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Abstract: We reformulate and reframe a series of increasingly complex parametric statistical topics
into a framework of response-vs.-covariate (Re-Co) dynamics that is described without any explicit
functional structures. Then we resolve these topics’ data analysis tasks by discovering major factors
underlying such Re-Co dynamics by only making use of data’s categorical nature. The major factor se-
lection protocol at the heart of Categorical Exploratory Data Analysis (CEDA) paradigm is illustrated
and carried out by employing Shannon’s conditional entropy (CE) and mutual information (I[Re; Co])
as the two key Information Theoretical measurements. Through the process of evaluating these
two entropy-based measurements and resolving statistical tasks, we acquire several computational
guidelines for carrying out the major factor selection protocol in a do-and-learn fashion. Specifically,
practical guidelines are established for evaluating CE and I[Re; Co] in accordance with the criterion
called [C1:confirmable]. Following the [C1:confirmable] criterion, we make no attempts on acquiring
consistent estimations of these theoretical information measurements. All evaluations are carried out
on a contingency table platform, upon which the practical guidelines also provide ways of lessening
the effects of the curse of dimensionality. We explicitly carry out six examples of Re-Co dynamics,
within each of which, several widely extended scenarios are also explored and discussed.

Keywords: Categorical Exploratory Data Analysis; curse of dimensionality; Hierarchical clustering;
interacting effects; K-means; LASSO

1. Introduction

The majority of scientific fields, such as biology [1], neuroscience [2], medicine, sociol-
ogy and psychology [3] and many others [4], involve dynamics of complex systems [5,6].
Scientists and experts in such fields typically can only imagine or even briefly outline
various potential response-vs.-covariate (Re-Co) relationships in an attempt to characterize
the dynamics of their complex systems of interest [7]. Given that no explicit functional
form of such Re-Co relationships is available, such scientists still go ahead and collect
structured data sets by investing great efforts in choosing which features for the role of
response variable, and which features for the role of covariate variables. Such choices of
features are indeed critical for the sciences because their successes rely entirely on whether
such structured data sets can embrace the essence of the targeted Re-Co dynamics or not.

After scientists achieve their scientific quests by generating structured data sets upon
the complex systems of interest, it becomes not only very natural, but also very important to
ask the following specific question: When such structured data sets are in the data analysts’
hands, what is the most essential common goal of data analysis? This goal is certainly not
aimed at an explicit system of equations, nor at a complete set of functional descriptions
of the targeted Re-Co dynamic. Instead, this goal can and shall be oriented to decode the
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scientists’ authentic knowledge and intelligence about the complex systems of interest, and
one step further to go beyond the current state of understanding.

In sharp contrast, nearly all statistical model-based data analyses on any structured
data sets pertaining to wide-range of Re-Co dynamics always assume an explicit functional
structure linking the response variables to covariate variables, including hypothesis test-
ing [8], analysis of variance (ANOVA) and the many variants of regression analysis [9,10],
including generalized linear models and log-linear models [11,12]. By framing rather
complex Re-Co dynamics with rather simplistic explicit functional structures, statistical
model-based data analysis surely will run the dangers of hijacking data’s authentic in-
formation content. With such dangers in mind, it is natural to ask the reverse question:
What if we can reformulate all fundamental statistical tasks to fit under a framework of
response-vs.-covariate (Re-Co) dynamics without explicit functional forms and extract
data’s authentic information content of data sets?

As the theme of this paper, we demonstrate a positive answer to the above fundamental
question. The chief merits of such demonstrations are that we not only can do nearly all
data analysis without statistical modeling, but more importantly we can reveal data’s
authentic information content to foster true understanding about the complex systems of
interest. Our computational developments are illustrated through a series of 6 well-known
statistical topic issues with increasing complexity. All successfully revealed information
content is visible and interpretable.

The positive answer resides in the paradigm called Categorical Exploratory Data Anal-
ysis (CEDA) with its heart anchored at a major factor selection protocol, which has been
under developing in a series of published works [13–16] and a recently completed work [17].
For demonstrating the positive answer, this paper establishes practical guidelines for evalu-
ating Theoretical Information Measurements, in particular Shannon’s conditional entropy
(CE) and mutual information between the response variables and covariate variables,
denoted as I[Re; Co] [18], which are the basis of CEDA and major factor selection protocol.

Along the process of establishing such computational guidelines, we characterize four
theme-components in CEDA and the major factor selection protocol:

TC-1. Our practical guidelines are established here for evaluating CE and I[Re; Co] without
requiring consistent estimations of their theoretical population-version of measure-
ments.

TC-2. All entropy-related evaluations are carried out on a contingency table platform, so
learned practical guidelines also provide ways of relieving from the effects of the
curse of dimensionality and ascertaining for [C1:confirmable] criterion, which is a
kind of relative-reliability.

TC-3. CEDA is free of man-made assumption and structures, so consequently its inferences
are carried out with natural reliability.

TC-4. CEDA only employs data’s categorical nature, so the confirmed collection of major
factors indeed reveals data’s authentic information content disregarding data types.

The theme-component [TC-1] allows us to avoid many technical and difficult issues
encountered in estimating the theoretical information measurement [19,20]. [TC-1] and
[TC-2] together make CEDA’s major factor selection protocol very distinct to model-based
feature selection based on mutual information evaluations [21–24], while [TC-3] makes
CEDA’s inferences realistic, and [TC-4] makes CEDA to provide authentic information
content with very wide applicability.

For specifically illustrating these four theme-components, we consider a structured
data set consisting of data points that are measured and collected in a L + KD vector
format with respect to L + K features. The first L components are the designated response
(Re) features’ measurements or categories, denoted as Y = (Y1, . . . , YL)

′, and the rest
of K components are K covariate (Co) features’ measurements or categories, denoted
as {V1, . . . , VK}. It is essential to note that some or even all covariate features could be
categorical. Thus, data analysts’ task is prescribed as precisely extracting the authentic
associative relations between Y and {V1, . . . , VK} based on a structured data set.
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By extracting authentic associations between response and covariate features, various
Theoretical Information Measurements are employed under the structured data setting
in [13–17]. In particular, Re-Co directional associations developed in CEDA and its major
factor selection protocol rely on evaluations of Shannon conditional entropy (CE) and
mutual information (I[Re; Co]) that are all carried out upon the contingency table platform.
This platform is indeed very flexible and adaptable to the number of features on row- and
column-axes as well as the total size of data points. Such a key characteristic makes CEDA
very versatile in applicability. We explain in more detail as follows.

On the response side, a collection of categories of response features (pertaining to Y)
is determined with respect to their categorical nature and sample size. Likewise, on the
covariate side, a collection of categories for each 1D covariate feature (pertaining to Vk for
k = 1, . . . K) is chosen accordingly. It is noted that a continuous feature is categorized with
respect to its histogram [25]. If L > 1, then the entire collection of response categories will
consist of all non-empty cells or hypercubes of LD contingency tables. However, when L
is large, the total number of LD hypercubes could be too large for a finite data set in the
sense that many hypercubes are occupied by very few data points. This is known as the
effect of the curse of dimensionality. To avoid such an effect, clustering algorithms, such
as Hierarchical clustering or K-means algorithms, can also be performed for fusing the L
response features (upon their original continuous measurement scales or their contingency
tables when involving categorical ones) into one single categorical response variable. The
number of categories can be pre-determined for K-means algorithm or determined by
cutting a Hierarchical clustering tree in a fashion such as there is only one tree branch
per category. The essential idea behind such feature-fusing operations is to retain the
structural dependency among these L response features, while at the same time reducing
the detrimental effect of the curse of dimensionality.

In contrast, singleton and joint (or interacting) effects of all possible subsets of {V1, . . . , VK}
are theoretically potential on the covariate side. However, it is practically known that any
high order interacting effects needed to be considered are to a great extent determined by the
sample size. That is, a covariate-vs.-response contingency table platform can vary greatly
in dimensions: large or small. When viewing a contingency table as a high-dimensional
histogram, which is a naive form of density estimation, the curse of dimensionality, or
so-called finite sample phenomenon, is supposed to affect our conditional entropy evalua-
tions whenever this table’s dimension is large relative to data’s sample size. We use the
notation C[A− vs.−Y ] (rows-vs.-columns) for a contingency table of a covariate variable
subset A ⊆ {V1, . . . , VK} and response variable Y . As a convention, the categories of Y are
arranged along its column-axis, while the categories of A are arranged along the row-axis.
This row-axis would expand with respect to memberships of A.

In CEDA, the associative patterns between any A ⊆ {V1, . . . , VK} and Y would be
discovered and evaluated ucing the contingency table C[A− vs.− Y ]. It is necessary to
reiterate that C[A− vs.−Y ] can be viewed as a “joint histogram” or “density estimation”
of all features contained in A and Y . From this perspective, when the dimension of
C[A − vs.− Y ] increasingly expands as A including more variables, it is expected that
its dimensionality would affect the comparability and reliability of conditional entropy
evaluations. Consequently, for comparability purposes, this criterion [C1:confirmable] in
CEDA arises. This criterion is based on a so-called data mimicking operation developed
in [14], as will be described in the following paragraphs.

Let Ã denote one mimicry of A in the ideal sense of having the same deterministic
and stochastic structures. In other words, Ã is generated to have the same empirical
categorical distribution of A, see [14] for construction details. More practically speaking,
if the empirical categorical distribution of A is represented by a contingency table, then,
given the observed vector of row-sums, Ã would be another contingency table that has the
same lattice dimension and all its row-vectors are generated from Multinomial distribution
with parameters specified by the corresponding row-sum and the corresponding vector of
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observed proportions in A’s contingency table. It is noted that Ã is constructed independent
of Y , that is, Ã is stochastically independent of Y [14].

