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The NOvA experiment has made a 4.4σ-significant observation of ν̄e appearance in a 2 GeV ν̄µ
beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI
neutrino beamline, the experiment recorded 27 ν̄µ → ν̄e candidates with a background of 10.3 and
102 ν̄µ → ν̄µ candidates. This new antineutrino data is combined with neutrino data to measure
the oscillation parameters |∆m2

32| = 2.48+0.11
−0.06 × 10−3 eV2/c4, sin2 θ23 = 0.56+0.04

−0.03 in the normal
neutrino mass hierarchy and upper octant and excludes most values near δCP = π/2 for the inverted
mass hierarchy by more than 3σ. The data favor the normal neutrino mass hierarchy by 1.9σ and
θ23 values in the upper octant by 1.6σ.

The observations of neutrino oscillations by many ex-
periments [1–9] are well described by the mixing of three
neutrino mass eigenstates ν1, ν2, and ν3 with the flavor
eigenstates νe, νµ, and ντ . The mixing is parameterized
by a unitary matrix, UPMNS, which depends on three
angles and a phase, δCP, that may break Charge-Parity
(CP) symmetry. The oscillation frequencies are propor-
tional to the neutrino mass splittings, ∆m2

21 ≡ m2
2−m2

1 '
7.5× 10−5 eV2/c4 and |∆m2

32| ' 2.5× 10−3 eV2/c4, and
the angles are known to be large: θ12 ' 34◦, θ13 ' 8◦,
θ23 ' 45◦ [10]; δCP, however, is largely unknown.

Within this framework, several questions remain unan-
swered. The angle θ23 produces nearly maximal mixing
but has large uncertainties. If maximal, it would intro-
duce an unexplained µ−τ symmetry; should it differ from
45◦, its octant would determine whether ντ or νµ couples
more strongly to ν3. Furthermore, while it is known that
the two independent mass splittings differ by a factor of
30, the sign of the larger splitting is unknown. The ν1
and ν2 states that contribute most to the νe state could
be lighter (“normal hierarchy”, NH) or heavier (“inverted
hierarchy”, IH) than the ν3 state. This question has im-
portant implications for models of neutrino mass [11–15]
and for the study of the Dirac vs. Majorana nature of the
neutrino [16, 17]. Additionally, neutrino mixing may be
a source of CP violation if sin δCP is non-zero.

These questions can be addressed by the measurement
of νµ → νµ, ν̄µ → ν̄µ, νµ → νe, and ν̄µ → ν̄e oscilla-
tions in matter over baselines L of order (100−1000) km,

with neutrino energies E[GeV] ' L[km] · |∆m2
32[eV

2
/c4]|.

Several long-baseline experiments have reported obser-
vations of νµ → νµ [18–21], νµ → νe [19–21], and
ν̄µ → ν̄µ [19, 20], but a statistically significant obser-
vation of ν̄µ → ν̄e has not previously been made. This
report combines the first antineutrino measurements us-
ing the NOvA detectors with the neutrino data reported
in Ref. [21] in a reoptimized analysis yielding a new deter-
mination of the oscillation parameters |∆m2

32|, sin2 θ23,
δCP, and the neutrino mass hierarchy.

The NOvA experiment measures oscillations by com-
paring the energy spectra of neutrino interactions in two
detectors placed in the Fermilab NuMI beam [22] at dis-
tances of 1 km (Near Detector, ND) and 810 km (Far De-
tector, FD) from the production target. The 14 kton FD
measures 15 m× 15 m× 60 m while the 290 ton ND con-
sists of a 3.8 m × 3.8 m × 12.8 m main detector followed
by a muon range stack. Both detectors use liquid scintil-
lator [23] contained in PVC cells that are 6.6 cm×3.9 cm
(0.15 radiation lengths × 0.45 Molière radii) in cross sec-
tion and span the height and width of the detectors in
planes of alternating vertical and horizontal orientation.
The ND is located 100 m underground. The FD oper-
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ates on the surface with modest shielding resulting in
130 kHz of cosmic-ray activity. The detectors are located
14.6 mrad off the beam axis where the neutrino energy
spectrum peaks at 2 GeV. Magnetic focusing horns in
the beamline charge-select neutrino parents giving 96%
(83%) pure νµ (ν̄µ) event samples between 1 and 5 GeV.
Most contamination is wrong-sign (ν̄ in the ν beam, or
vice versa) with < 1% νe + ν̄e contamination.

This Letter reports data from an antineutrino beam
run spanning from June 29, 2016 to February 26, 2019,
with an exposure of 12.33×1020 protons-on-target (POT)
delivered during 317.0 s of beam-on time, combined with
the previously reported [21] neutrino beam exposure of
8.85 × 1020 POT and 438.2 s. During these periods, the
proton source achieved a peak hourly-averaged power of
742 kW.

