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Top-Down versus Bottom-Up Learning in Skill Acquisition

Ron Sun (rsun@cecs.missouri.edu)
Xi Zhang (xzf73@mizzou.edu)
Department of CECS, University of Missouri, Columbia, MO 65211, USA

Abstract

This paper studies the interaction between implicit
and explicit processes in skill learning, in terms of
top-down learning (that is, learning that goes from
explicit to implicit knowledge) vs. bottom-up learn-
ing (that is, learning that goes from implicit to ex-
plicit knowledge). Instead of studying each type
of knowledge gmplicit or explicit) in isolation, we
highlight the interaction between the two types of
processes, especially in terms of one type giving rise
to another. The work presents an integrated model
of skill learning that takes into account both im-
plicit and explicit processes and both top-down and
bottom-up learning. We examine and simulate hu-
man data in the Tower of Hanoi task. The paper
shows how the quantitative data in this task may
be captured using either top-down or bottom-up ap-
proaches, although top-down learning is a more apt
explanation of the human data currently available.
The results demonstrate the difference between the
two different directions of learning (top-down vs.
bottom-up), and also provide a new perspective on
skill learning in the Tower of Hanoi task.

Introduction

This paper studies the interaction between the im-
plicit and explicit processes in skill learning. It
explores two directions of skill learning: top-down
learning and bottom-up learning. Top-down learn-
ing goes from explicit knowledge to implicit knowl-
edge, while bottom-up learning goes from implicit
knowledge to explicit knowledge. Instead of study-
ing each type of knowledge (implicit or explicit) in
isolation, we want to highlight the interaction be-
tween the two types of processes, especially in terms
of one type giving rise to another.

In this work, we want to test possibilities of
bottom-up learning vs. top-down learning. We do
so by using the task of Tower of Hanoi, which is
arguably a typical benchmark problem in high-level
cognitive skill acquisition and has been used in many
previous studies of skill acquisition, cognitive mod-
eling, and cognitive architectures (see, e.g., Proc-
tor and Dutta 1995, Anderson 1993, Anderson and
Lebiere 1998).

To explore bottom-up and top-down learning, the
work presents an integrated model of skill learning
that takes into account both implicit and explicit

processes and both top-down and bottom-up learn-
ing, although the model was initially designed as
a purely bottom-up learning model. We examine
and simulate human data in the Tower of Hanoi
task. The work shows how the quantitative data in
this task may be captured using either top-down or
bottom-up approaches, although we will show that
top-down learning is a more apt explanation of the
human data currently available in this task.
Overall, the result of our simulations suggests that
both directions are possible in human cognitive skill
acquisition, and the actual direction may be either
bottom-up or top-down (or a mix of both), depend-
ing on task settings, instructions, and other vari-
ables. These results demonstrate the two different
directions of learning (top-down vs. bottom-up), and
also provide a new perspective on skill learning.

Top-Down vs. Bottom-Up: The
CLARION Model

The role of implicit learning in skill acquisition and
the distinction between implicit and explicit learn-
ing have been widely recognized in recent years (see,
e.g., Reber 1989, Stanley et al 1989, Willingham et
al 1989, Anderson 1993, Seger 1994, Proctor and
Dutta 1995, Stadler and Frensch 1998). However,
although implicit learning has been actively inves-
tigated, complex and multifaceted interaction be-
tween the implicit and the explicit and the impor-
tance of this interaction have not been universally
recognized. To a large extent, such interaction has
been downplayed or ignored, with only a few no-
table exceptions (e.g., Mathews et al 1989, Sun et al
2001).  Similar oversight is also evident in compu-
tational simulation models of implicit learning (with
few exceptions such as Cleeremans 1994 and Sun et
al 2001).

Despite the lack of studies of interaction, it has
been gaining recognition that it is difficult, if not im-
possible, to find a situation in which only one type of
learning is engaged (Reber 1989, Seger 1994, Sun et
al 2001). Our review of existing data has indicated
that, while one can manipulate conditions to empha-
size one or the other type, in most situations, both
types of learning are involved, with varying amounts
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Figure 1: The CLARION architecture.

of contributions from each.

Empirical demonstrations of interaction can be
found in Stanley et al (1989), Willingham et al
(1989), Bower et al (1990), Wisniewski and Medin
(1994), and Sun et al (2001). These demonstrations
used a variety of means, including experimental ma-
nipulations such as verbalization, explicit instruc-
tions, and dual tasks.

