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Abstract

Comparative Annotation Toolkit (CAT) - simultaneous clade and personal

genome annotation

by

Ian Fiddes

The recent introductions of low-cost, long-read and read-cloud sequencing tech-

nologies coupled with intense efforts to develop efficient algorithms have made affordable,

high-quality de-novo sequence assembly a realistic proposition. The result is an explo-

sion of new, ultra contiguous genome assemblies. To compare these genomes we need

robust methods for genome annotation. I describe the fully open source Comparative

Annotation Toolkit (CAT), which provides a flexible way to simultaneously annotate

entire clades and identify orthology relationships. I show that CAT can be used to

improve annotations on the rat genome, annotate the great apes, annotate a diverse

set of mammals, and annotate personal, diploid human genomes. I demonstrate the

resulting discovery of novel genes, isoforms and structural variants, even in genomes as

well studied as the rat and great apes, and how these annotations improve cross-species

RNA expression experiments.
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Chapter 1

Genome Alignment And Comparative

Annotation

This section provides an overview of the history of whole genome alignment

and comparative annotation, and leads into why the development of CAT is essential

to the new era of comparative genomics. This comprises a review paper on the subject

being written by myself and Joel Armstrong.

1.1 Whole-genome alignments

1.1.1 Introduction

Alignment is possibly the most fundamental problem in genomics. The align-

ment problem is to establish a mapping between the letters of a set of sequences that

approximates some relation that the user is interested in. In comparative genomics, we

are generally interested in the homology relation—that is, does the lineage of two bases

coalesce at a single base in a single organism at some point in time? In typical real-world

comparative genomics, there is no clear proof of homology, as we have absolutely no

access to the true history of every base in a set of sequences. However, we can use our

knowledge of molecular evolution to construct very good approximations to the homol-

ogy relation. The potential for using sequence similarity to approximate homology was

recognized and applied very early on, starting with the pioneering work of Needleman

and Wunsch on optimal pairwise global alignment [1]. The pairwise global alignment
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work was quickly specialized to perform local alignment, which calculates the optimal

alignment of subsequences rather than sequences, by Smith and Waterman [2].

The whole-genome alignment problem involves aligning two or more genomes,

or other large sequences or set of sequences, together. While whole-genome alignment

is essentially just alignment writ large, it is generally treated differently than short se-

quence alignment because two factors not usually considered in short alignments become

impossible to ignore: size and rearrangements. The size of the problem in whole-genome

alignment causes alignments to take too long to be practical, forcing efficiency consid-

erations to be taken into account. The traditional dynamic-programming algorithms

require O(nm) time and space, where n and m are the lengths of the two sequences;

obviously, as n and m grow to genome-scale the problem becomes too expensive to

solve in practice. Another consideration is how genome rearrangements complicate

the alignment problem. Smith-Waterman and Needleman-Wunsch both produce align-

ments which have fixed order-and-orientation, that is, insertions, deletions, and substi-

tutions are the only allowed edit operations. When looking at short or well-conserved

sequences, like genes, this requirement is usually fulfilled. But at large evolutionary

distances, genomes almost always contain more complex rearrangements with respect

to each other—inversions, transpositions, and duplications all cause breaks in order and

orientation that cannot be captured under constant order and orientation.

One obvious solution to these problems is to use a fast approximate local

alignment algorithm (like BLAST [3]) and simply use the collection of all local align-

ments that it finds as the whole-genome alignment. However, the nave local alignment

approach has its own problems. Whole-genome local alignments have both too low

sensitivity and too low specificity to be useful at substantial evolutionary distances.

That is, local alignments will miss homologous sequence that, by chance, happened to

be further diverged. They will also capture spurious alignments that can obscure the

more useful data. Even when they correctly identify homologous regions, the end-user

is more often interested in orthology rather than homology: ancient duplications may

share similar sequence, but often do not share similar function. We call any alignment

that allows rearrangements (i.e. does not have fixed order-and-orientation) and attempts

to determine orthology rather than just homology (even if restricted to single-copy) a

2



whole-genome alignment (or for short, a genome alignment). Most whole-genome align-

ment methods are based on local alignments, but do some filtering and post-processing

to construct a useful end product [4].