The flux of neutrinos delivered to the detectors is calcu-
lated using a simulation of the production and transport
of particles through the beamline components [22, 24]
and reweighted [25] to incorporate external measure-
ments of hadron production and interactions [26–44].
Neutrino interactions in the detector are simulated using
the genie event generator [45]. The cross section model
has been tuned to improve agreement with external mea-
surements and ND data, reducing uncertainties in the ex-
trapolation of measurements in the ND to the FD. As in
Ref. [21], we set MA in the quasielastic dipole form factor
to 1.04 GeV/c2 [46] and use corrections to the charged-
current (CC) quasielastic cross section derived from the
random phase approximation [47, 48]. In this analysis,
we also apply this effect to baryon resonance produc-
tion as a placeholder for the unknown nuclear effect that
produces a suppression observed at low four-momentum
transfer in our and other measurements [49–52]. Addi-
tionally, we increase the rate of deep-inelastic scattering
with hadronic mass W > 1.7 GeV/c2 by 10% to match
our observed rates of short track-length νµ CC events.
We model multi-nucleon ejection interactions following
Ref. [53] and adjust the rates in bins of energy transfer,
q0, and 3-momentum transfer, |~q|, for νµ and ν̄µ sepa-
rately to maximize agreement in the ND. The calculation
of the νe and ν̄e rates uses these same models.

The energy depositions of final-state particles are simu-
lated with geant4 [24] and input to a custom simulation
of the production of, and the detector response to, scin-
tillation and Cherenkov light [54]. The absolute energy
scale of the detectors is calibrated to within ±5% using
the minimum ionizing portion of cosmic-ray muon tracks
that stop in the detectors.

Cells with activity above threshold (hits) are grouped
based on their proximity in space and time to produce
candidate neutrino events. Events are assigned a vertex,
and clusters are formed from hits likely to be associated
with particles produced there [55]. These clusters are cat-
egorized as electromagnetic or hadronic in origin using a
convolutional neural network (CNN) [56]. Hits forming

tracks are identified as muons by combining information
on the track length, dE/dx, vertex activity, and scatter-
ing into a single particle identification (PID) score [57].
The same reconstruction algorithms are applied to events
from data and simulation in both detectors.

The νµ and ν̄µ candidates are required to have a vertex
inside the fiducial volume and no evidence of particles ex-
iting the detector. The νe and ν̄e candidates are divided
into a “core” sample which satisfies these containment
requirements, and a “peripheral” sample which loosens
these requirements for the most signal-like event topolo-
gies. A second CNN [58] serves as the primary PID, clas-
sifying event topologies as νe CC, νµ CC, ντ CC, neutral-
current (NC), or cosmic ray. The network is trained
on simulated neutrino events and cosmic-ray data, sepa-
rately for neutrino and antineutrino beam conditions. It
has an improved architecture and higher rate of cosmic
ray rejection over the previous network [21]. Events iden-
tified as νµ CC are further required to contain at least
one track classified as a muon.

Several requirements further reduce cosmic-ray back-
grounds. For the νµ CC sample, a boosted decision tree
(BDT) algorithm based on vertex position and muon-like
track properties is used. Events in the core νe sample not
aligned with the beam direction and that are near the top
of the detector are rejected. Events characterized as de-
tached bremsstrahlung showers from cosmic tracks are
also removed, as are events whose topology is consistent
with photons entering from the detector north side where
there is less shielding. Events in the νe peripheral sample
are tested against a BDT classifier using event position
and direction information to separate them from cosmic-
ray topologies.

The selection of νµ and ν̄µ CC events is 31.2% (33.9%)
efficient relative to true interactions in the fiducial vol-
ume, resulting in 98.6% (98.8%) pure samples at the FD
during neutrino (antineutrino) beam operation. Both νµ
and ν̄µ are counted as signal for the disappearance mea-
surements. Selections against exiting particle tracks are
the largest source of inefficiency. The efficiency for select-
ing signal νe CC (ν̄e CC) events is 62% (67%). Purities
for the signal νe (ν̄e) samples fall in the range 57–78%
(55–77%) depending on the impact of oscillations on the
signal and wrong-sign background levels. These efficien-
cies and purities differ from those quoted in Ref. [21] due
to a reoptimization of the selection algorithms [59]. The
wrong-sign component of the selected νµ sample in the
ND is calculated to be 2.8±0.3% and 10.6±1.1% for the
neutrino and antineutrino beams. These fractions were
found to be consistent with a data-driven estimate based
on the rate of νµ CC and NC interactions with associated
detector activity indicative of neutron capture.

The incident neutrino energy is reconstructed from the
measured energies of the final-state lepton and recoil
hadronic system. The lepton energy is estimated from
track length for muon candidates and from calorimetric
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energy for electron candidates. The hadronic energy is
estimated from the sum of the calibrated hits not as-
sociated with the primary lepton. The neutrino energy
resolution at the FD is 9.1% (8.1%) for νµ CC (ν̄µ CC)
events and 10.7% (8.8%) for νe CC (ν̄e CC) events. The
νµ and ν̄µ events with the lowest hadronic energy fraction
give the best energy resolution and lowest backgrounds,
yielding the most precise measurement of the oscillated
spectral shape, so we analyzed the spectra separately in
quartiles of this variable [21].

The energy spectra of the selected νµ CC and νe CC
interactions in the ND during neutrino and antineutrino
beam operations are shown in Fig. 1. The selected ND
νe sample consists entirely of background sources for the
νe appearance measurement, predominantly the intrinsic
beam νe component, along with misidentified νµ CC and
NC interactions. We analyze the νe candidate energy
spectra in two bins of νe PID (“low” and “high”) to iso-
late a highly pure sample of νµ → νe and ν̄µ → ν̄e at the
FD. In the ND, the high-PID sample is dominated by in-
trinsic beam νe. A third bin containing the “peripheral”
events is added for the FD.

