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Abstract
Purpose: This study aimed to investigate radiomic features extracted from magnetic resonance imaging (MRI) scans performed before
and after neoadjuvant chemoradiotherapy (nCRT) in predicting response of locally advanced rectal cancer (LARC).
Methods and Materials: Thirty-nine patients who underwent nCRT for LARC were included, with 294 radiomic features extracted
from MRI that was performed before (pre-CRT) and 6 to 8 weeks after completing nCRT (post-CRT). Based on tumor regression grade
(TRG), 26 patients were classified as having a histopathologic good response (GR; TRG 0-1) and 13 as non-GR (TRG 2-3). Tumor
downstaging (T-downstaging) occurred in 25 patients. Univariate analyses were performed to assess potential radiomic and delta-
radiomic predictors for TRG in pathologic complete response (pCR) versus non-pCR, GR versus non-GR, and T-downstaging. The
support vector machine-based multivariate model was used to select the best predictors for TRG and T-downstaging.
Results: We identified 13 predictive features for pCR versus non-pCR, 14 for GR versus non-GR, and 16 for T-downstaging. Pre-CRT
gray-level run length matrix nonuniformity, pre-CRT neighborhood intensity difference matrix (NIDM) texture strength, and post-CRT
NIDM busyness predicted all 3 treatment responses. The best predictor for GR versus non-GR was pre-CRT global minimum combined
with clinical N stage in the multivariate analysis. The best predictor for T-downstaging was the combination of pre-CRT gray-level co-
occurrence matrix correlation, NIDM-texture strength, and gray-level co-occurrence matrix variance. The pre-CRT, post-CRT, and delta
radiomic-based models had no significant difference in predicting all 3 responses.
Conclusions: Pre-CRT MRI, post-CRT MRI, and delta radiomic-based models have the potential to predict tumor response after nCRT
in LARC. These data, if validated in larger cohorts, can provide important predictive information to aid in clinical decision making.
Sources of support: This work had no specific funding.
Disclosures: Jianfeng Qiu and Liting Shi received grants from the Shandong Province Key Research and Development Program (2017GSF218075)

and the Taishan Scholars Program of Shandong Province during the conduct of the study.
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Introduction

Colorectal cancer is the third most frequently diag-
nosed cancer and the fourth leading cause of cancer-
related deaths worldwide.1,2 Rectal cancer comprise about
27% to 58% of all colorectal cancers.3 Neoadjuvant
chemoradiotherapy (nCRT), followed by curative sur-
gery, is the standard treatment for locally advanced rectal
cancer (LARC). Recent outcome reports from 2 recent
pooled analyses in a large cohort of patients with LARC
showed that 15.6% to 24.4% of patients who underwent
nCRT and surgical resection achieved a pathologic
complete response (pCR),4,5 raising the question of the
necessity for subsequent radical surgery for this subset of
patients. The watch-and-wait approach for patients with a
clinical complete response after receiving nCRT or a local
excision of the remaining scar tissue has demonstrated
comparable oncologic outcomes to more invasive curative
surgery, such as total mesorectal excision (TME).6-8

Conversely, patients with more resistant disease may
require more aggressive local therapy. There are limited
data to aid in stratifying patients when making these
treatment decisions.

An accurate assessment of treatment response to nCRT
is important for a more conservative approach considering
the high variation of response to nCRT.9,10 Histopathol-
ogy remains the gold standard to assess treatment
response to nCRT, but with inherent limitations (eg, risk
of surgical complications). For patients with a contrain-
dication for surgery, research has focused on identifying
noninvasive markers that can predict histologic regres-
sion. Magnetic resonance imaging (MRI) is the imaging
modality of choice for the initial staging of rectal can-
cer11; however, routine MRI is known to perform poorly
when assessing the pathologic response to nCRT owing to
the inability to distinguish tumor desmoplasia and fibrosis
from a viable tumor.12,13

