollars” (p. 104). Digital 

sociologists, danah boyd and Kate Crawford (2012) define Big Data as a socio-technical 

phenomenon that exists at the intersection of technology, analysis, and mythology and is, thus, 

brought into being through  

(1) maximizing computation power and algorithmic accuracy to gather, analyze, link, and 

compare large data sets… (2) drawing on large data sets to identify patterns in order to 

make economic, social, technical, and legal claims… [and] (3) the widespread belief that 

large data sets offer a higher form of intelligence and knowledge that can generate 

insights that were previously impossible, with the aura of truth, objectivity, and accuracy. 

(p. 663)  

Additionally, Big Data is also understood as defined by the ‘3 Vs’: volume—it consists of 

extremely large data sets; velocity—data are collected and streamed rapidly; and variety—data 

sets consist of numerous and diverse variables, data formats, and structures (McCartney, 2015; 

Selwyn, 2015; Zheng, Zhang, and Wang, 2014). However, as Chen, Mao, and Liu (2014) note, 

as of yet there is no consensus regarding a proper definition for Big Data due to a difference in 

opinion among professionals and researchers in different fields.  

While statisticians, computer scientists, social scientists, librarians, and other 

professionals enjoy a privileged awareness of the ways information about all aspect of our lives 

are collected, the majority of the American population are oftentimes unaware of their accidental 

and incidental contributions to the ominous data set. This is a disturbing thought when we 

consider how technology—key to the generation of Big Data—saturates our lives and that of 

adolescent men and women.  
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In their analysis of data collected over the span of 15 years, the Pew Research Center 

found that in 2015 American adult Internet use rose to 84 percent, up from 52 percent in the year 

2000 when the center first began a systematic measurement of American Internet use (Perrin and 

Duggan, 2015). In another study, data show that smartphone use among US adults has quickly 

increased from 35 percent in 2011 to 68 percent in 2015, with adults ages 18-29 reporting the 

most smartphone ownership (Anderson, 2015). Smartphone ownership among teenagers is also 

on the rise at 23 percent for those ages 12-17 in 2011 (Lenhart, 2012). Contemporary education 

philosopher and cultural theorist, Douglas Kellner (1998) posits that our current use of 

technology and its rapid development constitute “one of the most dramatic technological 

revolutions in history” (p. 103). On this radical shift, Kellner writes, “This Great Transformation 

poses tremendous challenges to education to rethink its basic tenets, to deploy the new 

technologies in creative and productive ways, and to restructure education in the light of the 

metamorphosis we are now undergoing” (p. 103). Strasburger (2015) articulates how the 

meaning of education and “to be educated” has not only changed, but morphed to include 

literacies pertaining to things like social media when he writes, “To be educated in 2015 means 

that someone can read, write, download, text, and perhaps even tweet” (63). To be educated in 

the 21st century now necessitates that students learn to read and write the word and world shaped 

by a widespread evolution of technology that transcends physical spaces. Education in today’s 

world takes place not only in the physical space of classrooms, homes, and other public spaces, 

but also in amorphous spaces located within the technology we carry in our very own pockets. 

Technology is continually evolving without cease and as such, so should our understanding of 

schooling, learning, and literacy.  
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The national STEM imperative, the pervasiveness of technology, and the Internet’s 

omnipresence all warrant that students learn to use technology as tools for learning, but also that 

they think critically about the politics of these tools, their purpose, affordances, and limitations. 

In today’s day and age, we need to encourage and support our youth in thinking critically about 

what types of data are collected, how they are collected, the implications that the Big Data 

operation has on their lives and the role it plays in perpetuating or challenging power dynamics 

that fuel issues of inequity. As the likely arbiters of a tech-driven society, digital-natives4 must 

develop the necessary literacies if they are to achieve democratic participation, personal 

fulfillment, and professional success in our ever-shifting American democracy undergoing 

dramatic technological and demographic transformation (Philip et al., 2013; Kellner & Share, 

2007; Kellner, 2003; The United States Census Bureau, 2015; White House Initiative on 

Educational Excellence for Hispanics).  

Research Questions 

My dissertation examines an instantiation of STEM reform efforts to analyze the 

development of student learning identities in a piloted introduction to data science course at a 

high school in one of the largest school districts in the country. My study is particularly 

concerned with identifying emergent classroom obligations and understanding whether and how 

they came to support and/or hinder students’ opportunities to learn richly with data. Accordingly, 

through this study I seek to address the following research questions: 

1. How did participation in a STEM-reform oriented introduction to data science 

classroom provide opportunities for students to think richly and critically with and 

about data? 

                                                      
4 The term “digital natives” was first introduced by Prensky (2001) to refer to individuals born in or after 1980, after 

the launch of the internet and other digital technologies. This generation has also come to be known as N-Gen (net 

generation), D-Gen (digital generation), and Millennials. 
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2. How did these opportunities contribute to the development of students’ critical 

social identities as data science-doers? 

Theoretical Framework 

I approach this study from the perspective that a humanistic STEM imperative is one that 

is not only characterized by an urgency to remain globally competitive; diversify STEM careers 

and education; and capitalize on the growing Latino presence. A promising and truly equitable 

STEM imperative must be driven by a simultaneous dedication to cultivate critical reflection on 

the politics of technology, interconnectivity, and data through critical pedagogy and purpose-

driven action through the development of new and critical literacies to support the democratic 

participation of our youth in society.  

As such, STEM initiatives should seek to cultivate critical data science literacies that 

encourage women and students of color to engage in highly reflective examinations of their 

increasingly tech-driven world; considerations of the practical and ulterior motives and functions 

of popular technology; and the implications that this technological and scientific revolution has 

for their daily lives and lived experiences as members of non-dominant groups. In other words, 

genuine efforts to revolutionize STEM education through data science-oriented initiatives must 

go beyond trying to change students or the curriculum, but must heed the call of critical scholars 

and embrace a critical pedagogical approach that guides students in critical reflection on the 

framing of data science, the purpose of data science education, and positions students as potential 

contributors to data-scientific knowledge and innovation. For Freire (1970/2006), to engage in 

action (i.e. changing students or the curriculum) without reflection (i.e. examining the 

epistemological foundations of settled scientific knowledge) is to engage in activism as “action 

for action’s sake,” wherein action, devoid of reflection, necessarily suffers and negates true 
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praxis; that is, true transformation of reality, in this case the reality of the dire state of diversity, 

equity, and access to STEM for non-dominant groups and their sociohistorical educational 

inequity overall (p. 87-88). By demystifying scientific knowledge and science artifacts, STEM 

initiatives can promote the fact that students from non-dominant groups have the potential to 

change and create technology and other science artifacts to address issues relevant to their lives 

and to the needs of their communities. Instead of learning to use science tools and skills afforded 

to them, students will learn that artifacts are of human design, and as humans, they too possess 

the potential to better attune these artifacts to the heterogeneity of their lived realities. 

Accordingly, my study is theoretically informed by information literacy frameworks 

combined with critical social theory (CST) and a critical theory of education (CTE)—

frameworks that center the importance of critical pedagogy and the development of new 

literacies for democratic participation in an ever-shifting society dominated by technological 

innovation. Existing data-related literacy frameworks argue for the need to cultivate information 

literacy as a tool for learning to access, evaluate, use, and manage information to solve everyday 

problems relevant to life in a data and technology saturated age (Partnership for 21st Century 

Learning, 2015; Association of College & Research Libraries, 2000). CST in education is 

concerned with “advancing the emancipatory function of knowledge,” and promotes the role of 

critique in cultivating students’ ability to think critically about institutional and conceptual 

dilemmas as they relate to systems of power pervasive throughout society. CTE, as proposed by 

cultural theorist and education philosopher, Douglas Kellner (2003), holds that the 

technologically saturated and dominated society of today necessitates a democratic restructuring 

of education predicated on the needs of society. CTE is a poststructuralist project inclusive of 

critical theory aimed at acknowledging and valuing epistemologies of marginalized groups and 
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necessitates critical analyses of disciplinary and cultural artifacts traditionally regarded as 

apolitical and objective. As such, an intersectional CST/CTE framework supports a call for the 

development of new critical literacies in data science that will allow youth to not only use the 

technology of today, but to understand the complexities and politics inherent in a society 

dependent on multimodal data-generating technology. Thus, I employ a combined information 

literacy and CST/CTE lens to argue for the importance of cultivating, not just information 

literacy, but critical data-scientific literacy. 

Significance of the Study 

 The development of critical data-scientific literacy, or what Philip et al. (2013) term Big 

Data literacy, could not be of greater relevance to the lives of youth born into a revolutionary 

period characterized by technological innovation, constant interconnectivity, and data generation 

on a grand scale. Critical reform-oriented STEM initiatives, those that engage in a simultaneous 

and renewing process of reflection and action, can be viewed as efforts to restructure education 

and develop new and dynamic literacies that can foster critical analyses of technology and 

mobile devices. Ultimately, the cultivation of critical data science literacy can support the type of 

knowledge and political awareness necessary for democratic participation in a society 

undergoing a Great Transformation. 

 Given the relative newness of reform-oriented STEM efforts that specifically focus on 

data science literacy, it is imperative that programs and curricula aimed at transforming 

educational institutions toward equitable outcomes for nondominant groups be explicit about 

equity and mechanisms by which to achieve them in educational settings. In light of the critical 

views presented earlier in this chapter, STEM reform must adopt an iterative approach in line 

with design experimentation that can build on successful changes to STEM education and 
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reassess the purpose of inefficient or ineffective learning interventions (Cobb, Confrey, diSessa, 

Lehrer, & Schauble, 2003). Moreover, Gutiérrez and Jurow (2016) argue that educational reform 

efforts designed to improve educational outcomes for students from non-dominant groups must 

confront the intersection of educational disparities and issues of social justice to which non-

dominant groups are subject to through social design experimentation “in order to make central 

the realities of peoples’ lives because the possibilities of learning and development are deeply 

situated in unevenly developed historical, spatial, and social circumstances” (p. 568).  

This requires a clear and honest understanding of exactly what we are attempting to 

transform and how students are positioned within those efforts. For example, if a STEM reform 

initiative seeks to attune students to data science without introspection regarding curricular 

content, then it is students from non-dominant groups and that which differentiates them from 

those from dominant groups (i.e. their race, culture, language, gender, socioeconomic status) that 

are positioned as that which must be transformed. Programs that follow this approach will fail in 

their inability or unwillingness to be critical of settled expectations in data science, thus 

perpetuating the mechanisms of inequity seen in its parent fields. Furthermore, while programs 

and initiatives can be designed with good-intentions, program evaluation must adopt a reflexive 

approach from inception to conclusion to evaluate what works and what needs re-working. Only 

by identifying that which does not work toward achieving educational equity can we address 

inefficiencies and build-on these programs.  

Another central idea here is that learning science researchers, educators, and 

policymakers must embrace the role of active learners, as this is not reserved exclusively for 

students. This is of critical importance because it decenters, or de-settles, the notion of teachers, 

researcher, and policymakers as beholders of a one true knowledge. To refuse the identity of 



 

 25 

learner for non-students negates the epistemological contributions of students and the potential to 

think of science knowledge as multi-voiced because it establishes static learning paths that will 

not change to accommodate new and unanticipated lines of inquiry, dynamic and new 

interpretations of traditional scientific phenomena, and the lived realities of the students whom 

reform initiatives seek to help. Related to this last point, Freire argues that “[m]any political and 

educational plans have failed because their authors designed them according to their own 

personal views of reality, never once taking into account (except as mere objects of their actions) 

the [people]-in-a-situation to whom their program was ostensibly directed” (p. 94, emphasis in 

original). 

This study is significant and unique in that it applies an identity lens in its analysis of data 

science learning outcomes, allowing us to transcend the dichotomous evaluation of whether a 

data science program is successful or not. By analyzing the types of identities students developed 

in this data science course and the learning norms and practices that contributed to the 

development of particular identities, we will be able to gain an intimate understanding of 

particular classroom processes that prove promising for the development of strong STEM 

identities, and specifically Critical Social Data-Scientific (CSDS) identities. What’s more, this 

study should be viewed as a unique opportunity to learn about concrete classroom practices that 

foster student’ abilities and opportunities to think richly with data. The study will provide a 

glimpse into what rich learning with data can potentially look like and serve as a building block 

for the development of future STEM reform initiatives that seek to cultivate a personally 

meaningful and socially responsible critical data scientific literacy among youth in general, and 

non-dominant youth in particular. 
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In the following chapter, I will review existing scholarship to elucidate concepts I began 

to touch on in this introductory chapter, beginning with the myth of scientific objectivity, the 

nature-culture divide, settled expectations, and the culture of power. I will then revisit the myth 

of scientific objectivity as it relates to data science-related fields that seek to make Big Data 

actionable in the section entitled “The Myth of [Data] Scientific Objectivity, revisited.” 
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CHAPTER TWO 

Literature Review 

Approaches to STEM Reform 

Reframing science knowledge. Critical scholars in the learning sciences argue that in 

order to make science more accessible to groups traditionally excluded from STEM, STEM 

education reform must challenge traditional views on the purity and factuality of science 

knowledge—that is, the myth of scientific objectivity (Brickhouse, 1994; Stanley & Brickhouse, 

1994; Calabrese Barton, 1998; Calabrese Barton & Yang, 2000; Bang et al., 2012). While this 

argument has more effectively been made regarding traditional teachings in liberal arts, Stanley 

and Brickhouse (1994) find that it is not as easily applied to the sciences precisely because 

science appeals to a “universalist epistemology: that the culture, gender, race, and ethnicity, or 

sexual orientation of the knower is irrelevant to scientific knowledge” (Stanley & Brickhouse, 

1994, p. 388). This division between scientific knowledge and facets of human identity is what 

Bang et al. (2012) refer to as the “nature-culture divide”: a binary that negates the fluid and 

interdependent relationship between nature and culture. While proponents of science as based on 

a universalist epistemology have argued that the scientific method and peer-review reduce 

individual bias, multiculturalists counter that because the scientific community lacks diversity 

and is rather homogenous, peer-review and the scientific method remain blind to epistemological 

groundings of scientific knowledge (Stanley & Brickhouse, 1994; Bang et al., 2012). Thus, 

objectivist framings of science necessarily uphold widely held belief systems, values, and 

epistemologies of a largely homogenous community. To be sure, Western school science 

obscures and denies the knowledge systems of marginalized groups by delineating “the scope of 

what constitutes an acceptable explanation, argument, or analysis; what ‘smart’ looks and sounds 

like; whose narratives and experiences are valued and for what purposes” (Bang et al., 2012).  
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Bang et al. (2012) argue that the set of assumptions that delineate normative and widely 

held beliefs about a colorblind and objectivist science continue unabated through the denial of 

the ways in which culture shapes the purposes of science doing, interpretations of scientific 

discovery, and promotion of science knowledge and theory. In reality, all knowledge systems are 

socially constructed, thus the concept of a value-free science is a myth. With this in mind, the 

push for a multicultural framing of science serves as impetus to re-conceptualize notions of 

whose knowledge counts, what counts as science, and who is able to do it. This critical 

awareness of the role of the epistemological underpinnings of STEM education, however, 

remains absent even in reform-oriented educational policy. For example, “science for all,” an 

educational policy that seeks to cultivate scientific literacy among all students, particularly non-

dominant students, makes wide-sweeping assumptions about the “all” and takes for granted 

notions of science and science-doing (Calabrese Barton, 1998). According to Calabrese Barton 

(1998), research regarding “science for all” can be grouped into three veins: access to resources; 

knowledge of rules of participation; and the need for culturally relevant teaching. She argues that 

while these three affordances are important to pursue in making science accessible to all, 

particularly marginalized groups like students of color and those living in poverty, little attention 

has been paid to the assumed meanings of science. And so, while “science for all” initiatives that 

attempt to engage culturally relevant teaching as a way of challenging ineffective teaching 

methods and applications of science, scientific concepts and principles premised on a dominant 

group epistemology remain unaddressed and unchallenged (Calabrese Barton, 1998).  

The crux of the critique of STEM education and scientific knowledge as objective centers 

on the need to problematize assumed meanings of science that, when unquestioned, validate 

hegemonic values that systematically privilege dominant groups while promoting deficit 
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discourses about non-dominant groups (Stanley & Brickhouse, 1994; Bang et al., 2012; 

Brickhouse, 1994; Calabrese Barton, 1998; Calabrese Barton & Yang, 2000). In this way, settled 

views and expectations of science as objective and based on a universalist epistemology function 

to uphold and privilege what Delpit (1988) termed the “culture of power.” 

Culture of power. “The culture of power,” first coined by Delpit (1988) in addressing 

the debate between skills-based and process-based instructional methodologies in writing, refers 

to “a set of values, beliefs, ways of acting and being that for sociopolitical reasons, unfairly and 

unevenly elevate groups of people—mostly white, upper and middle class, male and 

heterosexual—to positions where they have more control over money, people, societal values 

than their non-culture-of-power-peers” (Calabrese Barton & Yang, 2000, p. 873). To paraphrase 

Calabrese Barton and Yang (2000), these arbitrary delineations contribute to social stratification 

that upholds systems of power and privilege for those that have access to the culture of power 

and are positioned atop a tiered society, and necessarily erect obstacles for those that do not and 

are not. While Delpit (1988) argues that the culture of power pervades society and also reigns in 

the institution of education, Calabrese Barton and Yang (2000) extend this perspective by 

arguing that the culture of power is at the core of universalist views of STEM education and 

scientific knowledge. According to Delpit (1988), the culture of power in American schools 

consists of five premises that ultimately work to silence the voices of nondominant students; they 

are: 

1. Issues of power are enacted in classrooms 

2. There are codes or rules for participating in power; that is, there is a “culture of power” 

3. The rules of the culture of power are a reflection of the rules of the culture of those who 

have power 
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4. For those who are not already a participant in the culture of power, being told explicitly 

the rules of that culture makes acquiring power easier 

5. Those with power are frequently least aware of—or least willing to acknowledge—its 

existence, and those with less power are often most aware of its existence. (p. 282) 

The first premise holds that issues of power are enacted in the classroom through, for example, 

the power and authority of the teacher over students; curriculum to dictate what is taught and 

how; textbooks that impart knowledge through the author’s/publisher’s lens; and state mandated 

schooling (Delpit, 1988). The second premise holds that there is a particular language, decorum, 

and self-presentation that hold clout in society and in educational spaces. The third premise 

refers to the fact that these clout-laden codes and rules are intimately known by those from 

dominant groups and thus reflect the culture of those in power. The fourth premise posits that 

those from non-dominant groups can, to some extent, acquire power and participate in the culture 

of power more easily if explicitly informed of the codes and rules for participation valued within 

the culture of power. Lastly, the fifth premise addresses three important facets of access to 

power. It highlights the automatic privilege of those from dominant groups as participants in the 

culture of power to the extent that some of those who have access to the culture of power, and 

thus to power, are not explicitly aware of it. Further, those who have access and are aware of it 

are less inclined to acknowledge it because of the uncomfortable nature of confronting one’s own 

privilege in light of other’s oppression or disadvantage. Delpit (1988) argues that this presents a 

distinctly uncomfortable feeling, for example, for those “who consider themselves members of 

liberal or radical camps” (p. 283). The third facet of this premise refers to the fact that “those 

who are less powerful in any situation are most likely to recognize the power variable most 

acutely” (p. 284). 
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The culture of power pervades American society and educational institutions to the extent 

that even within progressive circles, those that are not members of dominant groups, and thus lie 

outside of the culture of power or lack access to it, are referred to as “disadvantaged” and “at-

risk,” and are positioned as members of an exclusionary culture (Calabrese Barton & Yang, 

2000). It is, then, no surprise that groups described with such labels tend to be low-income youth 

of color—that is, members of non-dominant groups. When it comes to schooling experiences of 

youth of color, their lower levels of academic achievement are often viewed through two 

perspectives. The first perspective blames students of color for their educational outcomes and 

takes the deficit position that these students must be “fixed.” Proponents of this view propose 

targeting these students and placing them in remedial classes aimed at “fixing” the problem 

within the student. The second perspective holds that the issue of low academic achievement and 

outcomes are a result of the educational institutions, and not deficiencies inherent in the student. 

This second perspective begins to examine the role schools play in disadvantaging students and 

acknowledges the relationship between educational institutions and power (Calabrese Barton & 

Yang, 2000; Delpit, 1988). Further, while the culture of power privileges students from dominant 

groups, it undermines students’ abilities and willingness to engage with science and scientific 

knowledge in personally meaningful ways particularly because traditional science, as we know 

it, is not epistemologically oriented to the ways of knowing that are familiar and valuable to 

students from non-dominant groups. To illustrate the consequential dangers of a culture-of-

power-laden science for non-dominant students, Calabrese Barton and Yang (2000) write,  

School-based science practices have led to an overwhelming number of students 

believing that science is a body of knowledge which consists of events, facts, and theories 

existing “out there” (Cobern, 1996), that science is static rather than dynamic (Yager, 
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1990), that only the very brightest of people can do science (Lemke, 1990), that science 

does not connect with their personal lives (Brickhouse, 1994; Barton, 1998), and that 

once they fulfill their scholastic requirements, they will be “done” with science for the 

rest of their lives (Kahle & Meece, 1994). These kinds of views of science have 

contributed to low achievement levels in school science, low attitudes toward science and 

science careers, and low numbers of women and people of color entering the sciences as 

career choices in the United States (Kahle & Meece, 1994). (p. 876) 

Furthermore, the critical views presented above make clear that STEM reform initiatives have 

gone too long without attuning themselves to the foundational issue of STEM education as 

premised on epistemological exclusion and subsequent denigration of non-dominant groups. Any 

effort to meet the STEM imperative on all levels (i.e. national, local, and personal) must allow 

the valorization of epistemological contributions of students from non-dominant groups. 

Toward science as co-constructed knowledge. Two principal reasons cited for the 

disproportionate representation of women and people of color in the sciences are 1) deficit 

thinking about the intellectual abilities of women and people of color, and 2) their unfair 

treatment in schools (Brickhouse, 1994). In order to rectify the lack of diversity in STEM; 

challenge deficit notions of non-dominant groups, their intellectual contributions, and meaning-

making practices; and expand possibilities for scientific discovery, science educators, 

researchers, and policymakers must work toward valuing and embracing the ways of knowing of 

non-dominant groups. 

Among scholars critical of the positivist framing of science in schools there is widely-

held consensus that the movement to reform STEM education must engage in critical 

examinations of the framing of science and actively work toward re-framing of science and 
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notions about what constitutes legitimate science doing, who can do it, and how (Brickhouse, 

1994; Calabrese Barton, 1998; Calabrese Barton & Yang, 2000; Stanley & Brickhouse, 1994; 

Bang et al., 2012). One way to do so involves viewing science through the framework of 

poststructural feminism (Calabrese Barton, 1998), which enables a positioning of science 

knowledge as co-constructed meaning constituted through “a reflexive relationship between 

‘science’ and ‘all’…[where reflexivity and deconstruction of normative subjects usher in a 

valuation of]… their taken-for-granted historical, social, theoretical, and linguistic structures” 

(Calabrese Barton, 1998, p. 529). 

Calabrese Barton (1998) argues that scientific knowledge is created through a co-

constructive process wherein “the knower, the known, and the context in which they interact”—

what she terms the teacher-student-science triad—are historically, socially, and politically 

shaped; thus, none are objective in nature. Through the interaction of these socioculturally 

constructed elements, science teaching, science learning, and science knowledge become imbued 

with sociocultural meanings. In other words, all three are socially constructed (Calabrese Barton, 

1998; Stanley & Brickhouse, 1994). Truly, science-knowledge, in the school context, is ever-

shifting and continually co-created through the reflexive relationship between “science” and the 

“all.” Calabrese Barton (1998) asserts “A science for all can truly be for ‘all’ only if it is 

removed from the center and allowed to be a positional and dynamic construction of multiple 

realities” reconceptualized as socially, politically, and culturally constructed (p. 539).  

To illustrate what this can look like in a learning setting, I will discuss two examples of 

efforts to challenge positivist framings of science and science knowledge. The first draws from 

poststructural feminism to reframe science knowledge as dynamic, multi-voiced, and co-

constituted (Calabrese Barton, 1998); the second pursues a project to “desettle” settled 
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expectations in science and reframe science as built on a fluid and interdependent relationship 

between nature and culture (Bang et al., 2012).  

Science knowledge as dynamic, multi-voiced, and co-constituted. Calabrese Barton 

(1998) writes of her experience engaging in this reflexive type of science with children in an 

after-school science program at a homeless shelter. It was at the shelter where she met K’neesha, 

a seventh grade African American girl who was living in the homeless shelter with her mother 

and sister. K’neesha and her family had moved several times within that year due to financial 

instability. As a result, K’neesha was attending her third school that year and had fallen behind 

academically. Despite the availability of adequate learning materials at the school, its 

commitment to helping her catch up in science, and her teacher’s efforts to make science relevant 

through hands-on activities and by drawing connections between science and students’ daily 

lives, K’neesha expressed that her science class “did not mean anything” to her (Calabrese 

Barton, 1998, p. 533). She ultimately failed the science unit on digestion she was working on at 

the time. 

In contrast to the traditional school science unit on digestion, Calabrese Barton worked 

with K’neesha and other children at the homeless shelter to come up with a science project that 

would reframe traditional notions of an objective science and transcend typical approaches to 

“science for all” wherein the “science” is assumed as true and neutral and students are expected 

to change to fit settled science expectations (Calabrese Barton, 1998; Bang, et al., 2012; 

Rosebery et al., 2016). Together, they developed a science project on pollution in their 

community inspired by students’ frequent remarks about their community as “dirty, run-down, 

and polluted” (Calabrese Barton, 1998, p. 534). This is one way that science in the after school 

program began to take form in a way that reflected the multiple voices in the program, taking 
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shape as a “positional and dynamic construction of multiple realities” (Calabrese Barton, 1998, 

p. 539). K’neesha was notably more involved and personally invested in this project compared to 

the unit on digestion, particularly with respect to its development and ideas for data collection. 

Calabrese Barton felt that this had to do with the reframing of what science is, who can do it, 

where, how, and why.  

The project on pollution began with a chart listing the complaints they had about their 

communities, how those issues made them feel, and additional problems that arose as a 

consequence of those issues. With Calabrese Barton’s guidance, students developed a research 

project attuned to their concerns about their community, and advanced ideas for data collection, 

thus beginning to “do science” and reframing what constitutes scientific inquiry and who can 

engage in it. K’neesha suggested interviewing community members about how they felt about 

their community, pollution in their community, and if and how they contributed to it, redefining 

where science can be done. The children also reframed the how of science throughout the project 

beginning with its conceptual development attuned to their lived experiences, and its execution 

through data collection via video recorded interviews, which was K’neesha’s idea. A reflexive 

science, in K’neesha’s case, was a science where she was validated as a scientist, where her 

concerns about her community were central to the project, and her methods were engineered and 

realized. K’neesha’s after-school science was not about guiding K’neesha in doing science as 

prescribed, but was instead concerned with the systematic development of scientific inquiry to 

address issues that were personally meaningful to K’neesha and her community, and thus 

redefined the why of science.  

Science as built on an interdependent relationship between nature and culture. In 

another STEM reform-based effort out of the Chéche Konnen Center, an attempt to “desettle” 
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normative disciplinary constructs in school science, specifically biology, Bang et al. (2012) 

document how a multi-subject teacher of a 6th-8th grade classroom drew from Haitian immigrant 

students’ skills in bay odyans, “a discourse practice widely held among Haitians,” (p. 311) to 

study the relationship between nature and culture. By treating the school biology curriculum as 

emergent and inquiry-based, the teacher was able to successfully capitalize on continuities 

between students’ epistemologies and science. The approach taken in reconstructing normative 

expectations in biology in this classroom resulted in meaningful learning experiences for 

students. Central to this effort was a commitment to confront “settled expectations” (Harris, 

1995) that pervade and persist in school science. Settled expectations refers to “the set of 

‘assumptions, privileges, and benefits that accompany the status of being white…that whites 

have come to expect and rely on’ across the many contexts of daily life [Harris, 1995, p. 277]” 

(Bang et al., 2012, p. 303). This reform-based approach to teaching biology centered the critique 

of science as universalist and objective and sought to reframe science through its adoption of 

students’ discursive practices as legitimate contributions to learning about biology. 

While critical scholars in the learning sciences offer their perspectives in the context of 

traditional school science, their core critique is not exclusive to these disciplines but is instead 

directed at the longstanding STEM tradition of claims to objectivity as a systemic mechanism for 

the exclusion of non-dominant groups in service of maintaining the preeminence of dominant 

groups and their epistemology. The enduring overrepresentation of dominant groups and 

underrepresentation of non-dominant groups in fields that make up the genealogical lineage of a 

budding data science (i.e., computer science, applied mathematics) indicate that data science, 

too, is prime to inherit the dominant trait of epistemological exclusivity in the absence of a 

critical interrogation of the constitution of knowledge in the field. To better understand how 
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existing critiques of scientific objectivity apply to the field of data science, still in its infancy, I 

now turn to a discussion of existing scholarship on data science, Big Data, and data-generating 

learning technologies. 

The Myth of [Data] Scientific Objectivity, Revisited 

The growing body of scholarship on Big Data and data science concerns itself 

predominantly with examining the revolutionary nature of digital data generation and its 

application in organizational science. Thus, much of the attention garnered by Big Data regards 

understanding new and ever-expanding opportunities for organizations to boost efficiency and 

productivity by making Big Data actionable through the execution of Big Data analytics 

(McAbee, Landis, and Burke, 2017; Chen, Chen, Gorkhali, Lu, Ma, and Li, 2016; Chong and 

Shi, 2015). Big Data analytics refers to “a set of [advanced analytic] techniques that allow 

researchers and practitioners to identify relations between observed variables and/or cases” in 

large data sets for the purposes of data-driven decision-making (McAbee et al., 2017, p. 280; 

IBM, n. d.). In efforts to improve productivity, organizations are investing in new technologies 

and highly skilled personnel to manage large data streams and leverage insights (McAbee et al., 

2017; McAfee & Brynjolfsson, 2012).  

While there is no shortage of interest in capitalizing on the insights of Big Data, there is 

less attention, and much less socio-criticality, where epistemology and politics of Big Data are 

concerned. Much like traditional science and mathematics fields that position dominant 

knowledge systems as universal and objective (Bang et al., 2012; Calabrese Barton and Yang, 

2000; Calabrese Barton, 1998; Brickhouse, 1994; Stanley and Brickhouse, 1994), data and data-

generating technologies, too, are often misrepresented and subsequently misread as apolitical and 

objective (Selwyn, 2016; Selwyn, 2015; Couldry, 2014; boyd and Crawford, 2012).  
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Arguing pointedly against the myth of Big Data objectivity and the need for critical 

sociological perspectives in the era of Big Data, boyd and Crawford (2012) assert that while 

computational scientists might claim their work “as the business of facts and interpretation,” (p. 

667) where there is human intervention there is subjectivity (Ebach et al., 2016; Ekbia et al., 

2015; Couldry, 2014). In short, claims to objectivity are false in their refusal to acknowledge that 

all human decision making is epistemologically grounded in the lived experiences, sensibilities, 

and philosophical perspectives of individuals (Couldry, 2014). Coupled with traditional science’s 

longstanding claim to objectivity, perceived data and tech-neutrality mean the likely 

reproduction of positivism in the field of data science. As a matter of fact, scholars in the 

humanities and social sciences have noted that many dilemmas observed in the traditional 

(“historical”) sciences, including epistemological exclusion as a result of positivism, have 

emerged and to a large extent have come to define Big Data and Big Data analytics within data 

science-related fields (Ekbia et al., 2015; Ebach et al., 2016). 

For this reason, it is important to understand that subjectivity plays a role in all phases of 

the data life cycle where human interpretations, observations, and choices are necessary for 

making decisions about the structure and design of data collection methods, management, 

processing, interpretation, and representation (boyd and Crawford, 2012; Selwyn, 2015; Halford, 

Pope, and Weal, 2013). To put it another way, “Big Data is not self-explanatory,” but is instead 

dependent on human intervention to yield actionable insights (Bollier, 2010, p. 13; boyd and 

Crawford, 2012). 

Critical digital sociological perspectives of Big Data, technology, and education. In 

response to the increasing momentum of positivist discourse regarding Big Data and data-

generating technologies in education, the burgeoning field of digital sociology offers critical 
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perspectives concerning the role Big Data play in reproducing disciplinary and social 

inequalities, and intensifying managerialism in schools; (Selwyn, 2015; boyd and Crawford, 

2012). Thus, in the following sub-sections, I expound on these areas in light of perspectives 

offered by critical scholars in the learning sciences discussed earlier. 

Reproduction of social inequalities. The hype that surrounds the Big Data phenomenon 

rests on the promise of never-before-seen opportunities to quickly access massive data stores of 

diverse types of information. This has led to heightened demands for Big Data analysts with 

advanced statistical analysis and programming skills applicable in a multitude of industries 

including, but not limited to, government, business, healthcare, education, and social media 

(McAbee et al., 2017; Chen et al., 2016; McCartney, 2015). Therefore, participation in the field 

of data science is contingent on matters of access and skills. Critiques offered by boyd and 

Crawford (2012) help explain why this is problematic: 

Wrangling APIs, scraping, and analyzing big swatches of data is a skill set generally 

restricted to those with a computational background. When computational skills are 

positioned as the most valuable, questions emerge over who is advantaged and who is 

disadvantaged in such a context. This, in its own way, sets up new hierarchies around 

‘who can read the numbers’, rather than recognizing that computer scientists and social 

scientists both have valuable perspectives to offer. (p. 674) 

Grounded in the enduring myth of scientific objectivity, the privileging of ‘who can read the 

numbers’ as a more valuable skill in data science than qualitative analyses reproduces existing 

tensions in academia regarding quantitative research as a matter of facts production and 

qualitative research as a matter of storytelling (Couldry, 2014; boyd and Crawford, 2012). 

Among Big Data enthusiasts lies the belief that purely quantitative analyses of correlation suffice 
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for analyzing data, making claims about causality, and, subsequently, about what is true and 

matters in the social world (Couldry, 2014; boyd and Crawford, 2012). These beliefs reflect yet 

another phenomenon that has arisen in the era of Big Data: Big Data hubris, defined as “the 

notion that big data replaces, rather than supplements traditional data acquisition and analysis, 

namely ‘small data’” (Ebach et al., 2016, p. 2). This point of view poses a direct threat to the 

analytical and interpretive offerings of the humanities and social sciences by suggesting the 

impending obsolescence of qualitative methods for understanding the social world (Ebach et al., 

2016). Further, Couldry (2014) argues that by appealing to objectivity  

[Big Data’s] effect is to reinforce our belief that such data offer a new route to social 

knowledge…Each such myth, by rationalizing a certain perspective on how we can come 

to know the social, obscures our possibilities for imagining, describing and enacting the 

social otherwise…the power of the myth of big data emerges [in challenging] the very 

idea that the social is something we can interpret at all. (p. 882, emphasis in original)  

Although Big Data is a socio-technical phenomenon profoundly informed by and informing the 

social, Big Data hubris inherent in the myth of Big Data objectivity creates the illusion that 

studies of correlation, user profiling, and predictability supersede social-scientific and humanistic 

methods for understanding the social (boyd and Crawford, 2012; Couldry, 2014). Like traditional 

STEM fields, the constitution of scientific legitimacy in data science reflects settled and narrow 

expectations regarding how to do science (data analytics), who can do science (data analysts), 

and ultimately who is able to contribute to the creation of social knowledge (top-level 

stakeholders and data analysts) (Bang et al., 2012; Calabrese Barton and Yang, 2000; Calabrese 

Barton, 1998; Brickhouse, 1994; Stanley and Brickhouse, 1994). Therefore, by challenging the 

social (i.e. Big [social] Data) as the work of interpretation and instead positioning it as the work 
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of analytics, the myth of Big Data objectivity exists in service of the enduring culture of power 

and settled expectations in STEM (Ebach et al., 2016; Ekbia, et al., 2015; Couldry, 2014; Bang et 

al., 2012; boyd and Crawford, 2012; Calabrese Barton and Yang, 2000; Delpit, 1988; Harris, 

1995). 

In addition to reproducing disciplinary inequalities, Big Data has already begun its role in 

the reproduction of social inequalities due to issues of differential access to new technologies, 

internet use, Big Data for analysis, and skills necessary to actuate analysis (boyd and Crawford, 

2012). Through the creation of a social hierarchy of ‘data classes’ “ordered along lines of 

technical and statistical expertise,” divisions between the Big Data rich, those who have the skills 

necessary to do Big Data analytics, and the Big Data poor, those who do not, widen (Selwyn, 

2015, p. 71; Ekbia et al., 2015; boyd and Crawford, 2012). Ekbia et al. (2015) provide that the 

popularity and profitability of Big Data is founded on socioeconomic, cultural, and political 

shifts that Big Data, itself, enables through its power “as a polarizing force not only in the 

market, but also in arenas such as science” (p. 1537). Yielding massive business profits, Big 

Data has been referred to by some as a new “asset class” and “new oil”—a fact that helps 

contextualize Facebook’s increase in ad revenue informed by Big Data analytics from $300 

million in 2008 to $4.27 billion four years later (Ekbia et al., p. 1537). Of course, we all 

contribute to the generation of data on a grand scale in one way or another, but proximal benefits 

are limited to an exclusive group of individuals who possess the digital capital—“the reach, 

scale, and sophistication of his or her online behavior”—necessary to capitalize on Big Data 

(Ignatow & Robinson, 2017, p. 3; Couldry, 2014). As a matter of course, emerging inequalities 

in who has access to information technologies and highly valued skills of data analytics mimic 

and amplify existing socioeconomic inequalities (Ignatow and Robinson, 2017).  
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What is more, while Big Data enthusiasts revel in the purported accessibility of limitless 

data, access is not equally granted nor widely distributed (boyd and Crawford, 2012). Powerful 

companies like Google and Facebook possess the means to finance the collection of Big Data, 

what Van Dijk (2005 cited in Ignatow & Robinson, 2017) refers to as information capital. 

However, their willingness to finance Big Data analytics does not mean that the public will be 

granted open access to the data that is collected, particularly when it comes to proprietary data 

(boyd and Crawford, 2012). Writing in the context of social media, boyd and Crawford (2012) 

posit that “[s]ome companies restrict access to their data entirely; others sell the privilege of 

access for a fee; and others offer small sets to university-based researchers” (p. 673).  

Moreover, social divisions between the Big Data rich and the Big Data poor are 

reinforced through the university system where access to Big Data is more readily acquired by 

well-resourced top universities that can afford to pay for access (boyd & Crawford, 2012). Citing 

Capek, Frank, Gerdt, and Shields (2005), Ekbia et al. (2015) observe that “[t]he complex 

ecosystem in which Big Data technologies are developed is characterized by a symbiotic 

relationship between technology companies, the open source community, and universities” (p. 