The νµ and νe signal spectra at the FD are predicted
for the neutrino and antineutrino beams separately and
are based on the observed spectra of νµ candidate events
in the ND. The true neutrino energy spectrum at the
ND is estimated using the measured event rates in bins
of reconstructed energy and the energy distributions of
simulated events found to populate those bins. This true
spectrum is corrected for differences in flux and accep-
tance between the ND and FD, as well as differences in
the νµ and νe cross sections; oscillations are then applied
to yield predictions for the true νµ and νe spectra at
the FD. These spectra are then transformed into recon-
structed energy using the underlying energy distributions
from simulated neutrino interactions in the FD.

The predicted background spectra at the FD are also
primarily data-driven. Data collected out-of-time with
the NuMI beam provide a measurement of the rate of
cosmic-ray backgrounds in the νµ and νe samples. Neu-
trino backgrounds calculated to populate the FD νe spec-
tra are corrected based on the reconstructed νe candi-
dates at the ND. The procedure from Ref. [21] is followed
to determine corrections for each background component
in the neutrino-mode beam, while for the antineutrino-
mode beam a single scale factor is used. The remaining
backgrounds, which include any misidentified neutrino
events in the νµ samples and misidentified ντ interac-
tions in the νe samples, make up less than 2% of the FD
candidates and are taken directly from simulation.

To evaluate the impact of systematic uncertainties we
recompute the extrapolation from the ND to the FD
varying the parameters used to model the neutrino fluxes,
neutrino cross sections, and the detector response. The
procedure accounts for changes in the composition of the
νe background, and for impact on the transformation to

and from true and reconstructed energies due to vari-
ations in the model parameters. We parameterize each
systematic variation and compute its effect in each analy-
sis bin. These parameters are included in the oscillation
fit constrained within their estimated uncertainties by
penalty terms in the likelihood function.

TABLE I. Systematic uncertainties on the total predicted
numbers of signal and beam-related background events at the
best fit point (see Table IV) in the νe selected samples in the
neutrino and antineutrino datasets.

νe Signal νe Bkg. ν̄e Signal ν̄e Bkg.
Source (%) (%) (%) (%)
Cross-sections +4.7/-5.8 +3.6/-3.4 +3.2/-4.2 +3.0/-2.9
Detector model +3.7/-3.9 +1.3/-0.8 +0.6/-0.6 +3.7/-2.6
ND/FD diffs. +3.4/-3.4 +2.6/-2.9 +4.3/-4.3 +2.8/-2.8
Calibration +2.1/-3.2 +3.5/-3.9 +1.5/-1.7 +2.9/-0.5
Others +1.6/-1.6 +1.5/-1.5 +1.4/-1.2 +1.0/-1.0
Total +7.4/-8.5 +5.6/-6.2 +5.8/-6.4 +6.3/-4.9

TABLE II. Systematic and statistical uncertainties on the os-
cillation parameters sin2 θ23, ∆m2

32, and δCP, evaluated at the
best fit point (see Table IV).

sin2 θ23 |∆m2
32| δCP

Source (×10−3) (×10−5 eV2/c4) (π)

Calibration +5.4 / -9.2 +2.2 / -2.6 +0.03 / -0.03
Neutron model +6.0 / -13.0 +0.5 / -1.3 +0.01 / -0.00
Cross-sections +4.1 / -7.7 +1.0 / -1.1 +0.06 / -0.07
Eµ scale +2.3 / -3.0 +1.0 / -1.1 +0.00 / -0.00
Detector model +1.9 / -3.2 +0.4 / -0.5 +0.05 / -0.05
Normalizations +1.3 / -2.7 +0.1 / -0.2 +0.02 / -0.03
ND/FD diffs. +1.0 / -4.0 +0.2 / -0.2 +0.06 / -0.07
Beam flux +0.4 / -0.8 +0.1 / -0.1 +0.00 / -0.00
Total syst. +9.7 / -20 +2.6 / -3.2 +0.11 / -0.12

The oscillation parameters that best fit the FD data
are determined through minimization of a Poisson neg-
ative log-likelihood, −2 lnL, considering three uncon-
strained parameters, ∆m2

32, sin2 θ23, and δCP, as well as
53 constrained parameters covering the other PMNS os-
cillation parameters and the sources of systematic uncer-
tainty summarized in Tables I and II. The two-detector
design and extrapolation procedure significantly reduce
the effect of the '10–20% a priori uncertainties on the
beam flux and cross sections. The principal remaining
uncertainties are neutrino cross sections, the energy scale
calibration, the detector response to neutrons, and differ-
ences between the ND and FD that cannot be corrected
by extrapolation.