As long DNA sequences became available, it was soon recognized that Needleman-

Wunsch or Smith-Waterman alignments were far too slow to be useful for megabase-

scale sequences, much less chromosome-scale sequences. The impractical running time

of global alignment drove the development of several tools [5, 6, 7] that produce an ap-

proximately optimal global alignment through the use of high-confidence anchors in a

single order and orientation, which are then used to partition the alignment into smaller

problems which can be more efficiently solved. These anchors provided a very efficient

and reliable way to break up the alignment problem, but relied on a constant order and

orientation, which excluded any possibility of noticing rearrangements.

Chaining [8] is a powerful technique for making sense of pairwise local align-

ments. Chains are simply maximal combinations of local alignments that maintain a

single order and orientation. Chaining provides a good way of filtering out spurious

alignments, which are likely to form short, low-scoring chains. However, the set of

chains can often include distant paralogs or spurious sequence, which makes it diffi-

cult to understand the rearrangements that have taken place between the two input

genomes. Netting [8] is a related technique that makes rearrangements relative to a

reference genome much easier to find. In essence, netting finds the best-scoring set of

chains that covers the bases of the reference genome only once. This makes it very easy

to find high-confidence rearrangements like transpositions, inversions, and deletions, but

throws away the effect of duplications in the target genome.

Choosing the single “best” target alignment for each region, which we will call

the single-copy strategy, is a common way [9, 10] to deal with the problems that dupli-

cations cause. However, the best-fit strategy will not always find a correct ortholog, and

indeed even reciprocally-best-fit is not enough to guarantee finding an ortholog [11]. But

most importantly, lineage-specific duplications should not be ignored. When lineage-

specific duplication occurs, a gene outside that lineage will have multiple orthologs in the

lineage, and should be aligned to multiple copies [12]. Single-copy alignments implicitly

assume that orthology is a one-to-one relationship. However, in nature, orthology is

3



a many-to-many relationship [12]. When that assumption of one-to-one orthology is

violated, single-copy alignments can be very misleading.

1.1.2 Multiple alignment

Often it is necessary to consider the alignment between a set of more than

two sequences, which we call multiple alignment. A multiple alignment is defined as an

equivalence relation ∼ on a set of sequences S = {s1, s2, . . .}, such that for two bases

b1 ∈ s1 ∈ S and b2 ∈ s2 ∈ S, b1 ∼ b2 if they are considered to be aligned to each other.

The alignment is partitioned into columns by the equivalence classes of ∼: i.e. every base

is related to all bases in its column, and no two bases in different columns are related.

Unfortunately, multiple alignment is a significantly more difficult problem than pairwise

alignment. Finding an optimal multiple alignment, even using very simple objective

functions, has long been known to be NP-hard [13]. Heuristics must be employed to

efficiently solve the multiple alignment problem. Progressive alignment is the most

popular strategy for approximate multiple alignment [14]. Progressive alignment uses

as an additional input a guide tree relating the input sequences. The most closely

related sequences are aligned first, then the resulting alignment is itself aligned to other

sequences or alignments, following the structure of the guide tree. Often consensus

sequences are used as a method of aligning alignments. Since the multiple alignment

problem is so difficult, another approach is to use a single reference sequence to base

the alignment on. All other sequences in the multiple alignment are simply aligned to

this genome in a pairwise fashion, then the several pairwise alignments are combined

to form a reference-biased multiple alignment. This approach performs very well when

viewed from the reference genome, but information relating genomes distant from the

reference is lost. See 1.1 for an illustration of this effect. In the mid- to late-2000s

the first methods for reference-free multiple genome alignment allowing multiple copies

began to appear (notably the Enredo-Pecan-Ortheus (EPO) pipeline [15] and the A-

Bruijn aligner [16]). The EPO pipeline especially began to see wide use as part of the

Ensembl genome browser [17]. While impressive, these pipelines left significant room

for improvement, especially with regard to finding small-scale order-and-orientation-

breaking rearrangements [15].
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1.1.3 Reference-free alignment

1.1.3.1 Genome histories

Alignments are conventionally described as a set of columns, each containing a

set of bases that are all related to each other by some alignment relation ∼. Usually this

relation represents orthology rather than homology. However, in that case, this model

falls apart when considering reference-free alignments with multiple copies per genome.

The orthology relation is not transitively closed [12], so it is impossible in the general

case to create a set of columns containing bases that are all orthologous to each other.

The only way to represent a reference-free, multi-copy, orthologous multiple genome

alignment is by associating the alignment with phylogenetic trees, which are inferred

(even if implicitly) during the alignment process. We term these types of alignments

genome histories to reflect that they require a different representation than typical

alignments (which can be represented by a collection of only blocks or columns).