Studies based on specialized MRI sequences, such as
diffusion weighted imaging and dynamic contrast-
enhanced MRI, have confirmed their high sensitivity
and specificity in predicting a response to nCRT.13-16 Yet,
contradictory results have also been reported by other
studies.17,18 Specifically, Jang et al. reported that diffu-
sion restriction remained in 42% of patients with pCR
after nCRT and surgery.19 Other challenges with MRI
include an inability to assess important oncogenic fea-
tures, such as angiogenesis or hypoxia, and the limited
underlying tissue property information. Thus, extracting
more information from MRI to predict an early assess-
ment of a response to nCRT is desirable.
Radiomics is a quantitative texture analysis approach
of diagnostic images for this purpose and focuses on
extracting quantitative imaging features from specific
annotated regions of interest (ROI) of medical im-
ages.20,21 These features capture different characteristics
of the ROIs, and describe tumor intensity, shape, size or
volume, and other textures.22,23 Human oncologic tissues
exhibit strong signal differences that are assessable with
imaging. The fundamental hypothesis is that radiomics
can accurately quantify these differences with high
dimensional imaging features, which may lead to imaging
biomarkers with diagnostic, prognostic, or predictive
powers.21,24

Published studies have shown promising results of the
radiomics approach in predicting a pathologic response in
non-small cell lung cancer using computed tomography
(CT) images.25,26 To the best of our knowledge, research
with MRI radiomics for treatment response prediction in
rectal cancer is limited, and early studies exclusively
examined pre-CRT MRI.27-29 Pre-CRT MRI radiomic
studies aim to identify a subgroup of patients with LARC
who may have a chance for a complete response but
require intensification of the preoperative treatment.28

Post-CRT MRI radiomics provides values to determine
organ sensitivity to treatment, and thus assist with organ-
preservation decision making before treatment.30 Changes
in radiomic features between pre- and post-CRT (ie, delta
radiomics) may also be predictors of treatment response.31

The best predictive timepoint for treatment response and
clinical outcomes remains unknown.

In this present work, we investigated radiomic features
extracted from MRI scans at different timepoints to pre-
dict LARC response to nCRT. Considering that tumor
regression grade (TRG) and tumor-downstaging (T-
downstaging) have become universally accepted metrics
to assess tumor response to nCRT in LARC,32 radiomic
features extracted from MRI before and after nCRT and
delta radiomics were assessed for their performance in
predicting TRG and T-downstaging in patients with
LARC who received nCRT followed by TME.

Methods and materials

Patient selection

Using an institutional review boardeapproved proto-
col, we retrospectively reviewed data on patients with
LARC without distant metastases who were treated with
nCRT between September 2010 and February 2018. A
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Table 1 Patient, tumor, and treatment characteristics

Characteristic No. of patients (%)

Median age (range), y 60 (32-78)
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total of 39 patients met the inclusion criteria
(Supplementary Materials, Appendix E1) identified for
this study.33 Table 1 shows patients’ clinical
characteristics.
Sex
Men 22 (56.4)
Women 17 (43.6)

Clinical tumor classification
cT2 4 (10.3)
cT3 24 (61.6)
cT4 10 (25.6)
Unknown 1 (2.6)

Clinical lymph node
classification

cN0 7 (17.9)
cN1-N2 32 (82.1)

Concurrent chemotherapy
Protracted infusional
5-fluorouracil

32 (82.1)

Capecitabine uracil/tegafur 7 (17.9)
Pathology
Adenocarcinoma 36 (92.3)
Mucinous adenocarcinoma 3 (7.7)

Histologic grade
Well differentiated 11 (28.2)
Moderately differentiated 21 (53.8)
Unknown 7 (17.9)

Tumor-downstaging
Yes 25 (64.1)
No 14 (35.9)

Tumor regression grade
0 10 (25.6)
1 16 (41.0)
2 10 (25.6)
3 3 (7.7)
Pathology and tumor regression grade

A histopathologic assessment of the resection speci-
mens was performed using a standardized protocol that
included submission of the entire tumor bed if no mass-
forming lesion was identified on gross examination.34,35

Slides were reviewed by an experienced pathologist and
further reviewed independently by a dedicated gastroin-
testinal pathologist, both blinded to the MRI data. Stan-
dard pathologic tumor staging of the resected specimen
was performed in accordance with the guidelines of the
American Joint Committee on Cancer (AJCC), 7th edi-
tion, 2010.32

pCR was defined as ypT0N0, extracted from the pa-
thology reports of the surgical specimens. T-downstaging
was defined as the lowering of the tumor classification
from pre-CRT clinical stage (cT stage) to postoperative
histopathologic stage (ypT stage), as defined by Prajnan
et al.36 In addition, the response of the primary tumor to
radiation therapy was graded by the pathologist. The
published 4-tier system adopted by the AJCC was used to
avoid small categories in which TRG was determined by
the amount of viable tumor, ranging from no evidence of
any treatment effect (TRG 3), to a complete response with
no viable tumor identified (TRG 0).37