The selection criteria and techniques used in the anal-
ysis were developed on simulated data prior to inspection
of the FD data distributions. Figure 1 shows the energy
spectra of the νµ CC, ν̄µ CC, νe CC, and ν̄e CC candi-
dates recorded at the FD overlaid on their oscillated best-
fit expectations. Table III summarizes the total event
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FIG. 1. From left to right, the reconstructed neutrino energy spectra for the ND νµ CC, ND νe CC, FD νµ CC, FD νe CC [60]
with neutrino beam on the top and antineutrino beam on the bottom. For the ND νµ CC spectra, backgrounds aside from
wrong-sign are negligible and not shown. The νe CC spectra are split into a low and high purity sample, and the FD spectra
shows counts in the “peripheral” sample. The dashed lines in the ND νe spectra show the totals before data-driven corrections.

TABLE III. Event counts at the FD, both observed and pre-
dicted at the best fit point (see Table IV).

Neutrino beam Antineutrino beam
νµ CC νe CC ν̄µ CC ν̄e CC

νµ → νµ 112.5 0.7 24.0 0.1
ν̄µ → ν̄µ 7.2 0.0 70.0 0.1
νµ → νe 0.1 44.3 0.0 2.2
ν̄µ → ν̄e 0.0 0.6 0.0 16.6
Beam νe + ν̄e 0.0 7.0 0.0 5.3
NC 1.3 3.1 0.8 1.2
Cosmic 2.1 3.3 0.8 1.1
Others 0.7 0.4 0.6 0.3

Signal 120+10
−12 44.3+3.5

−4.0 93.9+8.1
−8.2 16.6+0.9

−1.0

Background 4.2+0.5
−0.6 15.0+0.8

−0.9 2.2+0.4
−0.4 10.3+0.6

−0.5

Best fit 124 59.3 96.2 26.8
Observed 113 58 102 27

counts and estimated compositions of the selected sam-
ples. We recorded 102 ν̄µ candidate events at the FD,
reflecting a significant suppression from the unoscillated
expectation of 476. We find 27 ν̄µ → ν̄e candidate events
with an estimated background of 10.3+0.6

−0.5, a 4.4σ excess
over the predicted background. This observation is the
first evidence of ν̄e appearance in a ν̄µ beam over a long
baseline. These new antineutrino data are analyzed to-
gether with 113 νµ and 58 νµ → νe candidates from the
previous data set.

Table IV shows the overall best-fit parameters, as well
as the best fits for each choice of θ23 octant and hierar-
chy. The best-fit point is found for the normal hierarchy
with θ23 in the upper octant where −2 lnL = 157.1 for

TABLE IV. Summary of oscillation parameters. The top
three are inputs to this analysis [10], while the rest are the
best fits for different choices of the mass hierarchy (NH, IH)
and θ23 octant (UO, LO), along with the significance (in units
of σ) at which those combinations are disfavored. In addition
to the region indicated, for NH, LO a small range of sin2 θ23
0.45− 0.48 is allowed at 1σ [61].

∆m2
21/(10−5 eV2/c4) 7.53± 0.18

sin2 θ12 0.307+0.013
−0.012

sin2 θ13 0.0210± 0.0011
NH, UO NH, LO IH, UO IH, LO

∆m2
32/(10−3 eV2/c4) +2.48+0.11

−0.06 +2.47 −2.54 −2.53
sin2 θ23 0.56+0.04

−0.03 0.48 0.56 0.47

δCP/π 0.0+1.3
−0.4 1.9 1.5 1.4
- +1.6σ +1.8σ +2.0σ

175 degrees of freedom (goodness-of-fit p = 0.91 from
simulated experiments). The measured values of θ23 and
∆m2

32 are consistent with the previous NOvA measure-
ment [21] that used only neutrino data, and are consistent
with maximal mixing within 1.2σ.

Confidence intervals for the oscillation parameters are
determined using the unified approach [65], as detailed
in Ref. [66]. Figure 2 compares the 90% confidence level
contours in ∆m2

32 and sin2 θ23 with those of other other
experiments [19, 20, 62, 63]. Figure 3 shows the allowed
regions in sin2 θ23 and δCP. These results exclude most
values near δCP = π/2 in the inverted mass hierarchy by
more than 3σ; specifically the intervals between −0.04
to 0.97π in the lower θ23 octant and 0.04 to 0.91π in
the upper octant. The data prefer the normal hierarchy



6

0.4 0.5 0.6

23θ2sin

2.0

2.5

3.0

)2
 e

V
-3

 (
10

322
m∆

Best fit

Normal Hierarchy 90% CL
NOvA MINOS 2014
T2K 2018 IceCube 2018
SK 2018

FIG. 2. The 90% confidence level region for ∆m2
32 and

sin2 θ23, with best-fit point shown as a black marker [61], over-
laid on contours from other experiments [19, 20, 62, 63].

with a significance of 1.9σ (p = 0.057, CLs = 0.091 [67])
and the upper θ23 octant with a significance of 1.6σ (p =
0.11), profiling over all other parameter choices.