Likewise, in the development of cognitive architec-
tures (e.g., Rosenbloom et al 1993, Anderson 1993,
Anderson and Lebiere 1998), focus has been mostly
on “top-down” models (that is, learning first explicit
knowledge and then implicit knowledge on the basis
of the former). The bottom-up direction (that is,
learning first implicit knowledge and then explicit
knowledge, or learning both in parallel) has been
largely ignored, paralleling and reflecting the related
neglect of the interaction of explicit and implicit pro-
cesses in the implicit learning literature.

However, there are a few pieces of work that
did demonstrate the parallel development of the
two types of knowledge or the extraction of explicit
knowledge from implicit knowledge (e.g, Willingham
et al 1989, Stanley et al 1989; see also Karmiloff-
Smith 1986, Mandler 1992), contrary to usual top-
down approaches in developing cognitive architec-
tures.

To tackle these issues, we developed the model
CLARION (Sun and Peterson 1998, Sun et al 2001).
CLARION is an integrative model with a dual repre-
sentational structure. It consists of two levels: the
top level encodes explicit knowledge and the bot-
tom level encodes implicit knowledge. See Figure 1.
In this paper, we will focus only on action-centered
components of the model.

Overall Action Decision Making

1. Observe the current state x.

2. Compute in the bottom level the “value” of
each of the possible actions (a;’s) in the state
€T Q(ﬂ?,a&), Q(w7a2)7 """ ? Q(xva’")'

3. Find out all the possible actions (b1, bz, ...., bn)
at the top level, based on the the current state
information « (which goes up from the bottom
level) and the existing rules in place at the top
level.

4. Choose an appropriate action a, by combining
(in some way) the values of a;’s (at the bottom
level) and b;’s (which are sent down from the
top level).

5. Perform the action a, and observe the next state
y and (possibly) the reinforcement 7.

6. Update the bottom level in accordance with
an appropriate algorithm (to be detailed later),
based on the feedback information.

7. Update the top level using an appropriate al-
gorithm (for constructing, refining, and deleting
rules, to be detailed later).

8. Go back to Step 1.

The Bottom Level

Representation The input to the bottom level
consists of three groups: (1) sensory input, (2)
working memory items, (3) the top item of the goal
stack. The output of the bottom level is the ac-
tion choice. It consists of three groups of actions:
working memory set/reset actions, goal push/pop
actions, and external actions. These three groups
are computed by separate networks.

Learning The @Q-learning algorithm (Watkins
1989) is a reinforcement learning algorithm. In
the algorithm, Q(z, a) estimates the maximum (dis-
counted) cumulative reinforcement that can be re-
ceived from the current state z on. The updating of
Q(z,a) is based on:

AQ(z;a) = a(r +ve(y) — Q(x,a)) (1)

where 7 is a discount factor, y is the new state result-
ing from action a in state z, and e(y) = max, Q(y, b).
Note that z and y include sensory inputs (internal
and external), working memory items (if any acti-
vated), and the current goal (if exists).

Q-learning can be implemented in backpropaga-
tion networks (Sun and Peterson 1998). Applying
Q-learning, the training of the backpropagation net-
work is based on minimizing the following error at
each step:

_ [ rt+oely) —Qx,a:) if ai=a
erri = { 0 otherwise (2)
where 7 is the index for an output node represent-
ing the action a;, and a is the action performed.
Based on the above error measures, the backpropa-
gation algorithm is applied to adjust internal weights
(which are randomly initialized before training).

The Top Level

Representation At the top level, in contrast to
the bottom level (which involves distributed repre-
sentation due to the use of backpropagation net-
works), explicit knowledge may be captured in com-
putational modeling by a symbolic or localist repre-
sentation, in which each unit is easily interpretable
and has a clear conceptual meaning, i.e., a semantic
label. This characteristic captures the property of



explicit knowledge being accessible and manipulable
(Sun 1995). Explicit knowledge is expressed in the
form of rules.

The condition of a rule, similar to the input to
the bottom level, consists of three groups: sensory
input, working memory items, and the current goal.
The output of a rule, similar to the output from the
bottom level, is an action choice. It may be one
of the three types: working memory actions, goal
actions, and external actions.

Bottom-Up Learning The Rule-Extraction-
Refinement algorithm (RER) learns explicit rules us-
ing information in the bottom level (to capture the
bottom-up learning process). The basic idea of this
algorithm is as follows: If an action decided by the
bottom level is successful (i.e., if it satisfies a cer-
tain criterion), then the agent extracts a rule (with
its action corresponding to that selected by the bot-
tom level and with its condition specifying the cur-
rent state), and adds the rule to the top-level rule
network. Then, in subsequent interactions with the
world, the agent refines the extracted rule by consid-
ering the outcome of applying the rule: If the out-
come is successful, the agent may try to generalize
the condition of the rule to make it more universal; if
the outcome is not successful, then the condition of
the rule should be made more specific and exclusive
of the current state.