Denote the mutual information of Y of A be I[Y ; A] based on C[A− vs.− Y ], and
likewise I[Y ; Ã] based on C[Ã− vs.−Y ]. The [C1:confirmable] used in CEDA is referred
to as the degree of certainty that I[Y ; A] is far beyond the upper limit of confidence region
based on the empirical distribution of I[Y ; Ã]. This [C1:confirmable] criterion is indeed in
accordance with CEDA’s theme components: [TC-2] and [TC-3], regarding the merits of
a contingency table platform in dealing with the curse of dimensionality and facilitating
reliability. It is critical to note that we are not estimating the theoretical mutual information
of Y and A here, and we just want to computationally make sure that I[Y ; A] is significantly
above zero with great reliability under the reality of having only a finite amount of data
points at hand.

Henceforth, it is a critical fact in all applications of CEDA: a covariate feature set is
confirmed as having effects on Y only when the [C1: confirmable] criterion of I[Y ; A] is
established. This concept makes possible for [TC-1] by doing without the nonparametric
estimations of Shannon entropy for a continuous distribution function as well as the mutual
information for two sets of continuous variables, which have been the long standing
problems in physics and neural computing (see theoretical details in [19] and computational
protocols based on biGamma function in [20]).

Here, we do not take the view of contingency table as a setup of Grenander’s Method
of Sieves (MoS) [26] in this paper. Though MoS can be a choice for practical reasons and
computing issues involving many dimensional features or variables, we do not concern
primarily on estimating the population-versions of CEs and I[Re; Co] per se, nor the in-
duced sieves biases. Rather, the dimensions of contingency tables are made adaptable to
the necessity of accommodating multiple covariate feature-members in A. Within such
cases, the collection of categories of A might be built based on hierarchical or K-means
clustering algorithms. From this perspective, computations for theoretical conditional
entropy and mutual information between multiple dimensional covariate and possibly
multi-dimensional Y are neither realistically nor practically possible, due to the limited size
of the available data sets. Since this kind of sieves is data dependent, the computations for
sieve biases can be much more complicate than that covered in [19].

In this paper, we illustrate and carry out CEDA coupled with its major factor selection
protocol through a series of 6 classic statistical topic examples, within each of which
various scenarios are also considered. By building contingency tables across various
dimensions with respect to different sample sizes, we attempt to reveal the robustness of
CEDA resolutions to statistical topic issues. On one hand, we learn practical guidelines of
evaluating conditional (Shannon) entropy and mutual information along this illustrative
process. On the other hand, we demonstrate that very distinct CEDA resolutions to these
classic statistical topic issues can be achieved by coherently extracting data’s authentic
information content, which is the intrinsic goal of any proper data analysis. That being
said, if modeling is indeed a necessary step within a scientific quest, then data’s authentic
information content surely will better serve its purpose by relying on confirmed structures
to begin with a new kind of data-driven modeling.

At the end of this section, we briefly project the applicability of our CDA approach for
data analysis related to complex systems. One critical application is in a case-control study.
Since such studies likely involve multiple features of any data types as often conducted
in medical, pharmaceutical, and epidemiological research. Another critical application of
CEDA is to serve as an alternative approach to all kinds of regression analysis techniques
based on linear, logistic, log-linear, or generalized linear regression models. Such modeling-
based analyses are often required and conducted in biological, social, and economic sciences,
among many other scientific fields. Furthermore, in our ongoing research, we look into
the issue of how well CEDA would deal with causality issues. Addiotonally, with such a
wide spectrum of applicability, we project that CEDA will become an essential topic of data
analysis education in the fields of statistics, physics, and beyond in the foreseeable future.
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2. Estimations of Mutual Information between One Categorical and One
Quantitative Variables

In this section, we demonstrate how to resolve classic statistical tasks by discovering
major factors based on entropy evaluations. First, we frame each classic statistical task into
precisely stated Re-Co dynamics. Secondly, we compute and discover major factors under-
lying this Re-Co dynamics. Inferences are then performed under [C1:confirmable] criterion
across a spectrum of contingency tables with varying designed dimensions. Thirdly, we
look beyond the setting of the discussed examples to much wider related statistical topics.

Throughout this paper, all 95% confidence ranges (CR) are calculated as the region
between 2.5% percentile on the lower tail and 97.5% percentile on the upper tail of any
simulated distribution. This CR reflecting both tail behaviors is considered informative.
Since even when the upper tail is the only quantity of interest as being the case in this paper,
the classic one-sided 97.5% confidence interval becomes visible.

2.1. [Example-1]: From 1D Two-Sample Problem to One-Way and Two-Way ANOVA

Consider a data set consisting of quantitative observations {Yl j|l = 1, 2; j = 1, . . . , Ni}
of 1D response feature Y derived from two populations labeled by l = 1, 2, respectively.
Let Yl j be distributed according to Fl(.). Testing the distributional equality hypothesis
H0 : F1(y) = F2(y), ∀y ∈ R1 is the most fundamental topic in statistics. Under this setting,
the only covariate V1 is the categorical population-ID taking values in {1, 2}. The testing
hypothesis problem and its subsequent ones can be turned into an equivalent problem: Is
V1 a major factor underlying the Re-Co dynamics of Y? If V1 is not a major factor, thenH0
is accepted. IfH0 is indeed rejected by confirming V1 being a major factor, then we would
further want to discover where they are different.

For the illustrative simplicity, let Y1j ∼ N(0, 1) and Y1j ∼ N(1, 1) with j = 1, . . . , N/2,
that is, N1 = N2. From a theoretical information measurement perspective, the theoretical
value of entropy of Y is calculated being equal to H[Y] = 1.5321, and its conditional entropy

H[Y|V1] = (H[Y|V1 = 0] + H[Y|V1 = 1])/2 = (1.4189× 2)/2 = 1.4189,

so the mutual information shared by Y and V1 is denoted and calculated as I[Y; V1] =
H[Y] − H[Y|V1] = 0.1132. By V1 being a major factor of Y, we mean that the V1 is not
replaceable by other covariate variables that is stochastically independent of Y, such as
fair-coin-tossing random variable ε. That is, we theoretically establish this fact by knowing
0 = I[Y; ε] << I[Y; V1].

In the real world, the two population-specific distributions F1(.) and F2(.) are often
unknown. To accommodate this realistic setting, we build a histogram, say F̂(.), based on
pooled observed dataset {Yij|i = 1, 2; j = 1, . . . , Ni}. With a chosen version of F̂(.) with K′

bins, we can build a 2× K′ contingency table, denoted by C[V1 − vs.− Y]. Its two rows
correspond to two population-IDs and all K′ bins with column-sums nk, k = 1, . . . K′ being
arranged along the column-axis. That is, C[V1− vs.−Y] keeps the records of popultion-IDs
for all members within each bin of F̂(.), and enable us to estimate the mutual information:

I[Y; V1] = H[Y]− H[Y|V1] = H[V1]− H[V1|Y].

All estimates of I[Y; V1] would be compared with estimates of I[Y; ε] from 2×K contingency
tables generated as follows: its kth column with k = 1, . . . , K′ simulated from a binomial
random variable BN(nk, P0) with P0 = (N1/N, N2/N)′. This comparison of I[Y; V1] with
I[Y; ε] is a way of testing whether a major factor candidate satisfies the criterion [C1:
confirmable] in [15]. Precisely this testing is performed by comparing the observed estimate
of I[Y; V1] with respect to the simulated distribution of I[Y; ε].

To make our focal issue concrete and meaningful, we undertake the following simu-
lation study, in which the reliability issue of H[Y|V1] estimation is addressed, and at the
same time [C1: confirmable] is tested. Recall that Y1j ∼ N(0, 1) and Y1j ∼ N(1, 1) with
j = 1, . . . , N/2. We consider two cases of N = 2000 and N = 20,000. For practical considera-
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tions with respect to the infinity range of Normality, we choose K′ = K + 2 bins for building
a histogram via a 1+K+ 1 fashion. The observed 90% quantile range [F−1

N (0.05), F−1
N (0.95)]

K is divided into K equal size of bins, while the first bin is (−∞, F−1
N (0.05)] and last bin

is [F−1
N (0.95), ∞). We use 5 choices of K ∈ {10, 20, 30, 100, 1000}. For each K value, the

estimated Shannon entropy H(K)[Y] and conditional entropies H(K)[Y|V1]. Also, a 95%
confidence range (CR) of I[Y; ε] is also simulated and reported based on an ensemble of
I(K)[Y; ε] = H(K)[Y]− H(K)[Y|ε], where ε is Bernoulli (fair-coin tossing) random variable.

As reported in the table Table 1, it is evident that the mutual information
I(K)[Y; V1] = H(K)[Y]−H(K)[Y|V1] is very close to the theoretical values as if they are nearly
scale-free when K = 10, 20, 30 with N = 2000 and K = 10, 20, 30, 100 with N = 20,000. The
rule of thump in this 1D setting seems to be: the mutual information estimations are rather
robust when the averaged cell count is over 30. When the average cell count is around
10, we begin to see the effects of finite sample phenomenon. Nonetheless, we still have
estimates of I(K)[Y; V1] being far above the upper limits of 95% confidence range of I[Y; ε]
when K = 100 with N = 2000 and even K = 1000 with N = 20,000. This simulation indeed
points to an observation that the conclusion based on I(K)[Y; V1] tends to rather reliable in
view of [C1: confirmable] criterion.

Table 1. Point estimations of mutual information I[Y; V1] with 0.1132 as its theoretical value:
I[Y; V1] = H[Y] − H[Y|V1] = 1.5321 − 1.4189, and null 95% confidence range (CR) of I(K)[Y; ε]

with ε being the Binomial random variable under the null hypothesis.