We are grateful to Stephen Parke (FNAL) for useful
discussions. This document was prepared by the NOvA
collaboration using the resources of the Fermi National
Accelerator Laboratory (Fermilab), a U.S. Department
of Energy, Office of Science, HEP User Facility. Fermi-
lab is managed by Fermi Research Alliance, LLC (FRA),
acting under Contract No. DE-AC02-07CH11359. This
work was supported by the U.S. Department of Energy;
the U.S. National Science Foundation; the Department
of Science and Technology, India; the European Research
Council; the MSMT CR, GA UK, Czech Republic; the
RAS, RFBR, RMES, RSF, and BASIS Foundation, Rus-
sia; CNPq and FAPEG, Brazil; STFC, and the Royal
Society, United Kingdom; and the state and University
of Minnesota. This work used resources of the National
Energy Research Scientific Computing Center (NERSC),
a U.S. Department of Energy Office of Science User Facil-
ity operated under Contract No. DE-AC02-05CH11231.
We are grateful for the contributions of the staffs of the
University of Minnesota at the Ash River Laboratory and
of Fermilab.

[1] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett.
81, 1562 (1998), arXiv:hep-ex/9807003 [hep-ex].

[2] S. Fukuda et al. (Super-Kamiokande), Phys. Lett. B539,
179 (2002), arXiv:hep-ex/0205075 [hep-ex].

[3] Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89, 011301
(2002), arXiv:nucl-ex/0204008 [nucl-ex].

[4] K. Eguchi et al. (KamLAND), Phys. Rev. Lett. 90,
021802 (2003), arXiv:hep-ex/0212021 [hep-ex].

[5] D. G. Michael et al. (MINOS), Phys. Rev. Lett. 97,

CPδ

0.3

0.4

0.5

0.6

0.7

23θ2
si

n

0
2
π π

2
π3 π2

σ2 σ3 Best Fit IH

0.3

0.4

0.5

0.6

0.7

23θ2
si

n

σ1 σ2 σ3 Best fit NH

FIG. 3. The 1σ, 2σ, and 3σ contours in sin2 θ23 vs. δCP in
the normal hierarchy (NH, top panel) and inverted hierarchy
(IH, bottom panel) [64]. The best-fit point is shown by a
black marker.

191801 (2006), arXiv:hep-ex/0607088 [hep-ex].
[6] K. Abe et al. (T2K), Phys. Rev. Lett. 107, 041801 (2011),

arXiv:1106.2822 [hep-ex].
[7] Y. Abe et al. (Double Chooz), Phys. Rev. Lett. 108,

131801 (2012), arXiv:1112.6353 [hep-ex].
[8] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 108, 171803

(2012), arXiv:1203.1669 [hep-ex].
[9] J. K. Ahn et al. (RENO), Phys. Rev. Lett. 108, 191802

(2012), arXiv:1204.0626 [hep-ex].
[10] C. Patrignani et al. (Particle Data Group), Chin. Phys.

C40, 100001 (2016), and 2017 update.
[11] R. N. Mohapatra and A. Y. Smirnov, Elementary

particle physics. Proceedings, Corfu Summer Institute,
CORFU2005, Corfu, Greece, September 4-26, 2005,
Ann. Rev. Nucl. Part. Sci. 56, 569 (2006), arXiv:hep-
ph/0603118 [hep-ph].

[12] H. Nunokawa, S. J. Parke, and J. W. F. Valle, Prog.
Part. Nucl. Phys. 60, 338 (2008), arXiv:0710.0554 [hep-
ph].

[13] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701

http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://arxiv.org/abs/hep-ex/9807003
http://dx.doi.org/10.1016/S0370-2693(02)02090-7
http://dx.doi.org/10.1016/S0370-2693(02)02090-7
http://arxiv.org/abs/hep-ex/0205075
http://dx.doi.org/ 10.1103/PhysRevLett.89.011301
http://dx.doi.org/ 10.1103/PhysRevLett.89.011301
http://arxiv.org/abs/nucl-ex/0204008
http://dx.doi.org/10.1103/PhysRevLett.90.021802
http://dx.doi.org/10.1103/PhysRevLett.90.021802
http://arxiv.org/abs/hep-ex/0212021
http://dx.doi.org/10.1103/PhysRevLett.97.191801
http://dx.doi.org/10.1103/PhysRevLett.97.191801
http://arxiv.org/abs/hep-ex/0607088
http://dx.doi.org/ 10.1103/PhysRevLett.107.041801
http://arxiv.org/abs/1106.2822
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://arxiv.org/abs/1112.6353
http://dx.doi.org/ 10.1103/PhysRevLett.108.171803
http://dx.doi.org/ 10.1103/PhysRevLett.108.171803
http://arxiv.org/abs/1203.1669
http://dx.doi.org/ 10.1103/PhysRevLett.108.191802
http://dx.doi.org/ 10.1103/PhysRevLett.108.191802
http://arxiv.org/abs/1204.0626
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/ 10.1146/annurev.nucl.56.080805.140534
http://arxiv.org/abs/hep-ph/0603118
http://arxiv.org/abs/hep-ph/0603118
http://dx.doi.org/10.1016/j.ppnp.2007.10.001
http://dx.doi.org/10.1016/j.ppnp.2007.10.001
http://arxiv.org/abs/0710.0554
http://arxiv.org/abs/0710.0554
http://dx.doi.org/10.1103/RevModPhys.82.2701


7

(2010), arXiv:1002.0211 [hep-ph].
[14] S. F. King, J. Phys. G42, 123001 (2015),

arXiv:1510.02091 [hep-ph].
[15] S. T. Petcov, Eur. Phys. J. C78, 709 (2018),

arXiv:1711.10806 [hep-ph].
[16] S. Pascoli and S. T. Petcov, Phys. Lett. B544, 239

(2002), arXiv:hep-ph/0205022 [hep-ph].
[17] J. N. Bahcall, H. Murayama, and C. Pena-Garay, Phys.