The way we measure the successfulness of an out-
come (which is based on an information gain mea-
sure) and the way generalization/specialization is
carried out (which is based on adding/removing al-
lowable input values) have been fully described in
Sun and Peterson (1998) and Sun et al (2001). Due
to lengths, we will not repeat the details here.

Fixed Rules Some of the rules at the top
level may be fixed. This type of rule (FR) repre-
sents genetic pre-endowment of an agent presumably
acquired through evolutionary processes, or prior
knowledge acquired from prior experience.

FRs enable top-down learning. With these rules
in place, the bottom level learns under the guidance
of the FRs. Initially, the agent relies mostly on the
FRs in its action decision making. But gradually,
when more and more knowledge is acquired by the
bottom level through observing actions directed by
FRs, the agent becomes more and more reliant on
the bottom level (given that the cross-level combina-
tion is adaptable). Hence, top-down learning takes
place.

Combining the Two Levels

In Prppr percent of the steps, if there is at least one
RER rule indicating a proper action in the current
state, we use the outcome from that rule set; in Prg
percent of the steps, if there is at least one fixed rule
indicating a proper action in the current state, we
use the outcome from that rule set; otherwise, we use
the outcome of the bottom level. These probabili-

Condition/No. of disks | 2 3 4 5
No verbalization 002143 21.2
Verbalization 0.0 |00 |09 |13

Figure 2: The RT data of Gagne and Smith (1962).

ties are adaptable based on “probability matching”
(with two parameters; Sun and Peterson 1998).

When we use the outcome from the top level, we
randomly select an action suggested by the matching
rules. When we use the outcome from the bottom
level, we use the stochastic decision process for se-

. . eQ@.a)/a .

lecting an action: p(a|z) = S oG where z is
the current state, a is an actioln, and « controls the
degree of randomness (temperature) of the decision-
making process.

Experiments

Tower of Hanoi

In the Tower of Hanoi task of Gagne and Smith
(1962), there were three pegs. At the beginning,
a stack of disks was stored on one of the pegs. The
goal was to move these disks to another (target) peg.
Only one disk can be moved at a time from one peg
to another. These disks were of different sizes, and
larger disks could not be placed on top of smaller
disks. Initially, the stack of disks was arranged ac-
cording to size so that the smallest disk was at the
top and the largest was at the bottom.

Subjects were given 3-disk, 4-disk, and 5-disk ver-
sions of the task in succession, each version running
until a final stable solution was found, and their
mean numbers of moves (and excess moves) were
recorded. Some subjects were instructed to verbal-
ize: They were asked to explain why each move was
made. The performance of the two groups of sub-
jects (verbalization vs. no verbalization) was com-
pared. In this task, we intend to capture the verbal-
ization effect on performance.

Figure 2 shows the performance of the two groups
in terms of mean number of excess moves (in excess
of the minimum required number of moves in each
version). Comparing the verbalization group and
the no verbalization group in the figure, the advan-
tage of verbalization is apparent. ANOVA indicated
that there was a significant difference between ver-
balization and no verbalization (p < 0.01).

There have also been data concerning the response
time of each move made by human subjects in this
task. For example, the RT data from Anderson
(1993) were obtained under the special instructions
to subjects that encouraged a goal recursion ap-
proach (Anderson 1993). Data were available for
the cases of 2, 3, 4, and 5 disks (Anderson 1993).

Bottom-Up Simulation
The Model Setup. To implement bottom-up sim-



ulation, we set up the following: (1) For deciding on
each type of action (external, goal stack, or working
memory actions), there is a corresponding network
and a set of RER rules, respectively. (2) The input
to each network is the same, including sensory input,
the top goal stack (GS) item, and working memory
(WM) items. (3) The outputs of the networks are
external actions, GS actions and WM actions, re-
spectively. (4) At each step, if the actions are de-
cided by the top level, we use the existent RER rule
set to get three actions—external, GS or WM ac-
tions; if the actions are decided by the bottom level,
we use Boltzmann distribution to select an action
from the output of each network. (5) The chosen
action are coordinated and performed, and the top
level and the bottom level are updated then.