N Bin Size H[Y] H[Y|V1] I[Y ; V1] 95% CR of I[Y ; ε]

2000

1 + 10 + 1 2.3993 2.2824 0.1168 [0.00254, 0.00298]
1 + 20 + 1 3.0149 2.8951 0.1199 [0.00489, 0.00551]
1 + 30 + 1 3.3782 3.2571 0.1211 [0.00757, 0.00836]
1 + 100 + 1 4.4424 4.3043 0.1382 [0.02548, 0.02704]
1 + 1000 + 1 6.2609 5.9149 0.3461 [0.26435, 0.26768]

20000

1 + 10 + 1 2.4135 2.3011 0.1124 [0.00025, 0.00030]
1 + 20 + 1 3.0350 2.9215 0.1135 [0.00050, 0.00057]
1 + 30 + 1 3.3995 3.2856 0.1139 [0.00074, 0.00082]
1 + 100 + 1 4.4807 4.3649 0.1157 [0.00243, 0.00258]
1 + 1000 + 1 6.5310 6.3933 0.1377 [0.02591, 0.02637]

In summary, Table 1 indicates that the estimate of the mutual information of I[Y|V1] is
far above the 95% confidence range under the null hypothesis within each of all 5 choices of
K under the two cases of N. 9 out of 10 cases have almost 0 p-values, except the 1+ 1000+ 1
case with N = 2000. These facts indicate one common observation: when all bins contain at
least 20 data point, the estimate of I[Y|V1] is reasonably stably and practically valid. That is,
we only need a stable and valid estimate of I[Y|V1] for the purpose of confirming a major
factor candidacy.

In fact, it is surprising to see that, even when K = 1000 in the case of N = 2000,
I(K)[Y; V1] still retains [C1: confirmable] criterion by going beyond the upper limit of
the 95% confidence range of I[Y; ε]. This fact implies the correct decision is still being
retained because V1 is confirmed as a major factor. These observations become crucial when
estimations of I[Y|V1] are facing the effects of the curse of dimensionality, also called finite
sample phenomenon.

As V1 being determined as a major factor underlying the dynamics of Y and the
hypothesisH0 is rejected, we then can check which of K + 2 bins’ observed entropies fall
inside or outside of bin-specific entropy-confidence-ranges built by simulated counts via
BN(nk, P0) across k = 1, . . . , K + 2. By doing so, we discover where F1(.) and F2(.) are
different locally.

Next, one very interesting observation is found and reported in Table 1: values of
H(K)[Y] vary with respect to K, but I(K)[Y; V1] is nearly scale-free (w.r.t K). We explain
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how this observation occurs. Let f (y) = F′(y) be the hypothetical density function of
random variable Y with observed values {Yl j|l = 1, 2; j = 1, . . . , N/2}. Based on funda-
mental theorem of calculus, for each K, we have the theoretical Shannon entropy H̃(Y) is
approximated as:

H[Y] = (−1)
∫ ∞

−∞
f (y) log f (y)dy,

∼= (−1)
K+1

∑
k=0

f (y∗k ) M (K) log f (y∗k ),

= (−1)
K+1

∑
k=0

pk log
pk

M (K)
,

= H(K)[Y] + logM (K),

where y∗k s denote inter-middle values in Mean Value Theorem of Calculus and M (K) =
F−1

N (0.95)−F−1
N (0.05)

K .
And we have

M (10) = J M (J × 10).

with J = 2, 3, 10 and 100. Therefore, we have the approximating relations as:

H(10)[Y] ≈ H(J×10)[Y]− log J.

After some subtractions, the differences are close to log 2, log 3, log 10 and log 100,
which matches with numbers shown in the 3rd column of Table 1.

By the same reason, these relations hold for estimated conditional entropies as well.
That is, we also have: for all Ks,

H[Y|X] ∼= H(K)[Y|X] + logM (K),

when all involving bins have 30 or so data points, as seen in 4th column of Table 1. This is
the reason why that we see estimated values of I(K)[Y; V1] being nearly constant (w.r.t K)
when K = 10, 20, 30 with N = 1000 and K = 10, 20, 30, 100 with N = 10,000. This is a critical
fact that we can employ mutual information estimates with reliability. Thus, we use the
notation I[Y; V1] from here on, instead of I(K)[Y; V1].

Here we further remark that the two-sample hypothesis testing problem (L = 2) set-
ting can be extended into the so-called multiple-sample problem (L > 2) . Correspondingly,
categorical variable V1 of population-IDs is equipped with L categories. This hypothe-
sis testing:

H0 : Fl(y) = F(y), ∀y ∈ R1, l = 1, . . . , L.

retains the same equivalent formulation as: Is V1 a major factor underlying the dynamics
of Y? This multiple-sample problem is also known as one-way ANOVA, which is one
fundamental topic problem in Analysis of Variance.

Another fundamental topic problem in Analysis of Variance is represented by two-
way ANOVA, which involved two categorical covariate features: V1 and V2. Let these two
covariate features have L1 and L2 categories, respectively. Within a population with V1 = l
and V2 = h, measurements Ylhj are distributed with respect to Flh(.) with l = 1, . . . , L1 and
h = 1, . . . , L2.

The classic two-way ANOVA setting is specified by assuming Normality distribution
Ylhj N(µlh, σ2) and µlh satisfying the following linear structure:

µlh = µ + αl + βh + γlh,

with µ as the overall effect, αls the effects of V1, betahs as effects of V2, and γlhs as interacting
effects of V1 and V2. These effects parameters are to satisfy the following linear constraints:
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∑
l=1

αl = ∑
h=1

βh = ∑
l=1

γlh = ∑
h=1

γlh = 0.

It is evident that this classic two-way ANOVA formulation is rather limited in the sense of
excluding the possibility that Ylhj does not have an informative mean, such as non-normal
distributions with heavy tails or more than one mode, or even lacking of the concept of
mean, such as a categorical variable.

A much widely extended two-way version is given as follows:

Flh(.) ∼= G[M1(V1),M2(V2),M12(V1, V2)],

where G[.] is unknown global function consisting of the following unknown component-
wise mechanisms: the unknown component mechanismM1(V1) having V1 as its order-1
major factor; another unknown component mechanismM2(V2) having V2 as its order-
1 major factor; and the unknown interacting component mechanism M12(V1, V2) with
(V1, V2) as its order-2 major factor. Our goal of data analysis under this extended version is
again reframed as computationally determining whether these order-1 and order-2 major
factors are present or not underlying the Re-Co dynamics of Y against the covariate features
V1 and V2. If both covariate features V1 and V2 are independent or only slightly dependent
with each other, the right major factor selection protocol can be found in [15]. However, if
they are heavily associated, a modified major factor selection protocol can be found in [17].

We conclude this Example-1 with a summarizing statement: a large class of statistical
topics can be rephrased and reframed into a major factor selection problem, and then this
problem is resolved commonly by evaluating mutual information estimations that are not
required to be precisely close to its unknown theoretical value.

2.2. [Example-2]: From Dealing to Lessening the Effects of Curse of Dimensionality

It is noted here that, mutual information I[Y; V1] has another representation

I[Y; V1] = H[Y] + H[V1]− H[Y, V1] =
∫

R2
dP(Y, V1) log{ dP(Y, V1)

d(P(Y)× P(V1))
}.

This presentation is valid even for a categorical variable V1. Based on this representation,
we can clearly see the scale-free property of mutual information with respect to various
choices of histograms. Nonetheless, we refrain from using this definition for estimating
I[Y; V1]. Since this definition-based estimation involves the estimation of joint distribution
of (Y, V1), which is a harder problem due to its dimensionality. This so-called curse of
dimensionality would become self-evident later on in our developments when the response
variable Y and its covariate features (V1, . . . , Vk) are both multiple dimensional. The task
of estimating multiple dimensional density becomes neither practical, nor reliable, given
an ensemble of finite sample data points.

In this subsection, we demonstrate how to effectively deal with the effects of the
curse of dimensionality. We consider again a two-sample problem, but having multiple
dimensional data points, not single dimensional ones as in Example-1. Again we denote two
populations with IDs: V1 = 0 and 1. Data points from these two populations are denoted as
Y0 = (Y0

1 , . . . , Y0
m) and Y1 = (Y1

1 , . . . , Y1
m) with m > 1, respectively. Let Y = (Y1, . . . , Ym)

denote the multiple dimensional response variable. To resolve the same task of testing
whether these two populations are equal with m components possibly highly associative
features, what would be the best way of building up the contingency table for the purposes
of estimating the I[Y ; V1] for testing the hypotheses?

We expect the equal-bin-size and equal-bin-area approaches for component-wise
histograms are neither ideal nor practical due to the curse of dimensionality. On the other
hand, we know that the clusters of m-dim data points can naturally retain the dependency
structures. Hence, it is intuitive to employ results of clustering algorithms to differentiate
patterns of structural dependency within Y0 and Y1. This intuition leads to the important
merit of cluster-based contingency table as a way of lessening effects from the curse of
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dimensionality. We illustrate these ideas through two samples of simulated multivariate
Normal-distributed data described as follows.

Let m = 4 and two mean-zeros Normal distributions: Y0 ∼ N(0̃, Σ0) Y1 ∼ N(0̃, Σ1).

Σ0 =


1 ρ0 ρ0 ρ0

ρ0 1 ρ0 ρ0

ρ0 ρ0 1 ρ0

ρ0 ρ0 ρ0 1

, Σ1 =


1 ρ1 ρ1 ρ1

ρ1 1 ρ1 ρ1

ρ1 ρ1 1 ρ1

ρ1 ρ1 ρ1 1


The Shannon entropies of these two 4D Normal distributions via the following formula
with d = 4:

1/2 log(det(Σ)) + d/2(1 + log(2π))

are calculated as 5.0942 and 4.4355, respectively. So the H[Y|V1] = (5.0942 + 4.4355)/2 =
4.7648. As for H[Y] of the mixture of two 4D Normal distributions, its calculation is not
straightforward and even troublesome. Through an extra experiment using 100 millions of
data points, we end with a negative estimate of the mutual information. This failed attempt
in fact further provides a vivid clue of the effect of curse of dimensionality. In other words,
we need to resolve such an effect by staying away from the rigid 4D hypercubes.

In contrast, we demonstrate that the cluster-based approaches are potentially reason-
able choices to mend this effect of the curse of dimensionality. Consider two commonly
used clustering algorithms: Hierarchical clustering (HC) and K-means algorithms. It is also
known that the HC algorithm is computationally more costly than the K-means algorithm.
Since the HC-algorithm heavily relies on a distance matrix, HC-algorithm has difficulties
in handling a data set with a very large sample size. Recently, very effective computing
packages have been developed for K-means algorithm, that is, K-means algorithm can be
effectively applied. On top of computing efficiency differences, there exists a critical differ-
ence between the two algorithms. The K-means provides much more even cluster-sizes
than HC-algorithm does as illustrated in Figure 1, see also Figure 2. For these reasons, we
employ K-means clustering, not Hierarchical clustering (HC), algorithm in the following
series cases with m = 2, 3, 4.