Rev. D70, 033012 (2004), arXiv:hep-ph/0403167 [hep-
ph].

[18] M. H. Ahn et al. (K2K), Phys. Rev. D74, 072003 (2006),
arXiv:hep-ex/0606032 [hep-ex].

[19] P. Adamson et al. (MINOS), Phys. Rev. Lett. 112,
191801 (2014), arXiv:1403.0867 [hep-ex].

[20] K. Abe et al. (T2K), Phys. Rev. Lett. 121, 171802 (2018),
arXiv:1807.07891 [hep-ex].

[21] M. A. Acero et al. (NOvA), Phys. Rev. D98, 032012
(2018), arXiv:1806.00096 [hep-ex].

[22] P. Adamson et al., Nucl. Instrum. Meth. A806, 279
(2016), arXiv:1507.06690 [physics.acc-ph].

[23] S. Mufson et al., Nucl. Instrum. Meth. A799, 1 (2015),
arXiv:1504.04035 [physics.ins-det].

[24] S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth.
A506, 250 (2003).

[25] L. Aliaga et al. (MINERvA), Phys. Rev. D94, 092005
(2016), [Addendum: Phys. Rev. D95, no.3, 039903
(2017)], arXiv:1607.00704 [hep-ex].

[26] J. M. Paley et al. (MIPP), Phys. Rev. D90, 032001
(2014), arXiv:1404.5882 [hep-ex].

[27] C. Alt et al. (NA49), Eur. Phys. J. C49, 897 (2007),
arXiv:hep-ex/0606028 [hep-ex].

[28] N. Abgrall et al. (NA61/SHINE), Phys. Rev. C84,
034604 (2011), arXiv:1102.0983 [hep-ex].

[29] D. S. Barton et al., Phys. Rev. D27, 2580 (1983).
[30] S. M. Seun, Measurement of π−K ratios from the NuMI

target, Ph.D. thesis, Harvard U. (2007).
[31] G. M. Tinti, Sterile neutrino oscillations in MINOS and

hadron production in pC collisions, Ph.D. thesis, Oxford
U. (2010).

[32] A. V. Lebedev, Ratio of pion kaon production in proton
carbon interactions, Ph.D. thesis, Harvard U. (2007).

[33] B. Baatar et al. (NA49), Eur. Phys. J. C73, 2364 (2013),
arXiv:1207.6520 [hep-ex].

[34] P. Skubic et al., Phys. Rev. D18, 3115 (1978).
[35] S. P. Denisov, S. V. Donskov, Yu. P. Gorin, R. N. Kras-

nokutsky, A. I. Petrukhin, Yu. D. Prokoshkin, and D. A.
Stoyanova, Nucl. Phys. B61, 62 (1973).

[36] A. S. Carroll et al., Phys. Lett. 80B, 319 (1979).
[37] K. Abe et al. (T2K), Phys. Rev. D87, 012001 (2013),

[Addendum: Phys. Rev. D87, no.1, 019902 (2013)],
arXiv:1211.0469 [hep-ex].

[38] T. K. Gaisser, G. B. Yodh, V. D. Barger, and F. Halzen,
in 14th International Cosmic Ray Conference (ICRC
1975) Munich, Germany, August 15-29, 1975 (1975) pp.
2161–2166.

[39] J. W. Cronin, R. Cool, and A. Abashian, Phys. Rev.
107, 1121 (1957).

[40] J. V. Allaby et al. (IHEP-CERN), Phys. Lett. 30B, 500
(1969).

[41] M. J. Longo and B. J. Moyer, Phys. Rev. 125, 701 (1962).
[42] B. M. Bobchenko et al., Sov. J. Nucl. Phys. 30, 805

(1979), [Yad. Fiz. 30, 1553 (1979)].
[43] V. B. Fedorov, Yu. G. Grishuk, M. V. Kosov, G. A.

Leksin, N. A. Pivnyuk, S. V. Shevchenko, V. L. Stolin,

A. V. Vlasov, and L. S. Vorobev, Sov. J. Nucl. Phys. 27,
222 (1978), [Yad. Fiz.27,413(1978)].

[44] R. J. Abrams, R. L. Cool, G. Giacomelli, T. F. Kycia,
B. A. Leontic, K. K. Li, and D. N. Michael, Phys. Rev.
D1, 1917 (1970).

[45] C. Andreopoulos et al., Nucl. Instrum. Meth. A614, 87
(2010), this work uses version 2.12.2, arXiv:0905.2517
[hep-ph].

[46] A. S. Meyer, M. Betancourt, R. Gran, and R. J. Hill,
Phys. Rev. D93, 113015 (2016), arXiv:1603.03048 [hep-
ph].

[47] J. Nieves, J. E. Amaro, and M. Valverde, Phys. Rev.
C70, 055503 (2004), [Erratum: Phys. Rev. C72, 019902
(2005)], arXiv:nucl-th/0408005 [nucl-th].