1527). Adding to this point, in 2013, information technologies firms supported Big Data science-

related course offerings at nearly 26 institutions of higher learning—figures that have 

presumably increased since (Cain-Miller, 2013). These relationships are further complicated by 

the fact that students from top universities have a greater likelihood of being invited to develop 

their skills at large companies that head data-collection ventures, creating a direct pipeline for 

students majoring in data science-related disciplines to enter the field of Big Data analytics (boyd 

and Crawford, 2012).  
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Unfortunately, research shows that the educational pipeline available to non-dominant 

students, as yet, is more bleak than promising. When we consider the well-documented lack of 

access to quality educational experiences and opportunities for students from non-dominant 

groups, and the fact that they do not enjoy equitable representation in data science-related fields 

and STEM in general, it is not difficult to discern how emergent disciplinary and social divisions 

perpetuated via the myth of Big Data objectivity are poised to perpetuate deep-seated educational 

inequity for non-dominant students in the new field of data science (Martin et al., 2015; Pérez 

Huber et al., 2014; Covarrubias, 2011; Barr et al., 2008). 

Toward data science as co-constructed knowledge. Unless there is a critical 

sociological understanding of the ways in which certain types of knowledge are legitimized as 

true and universal in the fields that constitute the foundation of data science, including 

mathematics, statistics, and computer science, then data science too runs the risk of reproducing 

and intensifying the power structures that create inequity in STEM through the simultaneous 

valuation of dominant epistemologies and negation of non-dominant ones (Selwyn, 2015). In 

other words, it does not suffice to define equity in data science as exposure to processes involved 

in data analytics for students who have not traditionally benefitted from access to STEM 

education and careers if they are learning to work with data in ways that reinscribe their 

epistemological exclusion and leave unquestioned the new manifestations of positivism in data 

science and treatment of data-generating technologies (Selwyn, 2015).  

Assessing Learning Within STEM Reform 

 Reframing “success” in data science learning outcomes. While critical and mindful 

design of equity-oriented data science initiatives represents a difficult yet necessary effort, 

assessing learning within programs piloting new data science curricula represents another that is 
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equally difficult and necessary. Achieving equity in STEM education not only requires 

challenging the myth of scientific objectivity, but also a reframing of assessment that moves 

beyond narrow definitions of success that focus on competency measures and the development 

of technical skills (Carlone et al., 2011; Kearns, 2011; Au, 2011; Jacob, 2005; Hursch, 2005; 

Kohn, 2000). The technical rationality inherent in traditional learning assessments works to the 

advantage of students from dominant groups and to the disadvantage of students from non-

dominant groups by shifting the focus of education from fostering students’ personal and 

intellectual development to developing the technical skills and information necessary to perform 

well on standardized measures. This, invariably, means the perpetuation of educational inequity 

for those students who have been traditionally underrepresented in higher education, particularly 

and more so in STEM. 

Accordingly, Carlone et al. (2011) assert that science educators and researchers must 

think critically about what counts as equity and what constitutes equitable outcomes in reform-

based science. They caution that “Doing well on achievement measures does not necessarily, by 

itself, imply a successful outcome” because this does not indicate that a student “affiliates” with 

science—that is, sees themselves as a “smart science person” (Carlone et al., 2011, p. 462) or 

perceives science as personally meaningful. Indeed, these measures convey very little about 

student learning (Khalifa, Jennings, Briscoe, Oleszweski, and Abdi, 2014; Au, 2011; Hursch, 

2005; Kohn, 2000). In their efforts to understand how students in two fourth grade classes came 

to think of and affiliate with being a “smart science student,” Carlone et al. (2011) found that 

“those who expressed outright disaffiliation [with being a smart science student] were not 

necessarily those who did not perform well on assessments. In fact, N’Lisha, an African 

American student, was one of the top performers on both written and performance assessments” 
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but she identified three White students as “science” people,” adding “We aren’t like them” (p. 

461-462). 

There is a significant distinction to be made between satisfactory performance on 

standardized measures aligned with hegemonic science standards and the execution of learning 

processes that indicate meaningful engagement in scientific learning. If the latter is consistent 

with the values and ways of knowing of those that lie outside of the culture of power, then 

standardized measures will not account for nor value the unique learning processes because, as 

projects of positivism, they are not designed to do so (Selwyn, Henderson, and Chao, 2015; 

Kaufman, Graham, Picciano, Popham, and Wiley, 2014; Khalifa et al., 2014; Hursch, 2005). 

Furthermore, meaningful engagement in scientific learning and self-identification or perception 

of oneself as “a science person” holds more promise for encouraging a student to pursue an 

education and career in STEM than does satisfactory science task completion with little personal 

investment. Hence, assessment of STEM reform initiatives must also challenge the notion of 

assessment itself by taking the “affective dimensions (and dispositional outcomes) of learning” 

into consideration and “examin[ing] the ways the promoted ways of ‘being scientific’ in a 

classroom are meaningful, believable, and achievable for a diverse groups of students” (Carlone 

et al., 2011, p. 463). This means that a reframing of “success” in STEM equity outcomes requires 

analysis of how meanings of science, legitimate science knowledge, and legitimate science-doing 

are culturally shaped, and thus co-constituted, in the classroom (Carlone et al., 2011; Cobb & 

Hodge, 2002; Cobb et al., 2009; Cobb & Hodge 2010). To do so is to challenge positivism and 

the settled expectations of technical rationality that uphold and protect the Culture of Power in 

education through appeals to the myth of scientific objectivity and to the disadvantage of non-

dominant groups through epistemological exclusion (Ebach et al., 2016; Ekbia et al., 2015; Bang 
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et al., 2012; Calabrese Barton and Yang, 2000). Aware of the problematic implications and 

ineffectiveness of standardized measures for understanding student identification with STEM, 

namely mathematics, the work of Cobb and colleagues purposefully moves toward alternative 

measures for gaining a better and more nuanced understanding of student performance in and 

identification with math-doing. Therefore, in the following section, I will discuss this scholarship 

and its usefulness and appropriateness for understanding student performance in and 

identification with data science-doing. 

Supporting the development of strong student STEM identities. In this section, I will 

draw from the work of Cobb and his colleagues to make sense of data science education 

principally because it draws heavily from its parent field of mathematics. While I recognize that 

data science is different than mathematics due to its focus on data collection, analysis, and 

management; as well as its use of coding and computer programming, the longer history of 

scholarship on mathematics education will be immensely useful for providing a dynamic portrait 

of data science education.  

Echoing the critical views of scholars presented earlier, Cobb and colleagues argue for 

the restructuring of mathematics education for equity via the cultivation of strong student STEM 

identities. Their work stems from a design-based research tradition that seeks to support rich 

mathematical student learning and bring about strong student identification with mathematics as 

math-doers via a process of iterative instructional design (Cobb & Hodge, 2002; Cobb et al., 

2009; Cobb & Hodge 2010). Cobb et al.’s proposal to restructure mathematics specifically 

through the personal development and enrichment of students’ identities acknowledges the 

objectifying and silencing nature of top-down efforts to improve educational outcomes. In 
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essence, supporting the development of strong student STEM identities is about epistemological 

inclusion, where students are positioned as co-creators of knowledge.  

What it means to be a successful student in a mathematics class is a ‘normative’ construct 

co-constituted by and through the social interactions that take place in the classroom between the 

teacher and the students (Cobb, Wood, Yackel, & McNeal, 1992). Normative notions of what it 

means to be a successful math student as developed in a classroom pose implications for the 

quality of learning that can take place, and hence for opportunities afforded to students to 

develop strong affiliations with math-doing (Cobb et al., 1992). Like scientific knowledge, the 

culture, values, and imperatives that emerge in a given mathematics classroom are socially 

constructed, with normative expectations, behaviors, and practices established by a community 

of individuals. Furthermore, traditions established by a community of individuals in turn 

“influence individuals’ construction of scientific or mathematical knowledge” by discerning 

what constitutes acceptable problems, solutions, explanations, and justifications within that 

particular tradition (Cobb et al., 1992, p. 575).  

In their interactional analysis, Cobb et al. (1992) observed two elementary school 

mathematics classrooms, one at the second-grade level and another at the third-grade level. 

Illustrating the drawbacks of engaging with STEM disciplines as objective and fixed, Cobb et al. 

(1992) found that in the third-grade mathematics classroom—where mathematical knowledge 

was treated as pre-existing, pre-determined, and external to the students in the class—the 

mathematical learning that occurred could be characterized as procedural mathematical learning 

without conceptual understanding. In this particular classroom students learned that they were 

expected to provide the answer anticipated by the teacher and not necessarily to learn the 

conceptual underpinnings of their mathematical activity on place value numeration. This 
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example illustrates the argument conveyed earlier—that competency in science knowledge and 

skills do not account for the conceptual ways in which students are able to interact with science 

knowledge in the classroom (Carlone et al., 2011). Additionally, “[t]he manner in which the 

children routinely cooperated even when the mathematical rule was not immediately evident to 

them indicated that, at a minimum, they had learned to act as though they believed that 

mathematics consists of fixed, objective rules” (Cobb et al., 1992, p. 589). This ultimately 

contributed to students’ enculturation into positivist beliefs about math (Lave, 1988 cited in 

Cobb et al., 1992) as universal, objective, factual, and fixed (Brickhouse, 1994; Calabrese 

Barton, 1998; Calabrese Barton & Yang, 2000; Stanley & Brickhouse, 1994; Bang et al., 2012). 

Unlike the procedural instructions that the teacher conveyed and students took up in the 

third-grade classroom, the second-grade classroom consisted of challenges and back and forth 

exchanges among students and the teacher, “There was a taken-as-shared [normative] 

understanding of the task that reflects a prior history of negotiations of meanings and 

interpretations in the classroom” (Cobb et al., 1992, p. 590). This means that the activity of 

negotiation and meaning-making was central to math learning in this classroom, which 

ultimately lead to students’ ability to learn mathematics with understanding, as opposed to 

without, and in ways that were personally meaningful (Cobb et al., 2009; Cobb & Hodge, 2002; 

Yackel & Cobb, 1996).  

Moreover, Cobb et al., (2009) propose an interpretive scheme designed with the explicit 

purpose of analyzing the types of identities that students develop in the mathematics classroom 

to inform instructional design and teaching. Cobb et al. (2009) argue that the personal identities 

that students develop as math-doers are important to consider in instructional design because 

they indicate the ways in which students come to identify with the normative identity of a 
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successful mathematics students as co-constructed in the classroom. Pulling from Cobb & 

Hodge’s (2002) earlier work on classroom social structure, they posit that the normative identity 

of a successful mathematics student is a social construction shaped by the classroom 

microculture, which, when treated as a community of practice (Wenger, 1998), consists of three 

aspects:  

1. General classroom norms,  

2. Specifically mathematical norms, and  

3. Classroom mathematical practices (Cobb et al., 2009; Cobb & Hodge, 2000; Cobb 

& Yackel 1996).  

Existing literature on “how students come to understand what it means to do mathematics 

as it is realized in their classroom and with whether and to what extent they come to identify with 

that activity” (Cobb et al., 2009, p. 41) indicates three cases of student math affiliation: students 

come to identify with, merely cooperate, or resist engagement in and affiliation with 

mathematical activity as it plays out in the classroom (Boaler & Greeno, 2000; Martin, 2000). As 

such, a strong affiliation or student identification with mathematical classroom activity, and 

“taken-as-shared” mathematical understandings as co-constituted in the classroom have the 

potential to inspire in students personally meaningful rationales5 for math learning.  

Furthermore, student development of personally meaningful rationales for identifying 

with mathematical activity in the classroom is dependent on the ways in which students are able 

to exercise legitimate forms of agency within the classroom.  Opportunities for students to 

                                                      
5 As cited in Cobb and Hodge (2010), D’Amato (1992) “distinguishes between two ways in which learning in school 

can have value for students” (p. 185). The first way involves students seeing extrinsic value, or structural 

significance, in learning. Students that see the structural significance in learning in a mathematics classroom will 

identify with mathematical activity in efforts to perform well and be successful as a means to an end such as gaining 

admission to college. The second way involves students seeing intrinsic, or situational significance, in learning “in 

which students view their engagement in classroom activities as a means of maintaining valued relationships with 

peers and of gaining access to experiences of mastery and accomplishment” (p. 185). 
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exercise legitimate forms of agency are determined by how authority is distributed in the 

classroom. The distribution of authority in the classroom refers to “the degree to which students 

are given opportunities to be involved in decision making about the interpretation of tasks, the 

reasonableness of solution methods, and the legitimacy of solutions” in the classroom (Cobb et 

al., 2009, p. 44). Consequently, the extent to which students are able to make legitimate 

mathematical contributions in the classroom has implications for the types of agency they are 

able to exercise in the classroom. A significant point to consider is that while agency can be 

described as fluid, exercised on a continuum, and the extent to which one is able to engage in 

agency, Cobb et al. (2009) “use the term agency in a more technical sense that moves beyond the 

view of agency as an amount and focuses on the ways in which students can legitimately 

exercise agency in particular classrooms” (p. 44-45). As such, a classroom wherein authority is 

distributed to the teacher and students, as would be the case in classrooms that incorporate 

discursive practices of students from non-dominant groups and/or follow an inquiry-based 

instructional design (see Bang et al., 2012; Carlone, 2004), for example, would provide 

opportunities for students to exercise conceptual agency. A classroom wherein authority is 

distributed solely to the teacher, such as classrooms that follow the traditional elicitation-

response-evaluation pattern (see Cobb et al., 2002), would provide opportunities for students to 

exercise disciplinary agency. 

By and large, the normative identity of what constitutes an effective and successful math-

doer in a classroom is socially constructed through the norms and practices of the classroom 

social structure. Opportunities for students to develop strong affiliations with mathematical 

activity by viewing it as structurally or situationally significant to them as individuals can be 

supported or obstructed by the nature of authority distribution in the classroom and, 
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subsequently, the types of agency students are able to exercise. Thus, a systematic analysis of the 

classroom social structure can prove of immense use, unlike high-stakes assessments, in 

improving students’ educational outcomes through efforts to understand the nature and quality of 

student identification with mathematical activity and identifying ways to support student views 

of math, and STEM in general, as personally meaningful and enriching. 

Emergence of New Tools and Multiliteracies for Equity-Oriented STEM 

As a result of the strong push to increased access to STEM for historically non-dominant 

groups, a number of scholars have noted relatively new approaches to engaging youth in STEM 

education, particularly in data science. Below, I discuss data science (Philip et al., 2013; 

Hogenboom, Holler Phillips, and Hensley, 2011; Calzado Prado & Marzal 2013; Stephenson & 

Schifter Caravello, 2007) for the development of critical literacies for the 21st century. 

Data literacy in STEM reform. Within the last decade, data literacy has emerged as a 

highly relevant and necessary field for life in the 21st century where large data sets are made 

available to the public and data is incessantly collected by ubiquitous mobile technology. While 

the term “data literacy” has increasingly come into use to loosely refer to “the ability to read and 

interpret data, to think critically about statistics, and to use statistics as evidence” (Hogenboom et 

al., 2011, p. 410; Calzado Prado & Marzal, 2013; Carlson, Fosmire, Miller, & Sapp Nelson, 

2011), there is no definite consensus about the skills that constitute data literacy, the purpose for 

cultivating data literacy, and approaches to teaching it. Although there is no formal definition for 

data literacy, it is understood as consisting of a number of abilities and practices. Articulations of 

the importance of data literacy range from describing it in terms of Big Data analytics (McAbee 

et al., 2017; Carlson et al., 2011; Gunter, 2007) to emphasizing the need for data literacy as a 

critical reading of the information-driven world, technology, and issues of privacy and 
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surveillance (Philip et al., 2013; van Dijck, 2014; Tygel & Kirsch, 2015; Bhargava, Kadouaki, 

Bhargava, Castro, & D’Ignazio, 2016; D’Ignazio & Bhargava, 2016). A number of scholars have 

also called for the need to cultivate other data-related literacies for the information age. These 

include information literacy (Elmborg, 2006; Zurkowski, 2013), quantitative literacy (Steen, 

1999), statistical literacy (Rumsey, 2002), and numeracy (Stephenson & Caravello, 2007) to 

name a few. Still others describe the need to think critically about data and the myth of 

objectivity in the era of Big Data, but do not refer to this as literacy (Selwyn, 2015; Couldry, 

2013; boyd and Crawford, 2012). I believe that data literacy encompasses a number of skills that 

are in ways extensions of other articulations of data-related literacies. Accordingly, not all the 

literature that I discuss in this section pertains to “data literacy” per se, but instead pertains to 

data-related literacies articulated by scholars as essential for life in the information age.  

Shapiro and Hughes (1996) argue for the need to develop an information literacy 

curriculum that positions information as a liberal and technical art. This process, they write, 

entails conceptualizing information literacy as encompassing “the old concept of ‘computer 

literacy’…the librarians’ notion of information literacy and a broader, critical conception of a 

more humanistic sort [of literacy]” (Shapiro & Hughes, 1996, p. 2) consisting of seven distinct 

yet intersecting competencies.   

1. Tool literacy refers to understanding and knowing how to use existing information 

technology tools (i.e. software, hardware) relevant to the educational and occupational 

spaces inhabited by an individual.  

2. Resource literacy involves the ability to effectively identify, locate, and access 

information resources.  
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3. Social-structural literacy involves an awareness of the socially constructed and value-

laden nature of information and the ways information becomes imbued with meaning.  

4. Research literacy refers to the ability to be able to use current research technology tools 

to conduct research.  

5. Publishing literacy involves knowing how to compose, prepare, and share research online 

with the research community.  

6. Emerging technology literacy refers to the ability to adapt to and use affordances of new 

technologies in a time when technology is developing quite rapidly so as to not be 

constricted by the limitations of older technologies.  

7. Lastly, critical literacy refers to the ability to be critical of information technologies. This 

means having the ability to evaluate the intellectual, personal, and social affordances and 

limitations of technology (Shapiro & Hughes, 1996). 

These dimensions of data-related literacy are useful for understanding three salient themes in the 

literature. These themes orient data-related literacy as 1) a functional [technical] tool; 2) an 

interdisciplinary resource; and 3) a resource possessing humanistic potential. Further, I have 

grouped Shapiro and Hughes’ (1996) seven dimensions into the theme that best describes their 

relative function (Figure 2.1). Each theme can be understood as characterized by one or more of 

Shapiro and Hughes’ (1996) dimensions of literacy. The dimensions of literacy should not be 

interpreted as restrictive measures for thinking about data-related literacy within a given theme. 

Instead, I borrow from Shapiro and Hughes (1996) because after surveying literature on data-

oriented literacy, their dimensions represent appropriate guiding competencies that can help 

inform a mapping and developing understanding of data literacy and related literacies.  
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Themes in Data-Related Literacy Literature 

Data-related literacy as a skill set 

Tool literacy 

Data-related literacy as an interdisciplinary resource 
(builds on previous literacy) 

Resource literacy 

Research literacy 

Publishing literacy 

Data-related literacy as a resource possessing 
humanistic potential (builds on previous literacies) 

Social-structural literacy 

Emerging technology literacy 

Critical literacy 

Figure 2.1 

Additionally, the themes should not be understood as mutually exclusive but instead as an 

organizational tool for examining my survey of scholarship on data-related literacies. Below I 

expound on each of the three sections and layout the diverse meanings of data-related literacy. 

Gaining an explicit understanding what constitutes literacy within equity-oriented STEM reform 

efforts is necessary for designing and implementing critical and reform-oriented data science 

initiatives as it necessitates the clear articulation of intended learning goals in the classroom. 

Additionally, it allows a mapping and reconceptualization of what it means to be critically data 

science literate.  

  



 

 55 

Data literacy as a skill set. Literature in this vein views data-related literacy as a practical 

and functional scientific-mathematical skillset. Data literacy can be loosely understood as “the 

ability to understand, use, and manage science data” (Carlson et al., 2011, p. 633); and the ability 

to “access, assess, manipulate, summarize, and present data” (Gunter, 2007, p. 2). Data literacy 

here refers to one’s ability to master use of a functional tool, “a suite of data acquisition-, 

evaluation-, handling-, analysis- and interpretation-related competencies,” that enables one to 

carry out a function and complete tasks related to statistical data (Calzado Prado & Marzal, 2013, 

p. 2; Carlson et al., 2011; Gunter 2007). Definitions seem to equate data literacy with Big Data 

analytics, defined as advanced skills of statistical analysis and computing (McAbee et al., 2017; 

Chen et al., 2016; Chong and Shi, 2015). This definition is consistent with how companies like 

IBM and those within data science-related fields view data literacy. Further, the myth of Big 

Data objectivity informs this conceptualization of data literacy as it places data literacy squarely 

in the realm of the math-sciences and does not acknowledge the need for critical qualitative 

analysis (Couldry, 2014; boyd and Crawford, 2012; Hogenboom et al., 2011; Qin & D'Ignazio, 

2010; Gunter, 2007; Love, 2004). Additionally, some scholars espouse data literacy here with an 

eye toward increasing one's viability within “an innovative knowledge economy and increasingly 

data-driven society” (McAuley, Rahemtulla, Goulding & Souch, 2014, p. 53; Carlson et al., 

2011; Steen, 1999). Articulations of data-related literacy in this vein are both broad and 

exclusive. They are broad in that some scholars equate data literacy with other math-science 

literacies like statistical literacy, numeracy, and quantitative literacy. They are exclusive in 

alluding to the use and development of data literacy in fields like statistics, mathematics, and 

information technology, without lending attention to the use and development of data literacy in 

the social sciences and for citizenship and democracy. 
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Data literacy as an interdisciplinary resource. Literature in this vein expands the 

purpose and function of data literacy beyond acquiring a skill set highly relevant for the 

information age. Here, data literacy is described as involving the development of an 

interdisciplinary and comprehensive science knowledge that necessitates thinking and 

synthesizing across disciplines to “access, interpret, critically assess, manage, handle and 

ethically use data. From that perspective, information literacy and data literacy form part of a 

continuum, a gradual process of scientific-investigative education” (Calzado Prado & Marzal, 

2013, p. 126). As such, Calzado Prado and Marzal (2013) argue, “data literacy can be viewed 

both as a whole and as an integrated assemblage of other competencies” (p. 126). Relatedly, 

Steen (1999) argues that numeracy is “both more than and different from [traditional school] 

mathematics” in that mathematical skills are essential, but unlike traditional school mathematics, 

numeracy is concerned with learning to use and read data for daily life, to inform decision-

making, and enable informed social participation in a democracy (para. 15). Informal inferential 

reasoning (IIR) (Rubin & Hammerman, 2006; Makar & Rubin, 2009) follows a similar logic and 

rationale for working with data and challenging traditional and formal approaches to teaching 

statistical literacy (National Governors Association Center for Best Practices, Council of Chief 

State School Officers, 2010) that deemphasize formal statistical inference as core to statistical 

reasoning. Existing scholarship notes that students have found it challenging to generalize and 

infer from data for everyday life and decision-making when engaging in formal statistical 

inference due to the decontextualization of abstracted data. As such, IIR calls for “more holistic, 

process-oriented approaches to learning statistics" that emphasize statistical inquiry as a process 

to support meaning-making with data (Makar & Rubin, 2009, p. 83; Konold & Pollatsek, 2002). 

Literature in this vein emphasizes the cross-disciplinary nature of data-related literacies and the 
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importance of utilizing data literacy skills in different contexts toward personal and democratic 

means (Steen, 1999; Gunter, 2007; Miller, 2010).  

Data literacy as a resource possessing humanistic potential. The third category in the 

review includes scholarship that builds on the previous two themes and argues for critical data-

related literacies. Data-related literacy here refers to learning to use/and question mathematical 

tools and concepts to support personal development, informed citizenship, and democratic 

participation. These articulations also explore the implications of a data and technology-saturated 

society for non-dominant groups. Literature in this section follows Elmborg’s (2006) articulation 

of critical information literacy as involving the development of “a critical consciousness about 

information, learning to ask questions about the library’s (and the academy’s) role in structuring 

and presenting a single knowable reality” (p. 198). Elmborg’s (2006) critical information literacy 

emphasizes, like critical scholars in the learning sciences (Calabrese Barton, 1998; Brickhouse, 

1994; Stanley & Brickhouse, 1994; Calabrese Barton & Yang, 2000, Bang et al., 2012) and 

digital sociology (Selwyn, 2015; boyd and Crawford, 2012), the need to examine the problematic 

nature of knowledge based on hegemonic constructs, and the role that legitimating institutions 

(in his case the library and academy) play in upholding varied manifestations of positivism.  

Scholars have noted parallels between Freire’s (1968) critical pedagogy for Popular 

Education and a critical data-related literacy. Examples of critically-oriented data literacies 

include Popular Data framework (Bhargava et al., 2016), critical data literacy (Tygel & Kirsch, 

2015), and Big Data literacy (Philip et al., 2013). These types of literacies are all similar in that 

they all employ the collection, use, management, and critical understandings of data; however, 

their approaches, purposes, contexts, and tools differ.  

Popular Data framework for developing data literacy draws inspiration from Freire’s 
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Popular Education (hence, Popular Data) to explore ways in which quantitative and qualitative 

data can be used to build “participatory and relevant invitations for learners to build a stronger 

and impactful data literacy” (Bhargava et al., 2016, p. 200). The Popular Data framework for 

cultivating data literacy engaged youth in a generative process of analyzing data to turn it into a 

story relevant to the lives of youth and a subsequent telling of that story through the painting of a 

mural (Bhargava et al., 2016). This interpretation of data literacy expands how we learn about 

data, how data can be used outside of STEM, and the different ways data can prove to be 

empowering and lead to praxis.  

Critical data literacy, as defined by Tygel and Kirsch (2015), applies Freire’s (1968), 

Popular Education Literacy Method to learning about and with data. Critical data literacy is 

explicitly concerned with the development of statistical-mathematical methods to “critically 

analyze data, understand the context where they are generated, and the reality pictured with 

them” (Tygel & Kirsch, 2015, para. 17; D’Ignazio & Bhargava, 2016; Bhargava et al., 2016). 

Tygel and Kirsch’s (2015) Freirean inspired critical data literacy seeks to contribute to the 

democratization of data as a means of combating widespread data illiteracy that will only grow 

given rapid and new developments in technology.  

Moreover, Big Data literacy (Philip et al., 2013) emphasizes the need to learn about Big 

Data, data collection, analysis, interpretation, and visualization in data science. Big Data literacy 

also calls into question value-free treatments of technology, also known as ‘rational technology’, 

and seeks to examine the role ubiquitous technology plays in a number of issues including 

privacy, corporatization of personal data, and instructional technology in the classroom (Philip et 

al., 2013). 

The last two approaches to data-related literacy necessitate the use and problematization 
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of new technologies as these have growing implications for issues of digital illiteracy, critical 

social awareness, and democratic participation (Tygel & Kirsch, 2015; Philip et al., 2013). While 

Tygel and Kirsch (2015) call for future work to derive tangible ways of applying the theoretical 

constructs presented in their conceptualization of critical data literacy, Philip et al. (2013) pose 

that some existing approaches to teaching data literacy through data science are driven by 

uncritical views of new technologies as apolitical and objective, placing too much faith in the 

transformative abilities of technology and cutting edge content without addressing issues critical 

to democratic participation and issues of power. Additionally, this treatment of new technologies 

resonates with the second pillar of technical rationality—a concept which holds that rational 

technologies are rational in their ability to strip information of subjective meaning through 

abstraction into quantifiable and objective data (Standaert, 1993). This assertion also follows 

critiques presented earlier about traditional approaches to teaching statistical literacy that center 

the need to use statistical tools while deemphasizing statistical inquiry processes that lead to 

powerful meaning-making with data (Makar & Rubin, 2009; Rubin & Hammerman, 2006). In 

the following section, I will discuss language as a contributing factor to the uncritical use of new 

technologies in schools; technology and cutting-edge content; and discuss Philip et al.’s (2013) 

proposed framework for using new technologies as instructional tools toward powerful meaning-

making with data in data science. 

The role of language in perceptions of tech-neutrality. The myth of data-scientific 

objectivity is perpetuated through hyperbolic rhetoric used to describe new data-generating 

learning technologies and their uncritical, albeit well-intentioned, adoption into the classroom 

devoid of careful consideration regarding pedagogical affordances; ethics relating to their 

collection of students’ personal data; and automated digital surveillance (Philip, 2017; Selwyn, 
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2016; Chong and Shi, 2015; Philip and Garcia, 2015; Philip et al., 2013). Reflecting on dominant 

and enduring views regarding new and mobile learning technologies expressed during a recent 

international forum Philip (2017) recounts, “the message was quite clear: technology in schools 

equals innovation; let’s not waste time being negative about technology; let’s just get on with it” 

(p. 34). “Such a cavalier approach to learning technologies in schools and the flippant reaction to 

any cautions and critiques,” he contends, “only serve to further jeopardize the learning 

opportunities of students who have been historically marginalized in schools” (Philip, 2017, p. 

34). Indeed, how we talk about new technologies, what we deem worthy of thoughtful discussion 

and what we dismiss as insignificant within those discussions matters in leveraging the 

expectations and purposes of using new technology in the classroom (Selwyn, 2016). Selwyn 

(2016) argues that hyperbolic language used to describe technology in educational settings lends 

credence to idealized potentials of technology while ignoring realities of use and ulterior, often 

business related, motives for the introduction of the educational technology industry—valued at 

over $5 trillion—into the classroom. Uncritical adoptions of new technologies in schools 

implicitly denies the possibility that some aspects of ‘learning-technologies’ might actually 

hinder student learning and pedagogical practices meant to foster powerful meaning-making and 

conceptual reasoning among students (Philip, 2017; Selwyn, 2016: Philip et al., 2013).  

Unbridled use of hyperbolic language to describe ‘technology and education’ in a time of 

heightened interest in the nascent field of data science and other data-related fields contribute to 

fostering public perception of tech-neutrality, and by extension data-neutrality generated via the 

use of technology. Undeniably, new [data-generating] technologies provide opportunities for 

new ways of learning, processing information, and collaborating with peers—these are things we 

know, but efforts to introduce new technologies into the classroom must be preceded by 
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understandings of the nuances and limitations inherent in different forms of technology and 

data—as the two are now inextricably linked. Furthermore, STEM reform efforts that incorporate 

use of new technologies in classrooms and other learning spaces must actively work toward 

demystifying the notion of value-free technology and data to avoid the shortsightedness of 

previous efforts that have failed to do so. This is doubly the case for equity-oriented initiatives 

that incorporate the use of new technologies to learn specifically with and about data. 

Technology and cutting-edge content. Philip et al. (2013) caution against the adoption 

of new technologies and cutting-edge content for data analysis in the classroom without 

thoroughly thought-out rationales behind their actual purpose, role, affordances, and implications 

for learning. If the purpose of incorporating new technologies and cutting-edge content in the 

classroom is to increase democratic participation in ways that confront educational inequities of 

non-dominant groups, then curricular design of data science programs and technology use must 

avoid falling into the paradigm of what Philip et al. (2013) term “ideological paradigms of 

technology and cutting-edge content as an end, means, and equalizer” (p. 104). 

 STEM reform initiatives that treat technology and cutting-edge content as the educational 

end are reductive in their view of the goals of education and fail to attend to the critical need to 

improve education for the sake of the people (Philip et al., 2013). The use of technology and 

cutting-edge content as a means to educational success refers to the treatment of new and mobile 

technologies as inherently revolutionary, a view that overemphasizes, and perhaps 

misunderstands, student interest in mobile devices without considering how the meaning of 

technology changes in different contexts (Philip et al., 2013). Moreover, treating technology and 

cutting-edge content as the equalizer assumes that the mere presence of new technologies in the 

classroom will suffice in ameliorating widespread and deep-seated educational inequality, 
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operating on a highly misinformed understanding of the nature of inequity in schools. Thus, any 

reform-oriented effort that promotes the use of technology and cutting-edge content as the 

solution to educational inequity will not only fail to address the true causes of educational 

inequity, but will also expend precious funding that could go toward more effective approaches 

to education reform for students of color, all the while intensifying the issues that prompted the 

very need for reform (Philip & Olivares-Pasillas, 2016). Thus, decisions regarding the use of 

mobile technologies in the classroom should focus on understanding the affordances that new 

technology and cutting-edge content provide for learning in the classroom.  

Affordances of mobile technology in the classroom: the 3Ts6. Philip and Garcia (2013) 

argue that a useful way to approach the use of new technologies, particularly those popular 

among youth such as smart phones, is to consider their affordances in light of what they term the 

3Ts: text, tools, and talk (see also Philip & Olivares-Pasillas, 2016). To consider the texts 

afforded by mobile technologies in the classroom is to consider how and what texts are made 

available through the use of mobile technologies, as well as to consider and develop the new 

literacies necessary to read and analyze these texts (Philip & Garcia, 2013). Viewed as tools, 

mobile technologies offer unique and unprecedented opportunities for students to “collect, 

analyze, represent, and communicate data in elegant ways to audiences across the globe” (Philip 

et al., 2013, p. 110), thus, thoughtful consideration of the instructional affordances of mobile 

technologies in the classroom involves thinking about how particular tools “allow students to 

                                                      
6 Please note that Philip and Garcia (2013) do not couch their framework regarding tools, text, and talk—the 3Ts—

within Philip et al.’s (2013) three paradigms of technology and cutting-edge content as an end, a means, and an 

equalizer nor do Philip et al. (2013) position the 3Ts as components of this paradigm. For purposes of fluidity and 

organization, I have inserted a brief review of text, tools, and talk within the paradigm of technology and cutting-

edge content as a means because this paradigm mounts a critique of the blind adoption of technology and cutting-

edge content as intrinsically transformative. The 3Ts help disentangle this misinterpretation and misrepresentation of 

technology in the classroom and provide a guideline for the types of considerations that should be made before 

adopting new technology as instructional tools. The reader should also note that the 3Ts touch on themes and issues 

discussed in all three paradigms. 
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meaningfully collect, represent, visualize, analyze, or communicate texts for a particular set of 

learning goals” (Philip & Garcia, 2013, p. 313). The texts and tools afforded by technology in the 

classroom, however, are of little relevance to learning without meaningful communication and 

interaction within the classroom community that both fosters a connection between the teacher 

and students, and incorporates the type of discourse that carries clout in a particular discipline. 

Thus, incorporation of new technologies in the classroom should consider how the texts and 

tools afforded by new technologies support and build upon rich classroom discourse—that is, 

talk. All things considered, Philip and Garcia (2013) offer the 3Ts as generative lenses that can 

be useful in thinking about the affordances and pitfalls of introducing new forms of technology 

into the classroom. Taken together, the 3Ts can help ensure that technology and cutting-edge 

content actually function as learning tools for data science. 

Converging Critical Perspectives in and for STEM Reform 

 In the preceding literature review I discuss existing scholarship of great significance for 

understanding the equity-oriented impetus for reforming traditional STEM education. In 

discussing approaches to STEM reform, I included a critical call for the reframing of scientific 

knowledge. The myth of scientific objectivity has informed traditional science for far too long, 

creating the illusion that science is derived from a universalist epistemology, is factual, and is 

value-free (Brickhouse, 1994; Stanley & Brickhouse, 1994; Calabrese Barton, 1998; Calabrese 

Barton & Yang, 2000; Bang et al., 2012). Critical scholars in the learning sciences argue that 

unless settled expectations in science are desettled (Bang et al., 2012), the ways of knowing and 

intellectual contributions of students from non-dominants groups will continue to be excluded 

from STEM discourse, education, and careers. This is due to the fact that the culture of power 

(Delpit, 1988; Calabrese Barton & Yang, 2000), a set of unspoken and unwritten rules and value 
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systems, that regulate power in American society function to privilege white middle-to-upper-

class heterosexual males through the valuation of hegemonic epistemologies and the 

simultaneous denigration and subordination of non-dominant groups, their cultures, and 

epistemologies.  

 Scholars outside of the math-sciences attest to the fact that positivist views of scientific 

objectivity have come to characterize Big Data and Big Data analytics within data science-

related fields (Ekbia et al., 2015; Ebach et al., 2016). As a result, digital sociologists have begun 

to offer critical perspectives concerning the role Big Data play in reproducing disciplinary and 

social inequalities, and intensifying managerialism in schools; (Selwyn, 2015; boyd and 

Crawford, 2012). Boyd and Crawford (2012) and Couldry (2014) argue that the privileging of 

advanced skills of statistical analysis in data science-related fields, and dismissal of the 

affordances of qualitative inquiry reproduce existing tensions regarding the legitimacy of 

quantitative research versus qualitative research. Therefore, by challenging the legitimacy of 

qualitative perspectives and making claims to objectivity the myth of Big Data objectivity in the 

infant field of data science exists in service of the enduring culture of power and settled 

expectations in STEM (Ebach et al., 2016; Ekbia, et al., 2015; Couldry, 2014; Bang et al., 2012; 

boyd and Crawford, 2012; Calabrese Barton and Yang, 2000; Delpit, 1988; Harris, 1995). 

Additionally, Ignatow and Robinson (2017) add that widening inequalities in who has access to 

technology and training in data analytics parallel and exacerbate existing socioeconomic 

inequalities. When we consider the well-documented lack of access to quality educational 

experiences and opportunities for students from non-dominant groups, and the fact that they do 

not enjoy equitable representation in data science-related fields and STEM in general, it is not 

difficult to discern how emergent disciplinary and social divisions perpetuated via the myth of 
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Big Data objectivity are poised to perpetuate deep-seated educational inequity for non-dominant 

students in the new field of data science (Martin et al., 2015; Pérez Huber et al., 2014; 

Covarrubias, 2011; Barr et al., 2008). Thus, unless administrators, educators, policy makers, and 

researchers are willing to open sustained and critical conversations about the politics of data and 

technology in the era of Big Data, data science risks perpetuating the enduring legacy of 

epistemological exclusion and educational inequity in STEM for non-dominant students. 

Thus, in an effort to reform STEM education and career outcomes for non-dominant 

students, educators, researchers, and policymakers must actively work toward redefining science 

as co-constructed knowledge (Calabrese Barton, 1998). A number of researchers in the learning 

sciences have embarked on this mission by engaging in scientific exploration with youth from 

non-dominant groups both in and out of school (Calabrese Barton, 1998; Bang et al., 2012). 

Efforts highlighted in this review demonstrate that scientific knowledge can be co-constituted in 

ways that incorporate discourse practices and learning processes in ways that not only grow 

scientific knowledge and curiosity for students and teachers, but also work toward addressing 

issues relevant to the lives of students (Calabrese Barton, 1998; Bang et al., 2012). While these 

efforts provide models for developing ways to desettle settled scientific expectations, not all 

STEM reform efforts reflect these approaches and these approaches are not a one-size-fits-all. 

However, an element shared by these models consists of engaging in scientific inquiry in ways 

that explicitly sought to build on student interests, cultures, and epistemologies, and thereby 

sought to provide opportunities for students to identify with science.  