During the simulation of the verbalization group,
we changed the parameters for probability match-
ing in cross-level combination to reflect the heavier
reliance on the top level by the verbalization group.

Strictly speaking, GS is not necessary. But we in-
clude GS, because of generality, and because it may
help learning sometimes (but it may also hamper
learning sometimes). The format of GS is not im-
portant. For our simulation, each GS item includes
both a subtower and a focal disc:

DSIZE: Size of SUBTOWER

FROM: Current peg of SUBTOWER

TO: Target peg of SUBTOWER

DSIZE1L: Size of FOCAL-DISK

FROM1: Current peg of FOCAL-DISK
TO1: Target peg of FOCAL-DISK

A subtower is a set of disks at the top of a peg. The
focal-disk is the disk beneath a subtower. Note that
this set of information is redundant.

Multiple goal items could be stored in the GS one
on top of another. Whenever a goal item is achieved,
it will be popped.

A simple set of possible goal recursion rules is as
follows (Anderson 1993):

If DSIZE > 0, then push a new goal for moving a subtower of
size DSIZE-1 to the spare peg and for moving the disk of size
DSIZE to its target peg.

If DSIZE = 0, then make a move of FOCAL-DISK to its target
peg.

If LOC(SUBTOWER)=TO and LOC(FOCAL-DISK) # TO1,
then move FOCAL-DISK to its target peg.

If LOC(SUBTOWER)=TO and LOC(FOCAL-DISK)=TO1l,
then pop the current goal.

Such a set of rules was hand-coded into the model
in the ACT-R simulation of Anderson (1993). How-
ever, in this simulation, we did not use such hand-
coded, a priori rules in the model. We want the
model itself to learn something that has essentially
the same effect (in both the bottom level and the
top level through bottom-up learning).

The Match. The result of our simulation is
shown in Figure 3. 20 runs (simulated subjects)
were included in each group. Analogous to the anal-
ysis of the human data, ANOVA (number of disks
x verbalization vs. no verbalization) indicated that

Condition/No. of disks | 2 3 4 5
No verbalization 00| 1.6 3.2 ] 105
Verbalization 00|04 |09 |25

Figure 3: The bottom-up simulation of Gagne and
Smith (1962).

in the model data, there was likewise a significant
main effect between verbalization and no verbaliza-
tion (p < 0.01), confirming the verbalization effect
we discussed.

We compared this bottom-up simulation with
a bottom-only simulation. We noticed that the
bottom-only simulations consistently failed to learn,
even when given 10 times as much training trials.
This contrast suggests the importance of top-level
explicit knowledge and bottom-up learning. With-
out them, the task was hard to learn. This fact
is consistent with our synergy hypothesis (see Sun
and Peterson 1998, Sun et al 2001): The reason why
there are these two distinct levels (implicit and ex-
plicit) is because of the synergy that may be gen-
erated from the interaction of the two levels. The
interaction of the two levels helps to improve learn-
ing, and facilitate performance and transfer (Sun et
al 2001).

However, both the bottom-up and the bottom-
only simulation failed to capture the RT data re-
ported earlier.

Top-Down Simulation

The top-down simulation of the Tower of Hanoi task
involves the use of fixed rules, along the line of An-
derson’s (1993) model, but adds the involvement of
the bottom level (implicit processes), which may
interfere with the top-level fixed rules. Therefore,
compared with Anderson’s, this is a far more com-
plex simulation, using a more complete model that
involves both explicit and implicit knowledge.

The Model Setup. Specifically, in this simula-
tion, fixed rules were used, which implemented An-
derson’s (1993) analysis of subjects’ performance of
this task as a subset. That is, we first implemented
the previous set of rules (Anderson 1993), as fixed
rules at the top level of CLARION. However, this sim-
ulation was a lot more complex than top-level only
(rule-based only) simulations because we had to deal
with the interference from the bottom level, as the
bottom level was running in parallel with the top-
level rules but might recommend different actions
and thus interfere with the top-level goal recursion
process. The main change lied in the process of pop-
ping a sequence of goals from the GS, when a move
made by the bottom level was not consistent with
the top goal in the GS. In that case, we kept pop-
ping goals until reaching a goal on the GS that was
consistent with the move or until the GS was empty.
The structure of the GS was the same as before. The



implemented set of fixed rules was an extension of
the previous set. Due to their lengths, we will not
show them here.

In the bottom level, Q-learning was used. Due
to the use of fixed rules, Q-learning was under the
“guidance” of the top level in this case. Therefore,
top-down learning was involved in this case.