[48] R. Gran, (2017), arXiv:1705.02932 [hep-ex].
[49] P. Adamson et al. (MINOS), Phys. Rev. D91, 012005

(2015), arXiv:1410.8613 [hep-ex].
[50] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev.

D83, 052007 (2011), arXiv:1011.3572 [hep-ex].
[51] C. L. McGivern et al. (MINERvA), Phys. Rev. D94,

052005 (2016), arXiv:1606.07127 [hep-ex].
[52] O. Altinok et al. (MINERvA), Phys. Rev. D96, 072003

(2017), arXiv:1708.03723 [hep-ex].
[53] T. Katori, Proceedings, 8th International Workshop on

Neutrino-Nucleus Interactions in the Few GeV Region
(NuInt 12): Rio de Janeiro, Brazil, October 22-27, 2012,
AIP Conf. Proc. 1663, 030001 (2015), arXiv:1304.6014
[nucl-th].

[54] A. Aurisano, C. Backhouse, R. Hatcher, N. Mayer,
J. Musser, R. Patterson, R. Schroeter, and A. Sousa
(NOvA), Proceedings, 21st International Conference on
Computing in High Energy and Nuclear Physics (CHEP
2015): Okinawa, Japan, April 13-17, 2015, J. Phys.
Conf. Ser. 664, 072002 (2015).

[55] M. Baird, J. Bian, M. Messier, E. Niner, D. Rocco,
and K. Sachdev, Proceedings, 21st International Confer-
ence on Computing in High Energy and Nuclear Physics
(CHEP 2015): Okinawa, Japan, April 13-17, 2015, J.
Phys. Conf. Ser. 664, 072035 (2015).

[56] F. Psihas, Measurement of Long Baseline Neutrino Os-
cillations and Improvements from Deep Learning, Ph.D.
thesis, Indiana U. (2018).

[57] N. J. Raddatz, Measurement of Muon Neutrino Disap-
pearance with Non-Fiducial Interactions in the NOνA
Experiment, Ph.D. thesis, Minnesota U. (2016).

[58] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D.
Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, and
P. Vahle, JINST 11, P09001 (2016), arXiv:1604.01444
[hep-ex].

[59] T. Blackburn, Measurement of ∆m2
32 and sin2θ23 using

Muon Neutrino and Antineutrino Beams in the NOvA
Experiment, Ph.D. thesis, Sussex U. (2019).

[60] See Supplemental Material at [URL will be inserted by
publisher] for the muon neutrino distributions in each
quartile of hadronic energy fraction (2019).

[61] See Supplemental Material at [URL will be inserted by
publisher] for the profiles of these surfaces on the ∆m2

32

and sin2 θ23 axes as well as the surfaces computed for the
inverted hierarchy case (2019).

[62] K. Abe et al. (Super-Kamiokande), Phys. Rev. D97,
072001 (2018), arXiv:1710.09126 [hep-ex].

[63] M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 120,
071801 (2018), arXiv:1707.07081 [hep-ex].