Just as STEM reform efforts must actively pursue an agenda to support the development 

of strong STEM identities among non-dominant students, so should assessment of learning 

outcomes in STEM reform initiatives (Carlone et al., 2011). Scholarship included in the review 
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also argues that a systematic analysis of STEM-equity outcomes must avoid the dilemmas 

inherent in high-stakes assessments and accountability measures and take into account the 

opportunities available for students to identify with STEM in personally meaningful and 

enriching ways (Selwyn et al., 2015; Khalifa et al., 2014; Kaufman et al., 2014; Carlone et al., 

2011; Cobb et al., 2009; Cobb & Hodge 2010; Cobb & Hodge, 2002). Popular efforts to engage 

youth in personally relevant scientific study have sought to capitalize on the ubiquity of and 

widespread access to mobile technologies to learn about data. As a result of STEM reform 

efforts, increasing public availability of large data sets, and new technologies, data literacy has 

emerged as particularly popular (Tygel & Kirsch, 2015; Philip & Garcia, 2013; Philip et al., 

2013; Calzado Prado & Marzal 2013; Hogenboom et al., 2011; Stephenson & Schifter Caravello, 

2007). This review discusses nuances, limitations, and affordances of pursuing data literacy in 

STEM reform. Ultimately, the scholarship discussed above contributes to my study in its critical 

reading of scientific knowledge, STEM learning outcomes, new technologies for learning about 

data, and emergent popular multiliteracies.  
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CHAPTER THREE 

Methodology 

Introduction to the Energize Project 

My dissertation examines an educational STEM reform effort, hereafter referred to as 

Energize (all names are pseudonyms), implemented in a large urban school district that serves a 

predominantly Latino student population. Funded by the National Science Foundation, the 

course was part of a national imperative to increase the presence of women and people of color 

in the fields of science, technology, engineering, and mathematics. Energize is a collaborative 

project between a large urban school district and university-based researchers in the fields of 

education and in science, technology, engineering, and mathematics (STEM) that seeks to 

increase and inspire student interest in computer and data science through the design, 

development, and implementation of computer science and data science units that can be inserted 

into a number of math and science courses as well as a standalone course entitled Introduction to 

Data Science (hereafter referred to as IDS). Energize consists of a number of teams responsible 

for curriculum writing for math and science units, professional development for in-service 

teachers, tech support, research, and evaluation. I began working with Energize in 2013 as a 

graduate student researcher with the research team. The research team was responsible for the 

collection of field notes; audio-recorded teacher and student interviews; and video-recorded 

classroom observations of data science units as well as the standalone IDS course.  

IDS. The standalone IDS course was introduced in the 2014-2015 academic year as a 

result of an iterative process that arose from the design and implementation of computer and data 

science units in pre-existing math and science courses. One of the goals of Energize in its design 

of IDS was to implement an inquiry-based pedagogy as defined by the local school district. IDS 

drew heavily from fields of computer science, data science, and statistics and was formally 
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recognized as a statistics core math course, approved as a “c”7 course in the University of 

California A-G subject eligibility requirements. The course consisted of a combination of 

classroom lessons and labs. Lessons introduced students to data science skills and concepts, 

while labs provided students the opportunity to learn to code in R8 using, open-source data 

analysis software, RStudio to implement concepts imparted through the lessons. IDS was piloted 

in 10 classrooms in 10 different high schools during the first year of implementation during the 

2014-2015 academic year. In the second year of implementation, IDS was taught in 31 

classrooms at 26 different high schools. 

The IDS curriculum. In its totality, the IDS curriculum consisted of four units to be 

taught over the course of one academic year. The classroom that I observed was only able to 

cover Units 1 and 2. As designated in the curriculum, Unit 1 consisted of three sequential 

themes: “Data Are All Around”; “Visualizing Data”; and “Would You Look at the Time?” The 

themes were explored through a total of 17 lessons and eight labs with roughly one instructional 

day allotted for each. The unit also included two practicums, one halfway through the unit and 

another and the end. Although they were not formal assessments, practicums called on students 

to draw from cumulative knowledge on topics gained in preceding lessons and labs. The 

curriculum indicated five days for end-of-unit projects and presentations. Unit 2 consisted of four 

themes: “What is Your True Color?”; “How Likely is it?”; “Are you Stressing or Chilling”; and 

“What’s Normal?” Figure 3.1 indicates general learning goals relative to each of the four themes 

in the curriculum (for an overview of the curriculum, see Appendix A).  

                                                      
7 The University of California A-G subject eligibility requirements designate a letter for each academic subject. The 

“c” requirement refers to the subject of mathematics and is met after a student has taken “three years of college-

preparatory math, including or integrating the topics covered in elementary and advanced algebra and two- and 

three-dimensional geometry” (UC A-G Subject Requirements).  

 
8 R is a programming language. 
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Unit 2 Themes Learning Goals 
What Is Your True Color? • Students learn that statistics are useful for making sense of large 

amounts of data.  

• Students learn to create numerical summaries of data through the 
use of measures of center (mean, median) and measures of spread 

(mean of absolute deviation [MAD], interquartile range [IQR]).  

• Students learn to determine which measures are appropriate for a 

given distribution and how to calculate them. 
How Likely is it? • Students learn that probability measures the long run frequency of 

occurrence for chance outcomes.  

• Students learn that probabilities can be approximated through 

simulations in RStudio and also via mathematical calculation and 

learn to do so. 
Are You Stressing or Chilling? • Students learn that permutations of data provide a model that 

shows us how the world behaves if chance is the only reason for 
differences between groups or variables.  

• Students learn to determine if outcomes occur by chance or design 
by analyzing simulated probabilities against real ones. 

What’s Normal? • Students learn that the Normal curve describes the distribution of 
many real phenomena.  

• Students learn that drawing the Normal curve over histograms is 

useful for determining if a distribution is Normal. 

• Students learn that typical values are located toward the center of 

the curve and less typical values and extreme values are located 
farther from the center. 

Figure 3.1 Learning goals were derived from the IDS curriculum for Unit 2. 

The themes were explored through 18 lessons, nine labs, and three practicums and were 

to be taught over the course of 30 instructional days; and a final five days dedicated to end-of-

unit projects and oral presentations. Furthermore, every theme involved the cultivation of an 

enduring understanding; a data-related story to promote student engagement; and specific 

learning objectives for statistics, mathematics, data science, applied computational thinking 

using RStudio; and real-world connections. Additionally, the curriculum indicated specific 

learning objectives and data file/data collection methods per each theme. 

The site of observation: Medical Science High School. The dissertation draws from 

observational classroom data captured through video recording and audio-recorded student and 

teacher interviews collected during the second-year implementation of IDS Unit 2 at Medical 

Science High School (hereafter referred to as MSHS). 
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MSHS is a small pilot high school located on one unifying campus that is home to two 

other small pilot high schools in the working-class urban neighborhood of Easton Park, located 

in the southeast region of a large metropolitan county. US census data estimates for 2015 

indicate that at over 90 percent, the population in Easton Park is overwhelmingly Latino. Latino 

residents are mainly of Mexican descent; however, about three percent are of Salvadoran 

descent. Additionally, over 50 percent of its overall population is foreign-born. The percentage 

of Easton Park residents with less than a high school diploma is about 2.5 times higher than that 

of the entire county and close to five times higher than that of the country as a whole (Table 3.1). 

What’s more, the percentage of Easton Park residents with a high school diploma or higher is 

about two times lower than that of the county and the country as a whole. The estimated median 

household income in Easton Park in 2015 was $35,917 while the median household income in 

the county and the country was $56,196 and $56,516 respectively. In addition, the per capita 

income for Easton Park residents was $12,496.  

MSHS is part of one of the country’s largest school districts, with a student body 

comprised of over 97% Latino students. The unifying school campus, and its three pilot schools, 

opened in 2012 in an effort to address and alleviate the over-populated and over-enrolled 

comprehensive local high school that has, for many years, matriculated high school-age (grades 

9-12) students living within Easton Park and neighboring municipalities. 
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Table 3.1 Note: City and county figures were derived from census American Community Survey (ACS) 5-year 

estimates located at www.census.gov. Figures for the U.S. were drawn from Ryan & Bauman (2015) and Proctor, 

Semega & Kollar (2016).  

 

With a student enrollment of 6869 students, MSHS is small school in comparison to 

Easton Park High School (hereafter referred to as EPHS), the larger comprehensive high school, 

which enrolls upwards of 1,500 students. This means that the student body and faculty size are 

much smaller, there are fewer course offerings, and there is a sense of community. During my 

initial visit to MSHS, the principal expressed that the strong sense of community meant that 

students were familiar with the faculty and administration and vice versa. Additionally, MSHS is 

a Title 1 school with over 80% of the student body eligible for free or reduced lunch. 

School schedule. MSHS offered year-long courses and operated on a block schedule 

which means that out of eight subject classes, students attended all odd numbered classes one 

day and even numbered classes another. The weekly schedule consisted of alternating even/odd 

days throughout the week so that students would ultimately attend all classes an equal amount of 

time. The duration of each class was 90 minutes except for the first block of the day which was 

110 minutes, allowing 10 minutes for students to have school-provided breakfast in class. 

Classes were also shorter in duration on Tuesdays, designated “PD Day,” and lasted 60 minutes.  

                                                      
9 Data on MSHS regarding the student body, student enrollment, and free/reduced lunch eligibility was gathered by 

the California Department of Education (CDE) through the California Longitudinal Pupil Achievement Data System 

(CALPADS).  

Easton Park Educational Attainment and Income Comparison for Adults 25 and Older, 2015   
 Easton Park County U.S. 
Education    

Less than a high school 
diploma 

57.3% 22.7% 11.6% 

High school diploma or 
higher 

42.7% 77.3% 88.4% 

Bachelor’s degree or 

higher 

5.7% 30.3% 32.5% 

Income    

Median household income $35,917 $56,196 $56,516 
Income per capita $12,496 $28,337  

Persons in poverty 27.3% 18.2% 13.5% 

http://www.census.gov/
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My role in Energize. As a member of the research team, I was assigned to observe one 

of 31 implementation sites. I observed the classroom of one of two teachers identified by the 

school district liaison as the strongest in the program. I was placed at this particular site because 

of my proximity to it relative to other sites during the first year of implementation. I 

subsequently remained at the same site for the second year of implementation establishing 

rapport with the IDS teacher, students, and school administrators.  Proximity was important to 

facilitate my ability to conduct daily classroom observations and scheduled interviews, some of 

which required multiple site visits per day on my behalf. Additionally, the school site was 

located in the city wherein I attended high school (EPHS) and several teachers who once taught 

at my high school were now teaching at MSHS, including the principal who was one of my 

teachers in high school. My familiarity with the city, the population, and some members of the 

school faculty and administration facilitated my ability to establish rapport and open lines of 

communication with faculty and staff. This proved indispensable in my ability to understand the 

social, class, and educational dynamics that characterized the school.  

Data Collection 

 This qualitative study was initially exploratory. Prior to entering the classroom, we (the 

research team) knew that the curriculum sought to engage students in personally meaningful and 

powerful ways of collecting, analyzing, interpreting, presenting, and managing data through the 

use of internet-enabled mobile and computer devices, cutting edge content (Big Data), coding, 

and a custom app designed by the project explicitly for this program. Additionally, we knew that 

the two teachers we observed were especially strong mathematics teachers dedicated to the 

quality learning of their students.  
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Further, this study relied on participant observation, one-on-one interviews with students, 

and field notes as methods of data collection. Specifically, I engaged in moderate participant 

observation during my site visits. This means that although I actively engaged with students and 

oftentimes answered questions related to the course (when possible), I sought to retain my 

position in the classroom as the researcher. I will discuss my reason for doing so in the following 

section. During the first semester, I introduced myself to students as an alumnus of EPHS and 

shared that I lived the earlier part of my childhood in Easton Park before my family and I moved 

to South Central Los Angeles. I also shared that I graduated from UCLA with my bachelor’s, 

master’s degree, and was currently working on my doctoral degree and welcomed any questions 

they might have for me regarding my upbringing in Easton Park or my time at UCLA. 

Thereafter, I would circulate throughout the classroom and greet students. I made an effort to 

commit their names to memory as soon as possible so that I would be able to address them by 

name and work toward establishing rapport.  

Going into the classroom, I very much viewed myself as a researcher but it soon became 

clear that students viewed me as a teacher or school administrator and referred to me as 

“Miss”—a name/title students used when speaking with any adult female faculty or staff 

member—although I initially asked that students call me by my first name. In addition, students 

began asking me questions regarding the curriculum and their classwork. Although I did not 

answer all questions—as I was not trained to teach or problem-solve through the curriculum as 

teachers were—I answered questions and provided help whenever I could. When I could not help 

a student with a question, I encouraged them to ask the teacher, Ms. Gellar. I also got the sense 

that if students were not viewing me as a teacher, they were definitely viewing me as an 

authority figure. This I gathered through student reactions whenever I walked by which included 
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hushing each other and looking at me with alarm, in fear that I might reprimand them for talking 

about extraneous topics having nothing to do with their classwork. Similar situations would 

initially take place in the computer lab as well, as students hurried to close non-course related 

windows on their screen as I walked by. When this happened, I would either smile at students 

and continue walking around or stop and engage them in conversation regarding their non-course 

related activity. I approached these situations in this manner so that students would see that not 

only was I not there to monitor them, I might actually share interest in things that interested 

them. These exchanges were brief so as to not encourage behavior that might be viewed 

negatively by Ms. Gellar or hinder students’ abilities to attend to their work, but simply meant to 

indicate that my role in the classroom was not to monitor or reprimand them. For example, on 

one occasion while students were supposed to be working on a lab in RStudio, three students 

were gathered at the end of a row of computers looking at pictures of the UCLA marching band 

on Google Images. I happened to be a few seats away and as I made my way over to exit the row 

of computers one of the students, Carlo, shot a nervous glance in my direction. I looked at the 

screen, smiled, and asked if any of them were in marching band. A female student in the group, 

Glenda, said she was and Carlo added that she was accepted to UCLA and was going to join the 

band. I expressed enthusiasm for her acceptance and desire to join the band and congratulated 

her. Over the course of the year students’ guarded nature during my presence subsided as many 

of them continued with their non-course related conversations and activity whenever I happened 

to be nearby, presumably having realized that my role in the class was not one of an authority 

figure. 

Video-recording of observational data. During the first semester, I did not video record 

my observations. Due to the fact that I was an outsider entering the students’ classroom, I did not 
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want to seem intrusive by bringing in a video camera from the onset. When I began video 

recording, some students were visibly shy or uncomfortable at first but this did not happen until 

the second semester when Ms. Gellar began teaching Unit 2. If I had begun video recording 

during the first semester, I strongly believe it would have had a negative impact on my efforts to 

establish rapport with students. Before I began video recording, Ms. Gellar helped me share with 

students that I would be bringing a video camera to record the class. I assured them that the 

video recordings were confidential and that their likeness would remain anonymous. I reminded 

them of the consent forms they and their parents signed and told them that their rights and safety 

were protected. I also shared that video recordings would not be made public and were collected 

for analysis by the research team of what aspects of the curriculum work and/or do not work, and 

how to improve the course for future students. During the first day of video recording, a male 

student, Luis, asked, within earshot of other students, if I was going to show the recording to Ms. 

Gellar. I assured him that I would not and that the video would only be viewed for research 

purposes. In total, I was able to capture 34 hours and 12 minutes of video-recorded classroom 

observations. 

Audio-recorded one-on-one interviews. Toward the end of the 2015-2016 academic 

year, I conducted one-on-one guided exit interviews with 12 IDS students, six females and six 

males, that sought to get a sense of the following: 

• Their developing STEM identity  

• Self-identification with science-doing  

• Perception of the real-world importance of data science  

• The significance of data science for themselves and their communities 

• Their future academic endeavors 
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The interviews also included a question for two students, Kim and Diego, who were taking the 

IDS class for the second time after failing it the year prior, which was also the first year of the 

implementation of the IDS curriculum. This question asked them to speak on how their 

experience taking IDS the second time differed from their experience the first time and what, in 

their opinion, accounted for differential experiences. Additionally, I asked follow-up questions 

for further elaboration in accordance with students’ responses; hence, many of these are not 

included in the guided interview protocol (see Appendix B for the interview protocol). 

I consulted with Ms. Gellar to select students that would represent a range of 

performance levels. Ms. Gellar judged student performance based on a number of aspects of their 

classroom participation including performance on assignments, participation in class, and 

understanding of IDS skills and concepts. I scheduled interviews with students either during their 

free block (for those that had one) or advisory block so as to not interfere with their participation 

in other classes. By interviewing students during free and advisory blocks I was able to continue 

conducting video-recorded observations in the mornings when Ms. Gellar taught IDS.  

When interviewing students, Cobb et al. (2009) found it more useful to associate the 

interviewer “with the school rather than with the team conducting the design experiment,” by 

making sure that the interviewer was not involved in conducting or video recording the 

instructional sessions in the design experiment classroom” (p. 57). This decision was made given 

Cobb et al.’s (2009) understanding that “an interview is a social event in which the interviewer 

and interviewees present themselves to and recognize each other in particular ways” (p. 57). In 

their case, they ultimately found that their “strategy appears to have been effective in that the 

students did make a number of negative observations about the design experiment class” (p. 58).  
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Given my own experience growing up as a Latina student in predominantly Latino 

schools that were under-funded and over-enrolled; research on the disproportionate disciplining 

and criminalization of Latino and Black youth; and teachers’ and administrators’ “inherited 

professional roles in the ongoing surveillance, management, and disciplining of youth” (Raible & 

Irizarry, 2010, p. 1197; Rocque & Patternoster, 2011; Morris Perry, 2016), I thought it more 

appropriate to disassociate myself with the school, namely school authority, and instead 

associate myself with the reform initiative, specifically as a researcher with the research team. I 

felt it necessary to impart to students that my observations would in no way lead to negative 

implications for them. This is something I actively sought to convey throughout the entire period 

of observation, and students’ eventual willingness to speak freely and be off-task in my presence 

indicated to me that I had presented myself and they had recognized me in a particular way that 

ultimately made me privy to significant insights regarding genuine student perceptions of 

learning in their IDS class and their sentiments regarding data science as a field of study. While 

the interview protocol was designed with the expectation that interviews would last around 30 

minutes, the duration of student interviews ranged from 19 minutes to an hour. In total, audio-

recorded interviews lasted six hours and 56 minutes. 

Classroom student body. Ms. Gellar’s IDS classroom consisted of 41 students of which 

24 were female students and 17 were male. Two female students were juniors and the rest of the 

students in the class were seniors. There were also two seniors, Kim and Diego, taking IDS for 

the second time after failing the course the year prior. Kim and Diego and a number of other 

students needed to pass IDS in order to graduate. The school counselor placed a small group of 

students in IDS because they expressed interest in the course after hearing about it from peers 

and from Ms. Gellar during the first year of implementation. A larger group of students needed 
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the course to graduate, as it would allow them to meet the math requirement for graduation. 

Within this group, a number of students were placed in IDS after having failed Algebra II the 

year prior.  

During the first year of implementation a substantial proportion of students enrolled in 

IDS had failed their previous math class. Ms. Gellar expressed frustration at the counselor’s 

treatment of IDS as a last resort for students who had failed out of Algebra II because it 

undermined the potential of IDS to cultivate critical science learning by positioning it as a 

remedial class. As expressed by staff in Energize meetings, this approach to treating IDS as a 

“dumping ground” was taking place at a number of implementation sites and presented obstacles 

for the implementation of IDS in a number of ways that I personally observed in Ms. Gellar’s 

class. For example, lessons assumed that students taking IDS had at least a basic algebraic 

understanding of math concepts from which it sought to build on, but many students required 

additional scaffolding to bridge the gap between concepts they were familiar with and those they 

were assumed to be familiar with. This, in part, affected pacing of lessons and labs as Ms. Gellar 

had to go through lessons at a slower pace, provide students extra time to complete labs, 

supplement the curriculum with instructional material aimed at helping students make better 

connections with statistical concepts, and at times provide brief reviews of math skills that 

students should have learned prior to IDS in order to facilitate their understanding of the skills 

and concepts imparted in the course. While getting through the IDS curriculum was challenging 

during the first year of implementation in Ms. Gellar’s class, the second year showed 

improvement as a lower number of students were placed in IDS as a result of failing Algebra II 

and a number of students were [at the very least] initially motivated to participate in the course 
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having chosen to be in it. Ms. Gellar attributed this change to the retirement of the previous 

school counselor who was responsible for placing students in courses. 

Additionally, while IDS provided some students the opportunity to meet graduation 

requirements, enrollment in IDS also held implications for students’ math pathways at MSHS, 

which had limited course offerings, compared to larger comprehensive high schools. In an 

interview that took place during my first year observing her classroom, Ms. Gellar, a seasoned 

math teacher well-acquainted with the high school math sequence, expressed that if a student did 

not intend to eventually take an AP mathematics class in high school, then taking IDS would be a 

good idea and if they later decided to move on in the math sequence they could subsequently 

take Algebra II. However, the opportunity to move forward in the high school math sequence 

would require that students take IDS in their junior year, allowing them time during their senior 

year to take Algebra II, given that IDS does not have a corresponding math sequence and there is 

no particular course explicitly designed to follow IDS at MSHS10. For students inclined to take 

math courses beyond Algebra II, participation in IDS would have to occur earlier than their 

junior year. Necessarily, this would require that students plan accordingly well ahead of their 

final high school years. Ms. Gellar expressed a different sentiment when it came to students who 

intended to take an AP math class.  She felt it was important for students who had a desire to 

take an AP math class to have a path available for them to do so rather than to be programmed 

into a place where moving forward in the high school math sequence would eventually prove 

very difficult. For these reasons, the placement of students into IDS at MSHS had implications 

                                                      
10 While Ms. Gellar and Energize staff members have expressed that students can take Statistics or AP Statistics 

after IDS as a likely follow-up to IDS, three issues are worth considering. The first is that MSHS does not offer such 

a course; secondly Statistics and AP Statistics were not designed to cultivate data science literacies, as is the case 

with IDS; lastly, they are not instantiations of STEM-reform efforts but are instead traditional courses already 

established in many high schools. 
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for both how the curriculum was ultimately implemented, and the affordances and limitations to 

student pathways in math. 

Classroom lessons. Unit 2 of the IDS curriculum consisted of 18 lessons taught in the 

classroom (as opposed to the computer lab). In the classroom, students were seated at individual 

desks that were organized into 14 groups of three. Figure 3.2 illustrates the general layout of the 

classroom. Ms. Gellar started each lesson with a projected slide presentation that introduced the 

objective of the lesson, vocabulary words, and essential concepts as written in the curriculum. 

The lessons also included classroom activities, opportunities for group reflection, and whole-

class share-alouds.  

 

Figure 3.2 General student seating layout of Ms. Gellar’s IDS classroom. 

Ms. Gellar created lesson worksheets that functioned similarly to the journal that the 

curriculum called for wherein students were to write reflections on skills and concepts learned 

during the class. The worksheets consisted of fill-in-the-blanks, complete-the-sentence, brief 
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writing prompts, and included space for students to record data gathered during classroom 

activities. Also, some visuals that were originally intended as handouts were incorporated in 

smaller form into the worksheet. Ms. Gellar would pause at moments during the lesson to allow 

students to copy enduring understandings, lesson objectives, essential concepts, and definitions 

into the worksheets (for an example of a lesson worksheet, see Appendix C). At the end of each 

lesson, students turned worksheets in for grading. Once Ms. Gellar handed back graded 

worksheets students placed them in their IDS binder for their own reference. 

RStudio labs. Unit 2 of the IDS curriculum consisted of eight RStudio labs that were 

interspersed throughout the unit. The class would walk to the computer lab to complete the labs  

11. The labs were designed to introduce students to coding through the software R, a 

programming language; and RStudio, an open-source data analysis software that student 

accessed via the internet. The RStudio interface consists of four panes: source, 

workspace/history, R console, and the file and plot viewer (Figure 3.3).  

Students learned to load the labs designed for the curriculum by entering “load lab ( )” in 

the console pane and indicating the desired lab number inside the parenthesis. Once loaded, a lab 

would appear in the file and plot viewer, providing students with a slide presentation that guided 

them through the coding process. These lab slides were also authored by Energize. Labs 

progressively got more difficult as they required students to incorporate coding knowledge 

learned in previous labs to analyze large outside datasets, such as the Center for Disease Control 

                                                      
11 The curriculum was designed with the assumption that lessons and labs would be completed in the same setting—

the classroom. However, during the first year of implementation, which took place during the 2014-2015 academic 

year, Ms. Gellar experienced technical difficulties with the laptops that MSHS provided. She expressed that all of 

the computers needed to be updated and some would not power up. That year, she made the transition from trying to 

implement the labs in the classroom to having students walk over to the computer lab. While she had access to the 

computer lab, this was only because IDS was scheduled during the computer teacher’s conference period. 
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data, and datasets that contained their own data, which they input/collected using the Energize 

app (participatory sensing component).  

 

Figure 3.3 This is an example of what RStudio looks like and what students saw upon launching RStudio. The 

panes are located as follows: source pane (top left); workspace/history pane (top right); console pane (bottom left); 

file and plot viewer (bottom right). 

Students were seated with their classroom groupmates in rows of six with two groups per 

row (see Figure 3.4 for the lab student seating layout). Classroom dynamics in the computer lab 

were different due primarily to the fact that labs were completed individually with the lab 

presentations guiding students through to completion. In the labs, Ms. Gellar took on more of a 

facilitator role where she introduced the lab, reminded students of deadlines, and allotted time for 

completion. She also walked around the classroom providing help to students who asked for it. 

Although students mostly worked independently to complete the labs, they visited each other for 

help, checked each other’s progress, and compared lab responses.  
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Figure 3.4 MSHS computer lab student seating layout. 

Like the class worksheets, Ms. Gellar also created lab Word files (for an example  see 

Appendix D) with a series of questions for students to answer as they typed in different codes as 

indicated in the lab slides. It is worth noting that unlike a traditional math class, students did not 

have a textbook to refer to. Additionally, homework was highly minimal and when assigned 

typically consisted of completing lesson worksheets. Ms. Gellar instituted both the lesson 

worksheets and the lab Word files to incorporate a writing component, have students engage 

more deeply with IDS concepts, and to have students complete physical work, which she also 

needed in order to include assignments in her grade book. The lesson worksheets were 

particularly useful for students who used them as reference material in the absence of a textbook. 

Methodology 

To analyze the data corpus, I adopt Cobb, Gresalfi, & Hodge’s (2009) “interpretive 

scheme for analyzing the identities that students develop in mathematics classrooms” as an 

analytical framework. Their interpretive scheme is rooted in grounded theory, which seeks to 

build theory from data (Glaser & Strauss, 1967/1999; Strauss & Corbin, 1990), and “focuses 

directly on the relations between the microculture established in particular classrooms and the 
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identities that students are developing in those classrooms” (Cobb et al., 2009, p. 41). As such, 

an initial step in the data analysis involves identifying recurring patterns in interactional 

classroom activity (Cobb et al., 2009; Cobb & Hodge, 2002; Cobb, 1999; Cobb & Hodge, 1992). 

Furthermore, to systematically identify patterns in classroom activity I conduct a thematic 

analysis of video-recorded classroom observations. This method, useful for “identifying, 

analyzing and reporting patterns (themes) within data” (Braun and Clarke, 2006, pp. 79) allows 

me to examine salient themes relating to students’ relatively new engagement with data artifacts 

and data science. Before discussing the specific methods I employ in my data analysis, I will first 

discuss the theoretical contributions that Cobb et al.’s interpretive framework offer to my 

analysis of classroom norms and practices as they relate to the development of student identities 

as data science doers (Cobb & Hodge, 2002). 

Toward an Analysis of the Classroom Microculture and Student Identities 

 The classroom microculture. A significant construct in Cobb et al.’s (2009) interpretive 

scheme is that of the mathematics classroom microculture (Cobb & Hodge, 2002). The 

mathematics classroom microculture can be understood as consisting of “a set of locally 

instantiated practices…[,] dynamic and improvisational in nature,” (Gutierrez, Baquedano-

Lopez, & Tejeda, 1999 cited in Cobb & Hodge, 2002, p. 261) that play out in the mathematics 

classroom. The mathematics classroom microculture is comprised of three different aspects: 

social norms, sociomathematical norms, and classroom mathematical practices (Cobb & Hodge, 

2002). In adopting this framework to the IDS classroom, I use analogous terms socio-data-

scientific norms in place of sociomathematical norms, and classroom data science practices in 

place of classroom mathematical practices. Accordingly, social norms are general normative 

classroom behaviors that are not specific to the IDS classroom—these are transferable to other 
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subject courses. An example of an emergent social norm in IDS is that students consulted with 

peers when having difficulty finding a solution to a problem. Socio-data-scientific norms are 

normative classroom behaviors that are specific to the data science classroom—these are not 

transferable to other subject courses. An example of a socio-data-scientific norm that emerged in 

IDS is that when in the lab setting, students routinely reviewed their coding history as a reference 

tool to recall previously used codes. Lastly, data science classroom practices are interactional 

activity, including speech acts, which are unique to the data science classroom. In IDS, this 

included practices such as consistently scrolling through coding history in RStudio as a means of 

recalling necessary codes necessary for the completion of labs. An analysis of the norms and 

practices that emerged in the IDS classroom is essential to understanding the nature of student 

identity constructs as constituted in data science classroom; these include normative identity and 

personal identity.  

Normative identity. The normative identity that students develop in the mathematics 

classroom as math-doers is a collective identity developed through classroom norms and 

practices as they play out in that classroom. Normative identity, as defined by Cobb et al. (2009), 

“comprises both the general and the specifically mathematical obligations that delineate the role 

of an effective student in a particular classroom” (p. 43). The normative identity, regardless of its 

nature, is a co-constituted venture jointly negotiated by both the teacher and students. General 

classroom obligations have to do with legitimate ways students are able to exercise agency in the 

classroom and to whom students are accountable. Specifically mathematical obligations have to 

do with what students are accountable for mathematically (Figure 3.5 below). Hence, obligations 

refer to actions and behaviors that students must engage in to meet the expectations established 

in the classroom to be considered successful and effective math-doers. Cobb et al. (2009) follow 
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Engle (2006) and Hull and Greeno (2002) in outlining two aspects of general classroom 

obligations “that prove to be important when documenting the role of an effective mathematics 

student and thus the normative identity established in a particular classroom [:]…the distribution 

of authority and the ways that students are able to exercise agency” (Cobb et al., 2009, p. 44, 

emphasis in original).  

The distribution of authority determines to whom students are held accountable in the 

classroom. For example, in classrooms that incorporate discursive practices of students from 

non-dominant groups and/or follow an inquiry-based instructional design, authority is distributed 

to both the teacher and students (see Bang et al., 2012; Carlone, 2004). Conversely, in a 

traditional mathematics classroom where the teacher is the primarily determinant of what 

qualifies as legitimate student contributions, authority is distributed solely to the teacher. In 

effect, how authority is distributed in a mathematics classroom determines the ways in which 

students are able to exercise agency. Cobb et al., (2009) describe two forms of agency: 

conceptual agency and disciplinary agency.  

Conceptual agency “involves choosing methods and developing meanings and relations 

between concepts and principles” (Cobb et al., 2009, p. 45). When students engage in conceptual 

agency, they have the opportunity to make decisions regarding the appropriate use of methods 

and to participate in the process of meaning-making with regards to mathematical understandings 

and solutions. To exercise conceptual agency is to make connections between the mathematical 

artifacts, skills, and concepts learned in the mathematics classroom, and to provide solutions 

backed by strong mathematical reasoning. Thus, mathematical understandings and classroom 

activity have the potential to be personally meaningful to students. Conceptual agency and 

disciplinary agency differ in the ways in which agency is exercised. Disciplinary agency 
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“involves using established solution methods,” (Cobb et al., 2009) to solve mathematical 

problems. When students engage in disciplinary agency, they take up decision-making 

opportunities to decide which solution methods to use in solving mathematical problems, albeit 

without developing strong conceptual reasoning, and thus justification, for selecting particular 

methods. 

Facets of the Normative Identity as a Doer of Mathematics Established 
in a Particular Classroom 

 

 

Figure 3.5 The schematic model provided above is a replication of Cobb et al.’s (2009) model located on p. 46. 

Generally speaking, opportunities for students to develop strong affiliations with mathematical 

activity, by viewing it as structurally or situationally significant to them as individuals, can be 

supported or obstructed by the nature of authority distribution in the classroom and, 

subsequently, by the types of agency students are able to exercise in the mathematics classroom. 

Further, in order for students to identify with classroom mathematical activity as effective 

math-doers as constituted in the classroom, they must first identify with the aforementioned 

obligations. This means that instead of viewing obligations as obligations to others, such as to 
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the teacher, students begin to view obligations as obligations to themselves. An analysis of the 

general and specifically mathematical obligations that emerge in the classroom involves viewing 

the classroom as a community of practice (Wenger, 1998) wherein the teacher and students, as 

members of the classroom community, co-construct obligations, norms, practices (classroom 

activity including speech acts), and normative identity.  

As sociological constructs, obligations are closely related to the notion of norms, which 

are also sociologically constructed within the classroom community. Following Searing (1991), 

Cobb et al. (2009) define a norm as “a recurrent pattern in joint activity that is regulated by the 

expectations that the teacher and students have for each other’s actions in particular situations” 

(p. 44). Analysis of emergent classroom norms is thus useful in gathering obligations that 

develop in the classroom. Furthermore, an understanding of general and specifically 

mathematical obligations that students are expected to fulfill in order to be successful and 

effective math-doers in a mathematics classroom makes empirical analysis of the construct of 

normative identity possible (Cobb & Hodge, 2002). Constructed by joint activity and 

expectations that the teacher and students have for each other, classroom norms and obligations 

are collective constructions. This means that even in a traditional mathematics classroom where 

the teacher might be viewed as the beholder of knowledge, students must still choose to 

cooperate with the teacher and identify with the general and specifically mathematical 

obligations they must fulfill in order to achieve the normative identity of a successful and 

effective math-doer as constituted in that particular classroom. 

Personal Identity. Whereas normative identity is a collective construct, personal identity 

is individualistic. However, like normative identity, personal identity is a negotiated construct. 

What’s more, in the process of participating in the “initial constitution and ongoing regeneration 
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of the normative identity…. [students] develop personal identities,” wherein they affiliate with 

the mathematical activity as constituted in the classroom; become disenchanted with 

mathematical activity during their cooperation and participation in mathematical activity as 

constituted in the classroom; or oppose participating in mathematical activity as constituted in 

the classroom (Cobb et al., 2009, p. 47). In this last case, a student will develop a personal 

identity that reflects their resistance and opposition to the normative identity (Cobb et al., 2009). 

Through involvement, whether oppositional or cooperative, in behaviors and practices that shape 

the classroom as a community of practice, personal identities can and do undergo transformation; 

in that sense, they are collective. In the sense that personal identities belong to individual 

students and differ from one student to the next, they are individualistic.  

Another key point to consider is that specifically mathematical obligations, the 

construction of competence, and students’ self-perception and perception of others play a crucial 

role in the types of personal identities that students develop in the mathematics classroom. 

Specifically mathematical obligations have a bearing on what students are held accountable for 

mathematically. The successful fulfillment of specifically mathematical obligations as 

constituted in the classroom, determines the extent to which a student views him or herself as 

mathematically competent as well as the extent to which they may see their peers as 

mathematically competent. Correspondingly, Cobb et al., (2009) posit that “[w]hat gets 

constructed as mathematical competence in the classroom has implications for students’ 

perceptions of their own and their peers’ relative capabilities and thus for issues of status and 

power in the classroom” (p. 48). Furthermore, the construct of personal identity refers to the 

individual identities that students develop within the mathematics classrooms and the extent to 

which they identify with, merely cooperate, or resist obligations (Boaler & Greeno, 2000; 
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Martin, 2000). With this in mind, the personal identity that a student develops in a mathematics 

classroom and the nature of their affiliation with classroom obligations can indicate whether and 

how students affiliate with what it means to know and do mathematics. Moreover, while 

normative identity tells us what some students are identifying with and/or resisting, personal 

identity tells us why (Cobb et al, 2009). 

Methods  

 I analyzed my data in two parts and, following Cobb et al. (2009), I analyzed each part in 

two phases. The first part, Normative Data-Scientific Identity Analysis, involved the analysis of 

the largest data set, video-recorded classroom observations, with the purpose of understanding 

the nature of the normative data-scientific identity as constituted in the classroom and the ways 

in which the classroom community contributed to its constitution. The second part, Personal 

Data-Scientific Identity Analysis, focuses on a second data set, audio-recorded exit interviews 

conducted with 12 IDS students for the purposes of understanding the nature of their 

identification with taken-as-shared ways of doing data science. 

Normative data-scientific identity analysis. 

Phase I. Phase I of the normative data-scientific identity analysis involved (1) organizing 

my data and (2) identifying emergent classroom obligations as constituted in Ms. Gellar’s IDS 

classroom. My organizational approach is guided by Enyedy & Mukhopadhyay’s (2007) 

qualitative approach to analyzing video case studies, and my analytical approach is guided by 

Cobb et al.’s (2009) method for deriving and testing general and specifically mathematical 

obligation conjectures. 

The organizational particularities of Phase I involved the creation of time indexed content 

logs of the video data. Content logs consisted of summaries of video content, instances of partial 
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transcription, and short analytical notes (Enyedy & Mukhopadhyay, 2007). I then conducted 

thematic open-coding of these content logs using qualitative data analysis software, ATLAS.ti. 

My unit of analysis for emergent coding was episodes of data science-related activity and social 

interaction. This process was inductive and recursive, and meant to capture episodes 

representative of emergent themes. Thus, documenting reoccurring themes and then refining into 

a coding scheme allowed me to account for the thematic nature of data-scientific activity in Ms. 

Gellar’s IDS classroom. Also, emergent codes were not mutually exclusive; if an episode met 

multiple code definitions and, thus, represent more than one theme, I coded it accordingly. 

Relatedly, I coded multiple episodes only once if they dealt with the same theme and involved 

the same students. The number of students involved in an interaction did not affect the amount of 

times I coded for a theme.  

Multiple rounds of coding revealed salient themes indicative of obligations students felt 

compelled to fulfill in Ms. Gellar’s IDS classroom. To construct obligation conjectures, I took a 

theme represented by a given code and constructed a statement that encapsulated the expectation 

students feel obliged to meet with regards to that theme. For example, for codes that 

predominantly spoke to the theme of argumentation, I revisited relevant episodes to consider 

precisely what they conveyed with regards to standards for argumentation. This involved 

considering if and how episodes testified to the purposes of argumentation, ways of arguing, 

when to argue, or whom to argue with. In this way, I developed an initial set of general and 

specifically data-scientific obligation conjectures, which I preliminarily tested by seeing if they 

held true for all episodes treated as constituting the conjectured obligation.  