For the analysis presented herein, patients were strat-
ified to 2 therapeutic response groups: pCR versus nonp-
CR. Given the small number of cases in each TRG
category, the AJCC TRG system was also used to stratify
the patients into good responders (GR; defined as TRG 0-
1) and nongood responders (non-GR; defined as TRG 2-
3). The proportion of T-downstaging and TRG in 39
selected patients is shown in Table 1.
Image data sets, region of interest definition, and
radiomic feature extraction

All patients underwent MRI scans for the rectum and
pelvic cavity regions using a 1.5 T magnetic resonance
scanner (Signa HDxt, GE Medical Systems) equipped
with a phased-array coil. MRI scans were performed
using a standardized MRI protocol in an oblique axial
orientation, perpendicular to the long axis of the rectum at
the site of the tumor. The pre- and post-CRT high-reso-
lution T2-weighted images were analyzed in this study.
The imaging parameters are listed in the Supplementary
Materials, Appendix E2.38,39 To reduce any bias relating
to the time elapsed between completing nCRT and sur-
gery, MRI for restaging and treatment response
assessment was scheduled between the 6th and 8th week
after completing nCRT.

Figure 1 illustrates the workflow of data acquisition
and analysis in this study. The first step is ROI definition
and segmentation. The ROI was defined as the whole
tumor and rectum, excluding the intestinal lumen owing
to the difficulty in definitively identifying viable tumor
regions on routine MRI. In our study, pre- and post-CRT
ROIs were segmented on the axial T2WI maps with the
open-source software tool IBEX by a radiation oncologist
with specific expertise in rectal cancer and who was
blinded to the clinical and pathologic data.1

The second step is radiomic feature extraction from
segmented ROIs using the IBEX software. A total of 294
radiomic features were extracted, including shape, first-
order, high-order texture, and Laplacian of Gaussian
filter-based features (Fig 1). The descriptions of the
radiomic features are included in the supplementary
materials (Appendix E3 and Table E1).



Figure 1 Data acquisition and analysis workflow. Region of interest definition: Regions of interest were defined by a radiation
oncologist with specific expertise in rectal cancer. Feature extraction: Four categories of radiomic features were extracted: Shape, first-
order, high-order texture, and filter-based features. Data analysis: The extracted radiomic features were used to predict clinical treatment
response and tumor-downstaging using support vector machine classification.
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The third step is to analyze the extracted features using
the following steps.

Data normalization
To optimize the support vector machine (SVM) per-

formance,40 all data were normalized to the range in [0,1]
using minimum (min)-maximum (max) normalization per
the following equation:

f
0
i Z

fi �minðf Þ
maxðf Þ �minðf Þ

where f Z (f1,.,fn) and is the ith normalized data.

Dimension reduction and univariate analysis
After normalization, independent features were iden-

tified to reduce data dimension. A Wilcoxon rank sum test
was used to quantify the differences in all features be-
tween the 2 groups of patients (TRG prediction: pCR vs
non-pCR, GR vs non-GR; downstaging prediction: yes vs
no). Spearman’s correlation coefficient (rs) was calculated
between different pairs of features. Within any pair with rs
> 0.8, the feature with the lower P-value in the Wilcoxon
rank sum test was selected for the subsequent analysis.
Among the selected features, a P-value < .05 was
considered statistically significant.

SVM-based multivariate classification

A SVM-based multivariate model was used to select
the best predictors for TRG and T-downstaging (Fig E1).
The SVM model was fitted using Gaussian kernel with
the kernel scale automatically selected by the heuristic
procedure. The evaluated potential radiomic predictors
included features extracted from pre- and post-CRT im-
ages and the relative changes in these features (ie, delta-
radiomic features). The following potential clinical



Figure 2 The significant features (P < .05) heat map generated using their P values in the univariate analysis. NA represents that the
feature on the y axis is not significant to predict a response on the x axis (P � .05). Abbreviations: GLCM Z gray-level co-occurrence
matrix; GLN Z gray-level nonuniformity; GLRLM Z gray-level run length matrix; HoG Z histogram of gradient orientations;
IDMN Z inverse difference moment normalized; IMC Z informational measure of correlation; MAD Z median absolute deviation;
NIDM Z neighborhood intensity difference matrix; SD Z standard deviation; SRLGLE Z shortrun low-gray level emphasis.
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predictors were also evaluated: Age, sex, clinical T clas-
sification, clinical lymph node (N) classification, grade,
and type of chemotherapy.

