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Abstract 

Semiclassical periodic orbit theory is applied to the double-well 

eigenvalue problem to show how this unified approach describes the quite 

different character of the level splitting (in the case of symmetric wells) 

and level shifts (in the asymmetric case) caused by tunneling. 
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I. Introduction 

In molecular phenomena involving double-well potential functions (cf. 

Figure 1), level splitting and level shifts caused by tunneling through the 

barrier is well-known. Examples include inversion of the annnonia molecule, 

for which the double well is symmetric (cf.Figure la), and proton tunneling 

between DNA base pairs, for which the two wells are unsymmetrical (cf. Figure 

lb). The purpose of this paper is to analyze this phenomenon in terms of 

1 2 
semiclassical periodic orbit theory' and to point out the fundamental 

differences between the symmetrical and unsymmetrical cases. Since periodic 

orbit theory can also be applied to multi-dimensional systems, it is hoped 

that this analysis may be useful in suggesting how to approach the treatment 

of multi-dimensional double-well potential energy surfaces. 
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Semiclassical Eigenvalues via Periodic Orbit Theory. 

The semiclassical eigenvalues of a potential well are 

appealingly intuitive manner by their periodic orbits. 

the following quantum mechanical relations: 

geE) _ trace (E_H)-l = b(E-Ek)-l 
k 

described in 

One makes use 

(la) 

The eigenvalues {Ek} are thus identified as the poles of the function geE), 

and the semiclassical approximation enters by invoking the usual semi­

classical approximation to the propagator3 (time evolution operator) in 

Eq. (lb). Further semiclassical approximations are that the integrals 

over t and x in Eq. (lb) are evaluated via the stationary phase approxi­

mation, and for one dimensional systems this givesl ,2,4 (using units/such 

that h = 1) 

geE) ex: L e 
i(q,-'IT£./2) 

(2) 
periodic 
orbits 

where q, - q,(E) is the action integral for a periodic trajectory with energy 

E, 

q,(E) = fit p (t) ~(t) = fdX P (x,E) 

and £. is the number of class~cal turning points experienced by the trajectory. 

Uninteresting (for present purposes) proportionality constants are for 
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simplicity omitted in Eq. (2). The sum is over all periodic orbits, i.e., 

trajectories that began and end with the same coordinate and momentum. 

To see how Eq. (2) works, consider first a single potential well. A 

periodic trajectory is one that begins at some position x with momentum p 

and returns at some later time to this position with the same momentum. 

For a simple one dimensional potential well it is clear that there are an 

infinite number of such trajectories because the particle oscillates back 

and forth in the well forever. If ~(E) is the action integral for one 

pass across the well, 

$tE) ~ t dx p(x,E) ~ 1: dx J2~[E-V(x) 1 (3) 

where x< and x> are the classical turning points, then for a periodic orbit 

that makes k passes back and forth across the well one has 

<P(E) 2k ~(E) 

Q, 2k 

so that in this case Eq. (2) gives 

g(E) ex: t 
k=l 

(4) 
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Eq. (4) shows that geE) has poles at the values of E for which 

2i(<P _E.) 
e 2 1 

or 

1T 
<P(E) - 2 =1Tn 

or 

<P(E) 
1 

= (n + 2)1T (5) 

where n is any integer. This is the well known WKB eigenvalue relation5 

for simple potential wells. 

Eq. (2) can also be applied to the double-well potentials sketched 

in Figure 1, but to include the effects of tunneling it is necessary to 

include complex-valued periodic trajectories6 as well as the real ones. 

Consider a trajectory beginning in potential well 1 in Figure 1. In addition 

to the term in Eq. (4) from the real-valued trajectories that oscillate 

back and forth in weIll, there are complex-valued trajectories that tunnel 

through the barrier; Figure 2 depicts the simplest such trajectory, for 

which the contribution to geE) is 

-6 2i<P2 
.1T 

- 12 -6 
e e e e 

.1T -12" 
e -e 

-26 2i<P2 
e (6) 

where <PI and <P2 are the phase integrals across wells 1 and 2, and where the 

various factors are indicated sequentially: the particle begins at the 

left hand turning point, travels across well 1, tunnels through the barrier, 

tunnels across well 2 and back, tunnels back through the barrier, 
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and returns to its starting point; there are two turning points for this 

periodic trajectory. 8 is the imaginary action integral (the barrier 

penetration integral) for one pass through the barrier: 

(7) 

It is easy to see how to incorporate all trajectories of the above 

type, i.e., those that tunnel through the barrier and back only once. 