In this experiment, we take ρ0 = 0.5 and ρ1 = 0.7 under two settings with N = 2000
and N = 20,000. It is noted that the differences in ρ0 values imply the differences in
distribution shapes. The series of clustering compositions are constructed as follows. We
apply the K-means algorithm to derive a series of clustering compositions with 12, 22, 32
and 102 clusters. Correspondingly, we built a series of contingency tables of the formats:
(1) 2× 12; (2) 2× 22; (3) 2× 32 and (4) 2× 102. With respect to the series of clustering
compositions, we compute H[Y] and H[Y|V1] and I[Y; V1]. Here, V1 is again the categorical
variable of population-IDs.
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Figure 1. Comparing Hierarchical clustering and K-means via distributions of cluster sizes in
Example 2: (A) c = 100; (B) c = 200.
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Figure 2. K-mean clusters in 2D setting: (A) N = 2000; (B) N = 20,000.

The messages derived from Example-1 are also observed in Example-2 across 2D to 4D
settings in Tables 2–4. These results clearly indicate that distribution shape differences can
be effectively and reliably picked up by entropy-based evaluations of mutual information
between the Y and categorical label variable V1. These results imply that we widely extend
one-way ANOVA and two-way ANOVA settings to accommodate high dimensional data
points as we have argued in Example-1.

Table 2. Entropies of Example-2 calculated from contingency tables built based on K-means clustering
compositions on the 2D data setting.

n Bin Size H[Y] H[Y|X] I[Y ; X] 95% CR of I[Y ; ε]

2000

12 2.3962 2.3866 0.0096 [0.00248, 0.00299]
22 2.9722 2.9530 0.0192 [0.00487, 0.00544]
32 3.3354 3.3123 0.0232 [0.00731, 0.00799]
102 4.5430 4.4995 0.0434 [0.02576, 0.02711]
1002 6.7989 6.4311 0.3678 [0.33761, 0.34149]

20,000

12 2.4208 2.4148 0.0060 [0.00024, 0.00029]
22 2.9916 2.9816 0.0100 [0.00049, 0.00056]
32 3.3500 3.3377 0.0123 [0.00074, 0.00081]
102 4.5076 4.4899 0.0177 [0.00244, 0.00258]
1002 6.8662 6.8236 0.0425 [0.02570, 0.02608]
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Table 3. Entropies of Example-2 calculated from contingency tables built based on K-means clustering
compositions on the 3D data setting.

n Bin Size H[Y] H[Y|X] I[Y ; X] 95% CR of I[Y ; ε]

2000

12 2.4411 2.4310 0.0101 [0.00260, 0.00303]
22 3.0166 3.0028 0.0138 [0.00476, 0.00537]
32 3.3706 3.3482 0.0224 [0.00732, 0.00812]
102 4.5297 4.4771 0.0526 [0.02563, 0.02712]
1002 6.8065 6.4558 0.3507 [0.33899, 0.34254]

20,000

12 2.4642 2.4620 0.0023 [0.00025, 0.00030]
22 3.0425 3.0337 0.0088 [0.00047, 0.00053]
32 3.4064 3.3958 0.0106 [0.00075, 0.00083]
102 4.5307 4.5067 0.0241 [0.00246, 0.00258]
1002 6.8551 6.7988 0.0563 [0.02582, 0.02632]

Table 4. Entropies of Example-2 calculated from contingency tables built based on K-means clustering
compositions on the 4D data setting.

n Bin Size H[Y] H[Y|X] I[Y ; X] 95% CR of I[Y ; ε]

1000

12 2.4599 2.4556 0.0043 [0.00249, 0.00299]
22 3.0612 3.0518 0.0094 [0.00477, 0.00536]
32 3.4115 3.3911 0.0204 [0.00753, 0.00838]
102 4.5065 4.4508 0.0557 [0.02565, 0.02717]
1002 6.8162 6.4627 0.3535 [0.33696, 0.34110]

10,000

12 2.4756 2.4728 0.0029 [0.00026, 0.00032]
22 3.0772 3.0736 0.0036 [0.00049, 0.00056]
32 3.4456 3.4377 0.0079 [0.00073, 0.00081]
102 4.5590 4.5347 0.0243 [0.00244, 0.00257]
1002 6.8328 6.7697 0.0631 [0.02556, 0.02607]

In order to better understand the limit of such an entropy-based approach, we twist
the 2D setting in Example-2 a little bit. This more complicated version of Example-2,
denoted as Example-2∗, consists of one 2D normal mixture and one 2D normal. These
two 2D distributions are further made to have equal mean vector and covariance matrix.
Furthermore, two kinds of mixture-settings are designed and used. The first setting of
Example-2∗ is designed for a mixture of two relatively close 2D normals with mean vectors:
(0.5, 0.5) and (−0.5, 0.5). The second setting is designed for a relatively apart normal
mixture with mean vectors: (−1,−1) and (1, 1). These two settings of pairwise scatter-plots
are given in Figure 3. It is obvious that we can visually separate the two 2D distributions in
the second mixture setting, but can not do equally well in the first mixture setting.
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(A)

(B)

Figure 3. Two sets of pairwise scatter-plots of one simulated 2D normal mixture against 2D normal
with equal mean vector and covariance matrix. (A) The first set is for two close normal mixture with
mean vectors: (0.5, 0.5) and (−0.5, 0.5) and (B) the second is for relative apart normal mixture.

The mutual information estimates and confidence ranges under the null hypothesis
are calculated and reported in Table 5. In the first mixture setting, it is apparent that V1 fails
to be a major factor by failing to satisfy the criterion [C1: confirmable] across all K choices.
This result is coherent with our visualization through the upper panel Figure 3. As for
the 2nd mixture setting, V1 is claimed as a major factor by satisfying the [C1: confirmable]
criterion across all K choices. This result is also coherent with our visualization through
the lower panel Figure 3. Further, we observe that the relative position of I[Y; X] estimates
against upper and lower limits of null confidence ranges are rather stable when the sizes of
clusters are not too small. This observation indeed provides us with the practical guideline
for varying choices of K according to different sample sizes when we employ mutual
information to perform inferences under Re-Co dynamics.
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Table 5. Entropies of two settings of Example-2∗ calculated from contingency tables built based on
K-means clustering compositions with N = 20,000.

Data Bin Size H[Y] H[Y|X] I[Y ; X] 95% CR of I[Y ; ε]

1st mixture

12 2.4246 2.4233 0.0012 [0.00258, 0.00309]
22 2.9958 2.9910 0.0048 [0.00506, 0.00575]
32 3.3805 3.3725 0.0080 [0.00786, 0.00855]
102 4.5481 4.5214 0.0267 [0.02622, 0.02747]
1002 6.7953 6.4700 0.3252 [0.33811, 0.34153]

2nd mixture

12 2.4434 2.4375 0.0059 [0.00226, 0.00272]
22 2.9943 2.9795 0.0147 [0.00529, 0.00602]
32 3.3678 3.3518 0.0159 [0.00745, 0.00817]
102 4.5485 4.5143 0.0342 [0.02542, 0.02690]
1002 6.7975 6.4573 0.3403 [0.33702, 0.34059]

We conclude this Example-2 (Example-2∗) with a summarizing statement: Though, any
theoretical evaluations of mutual information under the presence of high dimensionality
are practically impossible, clustering algorithms provide practical guidelines for building
contingency tables and evaluating mutual information for inferential purposes by lessening
the effects of curse of dimensionality.

2.3. [Example-3]: From Linear to Highly Nonlinear Associations

We then turn to consider the simplest one-sample problem involving dependent 2D
data points. The framework of Re-Co dynamics is self-evident. In this example, we exam-
ine the validity and performances of inferences based on estimated mutual information
between two 1D continuous random variables Y and X via contingency tables of various
dimensions. For simplicity in the first scenario of Example-3, we consider a bivariate
normal (Y, X) ∼ N(0̃, Σ) with covariance matrix:

Σ =

[
1 ρ
ρ 1

]
,

Here the correlation coefficient ρ is taken to be 0.0 and 0.5, respectively, in this experiment
with N = 1000 or 10,000. The contingency tables are derived from the K-means algorithm
being applied on X and Y, respectively, with a series of pre-determined numbers of clusters:
{12, 22, 32, 102}.

For the setting of ρ = 0, we report the calculated I[Y; X] and confidence range of
I[Y; ε] in Table 6 across the 16 dimensions of contingency tables. The smallest size of
the contingency table has 144(= 12× 12) cells. Its average cell-count is less than 14 for
N = 2000. The largest size of the contingency table is 102× 102, which is more than 104. Its
averaged cell-count is less than 2 for N = 20,000.

From the upper half of Table 6 for the N = 2000, all estimates of I[Y; X] are beyond
the upper limit of 95% confidence range of I[Y; ε]. That is, the hypothesis of Y and X being
independent is falsely rejected. In contrast, from the lower half of Table 6 for the N = 20,000,
all estimates of I[Y; X] are either below the lower limit of 95% confidence interval of I[Y; ε]
or within confidence range, except the results based on the largest 102× 102 contingency
table. That is, the same independence hypothesis would not be falsely rejected except in the
case of the largest contingency table. Such a contrasting comparison between the upper and
lower halves of Table 6 clearly indicates that validity of mutual information evaluations
heavily rely on degrees of volatility of cell counts, especially on testing independence. We
further explicitly express such volatility below.

A simple reasoning for the above results goes as follows. For this independent set-
ting of Y and X, for expositional simplicity, let all cells in contingency tables have equal
probability. In the smallest contingency table, the cell probability is 1/144. The cell-count
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is a random variable with mean and variance being very close to N/144 as well. Thus,
the cell-count is falling between N/144± 2

√
N/144 with at least 95%. With N = 2000,

the 95% range is close to [6, 22], while with N = 20,000 the 95% range is close to [110, 150].
Based on these two 95% intervals, we can see that the Shannon entropy along each row of
the 12× 12 contingency table can be volatile with N = 2000, while it is not the case with
N = 20,000. In fact, when N = 2000, a 6× 6 contingency table indeed provides much more
stable evaluations of mutual information.