Among the 39 eligible patients, 26 with both pre- and
post-CRT images were added in the training set; 7 with
only pre-CRT images and 6 with only post-CRT images
were added in the test set of pre- and post-CRT radiomic
models, respectively. The selection of best predictors was
performed using the training data. Leave-one-out valida-
tion was used to evaluate the classification performance in
this process. The performance between any 2 of pre-CRT,
post-CRT, and delta radiomic-based multivariate models
in the training data set was compared using a permutation
test with 5000 permutations, where a P-value < .05 was
considered statistically significant. All analyses were
performed with MATLAB 2015b.



Figure 3 Box plots for pre-chemoradiotherapy gray-level run length matrix-gray-level nonuniformity for the 2 groups of patients in
tumor regression grade and tumor-downstaging prediction. Each box represents the interquartile range. The line inside the box rep-
resents the median. The upper and lower whiskers extend to the highest and lowest values within 1.5 � interquartile range of the 0.75
and 0.25 quartiles, respectively. The plus sign represents outlier.
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Results

Dimension reduction

Of the 294 radiomic features, 38 independent features
were selected for the subsequent analysis. Features were
selected based on the differences between the 2 groups of
patients with respect to the treatment response. Thus, the
selected features were distinctive for different treatment
response prediction.
Univariate analysis

In the univariate analysis, radiomic features extracted
from pre- and post-CRT images and their changes were
significantly correlated with TRG and T-downstaging
(Fig 2). A total of 13, 14, and 16 features were predictive
of TRG pCR versus non-pCR, TRG GR versus non-GR,
and T-downstaging, respectively (P Z .0009-.0479,
.0047-.041, and .0026-.0477, respectively). The best
predictors for each treatment response were post-CRT
gray level co-occurrence matrix (GLCM)-inverse vari-
ance for pCR versus non-Pcr; pre-CRT NIDM-coarseness
for GR versus non-GR; and pre-CRT first-order local
entropy standard deviation (SD) for T-downstaging,
respectively (P Z .0009, .0047, and .0026, respectively).

Overall, pre-CRT gray-level run length matrix
(GLRLM)egray level nonuniformity (GLN), pre-CRT
NIDM-texture strength, and post-CRT NIDM-busyness
can predict all 3 treatment responses at P < .05. Figure 3
shows the box plots for pre-CRT GLRLM-GLN in the 2
groups of patients for TRG and T-downstaging
prediction.
None of the clinical factors was significantly correlated
with TRG pCR versus non-pCR and T-downstaging.
Only 1 clinical factor (age) significantly correlated with
TRG GR versus non-GR (P Z .0167).

SVM-based multivariate classification

The best predictors for pCR versus non-pCR were the
combination of features in different categories (Table 2).
The pre-CRT GLRLM-GLN was able to classify pCR
group and non-pCR groups independently with the
training data accuracy at 88.5%, classification loss Z
0.1154, and test data accuracy at 57.1%. When combined
with the pre-CRT maximum 3-dimensional diameter, the
classification performance was highly improved (training
data: Accuracy Z 92.3%, classification lossZ .0769; test
data: 57.1%). The best predictors for GR versus non-GR
were pre-CRT global minimum combined with clinical N
stage in the multivariate analysis (training data: accuracy
Z 100%, classification loss Z .0769; test data: accuracy
Z 100%; Table 2).

The best predictor for T-downstaging is the combina-
tion of pre-CRT GLCM-correlation, NIDM-texture
strength, and GLCM-variance (training data: Accuracy
Z 92.3%, classification lossZ .1154; test data: Accuracy
Z 71.4%). In addition, post-CRT NIDM-busyness was
an independent predictor for T-downstaging and per-
formed best in the post-CRT radiomic features (training
data: accuracy Z 92.3%, classification loss Z .2308; test
data: accuracy Z 50.0%; Table 2).