For a trajectory that makes kl extra passes back and forth across well 

1 before it tunnels, then tunnels and makes k2 extra passes back and 

forth across well 2 before it tunnels back through the barrier, and 

then makes k3 extra passes back and forth across well 1 before terminating 

at its origin, the contribution to geE) is 

e 

-e 

i[<I>l+2kl (<1>1 - ~)] 

-28 
2i(¢ -~) 

1 2 e 

-8 e e 
i[2<1>2--¥-+ 2k2 (<1>2--¥-)] 

.2i(it. _ 7r) 
'1'2 2 

e 

-8 i[<I>l -; + 2k3 (<I>l -~)] 
e e 

(8) 

The total contribution of such trajectories is obtained by summing over 

J 

which when added to the contribution of the real trajectories finally gives 

27rin
l -28 

27rin
l 

27rin
2 

geE) ex: 
e e e e (9) 27rin

l 2 
l-e 

27rin
l 

27rin
2 (l-e ) (l-e ) 

.. 
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where 

(lOa) 

(lOb) 

Eq. (9) is the final expression from which the results of interest are 

obtained below. 

Symmetric (Degenerate) Case. 

Consider first the symmetric double-well (Figure la) so that 

n2 (E) - neE) 

and Eq. (9) becomes 

e27Tin -26 geE) ex: - """ e 
1 27Tin 
-e 

(e27Tin)2 

(l-e 27Tin) 3 

The unperturbed (and thus unsplit) eigenvalues are determined by 

neE) = integer, 

and let E be close to such an eigenvalue, EO say. Then 

where 

(11) 

(12) 

(13) 
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n(EO) = integer 

2TIin(E) 2TIin(E
O

) 
e ~ e 

2TIin' (EO) (E-EO) 
e 

Discarding multiplicative factors, Eq. (12) then becomes 

geE) 
-26 

ex: _1_ + -,,----e.:......---;:2:----~3 
E-Eo [2TIn'(E

O
)] (E-E

O
) 

(14) 

(15) 

The semiclassical expression in Eq. (15) is to be compared with the 

quantum mechanical expression, Eq. (la), including only the two energy 

l1E l1E 
levels EO -:z and EO +:2' where l1E is the splitting; i.e., for E close 

to EO one has 

gQM(E) 
1 1 

~ 

E-E + l1E 
+ 

E-E + l1E o 2 o 2 

expanding this to lowest order in l1E gives 

gQM(E) 
1 (l1E/ 2) 2] (16) ~ 2 [E-E + 

0 (E-EO)3 

Comparising Eqs. (15) and (16) identifies the semiclassical expression 

for the level splitting as follows: 

, 
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(17) 

7 This result, which is also obtained by conventional WKB methods , is 

valid only for small splittings because periodic orbits were included 

that involved only one tunneling back and forth across the well, and 

also because the above expressions have been evaluated only to lowest 

order in liE. 

Asymmetric (Non-Degenerate) Case. 

Here nl(E) ::f n2 (E) and we consider the shift in one of the unperturbed 

eigenvalues, El say, of weIll that is caused by the tunneling. Thus let 

E be near El , where 

so that 

or 

21rinl (E) ~ 
l-e 

Eq. (9) then gives (dropping multiplicative factors) 

g(E) 1 
0: --

E-E 
1 

(18) 
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If E2 is the eigenvalue of well 2--i.e., 

n2 (E2) = integer 

--that is closest to E
l

, then , 

or 

1 -

so that Eq. (18) becomes 

geE) 
1 cx:--_ 

E-E 
1 

-28 
e 

(19) 

The quantum mechanical approximation to geE), taking into account only 

the energy level El + ~E, i.e., for E. near El , is 

which, expanded to lowest order in ~E, is 

::!_l_+ ~E 
gQM(E) E E 2 

- 1 (E-E
l

) 
(20) 



-11-

Comparing Eqs. (19) and (20) leads to the semiclassical expression for 

the level shift, 

-28 

\ 

~E = ____ ~----~e----------__ --, . , 
[2TIril (E

l
)] [2TIn2 (E2)] (El -E2) 

(21) 
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III. Discussion. 