I subsequently employed Cobb et al.’s (2009) approach to testing and revising 

conjectures by analyzing content logs of video recorded data and the video recordings 
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themselves to look for instances wherein students’ contributions to the data science classroom 

(1) violated the conjectured obligation and (2) were subsequently treated as illegitimate 

contributions by members of the classroom community. If the activity that constituted the 

violation was treated as illegitimate, for instance through a peer’s mention of the ‘right’ way of 

carrying out a solution method in response to an alternative approach, this indicated that a norm 

for participation and corresponding obligation(s) were established, observed, and implemented in 

the classroom. Thus, the confirmation of classroom obligations was dependent on identifying 

instances where conjectures were refuted and analyzing the reaction of the classroom community 

in response to the refuting episode. If violation of obligation conjectures were not met with de-

legitimating reactions, I revised my conjectures to better represent the obligation conveyed in 

coded episodes and tested them again (Cobb et al., 2009). What is more, the process of testing 

obligations was also useful for allowing me to check my biases as the final list of obligations 

depended on confirmation derived from the data itself. If an obligation conjecture does not 

withstand the test of confirmation via refutation, then this might signal, for example, that I am 

misinterpreting the nature of the obligation, the expectation that that obligation is meant to fulfill, 

or perhaps even observing a non-existent obligation. Thus, revising and re-testing played an 

important role in ensuring trustworthiness of conjectures. 

Additionally, during my preliminary analysis of emergent themes, I found that salient 

themes spoke to some aspects of the normative data-scientific identity in Ms. Gellar’s IDS class 

but not all; and so, in order to facilitate my understanding of emergent themes and factors that 

contributed to their constitution, I modified Cobb et al.’s (2009) approach by conducting 

supplemental coding for episodes that spoke to three areas: authority distribution; ways in which 

students were able to exercise agency; and how students reasoned with tools and written symbols 
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in the classroom. To clarify how I leveraged my analysis of emergent themes and supplemental 

coding, I utilized the former as the basis for obligation conjectures, and the latter to supplement 

my in-depth analysis of classroom obligations and their constitution in Phase II.  

My process of analysis was iterative and premised on the constant comparative method of 

grounded theory wherein I revisited thematic-codes for refinement and continued to develop my 

analysis of the data (Glaser & Strauss, 1967/1990; Strauss & Corbin, 1990). Thus, I engaged in 

thematic analysis at the latent level (Braun and Clark, 2006), allowing me to account for not only 

what was explicitly said, but also how it was said (tone), facial expressions, and body language 

along with other nonverbal cues. According to Braun and Clarke (2006), engaging in the latent 

level of thematic analysis transcends analysis of semantic content and enables an examination of 

“underlying ideas, assumptions, and conceptualizations – and ideologies – that are theorized as 

shaping or informing the semantic content of the data” (Braun and Clarke, 2006, pp. 84, 

emphasis in original).  

Phase II. Once I established an empirically grounded collection of obligation 

conjectures, I engaged in the second phase of analysis, which involved an in-depth analysis of 

general and specifically data-scientific obligations. General classroom obligations are imbued 

with signification regarding the distribution of authority, and the forms of agency students can 

legitimately exercise in the classroom (i.e. conceptual agency and disciplinary agency) (Cobb et 

al., 2009). Hence, I distinguish general classroom obligations from specifically data-scientific 

obligations as those that speak to 1) whom students are held accountable to and “the degree to 

which [they] are given opportunities to be involved in decision making about the interpretation 

of tasks, the reasonableness of solution methods, and the legitimacy of solutions”; and 2) the 

ways that students exercise agency in the IDS classroom (Cobb et al., 2009, p. 44). To provide an 
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example of how I might draw meaning from a confirmed obligation conjecture I borrow the 

following general classroom obligation from one of Cobb et al.’s (2009) case studies: 

•  “Listening and taking notes in order to understand the solution methods demonstrated by 

the teacher.” (p. 52)  

When analyzed, this obligation reveals that students exercised disciplinary agency by engaging 

in the activity of “listening and taking notes” to understand specific methods used by the teacher 

to solve a given mathematical problem. In this case, Cobb et al.’s (2009) data corpus indicated 

that students learned to appropriately match up solution methods to given problems but lacked 

the conceptual understanding of precisely why particular solution methods were appropriate for 

solving particular problems. While students were not discouraged from asking question to grow 

their conceptual understandings of the relationship between mathematical problems and solution 

methods, when students asked clarifying questions the teacher responded by repeating the same 

steps of the solution methods, thus emphasizing the expectation that students were to follow the 

procedure demonstrated in order to arrive at a solution. By doing so, the sole purpose of 

identifying an appropriate solution method was communicated as the need to arrive at a 

solution—to find the answer. By reiterating the procedural steps she had already demonstrated 

without further elaboration or discussion regarding the reasoning that supported the 

appropriateness of a specific solution method, the teacher communicated that finding the answer 

to a problem constituted an effective and, thus, legitimate mathematical practice in the 

classroom. In this respect, this general classroom obligation indicated that students did not 

exercise conceptual agency, at least not in regard to understanding the rationale for utilizing 

established solution methods. They were, however, afforded opportunities to engage in 

disciplinary agency. Additionally, there was a clear expectation from the teacher that students 



 

 95 

were to listen and take notes as those who failed to do so were admonished—providing Cobb et 

al. (2009) insight into how this expectation was imparted and by whom.  

It is important to note that while I draw from Cobb et al.’s (2009) case study to illustrate what a 

general classroom norm might look like and how it might inform my understanding of authority 

distribution and ways students were able to legitimately exercise agency in the classroom, my 

analysis of general and specifically mathematical classroom obligations will, like Cobb et al. 

(2009), take into account all obligations and not just one. In this respect, it is not unlikely that 

students might exercise different forms of agency in accordance with different aspects of 

classroom activity. Also, my analysis of general and specifically mathematical obligations takes 

into account how expectations are conveyed over a period of time. In other words, if I have 

observed ten classroom lessons and I identify a pattern in joint activity that is recurrent during 

one lesson, I cannot say that that pattern points to an obligation if it is not recurrent throughout 

the duration of the course. Figure 3.6 provides a visualization of the interpretive scheme, 

specifically tailored to an analysis of general classroom obligations. 

Personal data-scientific identity analysis.  

 Phase I. Phase I of the personal data-scientific identity analysis involved reviewing, 

transcribing, and thematic open-coding of exit interviews conducted with 12 IDS students, 

similar to the approach I employed in Phase I of the normative data-scientific identity analysis 

discussed above (Enyedy & Mukhopadhyay, 2007). Unlike the analysis discussed above, my 

analysis of the personal data-scientific identities that students developed in Ms. Gellar’s IDS 

classroom reserved the development of conjectures for Phase II. 

Interpretive Scheme for Analyzing Specifically Data-Scientific Obligations 
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Figure 3.6 The Interpretive Scheme for Specifically Data-Scientific Obligations Model is derived from 

the model described by Cobb et al. (2009). 

 Phase II. In the second phase of the personal data-scientific identity analysis I developed, 

tested, and refined conjectures about the four aspects of students’ “views about and appraisals of 

how the classroom ‘works’” (see Figure 3.7) (Cobb et al., 2009, p. 64). According to Cobb et al. 

(2009) conjectures about understandings and valuations are developed in the process of 

analyzing thematically related interview segments across students. The nature of refutations in 

this phase of identity analysis differs from that in the phase of normative data-scientific identity 

analysis in that here I am not concerned with establishing whether a conjecture speaks to 

obligations co-constituted by the classroom community. Instead, in this phase of analysis I am 

concerned with understanding patterns and differences in students’ perceptions and affiliations 

with taken-as-shared ways of doing data science. 
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Interpretive Scheme for Analyzing Personal Data-Scientific Identities 

 

Figure 3.7 I derive this interpretive scheme from that described by Cobb et al. (2009, p. 57). 

Thus, the trustworthiness of the analysis of personal identities that students developed in Ms. 

Gellar’s class is established through careful attention to the interplay of conjectures, refutations, 

interview data, and general and specifically data-scientific obligations. In this phase of analysis, 

conjectures functioned as analytical tools to help me understand where students’ understandings 

and valuations were consistent, where they differed, and why. Thus, identifying a refutation did 

not serve to discredit a conjecture; instead, what was of interest was the reason a conjecture was 

true for some but not for all. This level of analysis allowed me to develop a nuanced 

understanding of the personal identities that developed among these 12 students and how they 

related to taken-as-shared understandings of what it meant to legitimately do data science in Ms. 

Gellar’s classroom. In so doing, I was able to account for student perspectives and experiences 

that may have been obscured in my analysis of the normative data-scientific identity that 

emerged in this classroom.  
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Moreover, Cobb et al. (2009) offer that the moral dimension of the classroom helps make 

the personal identities that students develop in a mathematics classroom tractable. This means 

that “students’ understanding of their general and specifically mathematical obligations involves 

a sense of ‘oughtness’ about what they do” (Cobb et al., 2009, p. 47). Accordingly, locating 

phrases like “you have to,” “I decided to,” “it [the lab, handout, assignment] tells you to” and 

other verbal cues that signal a type of moral obligation to meet an expectation were useful in my 

efforts to understand the personal data-scientific identities that students developed in Ms. 

Gellar’s IDS classroom, and allowed me to gain insight into whether students perceived 

obligations as obligations-to-others, and thus merely cooperated with the teacher or resisted 

engaging in data-scientific activity; or perceived obligations as obligations-to-themselves and 

thus identified with the normative data-scientific identity as constituted in the classroom. While 

my analysis was not restricted to looking for such phrases to understand the nature of personal 

data-scientific identities that students developed in Ms. Gellar’s IDS classroom, getting a sense 

of the extent to which students identified with being effective data science-doers was of major 

importance as identification alone did not mean that data science, as taught and practiced in the 

classroom, became intrinsically meaningful to a student. It is the rationale that supports 

identification and learning that has implications for whether a non-dominant student is inclined 

to persist in their STEM trajectory (Cobb et al., 2009).  

Citing D’Amato, Cobb & Hodge (2010) define structural rationales for learning as 

viewing academic achievement as instrumentally valuable “as a means of attaining other ends 

such as entry to college and high-status careers, or acceptance and approval in the household and 

other social networks” (p. 185). Further, they define situational rationales for learning as viewing 

“engagement in classroom activities as a means of maintaining valued relationships with peers 
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and of gaining access to experiences of mastery and accomplishment” (p. 185). While both 

structural and situational rationales for learning can prove instrumental for a student’s desire to 

perform well academically and pursue continued study in STEM, “students’ participation in 

Discourses that give them access to a structural rationale varies as a consequence of family 

history, race or ethnic history, class structure, and caste structure within society” (Cobb & 

Hodge, 2010, p. 185). As such, Cobb & Hodge (2010) posit,  

Discourses that inscribe the achievement ideology wherein society is seen to reward hard 

work and individual effort with future educational and economic opportunities constitute 

a resource on which some students but not others can draw as they attempt to make 

positive sense of their lives in school…the resulting inequities in motivation (Nicholls, 

1989) emphasize the importance of ensuring that all students have access to a situational 

rationale for learning mathematics. (p. 186) 

In light of the significance of situational rationales for learning for STEM equity, my analysis of 

the personal data-scientific identity that students developed in Ms. Gellar’s IDS classroom not 

only helped me grasp the nature of students’ identification with taken-as-shared understandings 

of what it meant to be an effective data science-doer, but also the learning rationales that 

informed identification.  

To provide a brief analytical example that demonstrates how I inferred signification 

regarding the personal data-scientific identity that students developed in Ms. Gellar’s IDS 

classroom, I draw from an exit interview I conducted with Dolores, a high-performing student in 

Ms. Gellar’s IDS class. When I asked, “Do you think you could be a data scientist if you wanted 

to?” the following exchange ensued: 
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Line 1 Dolores: If I really wanted it, probably—just effort. But I don’t know—the math… 

2 Researcher: Why do you say “probably”? 

3 

4 

Dolores: Anyone can do anything, right? That’s my perspective. If you really want it, you can go 

get it. But I don’t want it. It doesn’t catch my interest. 

 

Dolores’ response indicates that despite her demonstrated ability to perform well in the class in 

terms of completing and earning high marks on assignments, being the most vocal female 

participant in the class, and her status as someone other students turned to for help during lessons 

and labs, she had no interest in pursuing a career in data science. She also expressed disinterest 

in mathematics, which the course drew from as a core-statistics course, but did not express 

negative valuations of her mathematical competence. This I gather from the fact that when she 

said, “the math” (line 1) her tone expressed apathy for the subject rather than insecurity or a lack 

of self-confidence. Further, when she speaks a second time in response to my question regarding 

the uncertain term “probably” (line 2), Dolores expresses confidence in her ability to “do 

anything” as long as she puts in the necessary effort— “If you really want it,” she says, “you can 

go get it” (lines 3-4). The final two sentences of her response resolutely connect her feelings 

about effort to issues of interest and aspiration when she says, “But I don’t want it. It doesn't 

catch my interest.”  

Further, during one of our exchanges in class, she expressed that she was personally 

invested in doing well in the class because she cared about her grade but not because she found 

data science intrinsically valuable. Her response, coupled with our exchanges in class, indicate 

that despite her distaste for math, she did not have negative valuations of her ability to do math 

effectively. She asserts her viewpoint that exploring data science as a career choice is not so 

much a matter of mathematical competence but is instead concerned with her interest in math—a 

perspective presumably informed by her own experiences and sensibilities with regards to math-

doing. For Dolores, general and specifically data-scientific obligations represented obligations-
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to-herself, albeit not due to personal interest or aspirations, but because she wanted to earn a 

good grade. Therefore, I surmise that Dolores’ identification with the normative data-scientific 

identity as constituted in Ms. Gellar’s IDS classroom was supported by a structural rationale for 

learning data science as opposed to a situational one.  

As demonstrated above, while I closely followed Cobb et al.’s (2009) interpretive scheme 

for analyzing the personal identities that students to developed in Ms. Gellar’s IDS classroom by 

analyzing interviews conducted with students, I also pulled from impromptu exchanges and 

mini-interviews conducted during video-recorded observations to further contextualize my 

personal data-scientific identity analysis. 
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CHAPTER FOUR 

Normative Data-Scientific Identity Analysis 

In this chapter, I will present my findings as they pertain to obligations students felt 

compelled to fulfill in their efforts to engage in data-scientific activity in legitimate ways as 

constituted in the IDS classroom. My forthcoming findings and analysis will show that the 

normative identity of what it meant to do data science in legitimate ways as constituted in Ms. 

Gellar’s classroom delineated ways of reasoning about disciplinary understandings, solution 

methods for completing tasks, conditions for peer collaboration, and standards for 

argumentation. To begin to examine the ways in which this came to constitute what it meant to 

do data science in legitimate ways, I will begin by discussing Ms. Gellar’s role in the classroom 

to contextualize her approach to teaching IDS. I will then discuss my emergent coding scheme, 

followed by a discussion of the three general classroom obligations and two specifically data-

scientific obligations that I discerned after several rounds of coding, categorizing codes, refining 

codes, and code definitions consistent with the methods outlined in the previous chapter. I will 

then delve into an in-depth analysis of the types of classroom activity that constituted the general 

classroom obligations that emerged in Ms. Gellar’s classroom, followed by an analysis of the 

specifically data-scientific obligations that emerged by discussing the types of classroom and 

computer lab activity that contributed to their constitution. I will then discuss the role that 

specifically data-scientific obligations played in defining authority distribution and students’ 

opportunities to exercise agency in the classroom. Ultimately, I argue that by delineating 

legitimate standards for social participation and disciplinary engagement in the classroom, these 

types of obligations collectively constituted what it meant to be an effective data science-doer.  
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Situating Ms. Gellar 

As stated earlier in Chapter 3, Ms. Gellar was one of two teachers whose IDS classrooms 

we, the Energize research team, chose to observe due to the fact that the teachers had a 

reputation for being especially strong mathematics teachers at their respective high schools. Ms. 

Gellar was known as an exceptional math teacher with over a decade of experience teaching 

several traditional mathematics courses. She was very well-respected at MSHS and highly 

regarded by her students as caring and dedicated to her pupils. In preparation for the first year of 

implementation of IDS, Ms. Gellar attended several professional development sessions organized 

by Energize along with nine other teachers that would also be teaching the pilot IDS course. The 

Energize PDs introduced teachers to the course, and while they allowed them to draw from their 

pre-existing understandings of mathematics as math teachers, they also introduced them to the 

concept and burgeoning field of data science. IDS curriculum writers facilitated the PDs and 

coached teachers on the particularities of teaching IDS at their designated school sites by going 

through the curriculum, with teachers playing the role of students. This means that teachers went 

through the entire curriculum including RStudio lab assignments and, necessarily, learned to 

code in R to enable them to provide assistance to students when they worked through RStudio 

lab assignments. When students participated in the coding component of IDS, however, the role 

of teaching and authority as it pertained to determining the reasonableness of solution methods 

and acceptable student responses was primarily distributed to RStudio lab assignments as 

opposed to the teacher. This is because RStudio lab assignments were preloaded into RStudio 

and consisted of procedures and instructions for lab completion that had to be followed closely 

by students. Thus, unlike the traditional mathematics course and the reform-based course 

analyzed by Cobb et al. (2009) wherein authority was distributed to the teacher and/or students, 
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in IDS authority was heavily distributed to the RStudio lab assignments, and educational 

technologies by implication, when students were in the computer lab setting. Situating Ms. 

Gellar as an Energize-trained teacher is significant for contextualizing her approach to teaching 

IDS as this was a newly designed course with specific guidelines conveyed during PDs for 

teacher implementation. After the first year of implementation, Ms. Gellar became an IDS 

teaching-coach with Energize, co-coaching a new and larger cohort of IDS teachers. 

During my time with Ms. Gellar I was able to see firsthand that she was highly dedicated 

to her students and often sought to reconcile the limitations of IDS as a new course in order to 

improve her students’ learning opportunities and supplement what she perceived as curricular 

shortcomings. For example, IDS did not have an accompanying textbook which students were 

often accustomed to having in other courses, particularly mathematics and science courses, and 

so, Ms. Gellar provided and instituted use of class worksheets for students in the second year of 

implementation in efforts to help them retain data-scientific disciplinary understandings and 

reference materials. During our first year together, she also expressed frustration with a lack of 

formative assessments because she found it difficult to gauge students’ grasp of data-scientific 

concepts and coding skills that were both new to them and new to her. Without a clear 

understanding of students’ disciplinary competency, she felt ill-equipped to fully support their 

scientific learning. For this reason, Ms. Gellar also designed RStudio lab assignment worksheets 

to help structure student learning, understand what and how students were learning, and identify 

where students needed additional scaffolding.  

Ms. Gellar’s role and responsibilities as a teacher for a STEM reform effort were 

challenging and highly complex as she was tasked with not only teaching IDS in accordance 

with PDs, but also preparing students for state-wide standardized assessments, college 
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placement/entrance exams, all the while working toward meeting the goals of her school which 

emphasized quality instruction over the amount of curricular coverage. In other words, while the 

curriculum consisted of four units, she was less concerned with ensuring that she taught all four 

units and more concerned with helping students gain strong understandings of the disciplinary 

material in ways that could help them meet other competency and proficiency benchmarks. Thus, 

while she did her best to teach IDS as coached, she also dedicated much time to doing things like 

designing supplemental work sheets and lessons to meet the needs of her students. I implore that 

the reader be mindful of the complex nature of Ms. Gellar’s role and responsibilities as I discuss 

the emergence of classroom obligations through classroom practices. It is important to 

remember, however, that like other classrooms in the district, Ms. Gellar’s class was 

overenrolled with 42 students, and so, her already heavy teacher workload was compounded by 

her efforts to improve learning opportunities for her students, and, still, she admirably persisted. 

My role as a researcher and observer in Ms. Gellar’s classroom carried its own difficulties and 

complexities but the ultimate goal of my presence there and my purpose here is to contribute to a 

collective understanding of STEM reform, to elucidate affordances and limitations therein, and 

to push forth existing approaches toward equitable outcomes for non-dominant students like the 

Latino students I had the privilege of meeting and observing in Ms. Gellar’s class. 

Phase I: Obligations 

Phase I of the normative data-scientific identity analysis involved systematically 

reviewing and cataloguing video-recorded classroom observations to identify what expectations 

students felt compelled to meet in order to do data science in legitimate ways in the classroom. 

Below, Table 4.1 relays my emergent coding scheme including the category I assigned to the 

different types of recurring activity and speech-acts, a description of types of activity and 
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speech-acts (“Definition”), the shorthand code I assigned to each, along with the number of 

instances and the proportional representation of each activity type. Figure 4.1 indicates the 

proportional distribution of each code in the classroom setting versus the computer lab setting. It 

should be noted that codes “TINK” and “LEE” only correspond to labs because they refer to 

activity that only the labs were conducive to because of their reliance on RStudio and the fact 

that students only engaged in computer use when in the computer lab. Similarly, I observed two 

other types of activity coded “IRE” and “CH-T” only during lessons where the teacher’s role in 

the classroom was more focal. I will discuss these forms of activity in the coming sections and in 

the context of the constitution of general and specifically data-scientific obligations. For the 

moment, I present Table 4.1 and Figure 4.1 as an organizational tool for conveying to the reader 

how I began to draw meaning from particular classroom practices. For example, the first four 

types of classroom activity in Table 4.1 are practices that principally shaped the direction of 

classroom discourse. I provide the reader with the shorthand code I assigned to each type of 

practice because I will refer back to them when visualizing and describing the constitution of 

obligations in coming sections.  
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Table 4.1 Emergent Coding Scheme 
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Figure 4.1 Proportional distribution of emergent codes for lessons and labs. NOTE: each column represents 100% 

for each code indicated below it. 

Phase II: In-Depth Analysis of Obligations 

General classroom obligations. In this section, I will discuss the general classroom 

obligations that I derived from the codes presented above including a discussion of the particular 

classroom practices that contributed to their constitution. Constituted by student and teacher 

engagement in a number of classroom practices aimed at meeting expectations of what it meant 

to legitimately do data science and engage in data-scientific activity, the general classroom 

obligations that emerged in the IDS classroom include: 

1. Developing disciplinary understandings and generating disciplinary reference material by 

listening and taking notes 

2. Completing tasks by carrying out established procedures 

3. Collaborating with peers for help completing tasks 

General classroom obligation #1. The first general classroom obligation, listening and 

taking notes to gain familiarity with disciplinary skills and concepts and generate disciplinary 
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reference material was directly supported by three types of student and teacher activity (Figure 

4.2). 

 

Figure 4.2 Constitution of general classroom obligation #1. 

The first type of classroom activity that directly contributed to the constitution of this 

obligation was participation in the initiation-response-evaluation (“IRE”) method of whole-class 

discourse. When Ms. Gellar introduced students to data-scientific skills and concepts, she 

initiated discussions by posing questions to which students were expected to respond. Ms. Gellar 

subsequently evaluated and either legitimated student responses by affirming their correctness or 

de-legitimated them by re-phrasing students’ responses; asking probing questions to guide them 

toward the appropriate response; or leaving questions open for others to answer appropriately in 

accordance with the curriculum. Students also contributed to classroom discussion by responding 

to Ms. Gellar’s prompts throughout the duration of the course and showing attentiveness to Ms. 

Gellar’s and students’ assertions. 

The second type of classroom activity that contributed to the constitution of the first 

general classroom obligation was the teacher’s delivery of statements that conveyed explicit 
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disciplinary expectations. This activity was facilitated by Ms. Gellar’s use of lesson slide 

presentations that stated guiding lesson items such as enduring understandings, lesson objectives, 

vocabulary words, and essential concepts drawn from the written IDS curriculum. Slide 

presentations informed students about what they were expected to learn and how they were 

expected to perform data-scientific activities. Examples of explicit expectations conveyed 

through slide presentations include: 

• “Students will understand that the mean of the absolute deviations (MAD) is a way to 

assess the degree of variation in the data from the mean and adjusts for differences in the 

number of points in the data set.” 

• “Students will understand the basic rules of probability. They will learn that previous 

outcomes do not give information about future outcomes if the events are independent.” 

• “Students will learn how to merge two data sets and ask statistical questions about the 

merged data.” 

Ms. Gellar also verbally stated explicit expectations regarding acceptable responses and ways of 

engaging in data-scientific activities. Examples of these types of explicit expectations include: 

• “If you are done, your explanation shouldn’t be, ‘this needs to be this type of plot.’ 

Explain to me why. I don’t want a one-liner.” 

• “If you give me things that are not appropriate, then that tells me you don’t really know 

what you’re supposed to be analyzing. You need to look at the distribution and determine 

which [measures of center or spread] are more appropriate.” 

 Furthermore, Ms. Gellar also expressed the explicit expectation that students should take 

notes by copying projected lesson items such as enduring understandings, lesson objectives, 

vocabulary words, and essential concepts. She regularly stopped at slides that contained these 
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lesson items and asked students to copy them down in the lesson worksheets she provided. 

Copying lesson items was meant to provide students with referential material that they could 

revisit throughout the course in the absence of an accompanying course textbook. These types of 

expectations were conveyed by direct requests for students to copy projected lesson items onto 

their class worksheet. 

Additionally, while Ms. Gellar explicitly stated disciplinary expectation during lessons, 

the lab slides loaded into RStudio also expressed disciplinary expectations that helped define 

legitimate ways of doing data science. Due to the fact that students were responsible for 

completing lab assignments by following steps specified within pre-loaded RStudio lab slides, 

the teacher did not typically express expectations during labs, other than the expectation that 

students follow steps outlined in RStudio lab assignments. Hence, most of the episodes I 

observed of explicit expectations by the teacher (“EE”) occurred in the classroom setting during 

lessons. This also explains why all initiation-response-evaluation (“IRE”) episodes occurred in 

the classroom setting during lessons and not in the computer lab setting where RStudio lab slides 

functioned as the guiding source of classroom instruction.  

 The third type of classroom activity that contributed to the constitution of the first general 

classroom obligation was implicit expectations conveyed via modeling of acceptable written 

responses and appropriate methods for solving problems. I did not observe as many instances of 

implied expectations as I did explicit expectations because expectations were mainly explicitly 

stated in the classroom setting (verbally or via projected lesson slides) or stated within RStudio 

lab slides in the computer lab setting. The following is an example of an implied disciplinary 

expectation via modeling: 
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• “We’ve been setting [comparison statements] up like ‘This percentage of this group is 

taller or shorter than this percentage of that group’…so far we’ve looked at our shortest 

male and our tallest female. What else?” 

Students demonstrated that they were receptive of Ms. Gellar’s explicit and implicit expectations 

by engaging in activity and delivering responses that reflected efforts to meet those expectations. 

For example, Figure 4.3 below provides examples of student responses that sought to meet Ms. 

Gellar’s modeling of an acceptable response. The quotes below are drawn from a lesson on 

chance outcomes and shuffling simulations where Ms. Gellar had just declared the purpose of the 

day’s activity to determine if differences between groups were due to chance or by design.  She 

then asked students to compose five statements that compared two groups, and as an example 

offered a sample statement as depicted in Figure 4.3. 

 

 

Figure 4.3 Examples of student responses that sought to meet modeled response standards. 

Taken together, Ms. Gellar’s approach to guiding classroom discourse and conveying 

disciplinary expectations, along with students’ participation in classroom discourse and 

Ensuing student comparison statements:

"12th graders are taller
than 9th graders."

"12th graders are smarter
than 9th graders."

"Men are taller than 
women."

"Girls have longer hair 
than boys."

Implied expectation for content and format:

[Group A] are [measurable attribute] than [Group B].

Modeled statement:

"9th graders are shorter than 12th graders."
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adherence to disciplinary expectations contributed to the constitution of the first general 

classroom obligation of listening and taking notes to gain familiarity with disciplinary skills and 

concepts and generate disciplinary reference material. Furthermore, while this obligation was 

primarily constituted by student and teacher activity during lessons, lab activity also contributed 

to its constitution by predominantly emphasizing lab assignment completion contingent on 

students’ willingness and ability to follow procedures stated in RStudio lab slides. Labs were 

designed to introduce students to coding and, thus, could only be completed through student 

engagement in coding. Due to the fact that the overwhelming majority of students in Ms. 

Gellar’s class had no prior experience with coding, their development of coding skills was 

completely dependent on following procedures outlined in lab slides. Ms. Gellar encouraged 

students to use their coding history as a reference tool to recall codes; and so, students were 

actively creating data-scientific reference material by virtue of working through lab assignments. 

Also, because following lab procedures was the only way to complete labs assignments, students 

typically did so, though not without objection. 

General classroom obligation #2. The second general classroom obligation, completing 

tasks by carrying out established procedures, was directly constituted by the first general 

classroom obligation and four additional types of student activity concerned with problem-

solving (Figure 4.4). Below, I will discuss how the first general classroom obligation, and 

episodes of classroom activity coded “PROC”, “CALC”, and “MATCH” were elemental in the 

makeup of the second general classroom obligation. 
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Figure 4.4 Constitution of general classroom obligation #2. 

The first general classroom obligation was instrumental in demarcating authoritatively 

differential responsibilities for students and for the teacher. It positioned data-scientific 

knowledge as established, static, and true, but never as an evolving element of a new disciplinary 

field. In this way, the second general classroom obligation supported students’ exercising of 

disciplinary agency wherein they were responsible for understanding imparted disciplinary 

understandings and applying them appropriately to complete tasks. Thus, for students to be 

academically successful in the classroom they had to gain familiarity with the skills and concepts 

necessary to execute established methods for solving problems and completing tasks. By 

engaging in activities that sought to meet the first classroom obligation of developing 

disciplinary understandings and reference material by listening and taking notes, students 

focused on how to do data science, as endorsed by the teacher and the written curriculum. 

As a result of students’ cooperation with disciplinary expectations inherent in the 

curriculum and their subsequent participation in the co-construction of classroom obligations, 

students completed tasks by deferring to procedures prescribed by either Ms. Gellar or the 
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RStudio lab slides. All three types of classroom activity that constituted this obligation, not 

including those that constitute the first general classroom obligation, represent dominant 

problem-solving approaches to task completion and include (1) following procedural steps 

(“PROC”), (2) performing established calculational steps (“CALC”), and (3) matching solution 

methods to given problems (“MATCH”). I categorized these types of activities as problem-

solving episodes (Table 4.1). Moreover, problem-solving episodes accounted for 16 percent of 

all coded classroom activity, while the three specific approaches just mentioned accounted for 87 

percent of all coded activity that specifically related to problem-solving approaches (see Figure 

4.5).  

 

Figure 4.5  

While these approaches are similar, there are important distinctions to discuss. “PROC” 

refers specifically to forms of procedural task completion that do not include carrying out 

mathematical calculations. “CALC,” on the other hand, refers specifically to solving 

mathematical problems by following calculational steps described by the teacher. While IDS 
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drew heavily from the applied mathematics field of statistics, not all tasks required students to 

solve mathematical problems by carrying out calculations. For instance, students completed tasks 

such as lab assignments by following procedures stated within RStudio lab slides and not by 

carrying out calculations. I attribute this to the fact that lessons were designed to introduce 

students to statistical skills and concepts used to analyze and interpret data; therefore, there was a 

greater focus on calculating, for instance, measures of center and spread to describe a data set. 

Labs, on the other hand, were designed to help students develop technical coding skills by 

following lab slide procedures to write and run codes. By running codes, students directed 

RStudio to carry out operations including statistical calculations. The differential emphases of 

lessons and labs helps contextualize why I observed more cases of procedural task completion in 

the computer lab setting (14) than I did in the classroom setting (8). Conversely, I observed more 

cases of students solving statistical problems by following calculational steps when they were in 

the classroom setting (14) as opposed to the computer lab setting (6). Figure 4.6 provides an 

overview of the categorical distribution of all coded activity to the left. To the right is a 

breakdown of the problem-solving category including the proportional distribution of codes 

within it and the inter-code distribution of classroom activity for lessons (classroom setting) and 

labs (computer lab setting).  

The final type of activity that contributed to the constitution of this obligation was 

appropriately matching solution methods established by the teacher to solve given problems. 

Unlike “PROC” and “CALC” which are concerned with the how of problem-solving, “MATCH” 

is concerned with the what. Student cooperation in the fulfillment of the first general classroom 

obligation contributed to the demarcation of decision-making guidelines for determining what 

statistical measures to calculate (i.e., measures of center: mean vs. median; measures of spread: 
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mean of absolute deviation [MAD] vs. interquartile range [IQR]) and what graphical 

representations to generate (i.e., histogram vs. boxplot). For example, as per Ms. Gellar’s explicit 

expectations, students were encouraged to match the mean, as a measure of center, to data sets 

with distributions of symmetrical/unimodal shape. Furthermore, they were encouraged to match 

the MAD, as a measure of spread, with the mean. In essence, if a student decided to calculate the 

mean for a distribution, then they also calculated the MAD; conversely, if students decided to 

calculate the median for a distribution, then they also calculated the IQR. Students became adept 

at matching calculational solution methods with statistical problems, but appropriately matching 

graphical representations with distributions proved more complex because in addition to having 

more options to choose from for graphical representations, students also had to evaluate two 

kinds of characteristics: the shape of the distribution and the size of the dataset.  

General classroom obligation #3. The third general classroom obligation, collaborating 

with peers for help completing tasks, was directly constituted by four types of classroom activity 

that defined the function of peer collaboration. Figure 4.6 below provides a visualization of the 

constitution of the third general classroom obligation.  

The first type of activity that contributed to the constitution of the third general classroom 

obligation involves students consulting amongst themselves when directed to by the teacher to 

complete tasks. While this activity emerged as a direct result of Ms. Gellar’s explicit expectation 

for students to work collaboratively, explicit expectations discussed earlier refer to those that 

delineated how students were expected solve problems and complete tasks. The activity of 

consulting with peers, coded as “CWP,” refers to activity that resulted from explicit expectations 

that specifically demarcated the function of peer collaboration and conditions that called for it. 
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Figure 4.6 Constitution of general classroom obligation #3. 

For example, at specific moments during lessons, students were asked to collaborate with each 

other for the purpose of  

• Facilitating understandings of data-scientific skills and concepts;  

• Completing tasks in table-groups; and  

• Brainstorming ideas and responses. 

Out of all observed episodes of students collaborating with each other, 45% accounted for 

student collaboration for the purpose of facilitating data-scientific understandings; 35% 

accounted for student collaboration for the purpose of competing tasks in table-groups; and 20% 

accounted for student collaboration for the purpose of brainstorming ideas and responses. 

 The directed activity of consulting with peers to complete tasks helped establish a pattern 

wherein students collaborated with each other for the purposes of task completion without Ms. 

Gellar’s direction. The final two types of classroom activity that constituted the third general 

classroom obligation, collaborating with peers for help completing tasks, represent two distinct 
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interpretations of “help.” For instance, episodes coded “HELP” refer to students engaging in 

helping-acts with peers by explaining how to carry out solution methods and carrying out 

problem-solving methods together. This approach assumes an interpretation of helping as 

involving collaborative discussion and reasoning about what solution-methods to employ and 

how to carry them out. Episodes coded “C” refer to students engaging in helping-acts with peers 

by either copying each other’s work/answers or doing each other’s work. This second approach 

reflects an interpretation of helping as consisting of giving and acquiring answers and outputs to 

complete tasks. The following excerpt provides an example of these conflicting interpretations 

and intimates that the difference between the two is founded on students’ understandings of the 

relationship between (1) disciplinary skills and concepts and (2) tasks. The exchange takes place 

as all students are working on their warm-up, written on the whiteboard as pictured in Figure 4.7: 

 
Figure 4.7 Students were asked to complete the warm-up pictured above at the start of class and with their group-

mates. 

At the opening of the exchange, Mervin disagrees with Antoine’s calculation of the numerator 

portion of the MAD calculation they were introduced to the week prior; the conversation evolves 

thereon. 

LINE 1 MERVIN You were right—[whispers to himself] 20, eight, then this—[turns to Antoine] eight divided 
by 20. 

2 ANTOINE No, it’s 22. 
3 MERVIN 22[?]—I got 20 [after adding— 
4 KAREN Yes, I got 20 too, that’s why I was [inaudible]— 
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5 ANDRES How’d you guys get 20, though? 
6 MERVIN: I got 20 [insistent]. Where’d you get that [22] from? Four, three, four, two, four, five. 
7 KAREN: [To Mervin] You know, everybody else got 22— 
8 ANTOINE: Yes, that’s why. I got 22. 
9 

10 
MERVIN: [Responds with incredulity] I didn't get that. [Looks over his worksheet and begins to read 

out his calculation] Look, okay, seven—no, wait…six… 
11 ANTOINE: [Nods, indicating that Mervin just proved himself wrong and Antoine right] 22. 
12 MERVIN: Oh…my bad. 
13 ANTOINE: Because you’ll get 2.7— 
14 KAREN: Just put 22. Everybody has 22 [laughs] 
15 MERVIN: Seven, six…[recalculating] I got 20 [again]. 
16 ANTOINE: No, it’s 22. 
17 MERVIN: [Reviews his calculation again] …oh sh** [finds and erases his mistake] … 
18 KAREN: [To Antoine] After I do 22 divided by eight, right? 
19 MERVIN: [Passively as he erases] Yes, it should be… 
20 ANTOINE: 2.7. 
21 MERVIN: 2.7. 
22 KAREN: 2.7 [writes on her worksheet]? Right? [Antoine nods] 

 
At the beginning of the conversation, Karen tells Antoine that, like Mervin, she, too, calculated 

20 instead of 22 (line 4) halfway through her MAD calculation. Soon after, in lines 7 and 14, she 

encourages Mervin to “Just put 22” because “everybody else got 22.” Mervin, however, is not 

convinced that Antoine’s calculation is correct and does not seem concerned with Karen’s 

reference to everyone else’s calculation. He is more concerned with understanding the basis for 

the discrepancy between his and Antoine’s response, and later with understanding how to 

properly execute the appropriate solution methods to complete the warm-up. Antoine works 

collaboratively with Mervin by checking his calculation and eventually telling him exactly how 

to construct at boxplot with the necessary components. 

 This exchange suggests that Karen’s interpretation of “help” can be likened to copying 

precisely because she interpreted peer-collaboration as a means to an end: acquiring answers 

necessary to complete a task. Thus, for Karen, the purpose of learning and actualizing 

disciplinary skills and concepts was to facilitate her ability to find answers to completing tasks. 

However, once aware of the answers (i.e., 22 [line 2] and 2.7 [lines 20-22]), the value of 

reasoning through the task by reflecting on disciplinary understandings was diminished because 

the perceived ultimate end-goal was achieved. On the other hand, despite Karen’s suggestion that 
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Mervin accept Antoine’s answer and Antoine’s insistence on the correctness of his calculations, 

Mervin’s concerns remained insatiate. He was less concerned with finding the correct answers 

and more concerned with understanding the reasoning for Antoine’s contestation of Mervin’s 

response. Mervin’s interpretation of “help” can be likened to exploring and explaining 

discrepancies in peer responses precisely because he interpreted peer-collaboration as a means of 

clarifying and supporting disciplinary understandings. Thus, for Mervin, processes involved in 

completing this task presented opportunities for him to reason with disciplinary skills and 

concepts both in carrying out calculations and in evaluating the viability of calculated outcomes. 

Unlike Karen, knowing the answers did not diminish his valuation of disciplinary understandings 

because he had not yet fulfilled the purpose of the task as an exercise in data-scientific reasoning. 

In the following section, I will begin to delve into the specifically data-scientific obligations that 

emerged through student and teacher participation in the classroom community. 