A genome history {S,∼, Tc, ts, L} consists of a set of genomes S, a multiple

alignment ∼ relating the bases of those genomes, a reconciled tree t ∈ Tc for each

column in that alignment, a species tree ts, and, optionally, a set of links L between

columns, indicating the ordering of the ancestral chromosomes. The columns of the

genome history reflect the homology rather than orthology relation. Since homology

is transitive, the homology-based alignment can be represented by columns. The set

of trees (hereafter referred to as column trees) indicate the evolutionary history of the

bases in each column. Where there are duplications, gains, or losses, the column tree

t ∈ Tc will differ from the species tree ts. Though the genome history representation we

present here is not the only possible representation, any other representation (such as

a collection of all pairwise orthology relationships) can be transformed into this one.

A genome history can be used to define both orthology and paralogy relations.

The orthology relation, which we will symbolize by ∼o, uses the column trees of the

genome history to determine which of the homologous bases in a column are also orthol-

ogous to each other. The orthologous bases are those homologous bases whose lineage

coalesces in a speciation event in the column tree [12]. The paralogy relation ∼p simply

relates homologous bases which are not orthologs.

A genome history can be projected onto any genome to create a more conven-
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tional referenced multiple alignment. These projected, reference-based alignments are

collections of columns, each containing exactly one reference base, where every base in

the column is orthologous to the reference base, but not necessarily orthologous to every

other base in the column. These projected alignments are useful because they can be

represented in conventional formats like MAF, and used as input to existing analysis

tools.

1.1.3.2 HAL format

One difficulty with producing reference-free alignments is that conventional

text-based alignment formats like MAF cannot be efficiently randomly accessed from

every genome. The Hierarchical Alignment Format [18] (HAL) was designed to be

an efficiently accessible format representing a genome history, including any ancestral

reconstructions available.

HAL allows projection from this genome history onto any reference genome

(including ancestors), creating a multiple genome alignment showing what is orthologous

(related by ∼o) to every base in that genome. This projection can be output in a

traditional format like MAF, or simply used on-demand to visualize the alignment [19]

or as part of downstream analysis pipelines.

1.1.4 Local alignment tools

Because genome alignment tools rely heavily on local alignments of some form,

local alignment tools play a large role in genome alignments. Since finding optimal local

alignments has prohibitive time and memory requirements, approximate local aligners

in the vein of BLAST [3] are used almost exclusively. BLASTZ [9] and its successor

LASTZ [20] are local aligners tuned to be more sensitive than normal BLAST, using

PatternHunter-esque spaced seeds [21] while also allowing transitions. LAST [22]

1.1.5 Multiple genome alignment pipelines

An overview of popular or historically significant alignment multiple genome

alignment tools is given in Table 1.5. In the following sections, we detail some of the

most significant pipelines that are still in wide use.
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1.1.5.1 MultiZ

MultiZ [10] is a reference-biased multiple genome alignment tool originally

developed as part of the TBA [10] program. Because TBA is restricted to producing

colinear multiple alignments (though there exists an unpublished version that removes

that restriction), MultiZ sees much wider use than TBA itself. It is the tool currently

used to generate the multiple alignments on the UCSC Genome Browser [23].

MultiZ, technically speaking, is just a method of aligning alignments. When

MultiZ alignments are produced, usually pairwise alignments from a given reference to

all other species are generated using a local alignment tool, sometimes post-processed

using chains and nets, and then the “autoMZ” command is used to progressively align

together these pairwise alignments using a guide tree.

1.1.5.2 EPO

The Enredo-Pecan-Ortheus (EPO) pipeline [15, 24] is a reference-free multiple

alignment pipeline that, unlike TBA, can handle rearrangements. It is in wide use, being

one of the main multiple alignments available on the Ensembl genome browser [25]. The

process begins with a relatively sparse set of anchor points that are known homologies

within a set of genomes. The Enredo algorithm builds a sequence graph from these

anchors, and through various operations, attempts to remove homologies that are likely

to be spurious or uninteresting. The Pecan algorithm then fills in the gaps between the

sparse anchors selected by the Enredo algorithm. The Ortheus algorithm [24] is then

optionally run to generate ancestral sequences for all blocks, creating a genome history.

While EPO is in principle reference-free, the method that is currently used to generate

its anchors is reference-biased [15].