Equations (17) and (21) give the semiclassical results for the splitting 

of degenerate levels and shift in non-degenerate levels, respectively, 

caused by tunneling between the wells. Considering e-e « 1, the most 

interesting and obvious difference between the symmetric and asymmetric 

cases is that the perturbation of the levels in the symmetric is much 

7a greater than that in the asymmetric case, as has been noted before. The 

symmetry of the two wells allows the particle to "hop" from one well to 

the other much faster than it would ordinarily be able to tunnel. 

Another interesting comparison to the quantum mechanical situation 

is possible by considering the quantum mechanical energy levels to come 

from a 2 x 2 matrix H .. , 
1J 

(21) 

with Hll = El and H22 = E2 being the unperturbed levels. In the degenerate 

case El = E2 = EO and the eigenvalues of the matrix are 

E (22) 

so that 

comparing with the semiclassical expression, Eq. (17), identifies the 

"exchange interaction" H12 as 
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hw -8 
H12 = 21T e (23) 

where hw = lin' (E ). o For the asymmetric case, El ~ E2 , the eigenvalue 

close to El is given to lowest order in H12 by second order perturbation 

theory 

(24a) 

i.e. , 

(24b) 

and comparing this to the semiclassical expression, Eq. (21), leads to 

the identification 

(25) 

, , 
where hWl = l/nl(El ), hW2 = 1/n2 (E2). In both cases, therefore, one 

obtains essentially the same identification, Eqs. (23) and (25), for 

the semiclassical approximation to the exchange interaction. 

Another interesting comparison is to the level width of a metastable 

state in a potential as sketched in Figure 3. The width r of the level 

.. . 1 . 11 by7a,7c 1S g1ven sem1C aSS1ca y 

r 
-28 

e 
21Tn' (E) (26) 

where1Tn(E) ¢(E) is the action integral over the bound well. The 
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level width is thus seen to be much more closely related to the asymmetric, 

non-degenerate energy level shift than it is to the level splitting in the 

symmetric, degenerate case. 

As a final point, the probability P for tunneling through a potential 

barrier isS 

whether the barrier is symmetric or asymmetric. (This quantity appears 

commonly, for example, in considering quantum effects to reaction rate 

constants.) There have been attempts to determine P by distorting the 

barrier problem into a double-well problem, as indicating in Figure 4, and 

then identifying P by 

P ex: LlE 

where LlE is the splitting (in the symmetric well case) or level shift (in 

the asymmetric case). From the discussion above it is clear that this 

identification is correct only in the asymmetric case; i.e., the rate of 

tunneling through a barrier, even a symmetric one, is much slower than the 

rate of hopping back and forth in a symmetric double-well potential. 

In concluding, we note that there is considerable interest now in 

trying to extend semiclassical eigenvalue methods to multi-dimensional 

systems, and much progress has been made 

potential energy surfaces that possess a 

recently for multi-dimensional 

8-10 
single well. It is hoped 

that this periodic orbit picture of dealing with double-well potentials 

may be of use in extending multi-dimensional periodic orbit methods to 

treat multi-dimensional double-well potential energy surfaces. 

I 
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Figure Captions 

1. Sketch of a symmetric (a) and asymmetric (b) double-well potential 

function. 

2. The simplest complex-valued periodic trajectory that tunriels from 

well I to well 2 and back. 

3. A potential function giving rise to metastable levels (or equivalently 

scattering resonances). 

4. Sketch of a typical potential barrier, indicating (via broken lines) 

how it can be distorted into a double-well potential. 
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Figure 2 

~ 
--- )( 

(\j 
--- )( 



-20-

" 
N 

" 'd" 
.-4 .4 

...... 
I 

C'I 
co 
" .....J 
a:l 
>< 

Figure 3 



{; 

.. 

-21-

w 

" " "-
'\ 

\ 
\ 

-)(---+-+""--; ........ 
> 

".. 

/ 
./ 

Figure 4 

/ 
/ 

/ 

(V) 

N ,..... 
...-i 
...-i 

I 
0 
...-i 
ex:> ,..... 

--' 
a:l 
X 



j 

This report was done with support from the Department of Energy. 
Any conclusions or opinions expressed in this report represent solely 
those of the author(s) and not necessarily those of The Regents of the 
University of California, the Lawrence Berkeley Laboratory or the 
Department of Energy. 



~---~-

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

.. ~:,:. 