Specifically Data-Scientific Obligations. Constituted by student and teacher 

participation in discipline specific activity, the IDS classroom emerged two specifically data-

scientific obligations as follows: 

1. Justifying data-scientific assertions when challenged by peers by referencing established 

problem-solving procedures, reference materials, or the teacher’s data-scientific 

assertions  

2. Producing data-scientific outputs by following stated computational steps 

Specifically data-scientific obligation #1. The first specifically data-scientific obligation 

of justifying disciplinary assertions when challenged by peers by referencing established 

problem-solving procedures, reference materials, or the teacher’s data-scientific assertions 
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helped outline ways of engaging in data-scientific argumentation. Figure 4.8 below provides a 

visualization of the constitution of the first specifically data-scientific obligation. 

 

Figure 4.8 Constitution of specifically data-scientific obligation #1. 

The first type of activity that contributed to the constitution of the first specifically data-

scientific obligation was consulting with peers when directed to by the teacher to complete tasks 

(“CWP”). By delineating the purpose of peer-collaboration as concerned with facilitating 

students’ abilities to complete tasks, directives to consult with peers helped establish a pattern 

wherein students turned to each other for help or to compare responses without being asked to by 

the teacher. While some students focused their attention on completing tasks by asking and 

giving peers the answers (see discussion of activity coded “C” in section “General classroom 

obligation #3” above), others sought to understand whether there were discrepancies between 

their responses and that of their peers and, importantly, why (“HELP”). As students explained 

solutions, solution methods, or reasons for selecting a particular solution method, their reasoning 

found basis in established disciplinary understandings and reference materials that captured 
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them. Therefore, while the activity of consulting with peers to complete tasks created 

opportunities for students to copy answers under the guise of “helping” each other, it also 

provided opportunities for students to reason about data-scientific understandings as they worked 

to resolve discrepant solutions. 

Inevitably, consulting with peers to complete tasks brought forth the third directly 

constituting classroom activity of challenging-acts, which I coded as “CH.” Challenging-acts 

refers to episodes of student collaboration, both teacher-directed and student-initiated, where 

students challenged the legitimacy of other students’ disciplinary understandings and skills. 

Accordingly, episodes where students challenged each other’s mathematical calculations 

constitute 44% of all episodes coded as challenging-acts; episodes where students challenged 

each other’s data-scientific assertions/responses make up 32% of all observed challenging acts; 

and episodes where students challenged each other’s basis for the selection of solution-

methods/ways of executing solution methods accounted for 24% of all coded challenging-acts. 

Additionally, these types of challenging-acts predominantly took place during lessons when 

students were in the classroom setting. This makes sense given that, as stated earlier during my 

discussion of the first general classroom obligation, students most often carried out calculations 

and collaborated with peers to complete tasks during lessons, and used RStudio as a tool to carry 

out commands including calculations when in the computer lab setting. As such, of all the 

episodes I classified as challenging-acts, 96% occurred in the classroom setting and 4% occurred 

in the computer lab. 

Another significant finding regarding challenging-acts is that students challenged each 

other (“CH”) five times more often than they challenged Ms. Gellar (I coded these challenging-

acts distinctly as “CH-T”). When engaging in argumentation, students cited established 
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disciplinary understandings and reference materials as the justifying basis for their calculations, 

disciplinary assertions, and selection and execution of solution methods, yet the basis for their 

own data-scientific understandings ultimately traced back to disciplinary assertions conveyed by 

Ms. Gellar. This means that Ms. Gellar’s contributions to the classroom community’s data-

scientific understandings were perceived as legitimate and, thus, less likely to be challenged by 

students who regarded their teacher as the guiding authority figure in the classroom.  

Specifically data-scientific obligation #2. The second specifically data-scientific 

obligation, producing data-scientific outputs by following stated computational steps delineated 

ways of producing data-scientific outputs. This disciplinary obligation was constituted by 

classroom activity that emerged from lines of authority demarcated by the first general classroom 

obligation; problem-solving standards established by the second general classroom obligation; 

and patterns in and purposes of peer collaboration delineated by the third general classroom 

obligation. Figure 4.9 below provides a visualization of the constitution of the second 

specifically data-scientific obligation. 

 

Figure 4.9 Constitution of specifically data-scientific obligation #2. 
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The first general classroom obligation, which formed the foundation of authority 

distribution in the classroom and positioned students as learners to be taught and the 

teacher/RStudio lab slides as the knowers responsible for teaching. Students engaged in task 

completion activities in ways that conformed to acceptable standards for science-doing in 

accordance with expectations conveyed by Ms. Gellar, the written curriculum, and the RStudio 

lab slides. In the computer lab setting students were heavily dependent on computational steps 

outlined in RStudio lab slides to complete assignments because completion required students to 

generate data-scientific outputs—including graphical representations, calculations, and 

probability simulations—by operationalizing coding skills developed concurrently as they 

worked on lab assignments. Because students had an incipient understanding of how to code, 

following procedures outlined in labs was necessary in lieu of alternative means and methods. 

Indeed, the majority, 64%, of procedural task completion took place in the computer lab setting. 

There was one type of problem-solving activity that took place only in labs (see Figure 

4.5). This activity, coded “TINK,” refers to experimenting, or tinkering, with features of RStudio 

to complete lab assignments when established procedures proved ineffective. Tinkering with 

RStudio accounted for a small portion, 13%, of all problem-solving approaches. While tinkering 

allowed students to experiment with RStudio, explore its features, and pursue lines of inquiry not 

addressed in lab assignments, the students who engaged in this activity only did so because of 

the following issues:  

1. RStudio glitches that interrupted functionality, preventing students from working through 

lab assignments (two observed instances); 

2. Student attempts to circumvent outlined procedures and streamline completion of lab 

assignments (two observed instances); and 
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3. Student coding errors (three observed instances) that failed to generate desired outputs. 

Although the classroom community did not enact these approaches regularly, an analysis of 

student tinkering helps inform an understanding of how some students reconciled procedural task 

completion with technological problems and student errors. Additionally, the same types of 

issues that led some students to tinker with RStudio in experimental and exploratory ways led 

others to consult with peers for help completing lab assignments. Consulting with peers to 

complete lab assignments led to student engagement in helping-acts and copying just as it did in 

the classroom setting (see General Classroom Obligation #3). However, while 50% of all 

observed episodes of copying occurred in labs, a greater percentage of helping-acts (57%) 

involved discussing how to carry out procedures and reasoning about problem-solving 

collaboratively among peers.  

An analysis of this type of activity also suggests that limitations posed by new forms of 

data-generating internet-enabled technology in the classroom temporarily disturbed established 

procedures for task completion by interfering with the effectiveness of computational steps. For 

example, when RStudio sessions began to glitch, lab procedures proved futile. Also, students 

were not immediately aware that their computers were malfunctioning because their limited 

experience with coding and RStudio led them to first assume that unanticipated error messages 

were due to typing the wrong command rather than due to technological issues. This initial 

assumption of student error coupled with the procedural rhythm of students’ computer lab 

activity further moved students to seek help from others to address the issues preventing them 

from meeting specifically data-scientific expectations.  

Now that I have presented and examined the general and specifically data-scientific 

obligations that students felt compelled to fulfill in the IDS classroom, I will discuss how these 
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obligations informed the distribution of authority in the classroom and its implications for 

students’ opportunities to exercise disciplinary and conceptual agency. 

Authority distribution 

The first general classroom obligation of developing disciplinary understandings and 

generating disciplinary reference materials by listening and taking notes speaks primarily to how 

authority was distributed in the classroom. Analysis of this obligation and constitutive activities 

indicates that authority was primarily distributed to Ms. Gellar. Her approach to guiding whole-

group classroom discourse indicates that while she invited students to exercise agency by posing 

questions, the questions were usually very simplistic, arguably rhetorical, and served to check 

that students were learning what they were expected to learn rather than to engage students in co-

constructing data-scientific knowledge or cultivating in-depth understandings of the principles 

that underpin data-scientific tools and solution methods. For example, when the class was 

engaging in the human boxplot activity, where students were asked to think of their collective 

heights as one data set and create a visual representation of their height distribution in the form 

of a boxplot, Ms. Gellar was responsible for introducing new concepts, directing the activity, and 

guiding whole-group discussion. Students’ participation, on the other hand, consisted of 

following directions for carrying out the activity, copying lesson items when prompted to, and 

answering the teacher’s questions. Below I offer an exemplar that illustrates how all members of 

the classroom community engaged in the IRE approach to classroom discourse and contributed 

to the co-constitution of authority in the IDS classroom. The exchange took place after Ms. 

Gellar walked students through the process of identifying the student that represented the median 

height in the class. Once Mervin was identified as having the median height, Ms. Gellar asked 

students to similarly identify the midpoint of each one of the groups to his left (taller-height 
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group) and right (shorter-height group). While the all-female shorter-height group successfully 

identified the person that represented their midpoint, a disagreement emerged within the mostly-

male taller-height group regarding how many people made-up their sub-group and, thus, who the 

middle person was. The excerpt indicates how these types of whole-group interactions written 

into the curriculum positioned the teacher as responsible for imparting data-scientific knowledge 

unto students and positioned students as responsible for learning the knowledge imparted unto 

them.  

Line 1 
2 

MS. GELLAR: By the way, how many people are in each half [to the left and right of Mervin] if we’re not 
counting Mervin? 

3 ANDRES: 19. 

4 
5 
6 
7 

MS. GELLAR: 19, so if…we’re trying to find the middle, how many people in is that? [Students mumble faint 
responses] So 19, so after the 9th person, that’s going to be your middle. So… [starts counting 
at one end of the all-female shorter-height group to arrive at the ‘median’ person] 

8 
9 

FEMALE 
STUDENTS: 

 
Christine. 

10 
11 
12 
13 

MS. GELLAR: Christine, yes. [starts counting at the other end of the mostly-male taller-height group to 
arrive at the median] So, who’s behind Kim? Giselle? [students nod] Okay. So, Giselle’s the 
middle of this half. Okay, so, we first split [the class] in half and then we split each half in 
half, so how many pieces do we have? 

14 STUDENTS: Four. 

15 
16 
17 
18 
19 
20 
21 

MS. GELLAR: Four, so each fourth is referred to as a quartile. Each fourth is referred to as a quartile, okay? 
So, I need Christine—I need you so I can measure your height. 
[Christine approaches the front of the class and Ms. Gellar marks her height on the poster 
paper]. 
And I need Giselle…  
[Giselle approaches the board and Ms. Gellar marks her height on the poster paper]  
Okay, alright, so, what did we call each quarter? What was it called? 

22 STUDENTS: Quartile. 

23 DIEGO: Quartile. 
24 
25 

MS. GELLAR: Quartile, okay. So, we call it a quartile because it is a fourth—quarter, quatro—right? 
Quartile. 

26 
27 

ANDRES: Miss, do we write that [the contents of the projected “Quartiles” slide onto the classwork 
sheet]? 

28 
29 
30 
31 

32 

MS. GELLAR: Not quite…I’m going to give you a definition in just a second. This is quartile three [labels 
appropriate height mark “Quartile 3 (Q3)”], or we can abbreviate as Q3, okay? This is quartile 
one [labels “Quartile 1 (Q1)”], we can abbreviate this as Q1. And this [points to “Median” 
already written next to Mervin’s height mark] really, what would this be? 

33 JESUS: Quartile two? 
34 MS. GELLAR: [Nods] Quartile two. So, what percentage of people fall below quartile one?  

35 ANTOINE: Them [points to female students standing at the end of the lower-height group lineup]. 
36 MS. GELLAR: What percentage? 

37 STUDENTS: 25. 
38 
39 

MS. GELLAR: 25% of the people will fall below quartile one [points to Q1 label]. What about the median? 
What percentage of people will fall below the median? 

40 ARMANDO: 50. 
41 MS. GELLAR: 50. What percentage will fall below quartile three? 

42 STUDENTS: 75. 
43 MS. GELLAR: 75. They’re quarters, right? So, 25% of you are shorter than this [points to Q3]. 50% of you 
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44 are shorter than this [points to median]. 75% of you are— 

45 DIEGO: Taller— 
46 MS. GELLAR: Shorter than this…what percent fall between quartile three and quartile one? 

47 STUDENTS: 50. 
48 
49 

50 
51 

MS. GELLAR: 50, so 50% of you, half of the class, fall between this height [points to Q3] and this height 
[points to Q1]. 50% of you fall between quartile three and quartile one. So, if I want to 

describe the typical height, I can say—I don't know what height this is, but let’s say that’s 
5’3”, right? And Giselle, how tall are you? 

52 GISELLE: 5’7”. 
53 
54 
55 

MS. GELLAR: 5’7”. So I can say, “Well, 50% of the class is between 5’3” and 5’7”. I can describe your 
heights that way, okay? So, the next part of your classwork is a description of those 
quartiles. Okay, so go ahead and take a second, make note. 

56  [Students copy description of quartiles projected onto screen earlier] 

 
The excerpt captures the nature of questions regularly posed to students during whole-group 

discussions throughout the duration of the academic year and how they warranted narrow 

surface-level responses. In this case, all questions were satisfactorily answered with one-word (or 

number) responses, except for Jesus’ response in line 36: “Quartile two”, and did not require 

students to engage in complex reasoning. For example, the question leading up to Ms. Gellar’s 

mention of quartiles (lines 12-13) asks students to determine how many “pieces” a boxplot 

consists of if students “split [the distribution] in half and then [they] split each half in half.” 

While the elicited response provided a smooth transition into the concept of quartiles, this pattern 

of interaction did not provide opportunities for students to reason substantively about their data 

nor about new concepts, and instead required a very basic count of ‘pieces’ to render the 

anticipated and satisfactory student response of “4” (line 14). Additionally, by the time Ms. 

Gellar asked students what each quarter was termed (line 21), she had already explained that 

each quarter was referred to as a quartile, provided a working definition for quartiles, and 

projected a slide that articulated a similarly worded description of quartiles which remained on 

display as students answered her question. Therefore, responding to the question merely required 

that students either recall the term she had recently described or that they read the contents of the 

slide pictured in Figure 4.10.  
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Figure 4.10 “Quartiles” slide projected during discussion of quartiles. 

This demonstrates how whole-group discussion functioned primarily to check of student 

knowledge rather than as an opportunity for students to engage in the co-construction of 

knowledge. We see more examples of these types of checks as indicated in Table 4.2: 

Table 4.2  

Examples of Questions Posed During Whole-Group Discussion to Check Student Knowledge 

Line Question Response 
1-2 “[H]ow many people are in each half [to the left and right of Mervin] if we’re not counting 

Mervin?” 
“19.” 

30-32 “This is quartile one [labels “Quartile 1 (Q1)”], we can abbreviate this as Q1. And this [points to 
“Median” already written next to Mervin’s height mark] really, what would this be?” 

“Quartile two.” 

34-37 “[W]hat percentage of people fall below quartile one? ... What percentage?” “25.” 

38-39 “What about the median? What percentage of people will fall below the median?” “50.” 

41 “What percentage will fall below quartile three?” “75.” 

46 “[W]hat percent fall between quartile three and quartile one?” “50.” 

 

Furthermore, the excerpt above also contains instances where the teacher was responsible 

for determining the legitimacy or correctness of student responses, not unlike traditional 

mathematics and science courses. For example, one instance occurs when Ms. Gellar interprets 

the human boxplot she drew using students’ heights (lines 44-47). After rhythmically stating 

“25% of you are shorter than this. 50% of you are shorter than this” She begins to voice a third 

assertion “75% of you are—” (line 45) at which point Diego chimes in “Taller—” (line 46). This 

is followed by Ms. Gellar’s correction of Diego’s assertion via the continuation of the pattern in 
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which she had begun to voice her boxplot interpretation, “shorter than this.” It is important to 

note, however, that Diego’s assertion, while technically incorrect, acknowledged that heights 

could, inversely, be described in terms of the percentage of students that are taller than Q1, the 

median, and Q3. Thus, even though Ms. Gellar offered one way to interpret the boxplot, by no 

means was this the only way. I surmise that Diego’s offering of “taller” was a positional 

response informed his own height; and so, he was interpreting the boxplot as someone who was 

taller than (at least) 75% of all students in the class (Figure 4.11). Similarly, it is also possible 

that Ms. Gellar’s assertions about the boxplot were also positional. 

 

Figure 4.11 Positional interpretations of the human boxplot. 

Here, lost on all was an opportunity to co-construct new and emergent understandings about the 

role positionality and subjectivity play in different stages of the data life cycle including stages 

of interpretation and graphical representation. Moreover, although Ms. Gellar was responsible 

for assigning and determining the purpose and meaning of tasks; determining the legitimacy of 

solutions and responses; and establishing standards for legitimate execution of solution methods, 
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this was not the case when students were in the computer lab setting where RStudio lab slides 

determined what it meant to do data science in legitimate ways by delineating specific 

procedures students had to follow to develop the coding skills necessary to complete lab 

assignments. I will expound on data-scientific activity as it pertains to the computer lab setting 

during my forthcoming discussion of the second specifically data-scientific obligation.  

Students contributed to the distribution of authority by demonstrating a willingness to 

participate in patterns of classroom activity, namely answering Ms. Gellar’s questions, taking 

notes when prompted, and showing attentiveness when Ms. Gellar delivered lessons and when 

peers offered assertions during whole-group discussions. While authority in the classroom was 

mostly distributed to the teacher, a select number of students—regarded by their peers as having 

strong academic or mathematics backgrounds—gradually gained recognition among their peers 

as experts. As a result, these students gained some level of authority when it came to decision-

making about the legitimacy of solutions and reasonableness of solution methods among peers. 

Their guiding principles for decision-making, however, were ultimately premised on Ms. 

Gellar’s explicit and implicit conveyance of data-scientific knowledge and what it meant to 

engage in legitimate data science-doing in the classroom. Students routinely cooperated with Ms. 

Gellar’s directives to meet disciplinary expectations and seldom challenged her data-scientific 

assertions. In fact, I only observed five separate episodes where students challenged Ms. Gellar’s 

data-scientific assertions, compared to 32 separate episodes where students challenged each 

other’s. Students’ disinclination to challenge the teacher points to their recognition and 

acceptance of her authority in the classroom, suggesting that students held themselves 

accountable to the teacher.  
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I also believe that personal investments and conviviality influenced students’ willingness 

to cooperate in the establishment and fulfillment of expectations that defined what it meant to 

effectively and legitimately engage in data science-doing. For instance, 40 of the 42 students 

enrolled in the IDS class were seniors and some were taking IDS to make up for a previously 

failed math course to graduate. Still others, including the two juniors enrolled in the course, were 

personally invested in earning high marks and viewed meeting the teacher’s disciplinary 

expectations as essential for earning a good grade. Undeniably, those relying on passing IDS to 

graduate were invested in doing well in the course, or at the very least securing a passing grade. 

Additionally, Ms. Gellar and her students shared a respectful relationship and communicated 

with each other cordially; some students even joked with her lightheartedly, demonstrating their 

rapport. I believe that the interpersonal relationships that existed within the classroom and 

students’ sentiments toward Ms. Gellar strongly influenced their willingness to partake in the 

classroom community by observing the rules for social and disciplinary engagement initiated by 

Ms. Gellar. 

Opportunities for students to exercise agency. The first general classroom obligation 

rested on the assumption that the teacher was responsible for imparting data-scientific knowledge 

and that students were responsible for understanding and applying that knowledge. While 

students contributed to classroom discourse, it was mainly in the capacity of demonstrating their 

grasp of disciplinary knowledge, this included recalling data-scientific concepts and 

satisfactorily executing procedural and/or calculational steps to solve problems. Moreover, 

students were not positioned as co-contributors to data-scientific knowledge in the classroom 

because knowledge itself was treated as established, self-evident, and true. As such, students 

were not expected to participate in decision-making about the interpretation of tasks, legitimacy 
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of solutions, and reasonableness of solution methods—this obligation rested squarely with Ms. 

Gellar and RStudio lab slides given the narrow distribution of authority in the classroom. In fact, 

all obligations and their constituting activities functioned to establish and maintain the authority 

of the teacher and lab slides as representatives of data-scientific subject matter by narrowly 

defining the ways students could legitimately contribute to the classroom. What constituted 

legitimate classroom contributions was also narrowly defined as learning disciplinary 

understandings to use them as the basis for making decisions about appropriate solution methods 

and how to execute them to complete tasks.  

Engaging in various classroom activities that at their core were concerned with 

completing tasks afforded students opportunities to exercise disciplinary agency by doing things 

like matching solution methods to problems and following established procedures to problem-

solve. However, this did not mean that students understood why certain solution methods were 

more appropriate for certain problems, nor that they understood the principles that underpinned 

disciplinary skills and concepts. Below, I present two excerpts from my classroom observations 

to discuss how issues relating to conceptual data-scientific understandings were obscured 

because students were able to produce the necessary solutions, responses, and outputs to satisfy 

task completion.  

The excerpt that follows takes place during lesson six of the curriculum after students 

were introduced to several tools and concepts including measures of center, measures of spread, 

boxplots, and shapes of distributions in the weeks prior. They were asked to compare two data 

distributions of commuting times for a high school student, one depicting freeway commuting 

times and another depicting commuting times on surface streets. Students were asked to use 
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measures of center, measures of spread, minimum values, and maximum values to construct an 

argument about which commuting method was preferable. 

Line 1 
2 

RESEARCHER: Can you tell me what measures you used for these two [commuting times boxplots]? 

3  … 

4 ROSELYN: Well, we used median for both of them because— 
5 RESEARCHER: For both?  

6 ROSELYN: [Nods] 
7 RESEARCHER:  Why? 

8 ROSELYN: Because, the… 
9 JESUS: They’re skewed. 

10 ROSELYN: Yes, they’re skewed, pretty much. 
11 RESEARCHER: They’re both skewed? 

12 ROSELYN: Yes.  
13 RESEARCHER:  And you used median, you said. 

14 AMBER: [Nods] 
15 RESEARCHER: Why did you use the median instead of mean? 

16 ROSELYN: It’s the one we have to use when the thing is skewed [smiles].  
17 RESEARCHER: Okay. Do you know why? 

18 AMBER No, [Roselyn and Amber smile and look at each other nervously] we just know. 
19 RESEARCHER: What about measures of spread? 

20 ROSELYN: We used IQR. 
21 RESEARCHER: For both? 

22 ROSELYN: Yes. 
23 RESEARCHER:  Do you know why you would use IQR?  

24 ROSELYN: [Roselyn smiles but does not respond] 
25 
26 
27 

JESUS: It says right here… [reads from class worksheet] “If the distribution is skewed or has outliers, it is 
best to use the median as measure of center and the IQR as a measure of spread.” So that’s 
where we got it from. I don’t know why but that’s on our notes so… 

28 RESEARCHER:  Do you have any idea why? 
29 JESUS: No, I don’t know— 

30 AMBER: We really don’t [laughs]. 

 

 In the excerpt above, we see how Roselyn, Jesus, and Amber use the problem-solving 

approach of appropriately matching solution methods to problems, and we also see the 

shortcomings of this approach. Roselyn makes it clear, in line 16, that her group’s decision-

making was not an exercise in developing conceptual understandings but was instead premised 

on notions of what she and her peers were obliged to do data-scientifically. This tells me that she 

viewed matching solution methods to problems as a legitimate problem-solving approach 

students were responsible for executing. In support of Roselyn’s response to me, Jesus further 

corroborates the legitimacy of her perceived obligation by citing Ms. Gellar’s assertions/lessons 

items recorded in his notes (line 25-27). Further, once he states that the reasoning behind what 
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makes the median the most appropriate measure for a skewed distribution is unbeknownst to him 

and his group-mates, he again alludes to the legitimacy of Ms. Gellar’s assertions when he says, 

“I don’t know why but that’s on our notes so…” (line 27) suggesting that since guidelines for 

selecting measures only mention matching, reasoning about why certain measures are 

appropriate is not necessary. Also evident in the excerpt is Roselyn’s use of the term “thing” to 

refer to the “distribution,” which stood out to me given that at this point in the semester students 

had been introduced to and privy to countless mentions of “distributions” and the day of this 

interaction was no exception. Her flippant reference to the distribution as “the thing” suggests to 

me that she, presumably, did not feel obliged to use discipline-specific terminology for her sake 

or for me (since she is speaking to me) because her data science-doing was an obligation she was 

fulfilling for Ms. Gellar.  

 The next excerpt takes place in the lab setting as students were working in groups of three 

on one of the three practicums of the unit. Practicums were projects that asked students to use the 

skills and concepts imparted through RStudio lab assignments to conduct data analyses and write 

a report including supporting data outputs used to complete the task (i.e., graphs, codes, 

interpretations, etc.). This practicum, entitled “The Summaries,” asked students to select a data 

set from one of their data collection campaigns and compose a statistical question that compared 

two or more groups by including a (categorical) grouping variable—that is, a variable composed 

of multiple groups such as gender (male/female) or age-group (child, teenager, adult), for 

example—and an additional (numerical) variable. In the exchange below, Katie tells me about 

her group’s progress. 

Line 1 
2 

RESEARCHER: Can you ladies tell me how it’s going with the practicum? …where are you in the process? 

3  […] 

4 

5 

KATIE: Well, right now we’re just trying to figure out which plot looks better with our variables.  

6 RESEARCHER: Okay, what is your [statistical] question? 
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7 
8 

KATIE: [Reads from her computer monitor] “What variables affect the health level more, the cost or the 
sugar?” 

9 
10 

RESEARCHER: “What variables affect the health level more, the cost or the sugar?”—Okay. So, what kind 
of visual are you creating? 

11 
12 

KATIE: [Katie stares at her screen and smiles] I don’t know, Miss [bemused]…[types a code into RStudio, 
rendering a histogram] 

13 RESEARCHER: Can you tell me what you just pulled up—that visual—what does it mean? 
14 
15 
16 

KATIE: Well, right now, I’m just checking which one looks better, a histogram or dot plot and the 
histogram looks better because it’s better to understand. 

 
17 
18 

RESEARCHER: Okay, but can you tell me what I’m looking at?—what does that [histogram] mean? 

19 KATIE: [Thinking] 

20 RESEARCHER: What does this graph tell me about your question? 
21 
22 

KATIE: It’s telling me the cost, like, right here it just [circles cursor inside the bounds of the histogram]—
telling me the cost. 

23 
24 
25 
26 
27 

RESEARCHER: It’s telling you the cost of snacks… what does count mean? Count is what? What does that 
mean? ...[Katie stares at her computer screen, contemplating the question] I’m looking at 
your Y-axis. So on your X [axis] you have “Cost,” right?—and then on the Y [axis] you have 
“Count”—what does that mean? What is that referring to? 

28 KATIE: That, I do not know. 

29 
30 

RESEARCHER: So I notice that the numbers on the count axis are 0, 100, 200, 300. What might that be 
referring to? 

31 KATIE: Maybe how many people put that much, because there’s like 500–something entries. 

32 RESEARCHER: Hmm, okay.  
33 KATIE: So, maybe the number of entries? 

34 RESEARCHER: Okay, thank you. 

 

As Katie works on creating an appropriate visual representation of the variables in her 

statistical question (lines 4-8), her words suggest that her interpretation of appropriateness is 

based on “which plot looks better,” and although Ms. Gellar emphasized appearance/clarity as a 

factor in determining appropriateness, she also reminded students to think about other aspects 

such as types of variables (categorical or numerical), size of the data set, and the shape of its 

distribution. Therefore, while considering which plot looks better is important as it is directly 

related to clarity, what is problematic is that her consideration is not accompanied by a holistic 

conceptual understanding of what the plot conveys with regards to the data at hand. A 
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comparison of Katie’s group’s question (lines 7-8) and the histogram she generated in RStudio 

reveal that although Katie thinks the histogram is “better to understand” (line 15), she has but a 

tenuous understanding of what it actually conveys as indicated in line 22, where she says it 

represents “the cost.” Her interpretation demonstrates a surface-level reading of this histogram as 

self-evident, indicated by her response and her circling of the cursor to highlight the obviousness 

of meaning: the cost of snacks. When I ask her to elaborate on what it reveals about the cost of 

snacks, she says “That, I do not know” (line 28). At this point, I still had not realized that the 

histogram only depicted one variable and not the other two, health and sugar, included in her 

question. I assumed her Y-axis was related to either “health” or “sugar.” Once I realized it was 

not, I asked her to explain what the Y-axis (“Count”) meant rather than assume it’s meaning, but 

she did not know (line 26-27). I found this problematic because it meant that her consideration of 

the histogram as a satisfactory and appropriate representation of the data was based only on the 

fact that the histogram included the cost variable. What it revealed about this variable, however, 

did not seem as important as the fact that it “[looked] better with [their] variables” (lines 4-5). 

Also, if “count” referred to the amount of entries (line 31) for the cost of snacks, this meant that 

the histogram only represented data for one of the three variables mentioned in her group’s 

statistical question. It was unclear, however, if Katie realized this because of her mention of 

“variables” as plural (line 5). Of course, she could also have meant that after generating a 

histogram for all variables, she and her group-mates felt that it provided a clear representation for 

each one separately, except a close-up reading of her RStudio console indicated that she had not 

previously generated a graphical representation for the additional variables, and was instead 

working on a different task prior to generating this histogram for “cost.” As such, I surmise that 

if Katie and her group-mates found this histogram appropriate for their question, they would 
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have to generate two additional histograms and compare them separately which would have 

countered the purpose of using RStudio to streamline and improve their ability to analyze 

relationships among variables to understand what the data say.  

Normative Data-Scientific Identity 

In the episodes discussed above, we see two examples of students exercising disciplinary 

agency by selecting and carrying out solution methods in their efforts to complete tasks. What 

we do not see is their ability to reason with and about solution methods and the principles 

underlying their employment. While students demonstrated their potential to fulfill overarching 

classroom obligations of completing tasks and producing data outputs, understanding these types 

of activity in relation to their own personal and intellectual development were not necessary for 

the legitimate fulfillment of emergent classroom obligations. Furthermore, given the findings and 

analyses presented earlier, the normative identity of what it meant to do data science in 

legitimate ways as constituted in Ms. Gellar’s classroom delineated specific ways of reasoning 

about disciplinary understandings, solution methods for completing tasks, conditions for peer 

collaboration, and standards for argumentation. Hence, legitimate data science doing consisted 

of: 

• Listening and taking notes to develop disciplinary understandings and reference material 

• Carrying out established procedures to produce data-scientific outputs and complete tasks 

• Collaborating with peers to facilitate task completion 

• Referencing established problem-solving procedures, reference materials, or the teacher’s 

data-scientific assertions to justify data-scientific assertions when challenged by peers. 

I view this normative identity as a rubric for what qualified as ideal data science-doing in this 

particular classroom, and as such, am not arguing that students uncritically or impassively abided 
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by this constituted identity, but rather that for a number of reasons, they chose to cooperate in 

their constitution. In the next chapter, Personal Data-Scientific Identity, I will discuss how 

students felt about this “rubric” and how that informed the extent to which they came to 

cooperate in its constitution. While my analysis of classroom observations supports the notion 

that students did, in fact, cooperate in the constitution of classroom obligations, there were also 

ways in which students simultaneously resisted curricular assumptions about them and what they 

should learn. Because these sentiments regard students’ valuations of classroom obligations, I 

will reserve this discussion for the following chapter.
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CHAPTER FIVE 

Personal Data-Scientific Identity Analysis 

In this chapter, I will present my findings as they pertain to students’ valuations of 

classroom obligations and estimations of their peers’ and their own data-scientific competency to 

understand the extent to which students came to identify with data-scientific-doing as constituted 

in the IDS classroom. Exit interviews revealed that students valued general classroom 

obligations as a necessary means of earning good grades, and valued specifically data-scientific 

obligations as key to acquiring the disciplinary competencies necessary to earn good grades. 

Students spoke of their own data-scientific competencies as consistent with the work of data 

scientists and thus based their estimation of themselves as successful data-science doers on their 

ability to carry out tasks and apply established disciplinary understandings. In this chapter, I will 

first discuss students’ valuations of their classroom obligations as a whole, followed by a 

discussion of the learning rationale’s that informed these valuations. I will then engage in a 

discussion of students’ estimations of their peers’ and their own disciplinary competencies, 

followed by an analysis of how students reasoned about data-scientific competency.  

Students’ Valuations of Classroom Obligations 

When I asked students to tell me about what they learned in the IDS class, 10 out of the 

12 student interviewees said they gained familiarity with data science-doing and specifically 

referred to learning the importance of carrying out specific procedures as they related to coding, 

calculating statistical measures, and generating data outputs in RStudio as instructed to in order 

to arrive at the correct solution or output. For example, Angie said that she learned that “if you 

don’t do something exactly, you’re not going to get the right result,” indicating that in order to 

successfully complete tasks, she had to follow established procedures. She also expressed that 

she did not always have this understanding, and it wasn’t until she saw her grade drop during the 
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first semester of taking IDS that she realized that not following prescribed steps for lab 

completion was hurting her grade: 

Line 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

In the beginning of the school year, when I would get error messages [in RStudio], I would get upset really 

fast and say, “screw it” and just put the code into my [lab assignment] even if it was an error. Now I’ve 

learned that you need to fix codes because they will affect the labs and if it’s not correct, you need to go 

back and check again…Last year I got a “B” [in IDS] and it upset me because the last few weeks were 

labs so my grade kept dropping. So, this semester I took more time doing the labs and [would] do them at 

home. Even if I didn’t get the codes right, I would just press F1 for more info…I’ve actually learned how to 

be faster with the codes because last semester I would have to go back and look at old codes but this 

semester I mastered them. I know that if I type “view” [the data set] will pop up or if I type “n row” it’ll 

show me the variables [in a data set]. It’s very useful knowing the simple codes. 

This excerpt of my interview with Angie reveals that while she initially resisted fulfilling 

classroom obligations during the first semester, as evident in her refusal to resolve errors (lines 

1-3) using established procedures such as typing codes exactly as they appeared in RStudio lab 

slides, her investment in a good grade eclipsed her frustration with error messages (lines 4-5). 

When she realized that not following lab procedures with exactitude was hurting her grade, she 

decided to modify her approach in efforts to secure a better grade during the second and final 

semester (lines 5-6). Thus, Angie’s efforts to follow lab procedures to complete labs during the 

second semester were motivated by her endeavor to earn a top grade in the class after seeing her 

grade drop in the first semester.  

Similarly, Diego and Kim, who had previously taken and failed IDS with Ms. Gellar, also 

shared that they learned from their mistakes the previous year and sought to meet disciplinary 

expectations in order to earn better grades the second time around. In the excerpt below, Diego 

shares how his experience taking IDS a second year differed from his experience taking it the 

first year it was offered: 

Line 1 

2 

3 

Last year I didn’t really care about this class. It was confusing because it was about something we had 

never learned about. It wasn’t like geometry or algebra that just continue what we have already learned. 

This year, I got the hang of it with the labs and it’s pretty fun because I know what I’m doing…Last year I 
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4 

5 

6 

7 

8 

9 

10 

11 

wouldn’t try and this year I actually cared because I didn’t want to have a bad grade…it looks bad to 

have bad grades. It was an elective but I needed it for [the] math [graduation requirement]. Last semester 

I had a “B” and this semester I have an “A.” … [Last year the labs] got confusing throughout the [year]. If 

you don’t understand the last one you did, you won’t understand this one. And if you don’t do well, it’s 

worth a lot of your grade. If you don’t do well on the labs, it’ll bring your grade down a lot…In class I’m 

more involved. I try to answer the questions the teacher asks the class. I turn everything in on time. 

Like Angie, Diego also resisted observing classroom obligations the first time he took IDS 

because he did not care for it and found it confusing (line 1). In lines 3-4 he mentions getting 

“the hang of it” in the second year, which I interpret as a strategic move to engage in practices 

necessary to secure a better grade, although not necessarily to gain conceptual and more 

sophisticated data-scientific understandings. Given that classroom obligations delineated ways of 

gaining familiarity with data-scientific skills and concepts and applying these skills and concepts 

to task completion, getting “the hang of it” refers to perceiving the existence of disciplinary 

expectations and engaging in classroom activity that seeks to meet those expectations. Indeed, in 

lines 4-5 Diego clearly conveys that like Angie, he too was more invested in getting a good grade 

in the class and cared about how bad grades are perceived. Aside from his investment in earning 

a top grade during his second year in IDS (lines 6-7), passing the course had major implications 

for Diego’s future as he needed the class to meet a graduation requirement. Thus, Diego felt that 

the stakes for meeting classroom obligations were high. Additionally, Diego offers a subtle 

critique of labs and the negative implications of not completing them by following established 

procedures based on his own experience failing the class when says “if you don’t do well, it’s 

worth a lot of your grade. If you don’t do well on the labs, it’ll bring your grade down a lot” 

(lines 7-8). By failing IDS the first time, Diego learned that understanding expectations and 

working to fulfill them was necessary for successful completion of the course. This is evidenced 

in line 11 when he alludes to participating in the initiation-response-evaluation method of whole-
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group discussion by answering “the questions the teacher asks the class” and completing 

assignments.  

Furthermore, no students explicitly expressed discontentment with what was expected of 

them nor their efforts to meet classroom obligations, but four students spoke of their personal 

interests and capabilities as incompatible with data science-doing based on its constitution in the 

classroom. Diego expressed that data science required a lot of math and while he enjoyed math 

and found IDS fun (line 3 in the excerpt above), he felt he would get bored of it if he did it for a 

living. Angie, who expressed her desire to pursue a career in marketing said that data scientists 

worked in front of a computer all day and she preferred being out in the world. Both Dolores and 

Angie expressed this sentiment during one of our exchanges in the classroom. Both in class and 

during our exit interview, Dolores expressed that she ambitioned to become a dental assistant as 

she found this career path to be more in-demand compared to data science—a perspective that 

was undoubtedly influenced by her assertion that those in the medical field are better positioned 

to help society as opposed to someone sitting in front of a computer. Gerardo said that data 

science required too much memorization of codes and he found this particularly boring. Thus, 

while these students conveyed little interest in pursuing an education or career in the field of data 

science, they nevertheless cooperated with Ms. Gellar and participated in the fulfillment of 

classroom obligations.  

Students valued the expectation that they meet classroom obligations to the extent that 

they were personally invested in earning a good grade in the class either to meet their short- or 

long-term goals. For example, seven out of the 12 student interviewees expressed their personal 

investment in performing well academically in service of achieving a successful career. For 

example, Angie valued the instruction she received in the IDS class because she felt it introduced 
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to her to working with a computer, which she felt was an important familiarity to have for future 

careers. She was particularly interested in studying marketing to help her father achieve his 

dream of owning his own business, and so, she felt that what she was learning in IDS would help 

her with business-related decision-making. While it was evident that she valued IDS for helping 

her gain experience working with computers, she did not voice a valuation for data-scientific 

skills and concepts.  

Nube, one of two juniors in the class, conveyed that earning good grades was important 

for her long-term goal of gaining acceptance to a four-year university, and subsequently medical 

school, to become either a cardiologist or a pediatrician. At the time of our interview, Glenda had 

been accepted to UCLA and endeavored to become either a physicist or a surgeon. Like Nube, 

Armando also spoke of his desire to become a pediatrician but simultaneously expressed a 

profound curiosity for technology, namely mobile technologies, and cited software development 

as his back-up plan. Andres, Adan, and Sandra shared that they were interested in pursuing 

careers in high-demand fields including computer engineering, electrical engineering, and 

software development, respectively. These students’ long-terms goals of performing well 

academically in high school to facilitate their admission into higher education, and eventually 

into their desired career paths, played a highly influential role in their perception and valuation of 

classroom obligations and indicate that they viewed the course as instrumental to achieving other 

goals rather than as intrinsically valuable or personally enriching.  