For capturing the performance of the verbalization
subjects, the parameters for probability matching in
cross-level combination were adjusted to reflect their
tendencies to rely more heavily on the top level.

The Match. The result, comparing verbal-
ization vs. no verbalization, is shown in Figure 4.
20 runs (simulated subjects) were included in each
group.  Analogous to the analysis of the human
data, ANOVA (number of disks x verbalization vs.
no verbalization) indicated that in the model data,
there was likewise a significant main effect between
verbalization and no verbalization (p < 0.01), con-
firming again the verbalization effect we discussed.

In this simulation, we further tackled the captur-
ing of the RT data from Anderson (1993), which in-
cidentally included only a portion of the total moves
in each case. The data were obtained under the spe-
cial instructions to subjects that encouraged the goal
recursion approach (as embodied by the fixed rules
used in the top level of CLARION).

Figure 5 shows the data. The comparisons be-
tween the human and the simulation data were pre-
sented for the cases of 2, 3, 4, and 5 disks. In the
data, there is a regular pattern of RT peaks, which
arguably reflect planning periods during which goal
recursion (establishing a sequence of subgoals to be
accomplished) happens (Anderson 1993).

As demonstrated by Figure 6, it is clear that the
response times of the two simulated groups were rea-
sonably close to the human data (where there was
no distinction between verbalization and no verbal-
ization). Although the match of both groups were
excellent, the match between the simulated verbal-
ization group and the human data were closer.

This particular simulation shows that the CLAR-
ION framework can accommodate traditional ac-
counts of human performance in this task (such as
Anderson 1993, Anderson and Lebiere 1998). More-
over, it extends such accounts by incorporating im-
plicit processes (at the bottom level) as well as ex-
plicit processes (at the top level). The role of the
bottom level in this task (and other high-level cogni-
tive skill tasks) is that of “quick-and-dirty” reactions
that may lead to bad performance initially due to
interference with top-level rule-guided actions, but
may also lead to faster and better performance given
sufficient training.

The account of human RT data is important, be-
cause such an account has been viewed as the hall-
mark of a successful simulation. We succeeded in
showing that the two-level framework of CLARION
can capture the essential patterns of the human RT

Condition/No. of disks [ 2 3 4 5
No verbalization 0.00 | 1.50 | 4.90 | 12.55
Verbalization 0.00 | 0.25 | 0.90 | 2.65

Figure 4: The top-down simulation of Gagne and
Smith (1962).

Figure 5: Simulation of the response time data of
Tower of Hanoi from Anderson (1993). Four cases
are included. The verbalization group is used.

data, which further testifies to the cognitive validity
of the model.

Discussions

Along with the simulations of other tasks (see Sun
et al 2001), we fully demonstrated that CLARION
is capable of both bottom-up and top-down learn-
ing, although it was initially developed as a purely
bottom-up learning model. The original reason for
developing a bottom-up learning model was that in
the existing literature, bottom-up learning has been
very much ignored as argued by Sun and Peterson
(1998) and Sun et al (2001), and therefore, there is a
real need to counter-balance this bias. Our bottom-
up learning model, since then, has been successful in
accounting for a wide variety of skill learning tasks
in a bottom-up fashion, ranging from serial reaction
time tasks (sequence learning tasks), to minefield
navigation tasks (Sun et al 2001). But one lingering
question has been: Can this same model account for
top-down learning? The present work answers this
question clearly in the affirmative: CLARION can not
only account for bottom-up learning data, but also



the verbalization group:

MSE | relative MSE
2-disk | 0.002 | 0.001
3-disk | 0.529 | 0.107
4-disk | 0.252 | 0.098
5-disk | 1.555 | 0.299
overall | 0.967 | 0.200

the non-verbalization group:

MSE | relative MSE
2-disk | 0.222 | 0.049
3-disk | 0.086 | 0.024
4-disk | 0.579 | 0.109
5-disk | 3.271 | 0.375
overall | 1.925 | 0.236

Figure 6: The MSEs and the relative MSEs of the
RT simulations of Tower of Hanoi.

top-down learning ones. And it accounts for top-
down learning equally well.

Our experiments in the TOH task showed that
top-down learning is a more plausible way of ac-
counting for the existing human data in this task.
This does not come as a surprise. The task struc-
ture of TOH is highly structured, with inherent re-
cursive embedding, and involves a small number of
input/output dimensions. These characteristics nat-
urally lead to explicit processing. This tendency is
even further exacerbated by the instructions that ex-
plicitly encourage goal recursion strategies.
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