Table 6. (Y, X) ∼ MN((0, 1), Σ) with ρ = 0.0 and N = 2000 (upper half) , n = 20,000 (lower half).

Bin Size Bin Size H[Y] H[Y|X] I[Y ; X] 95% CR of I[Y ; ε]

Y = 12

X = 12 2.4135 2.3435 0.0700 [0.0637, 0.0669]
X = 22 2.4135 2.2861 0.1273 [0.1231, 0.1274]
X = 32 2.4135 2.2194 0.1940 [0.1863, 0.1916]
X = 102 2.4135 1.7971 0.6164 [0.5714, 0.5787]

Y = 22

X = 12 3.0168 2.9014 0.1154 [0.1249, 0.1294]
X = 22 3.0168 2.7650 0.2517 [0.2393, 0.2450]
X = 32 3.0168 2.6319 0.3848 [0.3613, 0.3681]
X = 102 3.0168 2.0360 0.9808 [0.9365, 0.9439]

Y = 32

X = 12 3.3910 3.1952 0.1958 [0.1899, 0.1951]
X = 22 3.3910 3.0196 0.3714 [0.3587, 0.3656]
X = 32 3.3910 2.8494 0.5416 [0.5143, 0.5209]
X = 102 3.3910 2.1175 1.2736 [1.2040, 1.2106]

Y = 102

X = 12 4.5236 3.9131 0.6105 [0.5657, 0.5728]
X = 22 4.5236 3.5339 0.9897 [0.9516, 0.9585]
X = 32 4.5236 3.2717 1.2519 [1.2193, 1.2261]
X = 102 4.5236 2.2962 2.2274 [2.1571, 2.1643]

Y = 12

X = 12 2.3392 2.3332 0.0059 [0.0060, 0.0063]
X = 22 2.3392 2.3275 0.0116 [0.0115, 0.0119]
X = 32 2.3392 2.3216 0.0175 [0.0172, 0.0177]
X = 102 2.3392 2.2799 0.0592 [0.0578, 0.0588]

Y = 22

X = 12 2.9424 2.9311 0.0113 [0.0116, 0.0120]
X = 22 2.9424 2.9215 0.0210 [0.0223, 0.0228]
X = 32 2.9424 2.9109 0.0316 [0.0335, 0.0342]
X = 102 2.9424 2.8334 0.1090 [0.1122, 0.1135]

Y = 32

X = 12 3.3311 3.3155 0.0157 [0.0174, 0.0179]
X = 22 3.3311 3.2978 0.0333 [0.0334, 0.0341]
X = 32 3.3311 3.2843 0.0468 [0.0496, 0.0505]
X = 102 3.3311 3.1634 0.1677 [0.1675, 0.1690]

Y = 102

X = 12 4.5504 4.4933 0.0571 [0.0582, 0.0592]
X = 22 4.5504 4.4401 0.1103 [0.1116, 0.1128]
X = 32 4.5504 4.3836 0.1668 [0.1684, 0.1698]
X = 102 4.5504 3.9991 0.5513 [0.5475, 0.5497]

In the setting of ρ = 0.5, we report the calculated I[Y; X] and confidence range of
I[Y; ε] in Table 7 across the 16 dimensions of contingency tables with N = 20,000. We
observe that the calculated I[Y; X] is far above the upper limit of the confidence interval of
I[Y; ε] even in the largest contingency table with dimension 102× 102. The reason is that
the number of effectively occupied cells are much smaller due to the dependency, that is,
many cells supposed to be empty are indeed empty. With many empty cells coupling with
many occupied cells with relatively large cell counts, the Shannon entropy is evaluated
with great stability. These results from independent and dependent experimental cases are
learned to constitute practical guidelines for evaluating mutual information.
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Table 7. (Y, X) ∼ MN(0̃, Σ) with ρ = 0.5 and N = 20,000.

Bin Size Bin Size H[Y] H[Y|X] I[Y ; X] 95% CR of I[Y ; Z]

Y = 12

X = 12 2.3317 2.1839 0.1478 [0.0058, 0.0062]
X = 22 2.3317 2.1758 0.1559 [0.0114, 0.0119]
X = 32 2.3317 2.1709 0.1609 [0.0175, 0.0180]
X = 102 2.3317 2.1270 0.2048 [0.0578, 0.0588]

Y = 22

X = 12 2.9543 2.7995 0.1548 [0.0116, 0.0120]
X = 22 2.9543 2.7852 0.1692 [0.0224, 0.0230]
X = 32 2.9543 2.7750 0.1793 [0.0336, 0.0344]
X = 102 2.9543 2.7018 0.2525 [0.1125, 0.1139]

Y = 32

X = 12 3.3654 3.2043 0.1611 [0.0172, 0.0178]
X = 22 3.3654 3.1864 0.1790 [0.0332, 0.0339]
X = 32 3.3654 3.1708 0.1945 [0.0492, 0.0501]
X = 102 3.3654 3.0555 0.3099 [0.1672, 0.1688]

Y = 102

X = 12 4.5415 4.3416 0.1999 [0.0583, 0.0590]
X = 22 4.5415 4.2849 0.2565 [0.1117, 0.1131]
X = 32 4.5415 4.2344 0.3070 [0.1654, 0.1668]
X = 102 4.5415 3.8806 0.6609 [0.5488, 0.5513]

The second scenario of Example-3 is about whether the calculated mutual information
I[Y; X] can reveal the existence of non-linear association between Y and X. We generate
two simulated data sets based on two non-linear associations: (1) half-sine function; (2) full-
sine function, as shown in the two panels of Figure 4. Within both cases of non-linear
associations, it is noted that the correlations of Y and X are basically equal to zero.

(A) (B)

Figure 4. Scatter-plots of two simulated data sets in sine functional shapes: (A) half-sine function;
(B) full-sine function.

In the setting of a half-sine functional relation, we report the calculated I[Y; X] and
confidence range of I[Y; ε] in Table 8 across the 16 dimensions of contingency tables with
N = 20,000. Across all 16 dimensions of contingency tables, the calculated I[Y; X] are
far beyond the upper limits of confidence intervals of I[Y; ε]. As far as p-value being
concerned, they are all basically zeros. The same results are observed in the setting of
full-sine functional relations as reported in Table 9. These two settings in this non-linear
association scenario together demonstrate that the calculated I[Y; X] can reveal the existence
of significant association between Y and X. This demonstration is important in the sense of
without knowing the functional forms of their association.
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Table 8. Evaluations of entropy, conditional entropy and mutual information under the half-sine
simulation study.

Bin Size Bin Size H[Y] H[Y|X] I[Y ; X] 95% CR of I[Y ; ε]

Y = 12

X = 12 2.4840 1.7450 0.7391 [0.00600, 0.00632]
X = 22 2.4840 1.7326 0.7514 [0.01137, 0.01183]
X = 32 2.4840 1.7237 0.7603 [0.01690, 0.01742]
X = 102 2.4840 1.6977 0.7863 [0.05704, 0.05804]

Y = 22

X = 12 3.0881 2.3131 0.7749 [0.01151, 0.01189]
X = 22 3.0881 2.2975 0.7906 [0.02205, 0.02264]
X = 32 3.0881 2.2853 0.8028 [0.03305, 0.03387]
X = 102 3.0881 2.2369 0.8512 [0.11254, 0.11387]

Y = 32

X = 12 3.4499 2.6679 0.7819 [0.01689, 0.01743]
X = 22 3.4499 2.6466 0.8033 [0.03272, 0.03343]
X = 32 3.4499 2.6335 0.8163 [0.04928, 0.05009]
X = 102 3.4499 2.5559 0.8940 [0.17143, 0.17303]

Y = 102

X = 12 4.6133 3.7972 0.8161 [0.05663, 0.05757]
X = 22 4.6133 3.7550 0.8583 [0.11237, 0.11375]
X = 32 4.6133 3.7194 0.8939 [0.17072, 0.17235]
X = 102 4.6133 3.5164 1.0969 [0.56831, 0.57063]

Table 9. Evaluations of entropy, conditional entropy and mutual information under the whole-sine
simulation study.

Bin Size Bin Size H[Y] H[Y|X] I[Y ; X] 95% CR of I[Y ; ε]

Y = 12

X = 12 2.4807 2.1916 0.2890 [0.0061, 0.0064]
X = 22 2.4807 2.1822 0.2984 [0.0115, 0.0120]
X = 32 2.4807 2.1757 0.3050 [0.0171, 0.0176]
X = 102 2.4807 2.1310 0.3497 [0.0567, 0.0577]

Y = 22

X = 12 3.0692 2.7651 0.3042 [0.0114, 0.0118]
X = 22 3.0692 2.7517 0.3175 [0.0223, 0.0229]
X = 32 3.0692 2.7426 0.3266 [0.0333, 0.0341]
X = 102 3.0692 2.6671 0.4022 [0.1133, 0.1147]

Y = 32

X = 12 3.4398 3.1293 0.3105 [0.0170, 0.0175]
X = 22 3.4398 3.1094 0.3303 [0.0331, 0.0338]
X = 32 3.4398 3.0980 0.3417 [0.0493, 0.0502]
X = 102 3.4398 2.9917 0.4481 [0.1717, 0.1735]

Y = 102

X = 12 4.5698 4.2185 0.3513 [0.0577, 0.0587]
X = 22 4.5698 4.1752 0.3946 [0.1118, 0.1130]
X = 32 4.5698 4.1233 0.4466 [0.1679, 0.1694]
X = 102 4.5698 3.7851 0.7848 [0.5577, 0.5602]

We summarize the practical guidelines that we learned from Example-1 through
Example-3 in this section. The most apparent fact is that the calculated values of mutual
information I[Y; X] vary with respect to dimensions of contingency tables. However, the
good news is that the amounts of variations are relatively small and even very minute when
cell-counts in the contingency table are not too low. Nonetheless, the calculated mutual
information I[Y; X] is very capable of revealing the presence and absence of associations
underlying Re-Co dynamics of response variable Y and covariate variable X from the three
examples and scenarios considered in this section. And it is a reliable way of seeking
consistent inferential decisions by varying contingency tables’ dimensions. This capability
can be made very efficient if we choose the dimension of the contingency table to suitably
reflect the total sample size of the data set with varying degrees. That is, we make sure



Entropy 2022, 24, 1382 17 of 25

such efficiency is achieved by varying the dimensions of contingency tables from small to
reasonably large. The final guideline is that comparability between two mutual information
evaluations is resting on their more or less identical computational platforms, that is,
their contingency tables are more or less the same in dimensions. On the other hand, the
averaged numbers of cell counts are relatively large, and mutual information evaluations
are rather robust to some degree of differences in contingency tables’ dimensions. These
practical guidelines will ascertain mutual information evaluations always coupled with
reliability. Finally, the data-types of Y and X are entirely free because we rely on their
categorical nature only.