Moreover, while other students also expressed an interest in acquiring a postsecondary 

education and careers in STEM, their valuation of classroom obligations was informed by more 

immediate goals related to high school graduation. Diego and Kim, also endeavored to pursue 

higher education, but Diego’s post-high school plans to go into law enforcement and Kim’s plans 
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to study astronomy rested on their ability to pass IDS in order to meet their graduation 

requirements. Dolores, spoke of her desire to become a dental assistant, and while she did not 

mention that she needed to pass IDS to graduate, she emphasized her dedication to educating 

herself, heeding her parents’ warning, “if you don’t get yourself educated, you’re not going to be 

nothing in life.” Dolores felt that part of preparing for her career path was to ensure that she 

earned top grades and graduated high school—symbols of her efforts to educate herself. Lastly, 

Gerardo did not express interest in pursuing a career in data science, and while he was still 

indecisive about his plans after high school at the time of our interview, he said that he was 

actively working with a military recruiter, exercising, and studying for the SBAC exam new 

recruits must pass to enlist in the Air Force. Another requirement for enlistment in any military 

branch is earning a high school diploma, thus Gerardo’s observance of classroom obligations 

was presumably tied to his desire to either continue his education at a community college or 

enlist in the Air Force. It is also important to note that 11 out of 12 students mentioned that 

technology and computers are central to future high-paying in-demand jobs—a perception that 

many felt was influenced by their economics, history, and government teacher, Mr. Suarez who 

repeatedly spoke about this to those enrolled in his class, according to students. This means that 

students participated in the IDS class with an understanding of the value of working with 

computers but not necessarily with an understanding of the importance of cultivating data-

scientific literacies for civic engagement and everyday life. 

Students’ Rationales for Observing and Valuing Classroom Obligations 

Structural rationales for data-scientific learning. Students’ valuations of classroom 

obligations as necessary to performing well academically and earning good grades to meet 

immediate and long-term goals were supported by structural and/or situational rationales for 
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learning. Interviews revealed that eight out of the 12 students found participating in data-

scientific activity structurally significant as a means of attaining or achieving something outside 

of themselves such as good grades, college acceptance, and peer acceptance. Outside of 

facilitating access to their respective educational and career goals, when asked how they would 

use the skills they developed in the IDS class in their personal lives, five students expressed that 

they did not perceive their skills as useful for their out-of-school lives. This means that while 

they found cooperating with classroom obligations to be structurally significant, their 

participation in the classroom was not motivated by a desire to gain mastery or expertise in data 

science, and classroom obligations did not provide opportunities for students to develop these 

interests because they emphasized students’ roles as learners, reserving roles of beholders of 

disciplinary knowledge for the teacher and RStudio lab assignments. Due to the fact that 

classroom obligations narrowly defined data science-doing, students who did not already have 

disciplinary interests that were compatible with data science, or ambitions to pursue a career 

related to data science were not afforded opportunities to develop situational rationales for 

learning data science. This finding is worthy of serious consideration for STEM reform efforts 

that specifically set out to encourage the development of data-scientific thinking and 

identification with data science-doing among students who have been historically excluded from 

STEM education and careers because it suggests that while students with pre-existing interests in 

STEM benefitted from limited opportunities to grow these interests, those without pre-existing 

interests did not. 

Situational rationales for data-scientific learning. Students who only viewed data 

science as consisting of a technical skillset, did not speak of disciplinary understandings as 

valuable outside of school, college, or data-oriented careers such as marketing, statistics, and 
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computer science. Those that developed more nuanced understandings of the conceptual 

affordances of data science, however, viewed data-scientific skills and understandings as 

consisting of both a technical skillset and an evaluative mindset, thus these students were able to 

derive life skills from their experience taking IDS. Adan, Armando, Kim, and Sandra felt that the 

skills they learned in the IDS classroom helped them to not only develop a technical skillset but 

also push how they thought about mathematics, science, mediated representations of data, and 

decision-making and problem-solving in their everyday lives. For example, by taking IDS 

Armando realized that he routinely and unknowingly engaged in data science-doing at home to 

solve everyday problems related to budgeting and grocery shopping. He also mentioned using his 

now-bolstered tendency to think data-scientifically in other non-IDS/non-STEM classes: 

Line 1 

2 

3 

4 

5 

Instead of doing a basic interpretation of a graph, you can see that there’s more behind it…for example, 

in another class, I had to do my college plan. It wasn’t just about searching what school I want to go to and 

how far it is. What I did was look for different routes to get there, alternate routes, alternate modes of 

transportation, classes offered, transfer rate, what schools are better for what, and determine which 

schools would be better for my career choice. 

In the excerpt above, Armando emphasizes that what he learned in IDS helped boost his ability 

to think critically about important decisions in ways that supersede surface-level understandings 

of data and information in general (line 1). What’s more, he goes on to talk about how deeper-

level thinking can be applied to solving problems and completing tasks that may or may not be 

directly related to data science such as choosing a university (lines 1-2). In lines 3-5 he 

demonstrates how deeper-level thinking allowed him to engage in informed decision-making 

about important life choices.  

Similarly, Adan shared that taking IDS helped him realize that he, too, would engage in 

data-scientific thinking to make informed decisions about everyday life outside of the IDS 

classroom. He said that while he would research things before arriving at a conclusion or 
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solution, taking IDS solidified his feelings about the importance of making informed decisions 

like choosing a college or buying a house by conducting research, but also provided him with 

specific tools and techniques to do so. Kim, a professed lover of math, said that what she learned 

in IDS helped shift her thinking about math:  

Line 1 

2 

3 

4 

5 

6 

7 

8 

Ever since elementary, I really loved math. I’m in trig right now and have 104% and…it’s really easy but I 

always thought math was 1 + 1 or…a = a…. Math is always right, you can’t prove math wrong. But 

doing data science, I can see that math isn’t always 1 = 1. I’m not saying 1 = 1 is wrong, but there’s a lot 

of ways to express that, like 1 = .5 + .5—like when we answered a statistical question, there were many 

ways we could answer one question, or many ways we could ask the question to get the same answer. It’s 

like they say, “there’s many roads to Rome.” I think it helped me broaden my mind about math and the 

concept of mathematics combined with computer science and how it all connects. 

Kim was very confident in her math competency, and actually cited pride in her academic work 

as the reason for failing IDS her first year taking it because she dared not turn in incomplete or 

late work as it would not accurately reflect her self-perceived mathematical competence. She 

valued her experience taking IDS because it helped broaden her scope of what it meant to do 

math and what constituted legitimate mathematical responses and conclusions (line 7). Lines 4-7 

demonstrate that not only did she develop technical skills necessary to write appropriate 

statistical questions as defined by Ms. Gellar, she also gained conceptual understandings by 

thinking about the purposes of engaging in activities and completing tasks. For Kim, the ability 

to draw conceptual connections (line 8) between data science as a field and data science as a 

concept proved highly valuable for her own personal development. Moreover, Sandra felt that 

taking IDS, overcoming challenges, and being regarded as a highly competent data science-doer 

by her peers allowed her to develop personal characteristics that were transferable to different 

aspects of her life. To this effect, she offered, “[I learned] to not give up—keep trying, find 

different ways to arrive at solutions. To be open to different methods and not just stick to one 
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approach to solving issues.” In our interview, Sandra also spoke about the versatility of technical 

skills she gained in IDS as illustrated in the excerpt below: 

Line 1 

2 

3 

4 

Data science will make a good impact with any major because when it comes to gathering information, 

that’s pretty much what any job will require. Having knowledge of data science and knowing how to 

interpret information with computers you’ll have a faster way to find real-world solutions now that 

everything is going toward tech. 

Her assertions demonstrate that her experience taking IDS allowed her to develop nuanced 

understandings of the technical and conceptual affordances of data science. She points out that 

the skills she developed would be useful for conducting research in different academic 

disciplines (“major” in line 1) and real-world problem-solving. Below, Table 5.1 provides a 

breakdown of these responses and classifies the nature of students’ skills based on how students 

described skills and their applicability.  

Moreover, Adan, Armando, and Kim spoke of more personally meaningful rationale’s for 

wanting to perform well academically. While all students conveyed that they were motivated to 

fulfill classroom obligations as a means of achieving career goals that required high academic 

performance, Adan, Armando, and Kim also spoke of their desire gain “access to experiences of 

mastery and accomplishment” (Cobb & Hodge, 2010, p. 185). Despite the fact that classroom 

obligations narrowly defined data-science doing, students like Adan, Armando, Kim, and Sandra 
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Table 5.1 Student Views on the Applicability of Data-Scientific Skills to Their Personal Lives 

Use of data-scientific skills in your personal life? 

No Yes Skill Classification 

Angie  Technical 

Antoine  Technical 

Diego  Technical 

Dolores  Technical 

Gerardo  Technical 

Glenda  Technical 

Nube  Technical 

Andres  Technical 

 Adan Life 

 Armando Life 

 Kim Life 

 Sandra Life 

who expressed having disciplinary interests that were compatible with data science and 

endeavored to pursue a career related to data science were afforded opportunities to bolster their 

situational rationales for STEM learning in IDS. Additionally, Adan, Armando, and Kim, in 

particular, spoke of a life-long passion for disciplines central to data science: mathematics and 

computer science. In the following chapter I will provide analytical portraits of Armando and 

Kim as examples of students who engaged in data science-doing in ways that indicated 

developing critical data-scientific understandings. For now, I will proceed by discussing how 

students’ valuations of general classroom obligations reflected their perceptions of obligations as 

obligations to themselves. 

Student views of classroom obligations as obligations to themselves. All student 

interviewees expressed either structural or situational rationales for valuing classroom 

obligations. Ultimately, all students were invested, to varying degrees, in meeting these 

obligations because by doing so they were also working toward their own efforts to earn good 
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grades. While they were all personally invested in performing well academically in the IDS 

classroom, their motivations for doing so differed as discussed above.  

I also found that while students with situational rationales for valuing classroom 

obligations were motivated to perform well academically in order to earn good grades, they were 

also motivated by pre-existing valuations of mathematics, in the case of Adan and Kim, and 

computer science, in the case of Armando, as captivating and personally meaningful. Thus, while 

these students’ also valued classroom obligations as obligations to themselves, they valued them 

in service of their personal disciplinary interests and intellectual curiosity, and were, in fact, 

building on existing and profound disciplinary interests. This finding supports the notion that 

future iterations of programs that seek to inspire interest in the field of data science among 

students from non-dominant groups should endeavor to provide opportunities for students to 

develop conceptual understandings in service of exercising conceptual agency in the classroom 

as a way of fostering identification with data science-doing among all students, including those 

who do not already have pre-existing interests in STEM generally. A useful measure of whether 

students are beginning to identify with data science-doing is whether they are fulfilling 

classroom obligations as obligations to others or obligations to themselves for their own personal 

and intellectual enrichment (Cobb et al., 2009; Cobb & Hodge, 2010). 

Students’ Estimations of Their Peers’ and Their Own Data-Scientific Competency  

The majority of students whom I interviewed, with the exception of Gerardo, expressed 

that they perceived themselves as successful data science-doers in Ms. Gellar’s classroom. Their 

assessment of their competency and how they defined success was based on their perceptions of 

what it meant to do data science and what they perceived to be the work of data scientists based 

on their experiences in the classroom. For example, according to Glenda, data scientists are 
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responsible for gathering and analyzing data. She went on to describe the skills she gained in the 

class as consisting of developing disciplinary understandings (i.e., learning about measures of 

center and spread) and technical skills (i.e., learning to use RStudio to generate graphical 

representations) that enabled her to do the work of data scientists as she perceived it. Moreover, 

Nube said that the work of data scientists involved researching topics by creating statistical 

questions and going through the data cycle to draw conclusions for decision-making. 

Furthermore, she described the skills she gained in the IDS class as consisting of those necessary 

to analyze data for decision-making. According to Nube, her skills included developing 

statistical questions that anticipate variability in responses; administering surveys to collect data; 

and using RStudio to understand the data and generate graphical representations. Because 

students’ perceived skills and understandings were generally consistent with their perceptions of 

legitimate data science-doing, their estimations of self-competency in data science were positive 

and generally high. However, being critical of data and data artifacts, telling stories with data, 

and examining interesting patterns and exceptions in the data did not figure into student 

articulations of what it meant to do data science. Additionally, while they spoke to learning how 

to carry out solution methods and procedures for data analysis in RStudio, they were not 

encouraged to be critical of those processes nor of the data itself. This is problematic because 

while they gained experiences carrying out data-scientific inquiries, they did not gain 

experiences that encouraged criticality toward the politics of data, data collection, issues of 

privacy and surveillance, and cooptation of user data by large firms. 

Even though Ms. Gellar only identified five of the 12 student interviewees as 

demonstrating high academic achievement in her class, 11 of them expressed to me that they had 

high estimations of their data-scientific competency, which I believe can be attributed to their 
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observance and cooperation in the fulfillment of classroom obligations. A relevant finding here is 

that out of the 11 students who held high estimations of their data-scientific competency, 10 of 

these students attributed their estimation of self-competency to their ability to carry out 

established solution methods or follow established procedures for task completion. Relatedly, 

nine of these students attributed their estimation of self-competency to their ability to recall 

disciplinary understandings. For this reason, how students perceived their data-scientific 

competency is not a testament to whether they accurately understood disciplinary skills and 

concepts as intended by the teacher and the curriculum. Instead students’ estimations of 

themselves as data science-doers were concerned with how they came to understand what it 

meant to do data science in accordance with their experiences as members and participants in the 

classroom community. Thus, students felt that they were developing data-scientific competency 

as long as they went through the motions of the class and actively worked to meet perceived 

expectations. 

Angie and Diego’s accounts are useful for understanding how students reasoned about 

their peers’ and their own data-scientific competencies as closely related to personal effort. 

Angie and Diego both spoke about initially resisting fulfilling classroom obligations out of 

difficulty and frustration and attributed their growing data-scientific competency not to the 

development of conceptual understandings, but instead to their decision to follow directions for 

problem-solving and task completion. In telling me about how she was performing much better 

in the second semester of IDS, Angie cited her decision to follow lab procedures as instructed in 

RStudio labs as the key to her success in the class. Diego’s perception of what constituted 

“success” in IDS included knowing how to carry out established procedures to arrive at the 

correct solutions and generate appropriate graphical representations. In this way, students viewed 
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data-scientific competency as directly related to following procedures for task completion rather 

than gaining conceptual data-scientific understandings. There was an apparent overarching 

sentiment among students that achieving anything, including data-scientific competency, was 

only a matter of effort. This was positively reinforced when students like Angie and Diego 

followed directions for task completion and problem-solving, resulting in improved grades 

regardless of their level of conceptual understandings. Even students who expressed no interest 

in pursuing careers in STEM, or specifically data science, said that they still believed they could 

become data scientists if they so desired as this was only a matter of effort. Thus, the difficulties 

that students faced were perceived as within their control. Upon realizing the negative effects 

that their resistance was having on their academic achievement, Angie and Diego’s valuations of 

what was expected of them changed. The shift in their valuations and their decision to cooperate 

with classroom obligations were primarily driven by their attempts to avoid the negative 

repercussions that resisting classroom obligations had on their grade.  

Furthermore, just as overcoming difficulties was viewed as within their control, so was 

achieving facilities. Indeed, both Angie and Diego felt that they achieved some level of data-

scientific mastery by recalling established disciplinary understandings and following established 

procedures for task completion. Altogether, students conveyed that they possessed the capability 

to fulfill classroom obligations and viewed difficulties and shortcomings as having to do with 

their own effort rather with factors outside of themselves. They viewed themselves and their 

peers as fully capable of performing well academically, suggesting that their estimations of 

competency were not concerned with what they knew, but rather their willingness and 

motivations for fulfilling classroom obligations. While this view can prove empowering, it 

disregards the creativity, improvisation, and higher order thinking necessary to push the field of 
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data science forward and shape new and ever-shifting ways of thinking and working with data in 

the 21st century.  

Extent of Student Identification with Data Science-Doing 

Taken together, students valuations of their classroom obligations and estimations of their 

peers’ and their own data-scientific competencies indicate that they viewed classroom 

obligations as obligations to themselves in service of achieving their educational and career 

goals. Thus, their commitments to gaining data-scientific understandings did not necessarily 

indicate interests or commitments to the field itself. While this dynamic can be expected in 

traditional mathematics and science classrooms (Boaler & Greeno, 2000; Hull & Greeno, 2006), 

one must be mindful of the fact that IDS was not a traditional mathematics or science classroom 

and was instead supposed to inspire motivated student interest in data science as a way to 

achieve equitable outcomes for non-dominant students in STEM. Some students cooperated in 

the constitution and fulfillment of classroom obligations in strategic attempts to pass the class, 

earn good grades, or gain familiarity with technical skills that they believed were of relevance to 

a future driven by technology and computers. Significantly, some students also cooperated in the 

constitution and fulfillment of classroom obligations because the learning experiences they were 

gaining supplemented compatible disciplinary interests in mathematics and computer science. 

These students viewed the IDS class as an opportunity to develop their disciplinary 

understandings, gain skills relevant to their interests, and satisfy their personal intellectual 

curiosities.  

My analysis of students’ personal data-scientific identities revealed nuanced motivations 

and rationales for student participation in the classroom community and the extent to which they 

came to identify with data science. It also revealed that while students were willing to participate 
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in the fulfillment of classroom obligations, their estimation of the usefulness of data science to 

themselves, their families, their communities, and society as a whole were important factors that 

motivated their curiosity and interest in pursuing postsecondary study and careers in data 

science. While students felt that they gained technical and/or conceptual skillsets, their 

perception of the applicability of these skills to the real-world influenced their valuation of data 

science as a field and as a concept. This is an important finding for educators, curriculum writers, 

researchers, and policymakers invested in equity-oriented STEM reform because it bespeaks that 

narrowly defined expectations for student learning and classroom participation do not provide 

opportunities for students who do not already have preexisting interests compatible with data 

science to develop those interests. Conversely, this instantiation of a STEM reform effort 

provided opportunities for students with interests in mathematics, computer science, and 

technology to expand their scientific understandings. Indeed, these students felt that taking IDS 

helped them develop more than technical skills and disciplinary understandings and instead 

allowed them to gain life skills by applying data-scientific thinking to problem-solving and 

decision-making in their everyday lives. 

In the following chapter I will take a closer look at the classroom participation and 

interviews conducted with Kim and Armando as two students who began to develop what I term 

Critical Social Data-Scientific (CSDS) identities. While I do not believe that their development 

of CSDS identities came to full fruition during their time taking IDS, I will discuss factors that 

contributed to these students’ opportunities to reason in personally significant ways with and 

about data for everyday problem-solving and decision-making.



 

 158 

CHAPTER SIX 

Developing Critical Social Data-Scientific Identities: The Case of Kim and Armando 

In this chapter, I will provide an in-depth analysis of Kim and Armando’s exit interviews 

as well as their participation in the IDS classroom to discuss how and why they began to develop 

Critical Social Data-Scientific (CSDS) identities, unlike the majority of their peers. I focus on 

these two students because their participation and perspectives revealed that they were beginning 

to reason conceptually with and about data in ways that indicated 1) in-depth reasoning about 

relationships between data science skills and concepts; 2) thinking about data and data artifacts 

in real-world context; and 3) thinking critically about aspects of data collection and analysis. 

Indeed, I argue that these three criteria constituted their developing CSDS identities. In an effort 

to contextualize Kim and Armando’s learning rationales, educational aspirations, and their 

approach to data science-doing in the classroom, I will provide an analytical portrait of each 

followed by a discussion of how they engaged in each of the three criteria and opportunities that 

influenced their ability to do so. I believe that taking a closer look at Kim and Armando as case 

studies will enable a nuanced understanding of particular mechanisms that enabled them to 

engage in personally meaningful and enriching data science-doing within and outside of the 

classroom. While I do not argue that Kim and Armando fully developed CSDS identities, I do 

argue that they began to cultivate significant understandings and ways of reasoning that, 

provided the appropriate scaffolding and support systems, could be supported in future iterations 

of equity-oriented STEM initiatives that seek to bolster student identification with STEM-doing, 

particularly within data science. 

Introducing Kim 

When I interviewed Kim toward the end of the second and final semester of IDS, she was 

well on her way to passing the course and was considered by Ms. Gellar as one of the top 
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students in the class. Our conversation revealed that Kim’s academic identity as a high-achieving 

student was a very important facet of her identity as an individual. Kim was the youngest of four 

siblings and while she would not be the first to graduate high school, she spoke of pursuing a 

college education as a daunting task that none of her older siblings had been able to see through: 

I’m going to go to WCC [Western City College] for a year [after high school] …I’m 

going to bust my butt trying to [transfer to a university] because I have really bad 

experience with college…. [N]ot me personally, but in my family—no one has graduated 

from college in my entire family, my extended family. No one has graduated college. 

This was Kim’s second time taking the course and our exit interview revealed that not only was 

she determined to perform well academically and pass the class, but she was also on a mission to 

prove to herself and her family that she would graduate high school and be the first in her family 

to persist through higher education. Kim spoke with regret and disappointment of having failed 

IDS her first year taking it and felt that doing so undermined a very personal promise she made 

with her sister to prove to their mother that they would achieve what their brothers had been 

unable to:  

Line 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

When my brothers didn’t make it to college, and my sister was a senior [in high school], she was like, “You 

and me have to go to college. We have to prove to my mom that the girls can do it.” But then when she 

dropped out, she was devastated. I mean she loves her baby, but she wished that she could have stayed 

in school and not get pregnant. And now I’m just like—I don't know. And messing up in high school with my 

grades, I am just like [pensive]... I was the smart one. I was always the smart child, and they had a lot of 

hopes and dreams for me but I was like [trails off]... And so, I’m going to WCC for a year because I got 

really, really high scores on my placement test, so I don’t need those extra years. [Counselors at WCC] 

said that if I can really pick up the pace and take Summer and Winter classes, that I can be out of there 

by a year and a half, at most. And I was like, okay, well, I'm going to do it. I’m going to do it because I 

want to transfer and I want to be the first in my family to get my bachelor’s degree. I want to be that 

person. 

Undoubtedly, failing IDS ushered in an internal struggle for Kim wherein she tried to reconcile 

what it meant to be “the smart one” while simultaneously “messing up” her grades in high school 
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(lines 5-6). She refused to concede that failing IDS necessarily meant that she did not understand 

data-scientific skills and concepts, citing elsewhere in our interview that her non-passing grade 

was a result of a personal decision to not turn in incomplete or late work, and thus did not speak 

to her academic ability. The excerpt above conveys the personal significance that passing IDS 

and graduating high school had not only for Kim, but also for her family who supported the 

constitution of her strong academic identity. She viewed her failure to pass IDS, and the threat 

that it posed for her high school graduation and ambitions for a higher education as a letdown to 

herself, her family, and the “hopes and dreams” they held for her (line 6-7). Her strong desire to 

“be that person” (line 12) in her family to earn a bachelor’s degree drove Kim to try her best 

during her second year taking IDS. Her cooperation in the constitution and observance of 

classroom obligations was central to her ability to perform well academically. In fact, being one 

of the top students in IDS in its second year of implementation also served to vindicate Kim’s 

strong sense of academic prowess as it helped demonstrate that getting a better grade was well 

within her academic capabilities and a matter of turning assignments in when due. 

In addition to viewing her success in IDS as a means of uplifting her mother and meeting 

the academic expectations that her family had for her, performing well in IDS was also a way of 

pursuing her own pre-existing passion and curiosity for science and mathematics which had 

proved therapeutic and perspective-altering at an emotionally painful moment in Kim’s 

childhood. 

Line 1 

2 

3 

4 

5 

6 

7 

8 

I think [my desire to study astronomy] kind of originated when I was little, like when I was 7 or 6 years 

old, probably. I had a really sucky life. All throughout middle school, I was bullied; and I always 

remember being outside, especially at night, I would look and stare at the moon; the moon is my favorite 

astronomical thing out there... I would look at the moon, I would look at the stars, and I’d be like, “Why am 

I in pain?” and I don’t mean that in like asking God, “Why are you doing this to me?” but I mean it like, 

“Why am I allowing myself to be put down by everything that they say or do, if I am just a small speck in 

the universe?” And that really helped me. “I don’t care what you say, because what you say doesn’t 

matter anyway; not even to yourself, because you are nothing compared to everything that is out there.” 
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9 

10 

11 

And I really want to explore what is out there. I want to not only explore the world, but explore every 

possibility that is out there; something that could make a difference in the world. 

For Kim, reflecting on the stars, the moon, and outer space as a means of coping with the 

emotional and psychological distress she endured by being bullied helped shift her existential 

perspective in ways that enabled her to see beyond her immediate lived reality. Thinking of 

herself as a “small speck on the universe” proved therapeutic (lines 7-8) because it expanded the 

limits of reality, life, and possibility through scientific reflection. What’s more, I believe that 

Kim’s experience of overcoming being bullied and the critical role that science played in doing 

so cemented her view of science and scientific discovery as capable of helping others and 

making “a difference in the world” (lines 10-11). 

Conceptual reasoning about relationships between data science skills and concepts. 

In our exit interview, Kim credited learning to work collaboratively with her peers as a boon to 

her ability to not only understand concepts, but to develop understandings regarding the purpose 

of tasks, the function of data-scientific tools and skillsets, and how they all related to larger data-

scientific concepts. The following excerpt drawn from our interview is very telling in this regard: 

Line 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

In math in general, the subject math, every math class that I had, I would be almost done and everybody would ask 

me questions, everybody would come to me. And when I have a question, I'd have to ask the teacher. But here, I put 

my ego aside and actually ask a student to help me so that…they can have the experience of being able to 

explain something, not only the teacher. [Mr.] Suarez, [my] history teacher, he’s always saying “What's 1 + 1?” And 

everybody's like “2.” And he's like “Why?” And [everybody says], “because 1 + 1 is 2.” Because like why? It's like 

because that's what we were taught. That's what we were conditioned. But we never know how to explain things. 

We just say because that's how we were told, because of this. We don't understand the concept of it. And here, I 

understood it because the fact that I understood it in the beginning so I can explain it to other people in different 

ways, so that they can understand it too. So, if I'm lost about something, I want to ask them their opinion so that I can 

see how they do it, and then probably incorporate that into my work. And they can have the opportunity to explain 

something that probably they knew how to do it, but they were kind of iffy on it, and probably if they explained it 

to me, they're half-explaining it to themselves too and then they can have a better understanding of that subject too. 
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Despite expressing strong confidence in her mathematical competency (lines 1-3), the 

excerpt indicates that Kim was not as well versed in collaborating with others and explaining or 

verbalizing her reasoning. She offers that IDS provided an opportunity for her to seek out the 

help of her peers as well as offer it, and by so doing enabled her to develop communication and 

reasoning skills. She shares that “the experience of being able to explain something” to others 

allowed students to partake in the type of privileged conceptual reasoning typically reserved for 

the teacher (lines 3-4), and that she felt that students should also be able to share in the 

experience of reasoning in ways that help establish conceptual understandings. Based on her own 

experience as someone whom other students often consulted for help, explaining often required 

her to explain the “why” of things. Indeed, as I posited earlier in Chapter 4, while students were 

able to share their responses, answers, and solutions with me, they typically did not have a clear 

understanding of “why” certain solution methods were appropriate for certain problems. Thus, 

while they were actively developing disciplinary understandings that enabled them to exercise 

disciplinary agency in the classroom, they had fewer opportunities to develop conceptual 

understandings and exercise conceptual agency. This was due to the narrow distribution of 

authority in the classroom. Unlike the majority of the students in the class, Kim possessed some 

level of authority, not within the larger classroom community, but among her peers. Here, we are 

able to hear directly from Kim, who came to be recognized as a legitimate data science-doer, that 

approaching peer-to-peer help and collaboration as an exercise in articulating ideas and 

providing explanations helped her develop deeper data-scientific understandings—even for 

someone who had previously taken the course and was already familiar with data-scientific 

concepts imparted in the course. She also critiques traditional teaching approaches that position 

students as receivers rather than co-creators of knowledge, and argues that such practices 
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condition students to accept disciplinary assertions rather than develop deeper conceptual 

understandings (Cobb et al., 2009).  

On several occasions Kim demonstrated that she understood why a particular solution 

method was appropriate for solving a given problem as well as the relationship between skills 

and concepts. For example, when students were asked to analyze two data distributions for 

surface streets and freeway commuting times to determine which commuting method was best, I 

asked Kim to explain what she needed to know in order to make a determination: 

Line 1 
2 

RESEARCHER: What do you want to see? …How will you determine the best method? What will you be 
looking for? 

3 
4 
5 

KIM: We’re looking for the shortest average commute time, whether it be on the freeway or surface 
streets…whichever has the shortest commute time will be the best way to get to school. 

6 RESEARCHER: Is there a measure that would tell you which is the shortest commute time? 
7 
8 

9 
10 

KIM: The number that we get for the measure of center which gives you the average… [looks through 
the worksheet] …for surface streets, the typical was 33 minutes but for the freeway, the typical 

was 35 minutes so you would think that surface streets would be a quicker way to get to school. 

11 RESEARCHER: Okay. What about measures of spread? Would that influence… 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 

KIM: Yes, because [the] typical just tells you what the average is, but the measure of spread means—
it’s the possibility of you getting [to your destination in] about this [much] time, more or less. For 
example, if the measure of spread was two minutes then you can get to school in a matter of 

two more or less minutes than what the average is and that can really affect the data itself…. 
For example, it takes 35 minutes to get to school if you take the freeway, but the measure of 
spread is one minute, then you would get to school between 34 minutes or 36 minutes, but if the 
measure of center for streets is 33 minutes but the measure of spread is 10 minutes, then there’s 
a possibility that you can get to school in 43 minutes or 23. So the [spread] can really affect 

[your commute time]. 

While Kim does not specify which measures of center and spread she used during this particular 

exchange, she told me earlier during this lesson that her group calculated the median of the 

distribution as a measure of center and the IQR as a measure of spread because the distribution 

was skewed. She added that using these measures enabled them to more accurately identify the 

balancing point and variability in a skewed data set. In the excerpt above, she conveys an 

understanding of what measures of center and spread actually measure and what this means in 

the real world (lines 7-8). Even though this assignment was couched in the real-world context of 

commuting to school, Kim extended it with examples provided in lines 16-21 and demonstrated 

that she understood how one’s typical commute time might be affected given low or high 
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variability. By doing so, Kim indicated that she not only understood how to determine 

appropriate solution methods and why they are appropriate for solving particular problems; she 

also indicated that she understood the meaning of measures of center and spread in the context of 

commuting times. 

Data-scientific reasoning in real-world context. In the IDS classroom, Kim 

demonstrated her desire to use data-scientific skills and understandings to address problems that 

she believed affected people in the real world. In the excerpt below, we see Kim use a lab 

assignment and her disciplinary skillsets to shed light on issues of unemployment and 

homelessness among American military veterans. Our exchange took place while students were 

in the computer lab setting working on a practicum which asked them to develop and answer 

their own statistical question using data from one of their own data collection campaigns. When 

introducing the assignment, Ms. Gellar encouraged students to come up with a question they 

found interesting. I approached Kim and her groupmate, Diana, to ask if they had decided on a 

question. Our exchange was as follows: 

Line 1 RESEARCHER: Diana, have you all figured out a question? 
2 

3 

DIANA: Ummm—sort of and kind of. We’re going to figure out the average of [looks and points to Kim’s 

computer monitor. Struggles to articulate their question]— 

4 KIM: The average employment status of veterans and non-veterans. 
5 RESEARCHER: Veterans and non-veterans? 

6 KIM: Yes [nods in affirmation]. 
7 RESEARCHER: What data set are you using? 

8 KIM: American Time-Use Survey… 
9 

10 
RESEARCHER: So, why did you choose to use the time-use and not the—why did you choose this data set? 

11 KIM: This one has more variability because it’s not just on this class.  
12 RESEARCHER More variability in terms of what? 

13 KIM: In terms of the number—the total number of entries, the number of variables… 
14 
15 

RESEARCHER: So, I see it has—wow—more than 12,000 entries. Okay, so what is your question? Do you know 
your question? 

16 
17 

KIM: “What is the average employment status of a veteran compared to a non-veteran?” 

18 RESEARCHER: Is that [the question]? —Diana, you had said that you had “kind of” figured it out… 

19 DIANA: Mhm [nods and points to Kim]. 
20 RESEARCHER: Okay, so why do you find that interesting? Well—what led you to ask that question? 

21 
22 
23 
24 

KIM: There’s a lot of problems going on about how people are saying that we need to help our 
veterans out because they’re unemployed or they’re living on the street. But right now, I 
was looking at the first couple hundred entries and most of the veterans, if they were 
unemployed they were married or if they were not married they were employed. So, it 
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25 
26 
27 

didn’t seem like a problem in the first couple hundred entries, but I don’t know. There’s 
12,000—I’m not going to look through every single one so I’m probably just going to make a 
graph to see that. 

28 RESEARCHER: That sounds really interesting. I’m excited to see what your group comes up with. 

29 KIM: Thank you. 

Kim approached the assignment as an opportunity to address something that she felt was a real 

issue in society, and thus, sought to use her data-scientific understandings and technical skills in 

RStudio to shed light on an issue that she deemed relevant to her world (lines 21-27). In effect, 

Kim was thinking about the data at hand within the real-world context of unemployment and 

homelessness. Furthermore, her question also sought to address issues related to justice, 

opportunity, and equity for military veterans who return to bleak outlooks once reintroduced to 

civilian life (lines 21-22). The questions posed by other students also involved thinking about 

data in real-world contexts, but the extent to which they dealt with real-world issues was limited 

to mentions of variables (ex., calories, sweet or salty flavor profile, cost) and names of snacks 

that exist in the real-world. Additionally, the majority of students approached the practicum as 

they did other RStudio lab assignments and prioritized task completion rather than deeper-level 

engagement and meaning-making with data. By using the practicum as an opportunity to shed 

light on social issues, Kim demonstrated her inclination to use data science to develop 

understandings that could potentially help others, or as she put it in our interview, “make a 

difference in the world.” She also used the practicum as an opportunity to examine whether the 

data supported a perceived social phenomenon (i.e., “people are saying” in line 21).  

Given Kim’s academic endeavors and passion for science and mathematics, this 

assignment provided an opportunity for her to bring her out-of-school understandings into the 

IDS classroom for further analysis, allowing her to engage in data science-doing in ways that 

supported, enriched, or elucidated her understandings of the world beyond the classroom. Thus, 

Kim was able to engage in a personally enriching process of meaning-making with and about 
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data. Despite the affordances of working with the American Time-Use Survey data, including the 

fact that it likely contained more variability than the smaller in-house data sets generated by 

students in the class (lines 9-13), Kim soon realized that she was using the wrong data set, as the 

assignment clearly specified that students were to pick from two data sets collected during 

students’ participation in the Stress/Chill campaign and the Food Habits campaign. When I 

revisited Kim and Diana, our exchange unfolded out as follows: 

Line 1 RESEARCHER: And how’s it going over here? 
3 
4 

KIM: We had to change the question because it was the wrong data [set] [laughs nervously]. 

5 RESEARCHER: What data were you using? 
6 DIANA: Outside source 

7 KIM: Yes, an outside source. 
8 RESEARCHER: And you were supposed to use the data for your class? 

9 
10 

KIM: Yes. So, we changed the question to, “Do healthier foods cost more than unhealthy foods?”  

11 
12 

RESEARCHER: So why did you decide to switch your—I mean you still have [the student] time-use [data set], 
why did you decide to go with food habits [data set]? 

13 
14 
15 
16 
17 

KIM: Well, we were trying to find something that could connect to something…in our society, I 
guess you could say. And for this question, it is somewhat a problem because people are 
saying that we’re not healthy because we’re poor, but [that's] because healthy foods cost 
more. So, we asked a question that could potentially prove or disprove that— 

18 
19 
20 

21 
22 

DIANA: We’re trying to show the different healthy levels of different types of snacks and how much 
they cost. So, depending on the type of snacks and their costs is depending on the types of 
healthy levels that they have…we’re trying to compare whether or not the healthy snacks are 

more expensive or the unhealthy snacks are either more expensive or cheaper… 

23 
24 

RESEARCHER: What were your thoughts before—what was your hypothesis? Kim, you were saying you 
were trying to connect it to… 

25 KIM: Something in society. 

26 RESEARCHER: Yes, so what is that—you said that people think or people say— 
27 
28 

DIANA: She had thought that…the healthier the snacks, the more expensive they are and that the—m 

29 RESEARCHER: Do you see that in society? Is that something you see? 
30 DIANA: Yes [nods unhesitatingly]. 

31 RESEARCHER: Where do you see that? 
32 DIANA: A salad will be like $7 when you can buy a Big Mac for three bucks—three-four bucks. 

33 RESEARCHER: Or a cheeseburger for a dollar. 
34 DIANA: Or a cheeseburger for a dollar, exactly. 

35 
36 

KIM: It’s even simpler than that. A Gatorade can cost like 69 cents and a water [bottle] can be 
like $1.20, $1.50. 

Evident in this second exchange is that Kim, again, approached the practicum as an opportunity 

to address an issue that she perceived to be of relevance to society. In lines 13-14, she explicitly 

stated that the intent behind the question was precisely to ask a question that “could connect to 

something…in our society.” Like her previous approach, Kim took an issue relevant to her 
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everyday life and brought it into the classroom for further analysis. Regardless of whether the 

data supported or contradicted such claims (lines 6-7), using data in this capacity and for the 

purpose of understanding phenomena in her own world held the promise of enriching Kim’s 

understandings of the world and issues of socioeconomic disparity within it through data 

science-doing.  

In this second exchange, unlike the first, Kim inserted herself and her community into the 

process of meaning-making with data. She did so by arguing that claims that posit that “we’re 

not healthy because we’re poor” fail to acknowledge disparate access to affordable healthy foods 

(lines 14-16). This shows that Kim was critical of and sought to tackle the widely held 

misconception that low-income families consume fast and unhealthy food at disproportionate 

rates (Chandler, 2015; Vikraman, Fryar, & Ogden, 2015; Philip, Rocha, & Olivares-Pasillas, 

2017). Additionally, in lines 32 and 35-36, both Diana and Kim provided examples drawn from 

their own experience to support Kim’s claim that healthy food is more expensive and, thus, less 

accessible to those living in poverty. It should be noted, here, that Kim did not use her 

perspective as a definitive response to her statistical question, but instead used it to lay the 

contextual groundwork that informed the purpose of her data analysis and her motivation for 

engaging in it. This I surmise according to lines 16-17 where she indicates that data analysis will 

help her “prove or disprove” both what “people are saying” and what she understands as a 

contributing factor to unhealthy eating for those living in poverty. Moreover, by saying, “we 

asked a question that could potentially prove or disprove that,” Kim conveyed that her question 

was not specifically designed to address the claims she presented, but acknowledged that her 

findings could potentially shed light on the matter of concern by allowing her to infer meaning 

from her data analysis and resultant outputs. This is a significant finding because it demonstrates 
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that Kim’s approach to data science-doing as it pertained to completing the practicum served as 

an exercise in inferential thinking. What’s more, her approach to completing the assignment 

imbued the exercise with personal signification, making it consequential for life beyond the 

classroom. 