The pre-CRT, post-CRT, and delta radiomic-based
models had no significant difference (P > .29) in pre-
dicting pCR versus non-pCR, GR versus non-GR, and
T-downstaging in the permutation test (Table E2).



Table 2 Best predictors for TRG and tumor-downstaging prediction and their performance in support vector machine-based
multivariate classification

Response Images Best predictors Training data Test data

Accuracy Class loss Accuracy

TRG (pCR vs non-pCR) Pre-CRT GLRLM-GLN and shape-maximum
3-dimensional diameter

92.3% 0.0769 57.1%

Post-CRT Clinical tumor stage and HoG-
percentile area

88.46% 0.1538 66.7%

Delta GLCM-cluster shade and HoG-
percentile and maximum probability

96.15% 0.0769 d

TRG (GR vs non-GR) Pre-CRT Global minimum and clinical node
stage

100% 0.0769 100%

Post-CRT Clinical node stage and 0.025 quantile
and local entropy minimum

100% 0.1154 83.3%

Delta Clinical node stage and GLRLM-
LRLGLE

92.3% 0.0769 d

Tumor-downstaging
(yes vs no)

Pre-CRT GLCM-correlation and NIDM-texture
strength and GLCM variance

92.3% 0.1154 71.4%

Post-CRT NIDM busyness 92.3% 0.2308 50.0%
Delta Shape orientation 92.3% 0.1154 d

Abbreviations: CRT Z chemoradiotherapy; GLCM Z gray-level co-occurrence matrix; GLRLM Z gray-level run length matrix; GR Z good
response; HoG Z histogram of gradient orientations; LRLGLE Z long-run low gray-level emphasis; NIDM Z neighborhood intensity difference
matrix; pCR Z pathologic complete response; TRG Z tumor regression grade.
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Discussion

In the present study, the pCR rate of primary LARC
treated curatively with nCRT was 23.1%, which was
consistent with results reported by the MD Anderson
Cancer Center (27%) and Creighton University
(22%).41,42 An additional 24 patients (61.5%) showed
evidence of T-downstaging of tumor after nCRT. Alter-
native and less invasive treatment options for sphincter or
organ preservation could potentially be considered for
these patients. Our study has 13 patients (33.3%) with
non-GR (TRG 2-3), of which 1 patient (7.7%) showed
poor response (TRG 3). Early detection of poor nCRT
responders would facilitate physician decision making.
Being able to define which patients are likely to be poor
responders would allow for alternative methods to be
tested, such as targeted therapy, immunotherapy, or more
aggressive preoperative regimens (eg, dose escalation,
total neoadjuvant therapy, or alternative chemotherapy
agents). Hence, the ability to correctly predict responses
to preoperative therapy can be beneficial for patient-
tailored treatment strategies.43,44

Radiomic features extracted from MRI have been
demonstrated to be highly significant predictors of nCRT
in LARC.27-29 However, most of the work focused on
single-category radiomic features from MRI, which may
have inherent limitations in their predictive power. Nie
et al27 assessed GLCM features in predicting a response
to neoadjuvant therapy with 48 patient data sets, and
found that voxelized heterogeneity models outperformed
conventional volume-based metrics in predicting pCR
with improved area under the receiver operating charac-
teristic curve.

Similar results were found for the GR prediction.
Dinapoli et al28 found that the most significant features
from pretreatment T2 MRI in LARC to predict pCR were
skewness with s Z 0.485 mm (SKE0485) and entropy
with s Z 0.344 mm (ENT0344), but no significant pre-
diction power was observed with kurtosis. Cusumano
et al29 reported that the fractal parameters of the sub-
populations had the highest performance in predicting
pCR. The major findings of our present work include
identifying 13, 14, and 16 significant predictive features,
including shape, first-order, high-order texture, and Lap-
lacian of Gaussian features for pCR versus non-pCR, GR
versus non-GR, and T-downstaging, respectively. Most
importantly, we found that the best predictors for TRG
and T-downstaging were the combined features in
different categories (ie, prediction accuracy for TRG
[pCR vs non-pCR] improved from 88.5% to 92.3% after
combining the pre-CRT maximum 3-dimensional diam-
eter [conventional feature] with pre-CRT GLRLM-GLN
[texture feature]). Our results agree with the findings and
models presented by previous publications.27