[64] See Supplemental Material at [URL will be inserted by

http://dx.doi.org/10.1103/RevModPhys.82.2701
http://arxiv.org/abs/1002.0211
http://dx.doi.org/10.1088/0954-3899/42/12/123001
http://arxiv.org/abs/1510.02091
http://dx.doi.org/10.1140/epjc/s10052-018-6158-5
http://arxiv.org/abs/1711.10806
http://dx.doi.org/10.1016/S0370-2693(02)02510-8
http://dx.doi.org/10.1016/S0370-2693(02)02510-8
http://arxiv.org/abs/hep-ph/0205022
http://dx.doi.org/10.1103/PhysRevD.70.033012
http://dx.doi.org/10.1103/PhysRevD.70.033012
http://arxiv.org/abs/hep-ph/0403167
http://arxiv.org/abs/hep-ph/0403167
http://dx.doi.org/ 10.1103/PhysRevD.74.072003
http://arxiv.org/abs/hep-ex/0606032
http://dx.doi.org/10.1103/PhysRevLett.112.191801
http://dx.doi.org/10.1103/PhysRevLett.112.191801
http://arxiv.org/abs/1403.0867
http://dx.doi.org/ 10.1103/PhysRevLett.121.171802
http://arxiv.org/abs/1807.07891
http://dx.doi.org/ 10.1103/PhysRevD.98.032012
http://dx.doi.org/ 10.1103/PhysRevD.98.032012
http://arxiv.org/abs/1806.00096
http://dx.doi.org/10.1016/j.nima.2015.08.063
http://dx.doi.org/10.1016/j.nima.2015.08.063
http://arxiv.org/abs/1507.06690
http://dx.doi.org/10.1016/j.nima.2015.07.026
http://arxiv.org/abs/1504.04035
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1103/PhysRevD.94.092005, 10.1103/PhysRevD.95.039903
http://dx.doi.org/10.1103/PhysRevD.94.092005, 10.1103/PhysRevD.95.039903
http://arxiv.org/abs/1607.00704
http://dx.doi.org/ 10.1103/PhysRevD.90.032001
http://dx.doi.org/ 10.1103/PhysRevD.90.032001
http://arxiv.org/abs/1404.5882
http://dx.doi.org/ 10.1140/epjc/s10052-006-0165-7
http://arxiv.org/abs/hep-ex/0606028
http://dx.doi.org/10.1103/PhysRevC.84.034604
http://dx.doi.org/10.1103/PhysRevC.84.034604
http://arxiv.org/abs/1102.0983
http://dx.doi.org/10.1103/PhysRevD.27.2580
http://dx.doi.org/10.2172/935004
http://dx.doi.org/10.2172/992263
http://dx.doi.org/10.2172/948174
http://dx.doi.org/ 10.1140/epjc/s10052-013-2364-3
http://arxiv.org/abs/1207.6520
http://dx.doi.org/10.1103/PhysRevD.18.3115
http://dx.doi.org/10.1016/0550-3213(73)90351-9
http://dx.doi.org/10.1016/0370-2693(79)90226-0
http://dx.doi.org/ 10.1103/PhysRevD.87.012001, 10.1103/PhysRevD.87.019902
http://arxiv.org/abs/1211.0469
http://dx.doi.org/10.1103/PhysRev.107.1121
http://dx.doi.org/10.1103/PhysRev.107.1121
http://dx.doi.org/10.1016/0370-2693(69)90184-1
http://dx.doi.org/10.1016/0370-2693(69)90184-1
http://dx.doi.org/10.1103/PhysRev.125.701
http://dx.doi.org/ 10.1103/PhysRevD.1.1917
http://dx.doi.org/ 10.1103/PhysRevD.1.1917
http://dx.doi.org/10.1016/j.nima.2009.12.009
http://dx.doi.org/10.1016/j.nima.2009.12.009
http://arxiv.org/abs/0905.2517
http://arxiv.org/abs/0905.2517
http://dx.doi.org/ 10.1103/PhysRevD.93.113015
http://arxiv.org/abs/1603.03048
http://arxiv.org/abs/1603.03048
http://dx.doi.org/10.1103/PhysRevC.70.055503, 10.1103/PhysRevC.72.019902
http://dx.doi.org/10.1103/PhysRevC.70.055503, 10.1103/PhysRevC.72.019902
http://arxiv.org/abs/nucl-th/0408005
http://arxiv.org/abs/1705.02932
http://dx.doi.org/10.1103/PhysRevD.91.012005
http://dx.doi.org/10.1103/PhysRevD.91.012005
http://arxiv.org/abs/1410.8613
http://dx.doi.org/10.1103/PhysRevD.83.052007
http://dx.doi.org/10.1103/PhysRevD.83.052007
http://arxiv.org/abs/1011.3572
http://dx.doi.org/10.1103/PhysRevD.94.052005
http://dx.doi.org/10.1103/PhysRevD.94.052005
http://arxiv.org/abs/1606.07127
http://dx.doi.org/10.1103/PhysRevD.96.072003
http://dx.doi.org/10.1103/PhysRevD.96.072003
http://arxiv.org/abs/1708.03723
http://dx.doi.org/10.1063/1.4919465
http://arxiv.org/abs/1304.6014
http://arxiv.org/abs/1304.6014
http://dx.doi.org/ 10.1088/1742-6596/664/7/072002
http://dx.doi.org/ 10.1088/1742-6596/664/7/072002
http://dx.doi.org/10.1088/1742-6596/664/7/072035
http://dx.doi.org/10.1088/1742-6596/664/7/072035
http://dx.doi.org/ 10.2172/1437288
http://dx.doi.org/ 10.2172/1437288
http://dx.doi.org/10.2172/1253594
http://dx.doi.org/10.1088/1748-0221/11/09/P09001
http://arxiv.org/abs/1604.01444
http://arxiv.org/abs/1604.01444
http://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2019-03.pdf
http://dx.doi.org/10.1103/PhysRevD.97.072001
http://dx.doi.org/10.1103/PhysRevD.97.072001
http://arxiv.org/abs/1710.09126
http://dx.doi.org/10.1103/PhysRevLett.120.071801
http://dx.doi.org/10.1103/PhysRevLett.120.071801
http://arxiv.org/abs/1707.07081


8

publisher] for profiles of these surfaces on the δCP axis
(2019).

[65] G. J. Feldman and R. D. Cousins, Phys. Rev. D57, 3873
(1998), arXiv:physics/9711021 [physics.data-an].

[66] A. Sousa, N. Buchanan, S. Calvez, P. Ding, D. Doyle,
H. Alexander, B. Holzman, J. Kowalkowski, A. Norman,

and T. Peterka, in Proceedings of the 23rd International
Conference on Computing in High-Energy and Nuclear
Physics (CHEP 2018), Sofia, Bulgaria, July 9-13, 2018
(2019) in press.

[67] A. L. Read, Advanced Statistical Techniques in Particle
Physics. Proceedings, Conference, Durham, UK, March
18-22, 2002, J. Phys. G28, 2693 (2002), [,11(2002)].

http://dx.doi.org/10.1103/PhysRevD.57.3873
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://arxiv.org/abs/physics/9711021
http://dx.doi.org/10.1088/0954-3899/28/10/313

	 First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA 
	Abstract
	 Acknowledgments
	 References