This exercise provided unique affordances to Kim that routine assignments and exercises 

did not. For example, students had an entire class period, lasting 90 minutes, to come up with a 

question, analyze the data, and generate graphical representations to be included in the 

completed assignment. The exercise was open in nature to the extent that students were provided 

the time and flexibility to make their own decisions with regards to what questions to ask and 

what methods to use in order to answer their question. Given, they had to share their question 

with Ms. Gellar before carrying out the practicum in order for her to approve it, thus, questions 

had to conform to established standards for what constituted an appropriate statistical question. 

Still, while most students settled on questions on the basis of ease and feasibility of completion, 

Kim’s question primarily sought to address real-world issues. 

Kim’s ability to further develop her budding CSDS identity was first hampered by the 

assignment’s specification that students use one of their in-class data collection campaigns. 

Presumably, she had yet to share her question with Ms. Gellar for approval when she first told 

me that she was interested in looking at the relationship between veterans and issues of 

homelessness and unemployment. While Kim was able to come up with a new question that was 

still socially-relevant and mounted a critique of social disparities, her decision to use the more 

expansive American Time-Use Survey data set because it contained more variability went 

unacknowledged by the larger classroom community even though Ms. Gellar explicitly told 

students on multiple occasions that variability was something they should look for in a data set. 
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Furthermore, Ms. Gellar told students that they could choose from one of two in-house data sets, 

but when I asked other students why they selected to work with the Food Habits data set, all of 

them expressed that the alternative was not truly an option as there were numerous missing 

entries. Thus, while students were outwardly presented with two options, they realistically only 

had one. Therefore, even though students were encouraged to exercise agency by selecting a data 

set and carrying out their own mini-study by designing a statistical question, their opportunities 

to exercise agency were framed within established bounds for data science-doing as determined 

by the course. 

Thinking critically about aspects of data collection and analysis. The openness of this 

practicum, coupled with Kim’s efforts to understand what her class’ snack data revealed about 

larger issues relating to poverty, unhealthy eating, and affordability of healthy foods, led Kim 

down a path where she was compelled to turn a critical eye to aspects of data collection. I present 

the following excerpt to show how Kim’s criticality toward aspects of data collection began to 

develop once she produced data outputs to answer her statistical question:  

Line 1 
2 

KIM: [Examines histograms she just created in RStudio] 

 
3 RESEARCHER: Can you tell me what you’re looking at? —or what I’m looking at? 

4 
5 
6 

MS. GELLAR: [Announces that students have 10 minutes left to work on the practicum. She extends the 
due date for the assignment from today, Friday, to Monday afternoon.] 

7 RESEARCHER: What do you read? When you look at that [visualization] what do you see? 

8 KIM: [Actively thinking through the exercise] Each one of these [boxes] is a healthy level, but 
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9 
10 
11 

instead of showing you the number…it gives you this [orange] line—depending where it is, 
like, this is [healthy level] one [points to box on the bottom left], this is two, this is three, 
this is four, and five. 

12 RESEARCHER: Ohhh, okay, I see. 

13 
14 
15 
16 
17 
18 
19 

KIM: These numbers [on the vertical axes] show how many people input that much data for each 
[healthy level], but I’m not sure about cost, because I don’t think anything cost $20 or $5, so 
there’s no point to putting this range here, making each one of these [prices] harder to 
see…but I can see that nothing cost more than five. [Points to boxes for different healthy 
levels] this hardly goes past five, this doesn’t go past five, doesn’t go past five. A little bit 
here [points to shortest column in the histogram at the bottom right] but that’s just part of 
the graph. 

20 RESEARCHER: Does this graphic support your hypothesis? 

21 KIM: [Pensive] 
22 
23 

RESEARCHER: What do you think? What do you ladies think, do these histograms support what you thought 
you’d find? 

24 DIANA: I kind of think it’s within the middle… 
25 
26 

27 
28 
29 

KIM: [To Diana] Well, I think you say that because [the histogram for healthy level 3] is taller, but that 
just means that more people [input entries for healthy level 3]. What we really need to be 

looking here is for the range but the thing is that here, in the third healthy level, somebody paid 
20 bucks for something… [looks at the histograms on her monitor pensively]. 

Based on my interaction with Kim, she grew pensive and conflicted when she realized 

that the histograms did not necessarily support a hypothesis premised on her own lived reality. 

The histograms indicated that snacks purchased by students for all healthy levels were within the 

$0-$5 price range (lines 14-15) and that students entered more data for snacks with healthy levels 

2 and 3 compared to snacks with healthy levels 1, 4, and 5 (lines 2, and 25-28). In an effort to 

reconcile what she expected the data to show and what it actually showed, Kim began to ponder 

the legitimacy of the data itself, stating “I’m not sure about the cost because I don’t think 

anything cost $20 or $5.” She then went on to comment on how the presence of a $20 outlier 

affected the rendered visualization and impaired her ability to read and interpret the histograms 

(lines 15-16). Our exchange came to an end as the class was almost over and Kim continued to 

think about the meaning of the histograms. Evidently, if all snacks were within the same price 

range on average and for all healthy levels, this meant that the data did not support what both 

Diana and Kim experienced in their daily lives. I discern, based on Kim’s pensiveness and the 

contentions she raised regarding the legitimacy of entries for the “cost” variable, that she did not 

genuinely believe in the accuracy of the data before her. I am not arguing that the data was 
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inaccurate because it failed to support Kim’s out-of-school understandings, nor do I hold that the 

data somehow invalidated what Kim believed to be true, but I believe that Kim’s growing 

skepticism, given more time and probing questioning by other members of her classroom 

community including her peers and Ms. Gellar, could have led to a powerful awareness of how 

the process of data collection can elucidate and simultaneously obscure certain aspects of the 

phenomenon under measure. Here, I am specifically referring to the fact that the “healthy level” 

of snacks was arbitrary.  

During the practicum, students were reminded that healthy level 1 meant that snacks were 

“very healthy” and healthy level 5 meant snacks were “not very healthy.” Thus, when inputting 

snack data, students were tasked to rate, on an individual basis, the level of healthiness for each 

snack entered throughout the day during a given period of data collection. Therefore, there was 

no particular measure or criteria outlined in the curriculum to help students establish a healthy 

level for snacks. This means that while one students could have determined that a snack bar that 

contained granola was very healthy (level 1), another student could have rated the same snack as 

not very healthy (level 5) if they felt that the presence of granola alone did not signify a healthy 

snack given that many of these bars also contain lots of sweeteners, sodium, simple 

carbohydrates, and fats.  

Moreover, while Kim asked a question that she hoped would shed light on real issues 

relating to healthy eating and food costs, the contents of the data set were not representative of 

students’ actual “Food Habits” as the name of the data set suggested. During the first year of 

implementation of the IDS curriculum, this data collection campaign was referred to as “Snack 

Habits” as it specifically sought to measure students’ consumption of snacks. For the second 

year, the name was changed to “Food Habits,” however, students were explicitly told to collect 
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only data on snacks and to exclude full meals. This means that the “Food Habits” data set did not 

contain the type of data necessary to address Kim’s question, “Do healthier foods cost more than 

unhealthy foods?”  

Moreover, while Kim could feasibly have answered her question by overlooking the fact 

that the data set only included data for snacks and not food in general, doing so would have 

undermined the foundational motivation that gave rise to her question in the first place. I believe 

Kim was ultimately likely to prioritize task completion regardless of her criticality toward the 

data given the following perspective shared during our interview where she alluded to the 

negative consequences of not completing assignments, “This year I’m more of like ‘You’ve got 

to finish [the assignment], you’ve got to finish it,’ because I know what’s going to happen if I 

don’t.” By treating the Food Habits data set as static and legitimate, students became responsible 

for ensuring that their statistical questions conformed to the contents of the data and were, thus, 

answerable. Kim’s desire, and ultimate inability, to shed light on social concerns within the 

bounds of dominant classroom expectations and obligations provides a nuanced account of how 

narrowly defined tasks and criteria for doing data science upheld epistemological exclusion 

within an instantiation of STEM reform and hampered her ability to continue to think richly and 

critically with and about data. While I do not believe that this experience ultimately hurt Kim’s 

motivation to think data-scientifically in her everyday life, her desire to use science and math to 

help society, and her aspiration to pursue an education and career in STEM, it is important to 

recognize that it did not validate and support the continued development of her data-scientific 

criticality and the accompanying potential to yield new insights and establish conceptual and 

sophisticated data-scientific understandings. And so, even though Kim gained experience 

learning to work with data, she was not afforded the opportunity and authority to reflect on and 
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transform how she and others were thinking of data as static and true. Kim’s conceptual data-

scientific understandings enabled her to discern that something was not making sense, but 

without questioning the validity of the healthy level variable and reflecting on what the data 

actually represented (“snacks” as opposed to “food”), she was unable to arrive at a clear 

understanding of the data and of her question. 

The excerpts discussed above indicate that Kim began to develop a CSDS identity within 

the bounds of acceptable data science-doing as determined by the classroom community and as 

imparted by classroom obligations. This means, however, that her developing CSDS identity was 

constricted by the bounds of acceptable data science-doing as it played out in the classroom and 

that students had little say in the transformation of existing data-scientific understandings and the 

creation of new knowledge. Armando’s developing CSDS identity, on the other hand, occurred 

wholly outside of what was constituted as legitimate data science-doing. Indeed, his process of 

meaning-making with data took place in opposition to dominant expectations imparted by 

classroom obligations. In the following section, I will discuss opportunities and mechanisms that 

gave rise to and simultaneously limited Armando’s development of a CSDS identity. 

Introducing Armando 

When I interviewed Armando, he had been identified by Ms. Gellar as one of the lower 

achieving students in her IDS classroom. I found this odd because throughout my classroom 

observations and interactions with Armando, he demonstrated active participation in the 

classroom and engaged interest in understanding data-scientific skills and concepts. Our 

interview revealed that Armando had a passion for technology and the medical field and was 

extremely motivated to pursue a future in either computer science or pediatrics. Armando’s 

interest in pediatrics emerged when he began attending MSHS as the school encouraged students 
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to pursue careers in the medical field. He expressed that his desire to care for children stemmed 

from his belief that “kids are the future of the world” and that caring for them made him feel like 

he was making a contribution to larger society. Due to the fact that MSHS is a medical-themed 

high school, students had the opportunity to participate in internships with local healthcare 

providers, an opportunity that proved influential for Armando: 

I have the internship at St. Juliana Medical Center here in [the local city of] Stanwood 

and I have been getting a lot of insight into what the medical field is. Sometimes, they 

would allow me to work with the children there. That is what made me want to become a 

pediatrician…. Because I have the most hours working there as a volunteer and I have a 

better understanding than the others, I am the volunteer leader.  

Armando’s desire to help those around him, particularly children, could be attributed to his 

position as the oldest of three children and his role as a resource to his parents for household 

budgeting and informed everyday decision-making. For example, when I asked him how he 

might use the skills he learned in IDS in his everyday life, he shared the following: 

[Say you] want to go buy groceries [and] you're on a budget. You might want to go 

online to each store that may be nearby and then check their pricing on the item that you 

want to get, to check which one would be less expensive… Also, calculating the distance 

it takes from your house to the store [is important]. Gas—calculating how much gas 

you're going to be using up to get to that location. [Asking,] “Is it better to go to a further 

location that is less expensive than to go to a closer one that is more expensive?” ... That 

example [is] one that I deal with most often with my parents. They want to shop 

somewhere because it's less expensive than a place that is closer, but if you think about it, 

you're not only going to spend…money [on groceries]. There'll be your car, the usage of 
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your car, the gas, your tires, your engine [to consider]—so all of that goes into play. If 

you think about it, you're either spending the same or a lot more. 

This excerpt is a testament to Armando’s important role as a resource within his family and 

contextualizes an understanding of his desire to help those around him as he continues on his 

educational and career trajectories. Furthermore, our interview revealed that his parents 

expressed admiration for Armando’s resourcefulness and problem-solving skills, particularly 

when it came to technology. In fact, even though Armando described becoming a pediatrician as 

his career “Plan A,” he shared that before attending MSHS he ambitioned to become a computer 

programmer. His fascination with and passion for all-things-technology began when he was 

seven years old when his parents bought him his first desktop computer. Armando recounted 

how encountering problems with his computer helped establish a deep-seated and lasting 

curiosity for understanding the way technology works: 

Line 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I was about seven years old when I had my first desktop [computer]. That desktop…would constantly have problems 

whether it would be inside the computer or in the software… My parents didn't know much about technology—at 

that time, I did not either, but it was easier for me to understand more of what was happening. Because of that and 

also because we didn't have the money to go [get the computer repaired] every single time there's something wrong 

with it… For example, the power bank of the computer, it would fry out. The fuse would just crack in the middle so 

you either had to replace the whole unit or you would fix the fuse. Most of the times, it's harder to fix the fuse so 

you just have to buy another one. Like I said, we didn’t have the money to go buy parts or get it repaired. I actually 

had to go in there, open it up, see how it works. [I would] go on the computer and find out what would be wrong 

with it—what is the cause [of the problem]. From there[on], I would try to fix it. 

In the excerpt above, Armando speaks about the circumstances that set the stage for his 

technological curiosity. He alludes to generational differences in familiarity with technology that 

enabled him to begin working with computers at the age of seven when he notes that even 

though neither he nor his parents knew much about computers, it was “easier” for him to 

understand his computer’s functionality and the issues that impaired it (lines 2-4). In lines 4-6 he 

acknowledges that another major catalyst for attempting to fix computer hardware and software 
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issues was the fact that although his parents managed to buy him a computer, they could not 

afford to pay for repairs or to buy new computer parts. Thus, socioeconomic circumstances in his 

home played a critical role in what eventually became Armando’s tendency to tinker with 

technology as a means of understanding how it works. When I asked him how his parents felt 

about his taking apart a computer they, presumably, struggled to buy he said his parents were 

“happy” and “proud” of his ability to do so. They found this fascinating because technology was 

something new to them and they viewed computers as a possible profession for their son. And 

so, Armando’s parents were encouraging of his tinkering and curiosity about technology. 

More opportunities for Armando to tinker with computers arose when his father 

developed a friendship with a computer repair shop owner. The shop owner invited Armando to 

visit his shop and offered to teach him how to troubleshoot and otherwise fix computers: 

In that shop, was the first time that I built a computer with the spare parts that he had 

laying around. I built a computer and I programmed it. Once I [had] the operating system 

going, I had to download all these drivers. Sometimes, because we didn't have the 

internet drive, I would have to work through it to try to get that driver from the system. 

Thanks to Armando and his parents’ resourcefulness he was able to gain experiential knowledge 

of computers that proved profoundly meaningful. He said he spent Summer and Winter breaks 

learning from the shop owner and experimenting with spare computer parts to the extent that he 

eventually began to repair computers brought in by customers—what he referred to as a true 

“test” of his knowledge and understanding. These experiences helped shape how Armando 

approached learning about and with computer-technologies by supporting and rewarding his 

genuine desire to understand how computers and other form so technology work.  
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The out-of-school experiences that Armando brought into the IDS classroom shaped his 

participation and the extent to which he came to observe and value classroom obligations. I argue 

that while Armando, for the most part, cooperated in the constitution and observance of 

classroom obligations, less-structured activities and assignments, coupled with his preexisting 

passion for technology and curiosity for how things work, enabled him to begin to develop a 

CSDS identity in Ms. Gellar IDS classroom. Unlike Kim’s developing CSDS identity, 

Armando’s developing CSDS identity occurred outside of narrowly defined ways of data 

science-doing. 

Conceptual reasoning about relationships between data science skills and concepts. 

Before Armando stepped into the IDS classroom for the first time, he had already gained 

valuable out-of-school experience tinkering with computers and was keen on understanding how 

things worked. During our interview, Armando spoke briefly about his experience in a computer 

science class where students were tasked with animating a cat on a website. He said, “we would 

take a code and move it into the console and press ‘Begin’ and the cat would move, but doing 

that didn’t help us understand the code.” He added that while the teacher clearly specified what 

they could do with codes, Armando challenged the teacher’s narrow delineations of coding 

because in his view, they did not foster deeper understandings: 

I would go more [in-depth and tell my teacher,] “With codes you can do other things not 

just this. Right here, you’re not actually learning the code or seeing the code. What [you 

are] doing is just telling it what to do.” 

While Armando did not offer the same criticism of his IDS class, he described RStudio lab 

assignments similarly when he said that before entering the IDS classroom for the first time he 

“thought [coding in IDS] would be easier for [him] but the coding [in RStudio was] a lot 



 

 178 

different than software development.” He compared coding in RStudio with coding for software 

development by positing that coding in RStudio is used for information retrieval, whereas coding 

for software development is meant to program a computer by inputting algorithms to tell it how 

to operate. 

Armando’s desire to understand how things work was also evident in his participation in 

the classroom, namely in his challenges of Ms. Gellar’s data-scientific assertions. These 

challenges emerged as Armando sought clarification of concepts or struggled to understand the 

conceptual reasoning that founded her data-scientific assertions. Classroom obligations held that 

authority was principally distributed to the teacher and to the RStudio lab assignments, thus, her 

data-scientific assertions were not often challenged, but out of the five challenging acts I 

observed during the second semester of IDS, three of these were initiated by Armando. His 

challenges to Ms. Gellar were never attempts to undermine her role as the authority figure in the 

classroom nor were they personal attacks, but were instead proffered as clarifying questions. 

Challenges should be interpreted as students’ efforts to gain conceptual understandings of data-

scientific skills and concepts. 

For the remainder of this section, I will focus on an instance of Armando’s challenge of 

Ms. Gellar’s data-scientific assertions about chance and chance outcomes in the context of his 

efforts to deepen his understanding of data-scientific skills and concepts. This challenging-act 

took place when Ms. Gellar introduced a new theme—probability. During the lesson on 

probability, students were provided with an “enduring understanding,” which described 

probability as “[a measure of] the long run frequency of occurrence for chance outcomes.” Ms. 

Gellar asked students to think of synonyms for “chance” in their groups; synonyms included 

“possibility,” “luck,” “odds,” “random,” and “coincidence,”—all of which were legitimated as 
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appropriate responses. After sharing their synonyms, Ms. Gellar asked students to explain what 

the statement “that just happened by chance” meant. Students offered the following responses: 

Roselyn: It was just a coincidence 
Jesus: If it happens again, it might not be the same outcome 

Pheobe: It was unplanned 
Gerardo: Unanticipated 

Ms. Gellar, in turn, synthesized these responses by stating that if something happens by chance, 

that means “there was no intention in what happened—it just happened…nobody made a 

decision that that will happen.” Given these collective understandings of the meaning of chance 

and chance outcomes, the class was asked to think of situations where outcomes could be 

attributed to chance. The following excerpt documents the exchange that led up to Armando’s 

challenge of Ms. Gellar’s assertions about the meaning of chance: 

Line 1 MS. GELLAR: Let’s see who can come up with the most creative [example]. 
2 DIEGO: Gambling? 

3 MS. GELLAR: Gambling. Okay, can you be a little more specific? What kind of gambling? 
4 DIEGO: Slot machine. 

5 MS. GELLAR: Slot machine. Okay. [Looks for new volunteer and nods at Roselyn] 
6 ROSELYN: The gender of the baby. 

7 
8 

MS. GELLAR: Gender of a baby—ooh, I like that one! 
Nobody chooses what kind of child they have, right? —that’s true. 

9 ARMANDO: Receiving a gift? 

10 MS. GELLAR: Receiving a gift [ponders]—somebody made a decision about your gift. 
11 ARMANDO: But you don’t know it. 

12 
13 

MS. GELLAR: You don't know, but somebody made the decision, right? So, the gift was a decision. 

14 JENESSA: [Inaudible] 

15 
16 

MS. GELLAR: Jenessa’s asking, “What do you think about horse racing?” Do you think that that [has a] 
chance [outcome]? 

17 STUDENTS: [Several students say “Yes”] 

18 JESUS: Unless it’s rigged! 
19 
20 

MS. GELLAR: Yeah—you might not be able to tell, right, who’s the winner—I just saw a couple of other 
hands—Carlo, did you have one? 

21 CARLO: [Playing] lotería? 
22 
23 

MS. GELLAR: Lotería…yeah because that’s just based on whatever you get, right? [Looks for new student] 
Diana. 

24 DIANA: Bowling?— 
25 DIEGO: No, that’s skill. 

26 MS. GELLAR: Yeah [agrees with Diego]—that’s based on something. Yeah. [Points to Jesus] 
27 JESUS: A raffle? 

28 MS. GELLAR: A raffle—okay. Yeah. Any others? Mervin. 
29 MERVIN: Let’s say you’re holding a gun and what if you get a misfire? 

30 
31 

MS. GELLAR: Say you’re holding a gun and there’s a misfire? Uh…you don’t know that’s going to happen, 
I guess. 

32 ARMANDO: [Raises hand after Ms. Gellar agrees that a misfire is a chance outcome] 

33 
34 

MS. GELLAR: [To all students] Wait, we’re having a discussion so you should be listening to the person 
that’s talking and at the moment that’s Armando. 

35 ARMANDO: As long as you can manipulate the situation is it chance? 
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36 MS. GELLAR: No. 
37 ARMANDO: No? 

38 MS. GELLAR: So as long as the situation can be manipulated in some way it is not chance. 
39 ARMANDO: So, like he said, the gun…he didn’t decide to pull the trigger. 

40 
41 
42 
43 
44 
45 
46 

MS. GELLAR: Yeah, so, there is an intention in whether I’m firing the gun or not, but I think he’s referring 
to the fact that it’s a misfire—that’s unintentional. So, that’s a good point, right? The fact 
that he’s firing a gun is not by chance. But the fact that there’s a misfire was the chance 
[outcome]—well, actually last year [in IDS], I don’t know if you [Diego and Kim] remember 
this, but we talked about Russian Roulette, you guys know what that is? Yeah—that’s 
similar. Somebody’s choosing to fire a gun but you don't know whether the bullet is going 
to come out or not. 

Of the nine proposed examples of situations where an outcome might be due to chance 

(including Ms. Gellar’s example of Russian Roulette), Armando’s and Diana’s were deemed as 

not consisting of outcomes that were due to chance. Below (Table 6.1), I offer a breakdown of 

these proposed examples in an attempt to understand the logic behind Armando’s challenge to 

the assertion that receiving a surprise gift is not a chance outcome. 

Table 6.1 
Situation where outcome 

is due to chance 
Outcome Was outcome 

intended by primary 
person affected? 

Was example 
legitimated? 

Reason for legitimation 
or delegitimation 

DIEGO: Slot machine 
gambling 

Symbol 
combination 

No Yes Player does not 
manipulate outcome 

ROSELYN: Sex of a baby Specific sex No Yes Parents do not select 
gender 

ARMANDO: Receiving a 
gift unexpectedly 

Gift No No Someone intended to 
deliver gift 

JENESSA: Horse racing Winning horse No Yes Winner is not 

specifically intended 

CARLO: Lotería Cards drawn No Yes Cards are shuffled/not 
intended 

DIANA: Bowling [Unclear] [Unclear] No Game of skill not 
chance 

JESUS: A raffle Winning ticket No Yes Winner is not 
specifically intended 

IRVING: Holding a gun, 

accidental misfire 

Misfire No Yes Misfire is not intended 

MS. GELLAR: Russian 
Roulette 

Bullet fired No Yes Cylinder is spun, chance 
of gunshot unknown 

Given established understandings of the meaning of “chance,” I argue that Armando initially 

believed that his example was appropriate because the individual primarily affected by the 

outcome did not orchestrate the occurrence of the specific outcome (line 11 in the excerpt 

above). In this regard, his example of unexpectedly receiving a gift qualified as a situation where 

the outcome was due to chance. To put it another way, unexpectedly receiving a gift from 
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someone would qualify as a random or coincidental occurrence. However, Ms. Gellar argued that 

because someone intended to deliver the gift, the outcome was not due to chance (lines 12-13). 

While Ms. Gellar’s reason for invalidating Armando’s proposed example might make sense in a 

conventional statistics course, it essentially closed off engaging in rich and nuanced whole-group 

discussion about a data-scientific concept within the reform-based and equity-oriented IDS 

classroom. Moreover, ensuing examples blurred established definitions for chance outcomes as 

the rubric used to judge his example was not consistently applied to others. This also occurred 

with Diana’s example of bowling in line 24. It was unclear to me whether she was referring to 

winning a bowling match, hitting a pin, or rolling a strike and Diana did not have a chance to 

elaborate as her response was immediately dismissed by Diego as a matter of skill (line 25), an 

assertion that was supported by Ms. Gellar (line 26). It is worth noting that even though horse 

racing can also be thought of as a game of skill for both the jockey and the racehorse, when 

Jenessa proposed this example (lines 14-15) it was approved as involving a chance outcome 

(lines 17 and 19-20). Where Diana did not challenge the dismissal of her example given the 

approval of a peer’s example that in ways paralleled hers, Armando challenged the dismissal of 

his when Mervin’s example of a misfire was accepted.  

Mervin’s proposed example in lines 30-31 was premised on the idea of someone “holding 

a gun” and unexpectedly experiencing a misfire. Ms. Gellar mistakenly thought he was talking 

about firing a gun and subsequently experiencing a misfire (line 42). In Armando’s view, Ms. 

Gellar’s dismissal of his example as not consisting of a chance outcome did not make sense 

given her assertion that although the person directly affected by the misfire in Mervin’s example 

intended to shoot but did not intend to experience a misfire. I surmise that based on Armando’s 

professed personal curiosity and years of tinkering with computer parts and mobile technologies 
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to understand the logic behind their functioning, his constant reasoning about how things work 

outside of the classroom translated to reasoning within the classroom about what qualified as a 

chance outcome. Thus, Armando believed that both his and Mervin’s examples involved 

unanticipated outcomes for the individual directly affected preceded by intent by that individual 

or someone else to, in Mervin’s case, fire a gun or deliver a gift, in Armando’s case. 

I present this example, not to make a definitive statement about chance outcomes nor to 

propose re-determinations for proposed examples, but instead to demonstrate how Armando’s 

desire to understand how things work played out in the classroom setting. At first, he tried to 

understand the logic that defined a chance outcome, followed by his proposal of an example that 

was consistent with that logic. His challenge of Ms. Gellar’s data-scientific assertion represented 

a manifestation of his efforts to understand the data-scientific notions of probability and chance. 

However, because his attempts to develop conceptual understandings were positioned as 

challenges to how authority was distributed in the classroom, and therefore occurred outside and 

in opposition to narrow delineations of data science-doing, opportunities for him and his 

classmates to develop conceptual understandings about data-scientific concepts, in this instance 

of chance and probability, during whole group discussion were hampered. Nevertheless, 

Armando’s attempts to develop conceptual understandings about data-scientific skills and 

concepts persisted because they were an extension of his out-of-school tinkering, problem-

solving, and sense-making practices. 

This exchange illustrates the importance and value of recognizing students as capable 

contributors to the development of new ways of thinking and to the conceptualization of 

traditional statistical concepts within data science. Necessarily, rash judgements of student 

responses and sense-making practices allow little room for the development of new knowledge 
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in the classroom and impair both students’ abilities to make meaningful disciplinary connections 

and the teacher’s ability to truly understand the non-traditional epistemological contributions and 

practices that students bring into the classroom. I believe that addressing this shortcoming is a 

matter of supporting the development of teachers’ interpretive power—that is, their ability to 

avoid misinterpreting student sense-making and meaning-making processes “when a discourse 

practice does not conform to a teacher’s expectations of what an explanation or argument looks 

and sounds like” (Rosebery et al., 2016, p. 1574). Supporting teachers in their constant 

development of interpretive power in the STEM classroom is about acknowledging and 

embracing the ways of knowing of non-dominant students. These are processes that can be easily 

overlooked or dismissed if measured against “historically privileged ways of knowing, talking, 

seeing, and acting shaped by European American practices and values” (Rosebery et al., 2016, p. 

1574; Warren & Rosebery, 2011; Bang et al., 2013; Seiler, 2013). Thus, when it comes to 

addressing issues of equity and access to STEM fields for students from non-dominant groups, it 

is necessary to consider the differential ways in which students might be making sense of new 

concepts and how established disciplinary understandings might take on new signification given 

non-traditional epistemological orientations of students. 

Data scientific reasoning in real-world context. On several occasions during our 

interview, Armando spoke about the general usefulness of data-scientific skills for everyday 

problem-solving and informed decision-making. In my introduction of Armando above, I 

mentioned that he often helped his parents make important decisions and problem-solve in the 

home. Due to the fact that he saw the versatility and usefulness of data-scientific skills for 

everyday decision-making and problem-solving in the real-world, he felt that his peers, too, 

should care about data science: 
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Yes, they should because it really does help. It helps you get more organized with things. 

There’s many obstacles that we face every day, so [data science] can help, maybe not 

solve the problem, but it will make it easier for you to understand the problem, and then 

help you solve it. 

He went on to say that his family and community should also care about developing data-

scientific understandings because of their importance and usefulness for informed decision-

making, personal organization, and problem-solving. Armando spoke of data-scientific reasoning 

as a versatile and widely applicable way of thinking critically about problems and everyday 

situations. Indeed, he relied on this form of reasoning as he participated in the IDS classroom. In 

the next section, I will discuss how Armando’s approach to reasoning for problem-solving and 

decision-making led to thinking critically about aspects of data collection and analysis. 

Thinking critically about aspects of data collection and analysis. What ultimately 

emerged as Armando’s criticality towards aspects of data collection and analysis, and, thus, as 

part of a developing CSDS identity, began, like challenges to Ms. Gellar’s data-scientific 

assertions about chance outcomes, as attempts to develop conceptual understandings of data-

scientific skills and concepts.  

A key moment in Armando’s developing CSDS identity in this respect occurred in the computer 

lab setting. Students were given an opportunity to analyze data from the Titanic, which included 

variables for passenger names, survival, sex, class, and fares paid. In the classroom lesson that 

introduced the Titanic, students were told that fare rates were indicative of wealth as those that 

paid higher fares were wealthier than those that paid lower fares (see Figure 6.1). When Ms. 

Gellar introduced the Titanic lesson, she asked students to share what they knew about the 

sinking of the ship and explicitly told them that she was not asking about the film portrayal but 
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rather about the actual historical disaster. Some students still responded with “Jack died” and 

other recollections from the film. She reminded students that they were going to be looking at 

actual passenger data from the Titanic and that there was a widely held belief that the wealth of 

passengers played a role in their survival, and so they would be using fare price as a proxy for 

wealth to determine if survival was influenced by wealth through statistical analysis using 

RStudio.  

 

Figure 6.1 Lesson items projected in the classroom setting prior to student analysis of Titanic data set in the lab 

setting. 

The excerpts I am about to share are part of one extended interaction, involving Amber, 

Katie, Armando, and myself, that took place while students were working through the Titanic 

Shuffle Lab where they were asked to analyze the data to determine if wealth (fares paid) played 

a role in survival. I highlight this exchange because it captures Armando’s growing interest in 

understanding what the data reveal, which led to his questioning of the meaning of variables in 

the data set. Our exchange began when I approached Amber, Katie, and Armando’s group and 

asked if they could interpret the meaning of a boxplot they produced using the Titanic data set 

Controversy

"One of the controversies of the Titanic disaster was that some people felt that the rich people were given better access to the
lifeboats than were the poor, so rich people were more likely to survive."

Survivors and Victims

"$20 in 1920 was equivalent to $500 today."

History

"The Titanic was the largest cruise ship ever built and was declared to be unsinkable. However, on its first voyage, it sank and was 
one of the worst maritime disasters in history. About 40% of passengers survived; however, your chances of survival depended very 

much on your age, gender, and wealth."
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(see line 4 below) to answer the lab question, “Based on the plot, do you believe richer 

passengers were more likely to survive? Explain why and describe how certain you are of being 

correct.” 

Line 1 
2 
3 

AMBER: The boxplot [we generated] it doesn't even show anything about it being a rich person or a 
poor person. It just shows a boxplot and who basically survived or not. 

4  

 
5 RESEARCHER: So, what does the boxplot tell you then? 

6 
7 

AMBER: It’s just basically the fares. People—how much they paid and then the passenger who 
survived or not—whether they survived or not. That’s it. 

8 
9 

RESEARCHER: I’m trying to read your boxplot. So, the top one is “Yes”—[does] that “Yes” [refer to] people 
who survived? 

10 AMBER: Yes. 
11 RESEARCHER: And the bottom is people who di— 

12 AMBER: Didn’t survive, and how much they paid. 
13 RESEARCHER: Can you help me understand how to read that boxplot? 

14 AMBER: I don’t know how to read the boxplot, honestly. 

This excerpt is consistent with my finding that students felt compelled to complete the task at 

hand even in the absence of comprehension of the task or of data outputs that they themselves 

produced. Here, Amber exercised disciplinary agency by using established solution methods to 

render a boxplot but she lacked the conceptual understandings necessary to derive meaning from 

it. I invited her on multiple occasions to exercise conceptual agency by helping to highlight 

different aspects of the boxplot (lines 8-9 and 11) and then asking for her interpretation given her 

understanding of those aspects (line 13), but she resigned herself to her inability to interpret the 
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boxplot in line 14. I then invited her groupmates, Katie and Armando, to provide their 

interpretations in lines 15-16 below: 

15 
16 

RESEARCHER: [To Amber’s groupmates, Katie and Armando] Do any of you know how to interpret that 
boxplot? 

17 KATIE: [Calls to Armando] Armando? 

18 RESEARCHER: Like, what is it saying? 
19 AMBER: See, I don’t know. 

20 ARMANDO: “Yes”—what is that? People who survived? 
21 KATIE: Yes, and then that’s the fare [points to numbers on the x-axis]. 

22 RESEARCHER: Can anybody tell me what that… 
23 
24 

ARMANDO: So, what this is saying is more people survived than people that died, but only 40% survived 
[baffled]. 

25 KATIE: Isn’t this the median?— 
26  

 
27 ARMANDO: [To the researcher] No, this [referring to median Katie pointed out] is the median. 

28 RESEARCHER: Okay. 
29 KATIE: And then this is the IQR, Then those…— 

30 ARMANDO: [That’s] the range… I forgot how to read boxplots 

Amber’s deference to Armando, who sat two seats over, is telling because it indicates that she 

held a high estimation and valuation of his data-scientific competency despite Ms. Gellar’s 

identification of Armando as one of the low achieving students in the class. Thus, she turned to 

him, rather than to Katie who sat between Armando and Amber, for help answering my question. 

It quickly became evident to me that Armando had yet to interpret the box plot himself (line 20) 

and his initial interpretation demonstrated that he did not understand what it was conveying 

(lines 23-24). The boxplot indicated that the median fare paid by survivors was higher than the 
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median fare paid by non-survivors. It also indicated that range of fares paid by survivors was 

greater that of non-survivors, which meant that among survivors of the Titanic were those who 

paid higher fares. Further, with Katie’s help, Armando begins to recall the components of a 

boxplot and struggled to derive meaning from it until he, like Amber, resigned himself to his 

inability to interpret the boxplot in line 30. Had one of these students been able to interpret the 

boxplot as instructed to in previous lessons, they would have realized that unlike Amber’s claim 

in lines 1-3, the boxplot contained all the information necessary to answer the question at hand. 

However, in light of the fact that no one seemed to understand what the boxplot conveyed, I 

asked the group how they were going to proceed with the lab assignment. 

31 
32 

RESEARCHER: So how are you all going to determine whether wealth had anything to do with survival 
rates? 

33 

34 
35 

ARMANDO: I don’t know. We’re trying to figure that out because like Katie said, it didn’t matter… who was 

rich or poor because they were all trying to take out women and children first. 

36 RESEARCHER: Well, that’s your hypothesis, right?— 
37 ARMANDO: Or at least that’s how the story was told. 

In the absence of the data-scientific skills and conceptual understandings necessary for Armando 

to make sense of the data visualization he and his peers produced, Katie and Armando began to 

rely on knowledge derived outside the classroom to make a claim about survival on the Titanic. 

Armando alluded to the film portrayal of the Titanic when he said, “at least that’s how the story 

was told” as a way of supporting the validity of his claim that rescue efforts sought to save 

women and children first and not the wealthy (line 37). Unable to draw meaning from actual data 

on passengers of the Titanic, we see the fictional portrayal take precedence in his and Katie’s 

assertion of factors that influenced survival (lines 33-35). 

38 
39 
40 

RESEARCHER: I’ve spoken to some [students] who think that survival had to do with wealth and you’re 
the first person who thinks the opposite—well, not the opposite but thinks it didn’t have to 
do with wealth. 

41 ARMANDO: [After taking a moment to think] Maybe it could have been [due to wealth]. Maybe… 

42 RESEARCHER: I’m not trying to convince you one way or another. I just want to— 
43 
44 

45 

ARMANDO: Well, thinking about it, okay, yes. Well, the story—the way it was told was that women and 
children were supposed to be taken out [of the Titanic] first. But what if it was only the 

rich…what if it was their kids on first before the poor kids or women? 
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When I brought up the fact that other students believed the data supported the claim that 

the wealth of passengers played a role in their survival (lines 38-40), Armando grew pensive as 

he began to think about the simultaneous feasibility of both claims: that gender and age as well 

as wealth played a role in survival. Armando’s consideration to modify his assertion of factors 

that affected survival from “women and children” to wealthy women and children, indicated to 

me that he was actively establishing conceptual connections between concepts defined in class 

and real-world phenomena, and, thus, reasoning about how a subset “works” in the real world. 

Still, unable to derive meaning from the actual data, Armando began to consider how an 

examination of the intersection of multiple variables (wealth, gender, and age) might provide a 

more complex portrait of survival on the Titanic than the indecipherable boxplot. 

In an effort to reconcile this new possibility that wealth, gender, and age—together—

played a role in survival, Armando began to manually explore the data by scrolling through the 

data set.  

46 
47 

KATIE & 
ARMANDO: 

[Begin to scroll through all entries in RStudio] 

48 KATIE: Oh [surprised], this is organized in order, by class. 

49 ARMANDO: There was a thousand people on the ship? 
50 KATIE: That’s what is says…[inaudible] 

51 
52 

ARMANDO: Alright, let’s go back...look, there’s some people that paid less and they’re in first class. 

53 KATIE: Remember, $20 back then was $500 today. 

54 ARMANDO: I know, but there’s people that are in first class and paid $134. 
55 KATIE: Let’s go to second class. 

56 ARMANDO: That was $3,000 in today. 
57 KATIE: Well, second class [fares] started getting lower but there’s more in the [$20 range]. 