Another major contribution from the present study is
the evaluation of radiomic features extracted from pre-
CRT MRI, post-CRT MRI, and the feature changes be-
tween these two (delta-radiomics). So far in the literature,
radiomic studies on LARC mostly focused on either pre-
or post-CRT MRI separately. Three recent studies with
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small-size samples have demonstrated the pCR prediction
power in patients with LARC using pre-CRT MRI
radiomic features alone.27-29 MRI radiomic features in
predicting a pathologic response after nCRT for LARC
were also verified in 3 separate studies, using post-CRT
MRI,45 both pre-CRT, and post-CRT MRI,30 or delta-
radiomic MRI features.31

The significance of combining all 3 in 1 study is that
radiomic features at different time points may increase the
specificity for response prediction. To the best of our
knowledge, this is the first study using pre-CRT MRI,
post-CRT MRI, and delta-radiomic features analyses to
predict TRG and T-downstaging for LARC. Our results
revealed that the pre-CRT, post-CRT, and delta radiomic-
based models had no significant difference in TRG pre-
diction for pCR versus non-pCR, GR versus non-GR, and
T-downstaging in the permutation test. This means that
the pre-CRT MRI-based radiomic model is sufficient for
patient-tailored nCRT strategies for the best treatment
response prediction.

Post-CRT MRI directly reflects the status of the tumor
after nCRT, which is more relevant to the surgical pa-
thology and helpful for the purpose of organ-preservation
decision. When significant clinical downstaging occurs
after nCRT for patients with LARC, some patients may be
considered for local excision rather than curative TME to
preserve the anal sphincter and reduce morbidity.46 Thus,
the radiomic feature performance for T-downstaging is
also of clinical concern for operative method selection. In
this study, we found that 4 post-CRT radiomic features
and 2 delta radiomic features can predict T-downstaging,
but not for pCR versus non-pCR or GR versus non-GR.
Overall, among the 33 selected features, 11 features
from post-CRT MRI are of great value in accurately
identifying patients for whom a less invasive surgery may
be the most appropriate.

The limitations of this analysis should be noted. First,
this study was retrospective in nature with a relatively
small sample size. The published 4-tier AJCC TRG sys-
tem was used to avoid small categories.37 Given the small
number of cases in each TRG category, the AJCC TRG
system was also used to stratify patients into groups of
GR and non-GR. Further research with a larger patient
cohort is needed to confirm these results. Second, all
patients were from a single center without external vali-
dation. To minimize bias, we performed an internal
validation by setting patients with both pre- and post-CRT
images as training data and patients with only pre- or
post-CRT images as test data for pre- and post-CRT
radiomic- based prediction. To ensure the prediction ac-
curacy and consistency of the pre-CRT, post-CRT, and
delta radiomic models, the selection of the best predictors
was performed using the training data, but a leave-one-out
validation was used to evaluate the classification perfor-
mance in this process.
SVM-based multivariate classification was used
instead of the conventional logistic regression analysis
due to its capacity to model complex relationships be-
tween independent and predictor variables, allowing for
the inclusion of a large number of variables. Nevertheless,
further multicenter studies with external validation are
needed to validate the reported data and provide a better
generalization of our results. In addition, this study cohort
only received nCRT without other neoadjuvant chemo-
therapy. Future studies should examine patients treated
with neoadjuvant multiagent chemotherapy using a total
neoadjuvant therapy approach.
Conclusions

To our knowledge, this is the first study to focus on the
relationship between pathologic response after nCRT and
radiomic features extracted from pre-CRT MRI, post-CRT
MRI, and delta-radiomic features in LARC. Our findings
confirm that radiomic features extracted from pre-CRT
MRI, post-CRT MRI, and delta-radiomic features could
potentially be helpful for TRG predication in pCR versus
non-pCR, TRG GR versus non-GR, and T-downstaging
after nCRT in LARC. We also showed that the pre-CRT,
post-CRT, and delta radiomic-based models demonstrated
the same ability in therapeutic response prediction, which
means that MRI obtained pre- and post-CRT can be used
for response prediction. Future well-designed prospective
trials with larger patient and external validation cohorts
are needed to verify our results.
Supplementary data

Supplementary material for this article can be found at
https://doi.org/10.1016/j.adro.2020.04.016.
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