3. Examples with Complex Re-Co Dynamics

Next, we consider two examples with Re-Co dynamics wich are more complex than
the three examples discussed in the previous section. Through these two examples that
havie independent covariate features, we further illustrate the necessity of following the
practical guidelines motivated and learned in the previous section.

3.1. [Example-4]: From Complex Interaction to Further Beyond

After going through three relatively simple examples in the previous section, we now
turn to examples with more complex Re-Co dynamics. Consider a functional relation
between Y and {X1, . . . X4} specified as follows:

Y = X1 + sin(2π(X2 + X3)) + N(0, 1)/10

with {X1, . . . X4} being i.i.d. U[0, 1] and N = 10,000. That is, X4 plays the role of observable
noise random variable, while unobservable noise is N(0, 1)/10. Our goal is to discover
the order-1 major factors X1 and order-2 major factor (X2, X3). It is worth noting that this
order-2 major factor can not be discovered via linear regression analysis, even when the
product type of interacting effect is included in the model.

The response variable Y is categorized with 12 bins, so does each of the 4 covari-
ate features. We calculate mutual information of Y and all possible feature subsets’
A ⊆ {X1, . . . X4}, say I[Y; A]. If |A| = k, we build a (12)k × 12 contingency table for
calculating for evaluating I[Y; A]. Here A also stands for a fused categorical variable in the
sense that categories of A are all occupied kD hypercubes of its k(= |A|) feature-members.

We compute and report conditional entropies (CEs) for all possible As and arrange
them with respect to sizes |A| of A in Table 10. Also we report a term called successive (S)
CE-drops defined via the following CEs difference:

SCEdrop[Y|A] = (H[Y]− H[Y|A])− max
A′⊂A
{H[Y]− H[Y|A′]} = min

A′⊂A
{H[Y|A′]} − H[Y|A].

This SCE term is designed to evaluate the extra effect of CE-drop by including an extra
feature-member. The above formula is precise in theory. But in reflecting the aforemen-
tioned last practical guideline in the last section, it is essential to note that SCE[Y|A]
involves at least two different settings of |A| = k and |A′| = k′(< k), which correspond-
ingly involve two different dimensions of contingency tables: one is of (12)k × 12 and
the other is (12)k′ × 12. Therefore, based on what we have learned from the previous
section, these settings render different scales of conditional entropy and mutual informa-
tion computations. That is, these different scales will certainly make mutual information
evaluations not completely comparable, especially when cell-counts in the contingency
tables are overall too small. For instance,

SCEdrop[Y|X1, X2] = 0.0644 = H[Y|X1]− H[Y|X1, X2] = 2.2315− 2.1671.

The SCE-drop of (X1, X2) is more than 10 times of CE-drop of X2. It would be a mistake
to claim that X1 and X2 are conditional dependent given Y. Since the scale in evaluating
H[Y|X1] is different from the scale in evaluating H[Y|X1X,2 ]. Nevertheless, since X4 plays
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a role of random noise in this example, the information contents of X1 and (X1, X4) are
supposed to be very close from the perspective of their contingency table. Theoretically,
we have H[Y|X1] = H[Y|X1, X4]. That is, H[Y|X1, X4] should represent the information
content of X1 upon the setting of (12)2 × 12 contingency table. Along this line of argument,
we should refine the SCE-drop as follows:

SCE∗drop[Y|X1, X2] = H[Y|X1, X4]− H[Y|X1, X2] = 2.1685− 2.1671 = 0.0014.

Using the same argument, this SCE-drop should be compared with
H[Y|X4]− H[Y|X2, X4] = 2.4557− 2.3780 = 0.0777, which is 5 times larger than 0.0014.
Hence, it is obvious that X1 and X2 do not have joint interacting effects. In fact, it
would be more precise evaluation of the effect of X2 under the 2-feature setting if we use
H[Y|X4, X5]− H[Y|X2, X4] with X5 being another irrelevant independent U[0, 1] random
variable. However, according to the guidelines learned from example-1 and -2, H[Y|X4, X5]
and H[Y|X4] should be relatively close because of the sample size of 10,000.

This line argument ultimately converges to the following practical guideline on evalu-
ating Information Theoretical measurements via contingency table platform: “these CEs
and mutual information measurements are comparable only when they are evaluated
under the same dimensions of contingency tables”. This guideline indeed is coherent with
a statistical concept of conditioning with respect to the observed row-sum vector.

Before summarizing our findings from Table 10, where we reported calculated CEs and
SCEdrop, we need to prepare baseline-evaluations to make sure that all CEs comparisons are
sensible. Here, we recall that C[A− vs.−Y] denotes the contingency table with categories
of Y on column-axis and categories of covariate feature subset A on row-axis.

• 1-feature setting: With C[X1 − vs.− Y] having its proportion vector of row-sums
denoted as PX1 , we build an ensemble of C[Xε

1 − vs.−Y] by distributing i-th column-
sum N[Y = i] with respect to Multinomial(N[Y = i], PX1). The average of the CEs of
H[Y|Xε

1], denoted as E [H[Y|Xε
1]] is designed to be comparable with H[Y|X1]. Their

difference E [H[Y|Xε
1]]− H[Y|X1] is a proper and valid measurement of the CE-drop

of X1. Likewise for the remaining covariate features.
• 2-feature setting: With C[Y; (X1, X2)− vs.−Y], we need to compute E [H[Y|(X1, X2)

ε]]
for the joint CE-drop of (X1, X2) calculated as E [H[Y|(X1, X2)

ε]]− H[Y|(X1, X2)]. We
also need E [H[Y|(X1, Xε

2)]] for calculating SCE∗drop[Y|X1, X2] in order to be able to com-
pare to E [H[Y|(X1, X2)

ε]]−E [H[Y|(Xε
1, X2)]] to figure out the amount I[(X1, X2)|Y]−

I[(X1, X2)].
As for (X2, X3), in comparison with SCEs of (X2, X4) and (X3, X4), its SCEdrop is
calculated as 0.7781, which is more than 10 times of X3’s individual SCEdrop. This is a
very strong indication of the interacting effect of (X2, X3) due to evident presence of
their conditional dependency given Y. This fact establishes the feature-pair (X2, X3)
as an order-2 major factor.

• 3-feature setting: In Table 10, the SCEdrop of feature-triplet (X1, X2, X3) from feature-
pair (X2, X3) is 0.8431, which is about 3.5 times of CE-drop of X1. This observa-
tion could seemingly point to the potential presence of conditional dependency of
(X1, X2, X3). However, if we more precisely calculate the effect of X1 when adding to
(X2, X3) as:

SCE∗drop[Y|X1, X2, X3] = H[Y|X2, X3, X4]− H[Y|X1, X2, X3] = 1.2263− 0.8362 = 0.3901,

and compare it with H[Y|X4, X5, X6]− H[Y|X1, X4, X5] with X5 and X6 being inde-
pendent random variables, which is expected to be larger than 0.2322, but smaller than
0.3901. Therefore, we can only confirm that the ecological effect does exist between X1
and (X2, X3), that is, they can be order-1 and order-2 major factors of Y. But, certainly
they don’t form conditional dependency underlying Y, see details of major factor
selection protocol in [15].
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Table 10. Experiment with Y = X1 + sin(2π(X2 + X3)) + N(0, 1)/10 and N = 10,000. Each categorized
1-features has 12 bins, so a k-feature has (12)k kD hypercubes.

1-Feature CE SCE-Drop 2-Feature CE SCE-Drop 3-Feature CE SCE-Drop 4-Feature CE SCE-Drop

X1 2.2315 0.2322 X1_X2 2.1671 0.0644 X1_X2_X3 0.8362 0.8431 X1_X2_X3_X4 0.1762 0.6599
X2 2.4579 0.0057 X1_X3 2.1647 0.0667 X1_X2_X4 1.4451 0.7219
X3 2.4575 0.0062 X1_X4 2.1685 0.0630 X1_X3_X4 1.4531 0.7115
X4 2.4557 0.0079 X2_X3 1.6793 0.7781 X2_X3_X4 1.2263 0.4530

X2_X4 2.3780 0.0777
X3_X4 2.3831 0.0726

3.2. [Example-5]: From High-Order Interaction to Complexity

In order to see the effect of higher order major factor, we change the functional form
of Y slightly as:

Y = X1 + sin(2π(X2 + X3 + X4)) + N(0, 1)/10.

With sample size N = 10,000, our computational results are reported in Table 11. Likewise,
we can confirm X1 as an order-1 major factor and triplet (X2, X3, X4) as an order-3 major
factor. In sharp contrast, the evidence of order-3 major factor seems to disappear when
N = 1000, as shown in Table 12. This is the exact demonstration of the effect of finite
sample phenomenon, or curse of dimensionality. Do these two contrasting results: presence
and absence of order-3 major factor in N = 10,000 and N = 1000, respectively, mean that
we should give up looking for high order major factors on small data sets?

Table 11. Experiment with Y = X1 + sin(2π(X2 + X3 + X4)) + N(0, 1)/10 and N = 10,000. Each
categorized 1-features has 12 bins, so a k-feature has (12)k kD hypercubes.