Considering that Katie and Armando initially valued understandings of the sinking of the Titanic 

based on a fictional portrayal, it is noteworthy that their manual exploration of the dataset 

imbued it with greater significance. We see an indication of this when Armando asked if there 

were 1,000 passengers on the ship, to which Katie responded in the affirmative, “that’s what it 

says” (line 50) suggesting that it must be true if indicated in the data. Furthermore, by engaging 

in a manual exploration of the data set, which professional data scientists, computer scientists, 
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and statisticians may consider highly inefficient at this stage of analysis when a boxplot was 

already generated, Armando began to develop an intellectual curiosity about the data while 

simultaneously developing criticality around the meaning of variables.  

Armando’s burgeoning curiosity about survival on the Titanic indicates that his rationale 

for engaging in this meaning-making learning process with data was becoming increasingly 

situationally significant. This means that the data was taking on greater personal relevance and 

was compelling him to engage in a more critical reading of the data and variables precisely 

because he was invested in understanding their significance and meaning. For example, he noted 

that the classification of first class made little sense given that one first class passenger paid a 

fare of $134 (line 54) while others paid amounts including $26, $39, $50, and $76. While 

students were asked to use fare price as a proxy for wealth, here, it seems it made more sense for 

Armando and his group to use the variable “class” as a more direct indicator of wealth than fare. 

Still, low fare prices for first class passengers brought about some degree of confusion for Katie 

and Armando. Also, had they based their understanding of wealth on fare prices as the lab 

instructed, a similar confusion would have ensued as some people who paid low fare prices were 

classified as first class. What we see here is that these students’ deviation from the normative 

ways of doing data science was contributing to the cultivation of a CSDS identity that, while 

existing in opposition to legitimate ways of doing data science in this classroom, ushered in 

positive and motivated engagement with data analysis, which I believe is key to developing 

strong student identification with data science-doing and interest in data-scientific inquiry. In the 

following excerpt, Katie and Armando continue with their “rogue” approach to data science-

doing: 

58 
59 
60 

ARMANDO: If you look at it—look! —there’s a lot of males that didn’t survive… [reads entries for 
“Survived” variable for first-class passengers] “no,” “no,” “yes” …—Oh! They have ages 
too—up here. 
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61 KATIE: Oh, some of them do, not all of them. Look at that one. 

62 ARMANDO: [Are] these all adults? 
63 KATIE: There was a “0.9” all the way at the top. 

64 
65 

ARMANDO: That was a baby… [continues to examine the data] 17-year-old male—What would they 
have considered kids [back then]? 

66 KATIE: Wait, there’s one [age] four—check if they survived. 

67 
68 

KATIE & 
ARMANDO: 

 
[In unison] Yes. 

69 KATIE: Look, mostly a lot of females survived. I’m guessing there was like [inaudible]. 

70 ARMANDO: Okay, now let’s look at the females that did survive. 
71 KATIE: That one didn’t. 

72 
73 
74 

ARMANDO: This one didn’t [referring to another passenger]. Okay, if we go all the way down, this 
would be, what? —Third class? Third class females didn’t…if you notice, there’s more “No” 
than “Yes” [for survival]? 

75  

 
76 KATIE: Yes. 

77 ARMANDO: Look—look at all of these...There, you see most of third class didn’t survive. 

Armando was noticeably excited to see that the data included ages of passengers as he and Katie 

made a number of observations that, while not a formal part of their statistical analysis, 

contributed to their ability to make-meaning out of the Titanic data. Armando and Katie’s 

manual exploration of the data, while arguably inefficient, led them to make data-based 

observations that they found very interesting including the notion that males in first class 

survived at lower rates than females in first class (lines 58-60 and 69), and that third-class 

passengers, both male and female, were less likely to survive than first-class passengers (lines 

72-74). Again, here we see them engaged in a type of motivated data-analysis that stands wholly 

outside of what was constituted as normative, legitimate, and effective in this classroom. Their 

approach, however, cultivated opportunities for Armando and Katie to think richly with and 
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about data and gain a deeper understanding of the data when compared to their production and 

[non]interpretation of the boxplot. 

After developing data-based understandings of survival on the Titanic, Armando began to 

consider how he might operationalize an intersectional analysis of three variables (class, 

survival, and gender) in RStudio: 

78 ARMANDO: Let’s do this: I’m going to separate them by class. 
79 KATIE: How are you going to do that? 

80 ARMANDO: Same thing we did here [earlier in the lab]. 
81 KATIE: And what [variable] did you [tally by]? “Survive”? 

82 ARMANDO: Uhuh… Actually, let’s do that. Let’s tally it. 
83 RESEARCHER: Can you tell me what you’re trying to pull up [in RStudio]? 

84 
85 

ARMANDO: At this point, I’m not even sure what I’m tr—I’m just trying to see how many people 
survived for each class. 

86 KATIE: So, is that survived or di— 

87 ARMANDO: So, the third class survived more than first or second. 
88  

 
89 KATIE: But there were more “No”’s, that’s what I don’t get. 

90 ARMANDO: Whoa, [gets error message] what did I do? 
91 KATIE: Just put— 

92 ARMANDO: It was gend—It’s supposed to be gender [types in new tally code]. 
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93  

 
94 RESEARCHER: And what is this that you pulled up? This looks different. 

95 
96 
97 
98 

ARMANDO: It’s separated by class and then gender. 30% of females in first class survived…Oh wait—I 
didn’t even put that… [to Katie] Do you remember what was the code to…to check…two 
different variables? Do I need to facet again? Okay, I want to check the class, gender, and 
the survival. 

99 KATIE: Umm… here, let me check [my coding history]—because I don’t think it’s going to… 

100 ARMANDO: I mean, if I facet again, you think it’ll work? 
101 KATIE: I don’t know. 

102 
103 

ARMANDO: Maybe?...[tries entering code to facet using three variables]… 

 
No [it didn’t work]. 

104 
105 

KATIE: Because, we have done it, right? Like when we did three variables? [Scrolls through her coding 
history] 

106 ARMANDO: Yes, but I don’t know what was the code. 
107 KATIE: I don’t know… 

108 ARMANDO: What if I do [produces new tally] 
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109  

 
110  …Okay, but I want to get—by gender. 
111 
112 

KATIE: I have the [flashcards] cards [that contain the codes we’ve worked with] at home. I can bring 
them next time if you want. 

113 ARMANDO: Yeah, bring them. 
114 RESEARCHER: Armando, so what does that [tally] tell you? 

115 
116 

ARMANDO: It tells me the percentage of the people that survived or died, separated by class. 

117 RESEARCHER: Can you interpret what it means? 

118 
119 
120 

ARMANDO: 14% of first class died and 39% of first class survived. 18% of second class died and 23% of 
second class survived. 66% of third class died and 36% of third class survived. The thing is I 
wanted to have it this way, but separated by gender. 

121 RESEARCHER: You know, I just noticed something. Where it says “Total,” it says “1”— 

122 ARMANDO: Uhuh [yes]. 
123 
124 

RESEARCHER: So, I think…out of those who did not survive, 14% were first class, 18% were second, [and] 
66% were third. Do you think that’s correct? 

125 ARMANDO: So, it’s 14, 18, and 66%? 
126 

127 

KATIE: She’s saying that probably all of these numbers add up—like, how you know it’s a “1”—it’s 

probably [referring to] 100% here and then 100% here. 

128 ARMANDO: Oh, okay. I see. 
129 
130 

KATIE: So, she’s saying, like, 39, 23, and 36 will all equal 100, but those are all the people that 
survived in each class. 

131 ARMANDO: I see what you’re saying now. 
132 RESEARCHER: Do you agree [that that is what the tally is conveying]? 

133 ARMANDO: I would have to go in deep into this. 

The exchange above makes evident that Armando was actively thinking through, struggling, and 

improvising an analysis utilizing the tools and limited skills at his disposal (lines 87-90). 

However, the disconnect between what he wanted to do and what he could do impeded his 

analysis during a crucial moment in his development of a CSDS identity when his personal 

investment in the Titanic data set had peaked. His final tally, which clearly indicated survival 

and non-survival percentages for all classes, contained the necessary information for him to 

make a data-based claim about wealth and survival. Notwithstanding his ability to answer the lab 
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question that prompted this exchange, he remained unsatisfied with the contents of the tally 

because he could not figure out nor recall the code necessary to visualize three variables in one 

tally. At this point, it became clear to me that Armando was no longer concerned simply with 

completing the lab assignment, but was instead intent on gaining meaningful understandings of 

the data.  

Unfortunately, given that Armando’s emergent approach to analyzing the Titanic data did 

not fit the strictures of the RStudio lab assignment, his high-level thinking remained undiscerned, 

unrewarded, and invisible to the classroom community. Furthermore, he ultimately failed to 

interpret the boxplot he and his peers produced and did not develop the understandings necessary 

to explain, in his assignment, how the boxplot supported his assertions about whether wealth 

played a role in survival on the Titanic. Thus, it comes as no surprise that Armando was 

identified by Ms. Gellar as one of the low-performing students in her IDS classroom because his 

desire to understand how technology works and his efforts to develop conceptual understandings 

were incompatible with narrowly defined standards for data science-doing. This is concerning 

given that with Armando we have a student captivated by and intent on learning with and about 

technology in personally fulfilling ways, yet his ability to achieve his ambitions of a career in 

STEM were compromised by his “low” academic performance in the IDS classroom. 

Armando’s developing CSDS identity stood outside of and deviated from the narrowly 

defined ways of legitimate data science-doing as constituted in the classroom. It is outside of 

normative demarcations of data science-doing that he began to develop an identity that was 

critical of data, the relationship and meaning of variables, and was personally invested in 

tinkering toward an intersectional analysis of the data. It is noteworthy that the emergence of his 

developing CSDS identity outside of and in opposition to normative data science-doing in the 
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IDS classroom did not negatively affect his self-valuation as a data science-doer. This I surmise 

based on his 

1. Growing interest in and captivation with the data conveyed in his tone as he made 

observations;  

2. Persistence in generating a telling aggregate of the data; and  

3. Continued tinkering with what he knew despite an awareness of his limited recollection 

and knowledge of codes. 

While this is promising and provides hope for his likelihood to pursue an education or career in 

data science, the continued development of his CSDS was compromised because it existed 

outside of what he came to understand as legitimate data science-doing. 

Additionally, like many students in the class, this was Armando’s first time engaging in 

and learning specifically about data science, therefore what was eventually constituted as 

legitimate data-scientific activity became representational of data science as a field in the 

absence of complimentary, contradictory, or corroborating experiences with data science. For 

this reason, I argue that reform-oriented efforts to cultivate the necessary critical literacies for 

democratic participation in our information and technology saturated society must be systematic 

in their efforts to cultivate personally meaningful CSDS identities that are in constant 

conversation with students’ mathematical identities and with their out-of-school lives and lived 

experiences. Furthermore, Ms. Gellar’s identification of Armando as a low-achieving student 

contrasted with his genuine curiosity for developing conceptual data-scientific understandings 

underscores the importance of adopting an intersectional information literacy and critical social 

theory/critical theory of education lens that supports critical social perspectives and validates 
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students’ meaning-making practices within math-centric disciplines that can easily default to 

traditional and narrowly defined standards for legitimate STEM-doing.
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CHAPTER SEVEN 

Toward Critical Data-Scientific Literacy for Equity-Oriented STEM Reform 

Kim and Armando stood out as students who began to develop strong conceptual data-

scientific understandings consisting of criticality toward aspects of data collection and analysis. 

Based on my analysis of their approach to data science-doing, I propose a framing of the 

development of critical social data-scientific understandings in Ms. Gellar’s class as consisting 

of (1) developing in-depth understandings of the relationship between data science skills and 

concepts; (2) reasoning with and about data in real-world context; and (3) expressing data-

scientific criticality. While I do not hold that IDS generally fostered the development of critical 

social data-scientific understandings among all students in Ms. Gellar’s IDS class, I was privy to 

student activities and interactions that suggested the existence of opportunities for students to 

develop conceptual understandings. In this regard, my observations revealed the promising 

finding that students engaged in activities and made assertions that suggested that they 

experienced relatively equal opportunities to begin developing conceptual understandings and 

disciplinary understandings. However, narrowly defined ways of data science-doing capped 

continued development of conceptual understandings and instead emphasized and fostered 

disciplinary understandings. Figure 7.1 below outlines the types of actions and assertions that 

differentiated the development of critical social understandings, conceptual understandings, and 

disciplinary understandings in Ms. Gellar’s IDS class. 

While normative ways of doing data science in the classroom were conducive to 

student’s abilities to exercise disciplinary agency, opportunities for them to explore and further 

develop conceptual understandings were generally not readily supported. There were numerous 

instances where students demonstrated that they were beginning to develop conceptual 

understandings, but these were rarely fleshed out or brought to fruition. 
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Figure 7.4 

Therefore, while opportunities, indeed, existed for students to develop these understandings, 

several mechanisms ultimately impaired their ability to continue to do so in personally 

meaningful and enduring ways. In order to examine these mechanisms and the nuanced nature 

and interaction of the affordances and limitations of IDS as an instantiation of STEM reform 

efforts, I will dedicate the remainder of this chapter to discuss, first, the affordances of my 

intersectional theoretical framework for analyzing the developing data-scientific identities. I will 

then discuss both the limitations and unique affordances of Ms. Gellar’s IDS class followed by 

my proposed extensions to Cobb et al.’s (2009) analytical scheme as a contribution to the field of 

education, namely to efforts aimed at increasing the presence of non-dominant groups in data 

science-related fields through the development of strong data-scientific student identities. Lastly, 

I will discuss recommendations for future iterations of data science-related programs for equity-

oriented STEM reform. 
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reasoned arguments 
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reasoning about data 
artifacts in real-world 
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Affordances of an Intersectional CST and CTE Framework for Analyzing Developing 

Data-Scientific Identities 

My intersectional framework allowed me to analyze not only how students were 

developing data-scientific literacy, but also pushed me to think carefully about the ways that IDS 

supported or limited students’ opportunities to think data-scientifically about themselves, their 

community, and society at large. This consideration proved immensely helpful for 

contextualizing the extent to which students were viewing and participating in the course as an 

exercise in higher order thinking about the usefulness of data science and data-scientific thinking 

for everyday life. It was also useful as an accountability lens for understanding how IDS, as an 

instantiation of equity-oriented STEM reform, interpreted and pursued equity in the classroom. 

While Ms. Gellar’s IDS course provided an introduction and entry point for students who have 

been historically excluded from participation in STEM education and careers to gain exposure to 

data-scientific skills and concepts, statistical methods of inquiry, and coding experiences, my 

intersectional analysis underscored the fact that epistemological inclusion is complicated and 

difficult, but incredibly necessary. This is particularly the case for students who come from 

communities, cultures, ethnicities, and gender groups whose lived experiences and perspectives 

are often overlooked and/or misinterpreted in traditional school settings. 

Addressing Limitations 

Pace. The curriculum consisted of four units, but Ms. Gellar was only able to cover units 

1 & 2 in both years of implementation. Additionally, on average, other school sites where IDS 

was implemented also did not get through to Unit 4. This is significant because all units were 

designed to build up to the fourth and final unit, thus there were concepts that were left 

unaddressed and connections left unmade in earlier units precisely because they were addressed 
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in later units. Furthermore, while the course was designed to lead up to concluding projects that 

synthesized the “big picture” of IDS, students did not have the opportunity to engage in these 

activities or lessons. I believe this impaired their ability to see the larger purpose of IDS and its 

relevance to their daily lives.  

Structure of lessons and labs. Despite the fact that the course was promoted as “inquiry-

based,” the questions teachers were advised to pose to students, in accordance with the 

curriculum and professional development, did not require that students engage in deeper-level 

thinking about data-scientific concepts. In fact, the questions Ms. Gellar posed during whole-

group discussion were consistent with those suggested in the curriculum. Furthermore, 

discussion topics, student responses and contributions, purposes of tasks, and learning objectives 

were all pre-determined, leaving little room for new and emergent understandings.  

Authority distributed to technology. One of the more striking findings in my 

observations was the level of authority that was distributed to technology in the classroom. 

While RStudio lab assignments were authored by individuals in the Energize project, when 

students carried out these tasks they interacted not with individuals, but with the technology 

itself. This means that there was no opportunity for students to engage in discussions with the 

technology about lab content and purpose, or to pose challenges to assertions made within labs. 

Lab assignments were unchangeable and dictated when and to what extent students could engage 

in their own interpretation of tasks and solution methods. The limitations of this aspect of labs 

were clearly evident in my observations and interviews with Kim and Armando. Despite their 

investment in understanding data-scientific concepts and their application of coding skills to 

understand deeper meanings of data, the narrowly defined ways of coding within IDS and the 

highly structured direction for lab assignment completion hampered rich thinking with and about 
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data, which went against IDS reform goals. The functionality and use of RStudio itself could also 

not be challenged as the coding component and the mechanisms through which it was achieved 

were unchangeable aspects of the curriculum. Existing scholarship cautions against the 

perception of new technologies as value-free (Selwyn, 2016; Selwyn, 2015; Couldry, 2013; boyd 

& Crawford, 2012) and its uncritical adoption into the classroom (Philip, 2017; Philip et al., 

2013). This is problematic for its implications on student’s abilities to exercise agency in the 

classroom and develop conceptual understandings in the lab setting because it feeds into the 

current popularity of new data-generating technologies and Big Data Hubris that function to 

uphold positivism (Couldry, 2014; boyd & Crawford, 2012) and the belief of technology as 

rational (Standaert, 1993; March, 2006; Khalifa et al., 2014).  

Additionally, while the curriculum required that students have access to computers in 

order to satisfy the coding component, access to properly functioning technology was as issue 

from the beginning and ultimately resulted in the class having to meet at the computer lab for lab 

days. This affected the learning-rhythm that was established in the classroom as students could 

not sit and face each other in groups like they had in the classroom and as was directed in the 

curriculum. I do not doubt that this was an issue encountered at other school sites, as all were 

part of the same large, overenrolled, and under-resourced school district. 

Block scheduling. On a structural level, block scheduling at MSHS compounded the 

effects of the pace and structure of the curriculum. Given that students met as a class three 

alternating days one week and two alternating days the following week, cycling in this pattern 

for the entire academic year, any missed lessons due to testing, high school senior activities, 

teacher and student absences, professional development days, and holidays dramatically 

extended the duration between lessons, posing challenges to students’ ability to retain and build 
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on successive disciplinary understandings. For example, if Ms. Gellar’s IDS class met on a 

Thursday, they would not meet again until Monday of the following week, thus they would go 

three days without continuing to build on the previous lesson. What is more, if that Monday 

happened to be a pupil-free day, students would not meet again until Tuesday for a shortened 

period of time since Tuesdays were reserved for professional development for teachers and, thus, 

consisted of shorter school days for students. On several occasions, Ms. Gellar attempted to 

mitigate the compounded effects of scheduling by providing students with supplemental lessons 

and/or scaffolding following a large break. While this allowed students to recollect previous 

lessons and gain additional understandings, it also meant that she had to postpone teaching 

lessons from the curriculum, which made keeping up with the already fast-paced curriculum 

more challenging.  

Student placement. A noteworthy challenge to the implementation and goals of IDS was 

also posed by placement of high school seniors in a course designed for sophomores and juniors. 

As I stated in Chapter 5, many of the seniors enrolled in the course viewed their participation in 

IDS as instrumental to their high school graduation or post-high school ambitions. While these 

were respectable ambitions, their motivation to perform well in the class did not mean that 

students were necessarily motivated to gain conceptual understandings and develop data-

scientific learning identities for personal enrichment. Additionally, the fact that the 

overwhelming majority of students in the class were seniors meant that students were also absent 

due to standardized testing, college entrance testing, AP testing, and senior activities which 

added the effects already posed by other factors that impacted the flow of the course and its 

ability to maintain a cohesive and consistent learning rhythm from lesson to lesson.  
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Taken together, the pace of the curriculum; structure of lessons and labs; authority 

distributed to technology; block scheduling; student placement in the class all influenced 

students’ abilities to develop strong conceptual understandings of data-scientific skills and 

concepts. While some of these factors, particularly block scheduling and decisions regarding 

student placement, were outside of the purview of curriculum writers and top-level IDS decision-

making, these proved highly influential in the eventual learning outcomes for students enrolled in 

the class and the benefits they were able to draw from taking the course. For this reason, it is 

necessary that future iterations of IDS take these findings into account in their determination of 

how best to attune and implement similar initiatives in schools or out-of-school community 

spaces.  

Capitalizing on the Unique Affordances of IDS 

A starting point. Kim provided a clear articulation of the value and power of IDS as an 

introductory course when she said,  

This class really helped me figure out where to start if I ever do want to pursue this field. 

It gives the introduction part and it sets off the path, because I know that’s the most 

intimidating part: where to start in this whole vast technology world. 

Indeed, some students shared a similar and powerful sentiment. In this respect, Ms. Gellar’s IDS 

class was immensely useful for introducing students to a starting point—a point of 

demystification for coding and data-scientific inquiry for students who had little-to-no 

experience working with data and coding. IDS also helped demystify the loaded term “coding”—

a word closely associated with the work of hackers, representing a highly specialized skillset not 

typically attributed to working-class youth of color who are among those historically excluded 

from education and careers in tech-related fields. While I believe that the RStudio lab 
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assignments were overly structured, the step-by-step instructions included in RStudio lab slides 

allowed all members of the classroom community to gain experiences coding, and thus helped 

demystify coding as an exclusive practice. Regardless of whether students ultimately liked the 

coding component or felt compelled to pursue a career that involves coding post-IDS, their 

ability to code in RStudio allowed them to understand coding as an attainable skillset. In so 

doing, it provided students with an alternative view of coding as a learnable skill within their 

reach. Thus, in order to inspire interest and curiosity in data science and build on the affordances 

of IDS as a starting point, it is essential that we address the limitations described above as I 

believe they stifled rich learning opportunities and students’ abilities to identify as data science 

doers. This unique affordance of IDS cannot inspire data-scientific educational and career 

aspirations among students if they are not afforded opportunities to develop strong conceptual 

data-scientific understandings and exercise conceptual agency in the classroom. 

Emphasis on collaborative problem-solving. Another one of the unique affordances of 

Ms. Gellar’s IDS class was its promotion of peer-collaboration. Although some students utilized 

instances of collaboration to simply copy or give others answers, still some students benefited 

from collaborating because it allowed them to not only know the answer, but also practice 

explaining certain responses, solutions, and rationale’s behind the use of solution methods. This 

means that for some students, helping others functioned as an exercise in understanding the 

purpose of tasks and developing conceptual data-scientific understandings. For those students 

who were regarded as highly competent by their peers, this helped motivate them to gain 

disciplinary understandings as they anticipated that peers would approach them for help. Sandy 

attested to this by saying that while she did not initially regard herself as highly adept at data 

science-doing, her peers’ gradual and increasing tendency to come to her for help inspired her to 
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gain understandings necessary for her to help them. This means that IDS’ emphasis on peer 

collaboration was not only valuable for including students in the dissemination of knowledge, 

but also served to inspire motivated engagement among some students as they sought to 

purposefully develop data-scientific competencies. 

Expanded views of science and mathematics. Future iterations of IDS and other data 

science-related initiatives have the potential to pose a powerful challenge to the manifestation of 

the nature-culture divide (Bang et al., 2012) in the field of data science. For Bang et al. (2012), 

this refers to existence of a binary that obscures the interdependence and interconnectivity of 

science and culture, functioning to uphold positivist views of science as epistemologically 

neutral. Similarly, I posit that the data-culture divide adopts a parallel positioning of the study of 

data and culture as mutually exclusive. In order to challenge positivist continuities between 

traditional school science and data science, the study of data must not only be couched in real-

world scenarios but also thought of as a versatile and widely applicable conceptual skillset. My 

interviews revealed that by taking Ms. Gellar’s IDS class, several students gained understandings 

of data science as “far-reaching” and applicable to diverse facets of their everyday lives. The 

question, then, is how do we build on these understandings? How can we fortify data science 

programs so that we begin to shift our thinking of data science in ways that challenge universalist 

treatments of this burgeoning field? I believe these efforts must include youth in the planning 

and design phases. Without the perspectives and insights of those targeted by these programs—

that is, youth of color and young women—we cannot effectively address their concerns and 

interests as they pertain to educational and career endeavors, the usefulness and benefits of data-

scientific thinking for everyday life, and the potential to use data science for civic engagement. 
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Toward Progressive Reiterations of IDS 

 In the year 2000, Calabrese Barton & Yang published their account of a case study of 

Miguel, the young Puerto Rican father and clandestine herpetologist who loved science and 

gained personally meaningful experiences with out-of-school science, only to have his 

“enthusiasm for science and nature…neither acknowledged formally by his teachers nor 

cultivated in school” (p. 872). About 15 years later, I saw parallel manifestations of the culture of 

power, particularly for Armando who expressed an enthusiasm and affinity for all things 

technology and, like Miguel, gained personally meaningful scientifically rich learning 

experiences out-of-school only to experience discontinuities between scientific doing and 

thinking inside and outside of school. For Miguel, this lead to his internalization of problematic 

notions of what constituted legitimate sources of knowledge and science-doing. I would like to 

believe that both Kim and Armando’s tendency to think data-scientifically to make decisions and 

solve problems in their everyday lives will continue beyond high school and that they will persist 

in their pursuit of sating their scientific curiosity, be it in the field of data science or another field 

in STEM. It is extremely imperative and necessary, however, that programs aimed at exposing 

students to new fields recognize that for many of these students, exposure is not enough and an 

introductory course is more than that. For students who do not have a data scientist parent or 

relatives who can speak to them about computer science, or friends who can introduce them to 

diverse applications and functions of STEM fields, courses like IDS become exemplars of what 

data science is. Thus, these initiatives possess immense power in shaping initial impressions of a 

complex and continually developing field. At the same time, I recognize that the American 

educational system itself is undergoing dramatic shifts in light of changes to Common Core 

standards and the political assault on the American public education system, but these changes 
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and challenges must be treated as impetus for improving science education reform efforts. This 

necessitates collaboration, deep reflection, and evolving methodologies and approaches for 

STEM reform.  

 Specifically, with regards to data science-oriented STEM reform efforts, we educators, 

researchers, curriculum writers, policy makers, and anyone invested in the pursuit of equity in 

STEM for historically underrepresented groups must challenge ourselves to address observed 

shortcomings while capitalizing on the affordances and promise evident in data science 

programs. It is in this vein of professional collaboration toward improved and equitable quality 

education that I discuss some of the observed hindrances and unique affordances of Ms. Gellar’s 

IDS course. 

Contributions to the Field 

 Cobb et al.’s (2009) framework for analyzing the mathematical student identities that 

students develop in a mathematics classroom was immensely useful for mapping students’ 

development of data-scientific identities within a math-centric course like IDS. My application 

of the framework, however, revealed the need to expand the analytical scheme to include aspects 

of learning and student identity unique to data science. Thus, my application of Cobb et al.’s 

(2009) framework allowed me to begin to develop a specifically data-scientific analytical scheme 

to account for the differential learning settings and technological components present in IDS as 

an instantiation of equity-oriented STEM reform. Firstly, when analyzing the general classroom 

obligations that students feel compelled to fulfill in order to meet expectations of what it means 

to legitimately do data science as constituted in the classroom I propose modifications to the 

Cobb et al.’s (2009) scheme as indicated in Figure 7.2. My proposed modification begins by 

extending the analysis paid to authority distribution in the classroom to include consideration of 
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the extent to which students are given opportunities to contribute to the creation of disciplinary 

knowledge in the classroom. Also, after applying the original framework to my analysis, I 

realized that authority distribution to teachers was not an explicit focus of analysis. 

Interpretive Scheme for Analyzing General Classroom Obligations in a  
Data Science Classroom 

 
Figure 7.5 Cobb et al.’s (2009) scheme adapted for analysis of general classroom obligations in a data science 

course, extended. 

Given the central role that epistemological inclusion must play in STEM reform efforts, I find it 

necessary to also analyze the extent to which teachers hold authority in the classroom. 

Additionally, because data science involves the use of new learning technologies in the 

classroom, my proposed modifications to the original scheme include incorporating an analysis 

of how authority is distributed to these technologies because, as evident in this dissertation, 

ceding unchecked authority to technology can prove problematic for students’ abilities to 

exercise conceptual agency when they employ the use of technology to engage in data science-

doing. 
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Additionally, I also propose extending an analysis of the forms of agency students can 

legitimately exercise in the classroom to include experimental agency and disciplinary criticality. 

I define experimental agency as students’ abilities and willingness to (1) experiment with new 

learning technologies for purposes of exploration; and intuitive use of technology for decision-

making and problem-solving in the classroom; and (2) to explore alternative solution-methods 

when recommended approaches prove ineffective or inefficient. While Kim and Armando 

exercised experimental agency in the computer lab setting by adopting alternative approaches to 

data analysis through manual exploration of data and tinkering with codes, these were not 

legitimate practices rewarded in the course. However, an equity-oriented IDS classroom should 

allow and reward students for taking initial disciplinary understandings and applying them in 

unanticipated ways if they contribute to students’ abilities to engage in meaning-making with 

data and fundamentally nurture conceptual understandings. These approaches should not emerge 

outside of legitimate data science-doing, but instead be significant and legitimate forms of 

agency embraced in the classroom. 

Similarly, disciplinary criticality must also be embraced as part and parcel of student 

participation in a course designed to introduce them to an ever-evolving field. I define 

disciplinary criticality as consisting of what I have referred to earlier in my dissertation as 

“challenging acts” wherein students contest the conceptual rationale behind others’ disciplinary 

assertions for the purpose of developing deeper data-scientific understandings. Challenges 

should be understood as opportunities to develop new disciplinary understandings and validate 

students’ disciplinary assertions as legitimate contributions to data science. Students’ abilities to 

exercise disciplinary criticality in the classroom is a direct extension of authority distribution—if 

a student is allowed to partake in decision-making in the classroom, then they will also be able to 
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partake in the contestation of disciplinary assertions and the development of new data-scientific 

knowledge. 

Furthermore, I also found that students’ valuation of data science as a field and data-

scientific thinking for everyday life were affected by their views of the usefulness of data science 

for improving society and helping others. Students’ inability to see the potential of data science 

to improve their lives and that of their families and communities affected their development of 

motivated engagement in data science-doing. Thus, I propose that an analysis of the personal 

identities that students develop in data science-related courses include serious examinations of 

students’ understandings and valuations of data science and data-scientific thinking for real-

world problem-solving, decision-making, and civic engagement (Figure 7.3 below). Educators, 

researchers, curriculum writers and policy makers should not only apply these schemes in their 

analysis of implemented programs and initiatives, but also take each component of the scheme 

into careful consideration during the design phase. I do not hold that my adoption and 

modification of Cobb’s scheme is wholly complete and unchangeable, just as I do not believe 

that my findings from Ms. Gellar’s IDS class can speak to outcomes in all data science course 

and programs. However, it is also necessary to acknowledge and account for the powerful 

findings and insights gained through my observations and interviews with students who represent 

the largest ethnic and cultural minority in the country and who are among those who have not 

had equitable opportunities to enter STEM fields.  
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Interpretive Scheme for Analyzing the Personal Identities Students Develop in a  
Data Science Classroom 

 
Figure 7.6 Cobb et al.’s (2009) scheme adapted to analyze students’ personal data-scientific identities, extended. 

Recommendations for Future Instantiations of Data Science for Equity-Oriented STEM 

Reform 

During my time at MSHS, I sought to think of my position in Ms. Gellar’s IDS class as 

that of a learner. Despite my credentials, I approached interactions with students as unique 

opportunities to learn about students, to understand their thought process, and to value their 

contributions—be they in the form of assertions, explanations, or clarifying questions. By doing 

so, I was able to gain more intimate insight into why students participated in the constitution of 

obligations the way they did as well as what accounted for their motivation to learn about data 

science, or their lack thereof. Based on my experience interacting with students in Ms. Gellar’s 

IDS class and my analytical findings, I offer the following recommendations and reflection 

questions for future iterations of IDS and other data science-related programs and initiatives. 

Consider messaging beyond explicitly stated learning goals. Given explicitly stated 

learning goals, how and what are student learning regarding what is expected of them? How do 
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these expectations align with a humanistic approach to equity-oriented STEM reform in data 

science? What do teaching approaches convey to students regarding the forms of agency they 

can legitimately exercise in the classroom? 

Reflect on the significance of introductory data science courses for historically 

excluded populations. In the absence of numerous and diverse opportunities to learn about data 

science and the wide-ranging applications of data science for everyday life, introductory data 

science courses, programs, and initiatives must be understood as exemplars for a new and rapidly 

developing field. This imbues introductory experiences with much representational power, thus, 

it is necessary to understand how these initiatives represent the field of data science and the 

versatility of data-scientific thinking. Understanding how data science is represented in 

introductory courses is important as it holds implications for students’ motivated engagement in 

data science-doing. 

Involve youth in the design of programs aimed at improving educational and career 

potentialities. Without seeking out and accounting for the lived experiences, educational and 

career ambitions, and disciplinary interests of youth, STEM reform initiatives cannot adequately 

address the needs of students. Students must be allowed to participate in the creation of programs 

aimed at helping them achieve quality learning experiences in STEM. Without considering 

students’ perspectives, we will remain blind to the unique contributions of their meaning-making 

processes and how they can bolster equity goals of STEM reform efforts like IDS. Most 

importantly, in line with arguments made by Bang et al. (2012) regarding what counts as 

knowledge in traditional school science, the difficulty of pursuing an equity-oriented data 

science project lies in confronting the long-standing and ideologically rooted settled expectations 

(Harris, 1995) for what counts as legitimate scientific knowledge and who can contribute to its 



 

 214 

constitution, as well as what counts as legitimate science-doing and who can do it. Involving 

youth in programs that target them and their communities is essential for disrupting settled 

expectations of what constitutes legitimate scientific knowledge and who can contribute to its 

constitution. Moreover, involving students in the design process can help STEM reform efforts 

understand, and necessarily address, why some groups convey limited engagement even within 

reform-oriented spaces (Murrell, 1999; Lubienski, 2002). In the case of students in Ms. Gellar’s 

IDS classroom, reasons for limited engagement varied, but salient among them was the belief 

that data science was not beneficial to, relevant to, or applicable in everyday life beyond the 

course itself. 

Reflect on possible manifestations of the culture of power and the data-culture 

divide in the new field of data science. Reflecting on the ways in which the culture of power 

(Delpit, 1998; Calabrese Barton & Yang, 2000) pervades the sciences and extends into budding 

and rapidly developing fields like data science is imperative for a truly equitable shift in access 

to and diversity in STEM. This requires honesty, humility, and a deep understanding of the 

culture of power as persistent and eventually-emergent unless there is a conscious and explicit 

effort to challenge the myth of science and data science as objective. This is consistent with calls 

to action in existing scholarship aimed at reframing narrowly defined science as natural and 

factual (Brickhouse, 1994; Stanley & Brickhouse, 1994; Calabrese Barton, 1998; Calabrese 

Barton & Yang, 2000; Bang et al., 2012). A lack of reflection, here, will undoubtedly allow the 

culture of power and the data-culture divide to persist even within educational projects with 

stated goals of equity and social justice mirroring programs critiqued by Brickhouse (1994) as 

shortsighted, though well-intentioned. 
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Adopt life-long learner identities among educators, researchers, curriculum writers, 

and policy makers. Learning to think of ourselves—as educators, researchers, curriculum 

writers, and policy makers—as life-long learners is necessary for positioning ourselves and 

students as simultaneous learners and educators. This is fundamentally a matter of reflecting on 

authority distribution in the classroom. By no means should this be interpreted as my proposal to 

devalue the specialized training and contributions of teachers in the classroom, but embracing the 

notion that youth, particularly those from non-dominant groups, bring unique perspectives and 

meaning-making practices into the classroom can prove immensely beneficial for developing 

new disciplinary understandings and positioning students as valued contributors to scientific 

knowledge (Bang et al., 2012). By valuing students’ contributions, students learn that they are 

not only responsible for learning established disciplinary understandings, they also learn that 

they are valued contributors to STEM knowledge systems, fundamentally challenging traditional 

approaches to teaching and learning that position teachers and beholders of knowledge and 

students as receivers of knowledge. 

Conclusion 

This dissertation has been a social justice project aimed at contributing to the 

improvement of social justice and equity efforts in education, namely those aimed at reforming 

STEM education as we know it and cultivating critical data-scientific literacies among non-

dominant groups. To do so, I carried out a systematic analysis of the identities that students 

developed in Ms. Gellar’s IDS course as an instantiation of STEM reform efforts to reveal the 

complex nature and factors that shaped learning outcomes for students from a predominantly 

Latino classroom, school, and school district. I argue that IDS afforded several unique 

affordances to students’ opportunities to learn with and about data, but that a complex set of 
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factors generally impaired students’ abilities to develop strong data-scientific identities and 

identities as STEM-doers via the development of conceptual understandings and exercising of 

conceptual agency. I strongly argue that IDS has much to offer students who would not 

otherwise gain experiences learning to work with and think critically about data, but must 

actively work toward addressing limitations and capitalizing on the affordances that emerged 

during the implementation. I believe that only by disrupting settled expectations of authority in 

the classroom and challenging positivist views of science and scientific knowledge as objective 

and static can we contribute to the improvement of STEM education and career opportunities for 

Latino students and inspire motivated learning with and about data science, thus inspiring the 

cultivation of strong learning identities among groups traditionally underrepresented in data 

science-related sciences and STEM in general.
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APPENDIX B 

Student Exit Interview Protocol 
 

STEM Identity 

1. Let’s say you’re trying to explain what a data scientist is to a very young child in your family. 

Can you tell me, in detail, how you would describe a data scientist to them? 

2. What type of work does a data scientist do? 

3. Can you tell me what types of data science skills you have developed in IDS? 

4. Has IDS shifted your thinking on what it means to be a mathematician, statistician, scientist, or 

computer scientist? 

 

Self-Identification with STEM Identity or Science-doing 

5. Do you want to work and/or study in fields related to science, technology, engineering or math? 

Please explain. 

6. Do you think you could be a data scientist if you wanted to? Why or why not? 

 

Relevance/Real-World Importance 

7. “Data science, computer programming, and coding are important for future careers.” Does this 

statement motivate or entice you to study or work in fields related to data science? 

8. How [can/will/might] you use the skills you learned in this class in your personal life? 

9. How have your views of yourself and the world changed after taking engaging in data science? 

 

“What does this really mean?” 

10. What will you do with what you’ve learned in IDS? 

11. Do you care about data science? 

a. Should I care about data science? 

b. Should your peers care about data science? 

c. Should your family care about data science? 

d. How about your community, people that live in your neighborhood, should they care? 

e. What about the children in your community, should they care? 

f. In your opinion, who should care? 

 

Looking Ahead 

12. Can you tell me about your academic or career plans after high school? 

a. What steps have you taken so far to achieve this goal? 

 
2nd Year IDS Students 

A. Can you tell me how your experience in IDS this year was different than your experience in IDS 
last year? 

a. Why do you think you did better in the class this time? 

b. Why do you think you didn’t do as well last year? 
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APPENDIX C 

Sample Lesson Worksheet Handout 
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APPENDIX D 

Sample Lab Worksheet Handout 
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