1-Feature CE CE-Drop 2-Feature CE SCE-Drop 3-Feature CE SCE-Drop 4-Feature CE SCE-Drop

X1 2.2299 0.2295 X1_X2 2.1636 0.0662 X1_X2_X3 1.4444 0.7191 X1_X2_X3_X4 0.1945 1.0367
X2 2.4539 0.0055 X1_X3 2.1671 0.0627 X1_X2_X4 1.4576 0.7059
X3 2.4550 0.0044 X1_X4 2.1645 0.0653 X1_X3_X4 1.4473 0.7171
X4 2.4529 0.0065 X2_X3 2,3800 0.0739 X2_X3_X4 1.2313 1.1455

X2_X4 2.3800 0.0728
X3_X4 2.3768 0.0760

Table 12. Experiment with Y = X1 + sin(2π(X2 + X3 + X4)) + N(0, 1)/10 and N = 1000. Each
categorized 1-features has 12 bins, so a k-feature has (12)k kD hypercubes.

1-Feature CE CE-Drop 2-Feature CE SCE-Drop 3-Feature CE SCE-Drop 4-Feature CE SCE-Drop

X1 2.1873 0.2572 X1_X2 1.5863 0.6010 X1_X2_X3 0.3657 1.2022 X1_X2_X3_X4 0.0207 0.2947
X2 2.3945 0.0500 X1_X3 1.5679 0.6193 X1_X2_X4 0.3155 1.2601
X3 2.3789 0.0655 X1_X4 1.5757 0.6116 X1_X3_X4 0.3258 1.2421
X4 2.3819 0.0625 X2_X3 1.6502 0.7286 X2_X3_X4 0.3553 1.2718

X2_X4 1.6272 0.7547
X3_X4 1.6387 0.7402

The answer to the above question is negative. That is, somehow we can escape from
the curse of dimensionality in our pursuit of high order major factor. Here we demonstrate
a way of escaping. We perform K-means clustering on the 3D data points of (X2, X3, X4)
with 12, 36, 72 and 144 clusters, with which we build a new covariate feature X234. The CEs
of X234 with respect to the four corresponding contingency tables are reported in Table 13
with Y being categorized in 12 and 32 categories (clusters) via K-means. In the case of 12
clusters on Y, we see that the CE of X234 is increasing from 20 to 60 standard deviations
(sd) away from the mean CE of Xε

234 as the numbers of clusters of X234 increases from 12 to
144. We observe similar evidence in the case of 32 categories on Y.

We can then confirm X234 as a new order-1 major factor, which is a condensed version
of (X2, X3, X4). Therefore, we should also claim that (X2, X3, X4) is indeed an order-3 major
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factor. This is an important and significant demonstration that we can be sure about the
presence of high order major factors even when the sample size is relatively low, that is, the
curse of dimensionality is escapable.

Table 13. Exploring the presence of X234 as an order-3 major factor of Y = X1 + sin(2π(X2 + X3 +

X4)) + N(0, 1)/10 with N = 1000 with respect to 2 and 4 choices of numbers of clusters of Y and
X234, respectively. The confidence intervals are calculated based on 100 simulations.

Y ’s Size X234’s Size H[Y|X234] Mean of H[Y|Xε
234] 95% CR of H[Y|Xε

234]

12

12 2.345 2.394 [2.393, 2.396]
36 2.039 2.195 [2.192, 2.198]
72 1.783 1.981 [1.978, 1.984]
144 1.409 1.652 [1.648, 1.655]

32

12 3.141 3.192 [3.190, 3.194]
36 2.651 2.790 [2.787, 2.794]
72 2.180 2.385 [2.382, 2.388]
144 1.720 1.888 [1.885, 1.892]

Further, by contrasting Table 13 with Table 12, the biases of mutual information
estimates indeed can be managed by reducing the large number of bins, cells or hypercubes
on the covariate side. That is, a small number of clusters can be derived via a clustering
approach of choice.

4. Examples with Complex Re-Co Dynamics with Dependent Covariate Features

In this section, we conduct one experimental Re-Co dynamics defined by linear struc-
tures with slightly dependent covariate features as specified below. That is, this experiment
is in the classic linear regression domain. However, there are two twists included in this
experiment. The first twist is that there exist two almost-collinearity 3D hyper-planes
pertaining to two triplets of covariate features. The second twist is that, when a continuous
measurement data type is altered into a categorical one, we understand that we discard
very fine scale information of measurements often together with some degrees of ordinal
relational information. Nevertheless, this act of investment by sacrificing some information
in data is necessary for carrying out our CE computations in its quest for critical authentic
information content contained in data. On the other hand, it is natural to ask the following
question: When linear regression analysis is applied to such a categorized data set, do we
naturally expect its conclusions from such an analysis to be close to the true linear structure?

In this section, we investigate the aforementioned two twists in order to understand
the general effects of dependence on conditional entropy evaluations, and we also address
the above question. The particular focuses are placed on issues linking to validity of
Information Theoretical measurements and their reliability evaluations. We would like to
demonstrate the comparisons between classical statistics and CEDA’s major factor selection
upon the quests into Re-Co dynamics.

4.1. [Example-6]: From Dependency Induced Complications to Reality

Consider a Re-Co dynamics defined by linear structures with slightly dependent
covariate-features:

Y = X1 + X2 + X3 + N(0, 1)/10,

X6 = (X1 + X2 + X3 + X4 + X5 + N(0, 1)/10)/3,

(X1, . . . , X5, X7, . . . , X10) ∼ N(0̃, Σ),

Σ[i, i] = 1, Σ[i, j] = 0.2, i 6= j, i, j ∈ {1, . . . , 9}.

where Σ is a 9× 9 covariance matrix (not including X6). Features {X7, X8, X9, X10} play the
roles of unrelated, but dependent noise. The design of this Example-6 is to have a seemingly
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dominant order-1 major factor candidate: feature X6. We want to explore whether we could
discover the true structure underlying the RE-Co dynamics that is a collection of 3 order-1
major factors: {X1, X2, X3}, or not. Also we would like to see what realistic computational
issues are generated from the dependency among all covariate features.

One million 11dim data points are simulated and collected as the data set. We apply
our CE computations by having all 1D covariate features and the response features are
categorized to have 22 bins via the same scheme used in the previous section. CEs are
calculated for all possible feature-sets via the contingency table platform. For expositional
purposes, we only report 10 CE-values for 10 key characteristic feature-sets across 1-feature
to 6-feature settings in Table 14. The summary of our findings based on major factor
selections are reported below.

1. On 1-feature setting, X6 has the lowest CE and members of {X1, X2, X3} are in the
second tier by having the median tier of CEs, while the rest of covariate features are in
the 3rd tier having the highest CEs. Therefore, each member of {X1, X2, X3, X6} is a
potential order-1 major factor candidate. It is noted that, though H[Y] = 3.0316 in the
0-feature setting, it is more proper to use H(1)[Y] = H[Y|X10] = 2.9883 on 1-feature
setting due to the contingency tables’ dimension-change from 1× 22 to 22× 22, as we
have argued in the previous two sections.

2. On 2-feature setting, we take H(2)[Y] = H[Y|X4, X7] = 2.9523 and calculate the
CE-drop of (X4, X6) = 2.9523− 2.1321 = 0.8202 and CE-drop of X6 as H(2)[Y] −
H[Y|X6, X7] = 2.9523− 2.3309 = 0.6214. Since the CE-drop of X4 is basically zero. So
we know that X6 and X4 are potentially conditional dependent given Y, so are X6 and
X5. Likewise, we calculated CE-drops of (X6, X1) and X1 as 0.7084 and 0.2513. Thus,
the CE-drop of (X6, X1) is smaller than the sum of CE-drops of X6 and X1. This is the
first evidence that X6 and any individual members of {X1, X2, X3} can not be order-1
major factors, simultaneously.
In contrast, the CE-drop of (X1, X2) is calculated as 0.6338, which is only slightly larger
than the sum of CE-drops of X1 and X2: 0.5026. This evidence of so-called ecological
effect indicates that X1 and X2 are not significantly conditional dependent, but they
can be order-1 major factors simultaneously. Likewise for X1 and X3 and X2 and X3.

3. On 3-feature setting, we take H(3)[Y] = H[Y|X7, X8, X9] = 2.8139 and calculate the
CE-drops of (X1, X2, X3) and (X4, X5, X6) as: 2.0596 and 1.7393, respectively. Though
these two CE-drops are more than 3 times of the sums of individual CE-drops of these
two triplets, which are 0.6870 and 0.5567, respectively, we do not claim that the two
triplets (X1, X2, X3) and (X4, X5, X6) are potential candidates of order-3 major factors.
Since there is no conditional dependency claims among members of these triplets
in the 2-feature setting. However, we claim that (X1, X2, X3) is the chief collection
of 3 order-1 major factors, while (X4, X5, X6) is an alternative collection of 3 order-1
major factors.

4. On 4-feature setting, we take H(4)[Y] = H[Y|X7, X8, X9, X10] = 1.6278, which is
significantly smaller than H(3)[Y]. As expected, this is an evidence of effect of curse of
dimensionality. Since the averaged cell count is less than 1 in this setting. Therefore,
we can not make any structural claims here. (It is also reasonable to expect that, if the
number of bins is reduced to 10, the 4-feature setting might yield stable evaluations of
mutual information.)

5. On 5-feature and 6-feature settings, no creditable claims can be made due to curse of
dimensionality.

Our conclusion in the 3-feature setting: the chief collection of order-1 major factors
{(X1, X2, X3)} and one secondarily alternative collection {(X4, X5, X6)}, is a unusual, but
precise statement. This statement is in sharp contrast with classic regression analysis. For
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instance, for comparison purpose, we perform LASSO regressions, which is specified in the
following Lagrangian form:

min
β∈R11

{‖Y− Xβ‖2
2 + λ‖β‖1}.

As shown in Figure 5, the joint presence of {X1, X2, X3, X6} are seen for all λ falling
within (0, 0.8). Specifically, the observed pattern is that parameters of members of {X1, X2, X3}
are linearly decreasing from 1, while parameter of X6 is increasing from 0 also linearly. Such
linearity is primarily due to the penalty λ. All such trajectories of beta are not correct for the
Re-Co dynamics except when λ = 0, which only reports the result regarding {X1, X2, X3},
but not (X4, X5, X6).

Table 14. Example-6 with N = 106. Each categorized 1-features has 22 bins, so a k-feature has (22)k

kD hypercubes.

1-Feature CE 2-Feature CE 3-Feature CE 4-Feature CE 5-Feature CE 6-Feature CE

X6 2.3351 X4_X6 2.1321 X1_X2_X3 0.7543 X1_X2_X3_X7 0.5602 X1_X2_X3_X7_X8 0.1020 X1_X2_X3_X7_X8_X9 0.0065
X3 2.7295 X1_X6 2.2439 X4_X5_X6 1.0746 X1_X2_X3_X6 0.6201 X1_X2_X3_X6_X9 0.1723 X1_X2_X3_X6_X7_X8 0.0132
X1 2.7308 X1_X2 2.3184 X1_X2_X6 2.0049 X4_X5_X6_X8 0.8789 X1_X7_X8_X9_X10 0.2255 X1_X4_X5_X7_X8_X9 0.0150
X2 2.7310 X6_X7 2.3309 X1_X4_X6 2.0239 X1_X4_X5_X6 0.8965 X4_X5_X6_X8_X9 0.2355 X1_X2_X3_X5_X6_X8 0.0202
X9 2.9879 X3_X7 2.7010 X4_X6_X7 2.0771 X2_X3_X5_X7 1.4054 X1_X4_X5_X6_X8 0.2681 X2_X3_X6_X7_X8_X9 0.0211
X8 2.9880 X3_X4 2.7012 X3_X6_X9 2.1765 X4_X6_X7_X9 1.4468 X5_X6_X7_X8_X9 0.2719 X4_X5_X6_X7_X8_X9 0.0240
X7 2.9882 X7_X8 2.9516 X1_X2_X7 2.2328 X6_X7_X8_X9 1.4605 X2_X5_X6_X8_X9 0.3022 X1_X4_X5_X6_X7_X8 0.0280
X4 2.9882 X5_X7 2.9520 X6_X7_X8 2.2572 X1_X6_X8_X9 1.4752 X1_X4_X6_X7_X8 0.3035 X1_X2_X5_X6_X8_X9 0.0280
X5 2.9883 X4_X5 2.9522 X1_X7_X9 2.5849 X1_X7_X8_X9 1.5458 X1_X2_X4_X5_X6 0.3236 X1_X2_X4_X5_X6_X8 0.0329
X10 2.9883 X4_X7 2.9523 X7_X8_X9 2.8139 X7_X8_X9_X10 1.6278 X1_X2_X5_X6_X9 0.3427 X1_X2_X3_X4_X5_X6 0.0584

Figure 5. Results of parameters in Example-6 via LASSO with respect to a spectrum of λ penalty
values. The three cures of X1, X2 and X3 are completely overlapping with each other.

We conclude that, though the LASSO with manmade penalty constraints seemingly
coupled with some desirable interpretations, its optimization protocol clearly can not
handle a landscape having two equally probable “deep-wells”. In sharp contrast, our major
factor selection protocol has no problems at all in identifying and confirming two collections
of three order-1 major factors, and these two collections can not co-exist. This result is
reiterated in the next subsection as well. This capability is the chief merit of employing
Information Theoretical measures in major factor selection.

Further, we conduct the least squares estimation based on all categorized data, and
report the results in Table 15. We can see that the results of estimations give rise to mixed-up
and wrong linear structures. That is, the categorizing scheme, which heterogeneously alters
locations and scales of original data, has indeed destroyed data’s intrinsic characteristics.
From this perspective, we understand that the categorical nature of data is suitable for
Information Theoretical Measures, but not for linear regression models and its variants.
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Table 15. Results of parameters in linear regression with categorized data.

Estimate Std. Error t Value Pr(> |t|)
(intercept) −0.776 0.013 −59.57 0.000
X1 0.334 0.004 819.68 0.000
X2 0.334 0.004 820.21 0.000
X3 0.334 0.004 820.05 0.000
X4 −0.232 0.004 −568.08 0.000
X5 −0.231 0.004 −566.27 0.000
X6 0.528 0.008 624.12 0.000
X7 −0.0002 0.001 −0.94 0.3462
X8 0.0001 0.001 0.56 0.5735
X9 −0.0002 0.001 −1.40 0.1622
X10 −0.0002 0.001 −1.13 0.2567

4.2. Escaping from the Curse of Dimensionality

In Example-6, the 6-feature setting, the feature-set {(X1, X2, X3, X4, X5, X6)} achieves
the largest CE among all possible feature-sets, which is at least 7 times of CE of
{(X1, X2, X3, X7, X8, X9)}. Such comparisons are invalid due to finite sample phenomenon
or curse of dimensionality. Since there are more than 1.408 billions ((22)7) 7D hypercubes for
just one million data points. How can we escape from the potential effects of curse of dimen-
sionality on estimations of CEs of {(X1, X2, X3, X4, X5, X6)} and {(X1, X2, X3, X7, X8, X9)}?

Again, we apply the simple approach of K-means clustering algorithm. We first
apply K-means algorithm to have 22 clusters based on one million of 3D data points of
{(X1, X2, X3)}, {(X4, X5, X6)} and {(X7, X8, X9)} , respectively. We specifically denote
these three categorical variables as X123, X456 and X789, respectively. Upon these three
new covariate variables, we calculate CEs (of Y) under 1-feature and 2-feature settings, see
Table 16. We consistently confirm that X123 and X456 are not conditionally dependent given
Y. Therefore, the two feature triplets (X1, X2, X3) and (X4, X5, X6) are two separate chief
and alternative collections of three order-1 major factors.

Table 16. Escaping from the curse of dimensionality in Example-6.

Experiments 1-Feature CE 2-Feature CE

L0.2
X123 1.9317 X123_X456 1.8206
X456 2.4734 X123_X789 1.9195
X789 2.9450 X456_X789 2.4555

5. Conclusions

The most fundamental concept underlying all practical guidelines we have learned
from the series of increasingly complex examples in this paper is: the comparability of
evaluations of conditional entropy and mutual information critically rests on the equality
of the dimensions of the contingency tables where these evaluations are carried out. Based
on this comparability concept, the focal goal of the data analysis is then rephrased in terms
of [C1: confirmable] criterion regrading presence and absence of major factors underlying
a designated Re-Co dynamics. In other words, it is absolutely essential to note that there is
no need for precise theoretical information measurements in real data analysis. Such [C1:
confirmable] criterion pertaining to the discovery of major factor subsequently promotes
all practical guidelines being centered around the task of confirming and debunking an
existential collection of major factors of various orders. Since the presence and absence
of such an existential collection of major factors indeed manifest the data’s authentic
information content, from a data’s information content perspective, the task of data analysis
as a whole is translated into the single issue of major factor selection.



Entropy 2022, 24, 1382 24 of 25

Furthermore, all practical guidelines on evaluating mutual information, in particular,
for our major factor selection protocol are largely recognized for ascertaining the [C1:
confirmable] criterion against the effects of the curse of dimensionality or finite sample
phenomenon. Practically, we learn to be sensitively aware of dangers of having low
cell-counts in potentially occupied cells when evaluating entropy measures. We also
develop clustering-based approaches to lessen the effect of the curse of dimensionality.
After learning all these practical guidelines, we are confident in our applications of our
major factor selection protocol and related Categorical Exploratory Data Analysis (CEDA)
techniques on analyzing real-world structured data sets.

In many scientific fields, like biology, medicine, psychology and social sciences, many
measurements are not always precisely metric. Even within a metric system, a continuous
measurement is often grouped and converted into a discrete or even ordinal data format.
That is, very fine-scale details of a data point is likely given up because it is either too costly
to measure, or even can’t be measured, or needs to be discarded for practical computational
considerations. Therefore, any structured data set is likely consisting of some features
having incomparable measurement scales and some features having no scales at all. How
to analyze such a data set in a coherent fashion is not at all a simple task. CEDA is a
data analysis designed to be coherent with all features’ measurements. So, CEDA and its
major factor selection protocol are developed to indeed embrace the ideal concept: Each
single feature must allow to contribute its own authentic information locally, and then
to congregate and weave patterns that reveal heterogeneity on global, median and fine
scales levels.

To facilitate and carry out such a fundamental concept of data analysis, CEDA is
exclusively resting on one simple fact: All data-types are embedded with the categorical
nature. So all pieces of local information derived from all categorical or categorized features
must be comparable. All these information pieces can be then woven together for the
multiscale heterogeneity. By doing so, there are no man-made assumptions or structures
needed in CEDA. So, information brought out by CEDA is authentic. That is, we can be
free from the danger of generating misinformation via data analysis involving unrealistic
assumptions or structures.

To achieve the aforementioned goals of CEDA via our major factor selection protocol,
we definitely need stable and creditable evaluations of conditional entropy and mutual
information underlying any targeted Re-Co dynamics of interest. That is why the practical
guidelines learned in this paper become essential and significant. On the other hand, these
practical guidelines also reveal aspects of flexibility and capability of CEDA and its major
factor selection in helping scientists to extract intelligence from their own data sets.

As a final remark, we clearly demonstrate in this paper that, by reframing many key
statistical topics in one Re-Co dynamics framework, CEDA and its major factor selection
protocol not only can resolve the original data analysis tasks, but also, more importantly, can
shed authentic lights on issues related to widely expanded frameworks containing the orig-
inal statistical topics. This capability manifests the capability of CEDA and its major factor
selection protocol for truly accommodating and resolving real-world scientific problems.

Finally, we conclude that the learned practical guidelines for evaluating CE and
I[Re; Co] would allow scientists to effectively carry out CEDA and its major factor selection
protocol to extract data’s visible and authentic information content, which is taken as the
ultimate goal of data analysis.
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