1.1.5.3 Cactus

Cactus uses an overall strategy similar in principle to the anchoring approach

described above. The notion of a cactus graph [26] is used to create a filtered, high-

confidence set of anchors. The unaligned space between anchors is then aligned using

a sensitive pair-HMM to create a final multiple alignment. The first step of the Cactus

process is to take small, uncertain local alignments captured by LASTZ [20] (which is
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similar to BLAST [3]), and combine them navely to create a multiple alignment. Given

the typical evolutionary distances involved, LASTZ is tuned to be very sensitive, but

not very precise. The low precision means that the local alignments may be spurious (a

small seed happened to match, and happened to be extended, in a region which is not

truly homologous). The local alignments may also conflict—that is, several alignments

may disagree on how to align a particular region. These inconsistencies and spurious

alignments will manifest as tiny rearrangements—breaks in order and orientation—in

the alignment. Using the Cactus Alignment Filter (CAF) algorithm defined in [27], these

small rearrangements, which are unlikely to be biological, in the multiple alignment are

discovered and removed, producing an alignment that only contains rearrangements

longer than a certain length. After this process, the cactus graph contains anchors that

are very likely to represent true regions of homology, but will have unaligned regions of

homology between the anchors, which local alignment was not sensitive enough to pick

up, or which were deleted in the CAF process. The Base Alignment Refinement (BAR)

process [27] fills in these unaligned but homologous regions.

1.1.5.4 progressiveCactus

The version of Cactus published in 2011 [27] was highly effective at aligning

a small number of genomes in the tens to hundreds of megabases [28], but because it

scaled quadratically with the total size of all genomes in the alignment problem, it could

not efficiently create the alignments we needed, which require us to align hundreds of

vertebrate-sized genomes. Recently a progressive-alignment extension (called progres-

siveCactus) to the original Cactus algorithm has been developed, which can efficiently

scale to hundreds of genomes. The progressiveCactus process works as follows. First,

the problem is decomposed into several subproblems using an input guide tree. There

is one subproblem per internal node in the guide tree. Each subproblem involves align-

ing several genomes using the traditional Cactus process: the ingroup (children of the

internal node) and outgroup (non-descendants of the internal node) genomes for the

subproblem. This subproblem alignment is then used to infer a “reference” assembly

that contains all blocks involving an ingroup. The blocks are arranged into sequences

according to an algorithm that attempts to maximize the consistency between the order
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and orientation of all the sequences in the alignment [29]. The base-level sequence for

these blocks is then generated by finding the ML base for each column using the guide

tree. This assembly is a reconstruction of the ancestral genome at that node, which

functions as a consensus sequence for the ingroups below it. The reference assembly is

then fed as input into subproblems further up the guide tree.

1.2 Comparative annotation

1.2.1 Introduction

Genome annotation is the process of finding functional elements in a genome as-

sembly. Generally, these take the form of protein coding genes, but can also include non-

coding transcripts[30], chromatin configuration[31], DNase hypersensitivity[32], CpG

islands[33], and population variation [34].

The task of automatically annotating genome assemblies has been considered

since the first full length genomes were released in the mid-1990s [35, 36, 37]. This task

is often divided into two categories — ab-initio prediction, or the computational pre-

diction of exon-intron structure using statistical models, and sequence alignment based

approaches, which map any of EST, cDNA or protein sequences on to an assembled

sequence to discover transcripts [25]. Some annotation pipelines combine both sources

of transcript prediction to generate a final annotation set [38, 39].

Recent improvements in sequencing technologies, including long-read [40] and

linked-read technology [41], have provided the ability to produce high quality genome

assemblies at prices that make genome assembly an affordable experiment to labs across

the world. This has led to the formation of consortia that aim to produce genome as-

semblies on a wide scale, including the Vertebrate Genome Project [42], the 200 Mam-

mals Project (https://karlssonlab.org/2017/08/03/the-200-mammals-project/)

and Insect 5K [43].

This rapid increase in the availability of high quality genome assemblies neces-

sitates the introduction of automated methods that can scale, and that can leverage the

improved phylogenetic information that such an array of assemblies can provide. For

example, the 200 Mammals Project is specifically designed to allow for the calculation
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of base-level conservation across mammalian evolutionary history. This discrimina-

tory power can be leveraged downstream of the assemblies to improve whole genome

alignments as well as annotations, and it provides a framework for annotating true

many-to-many orthology relationships instead of the current models that rely heavily

on annotating relationships relative to mouse and human.

In this new era of genome assembly, consideration must be given not just to

assembly and alignment but also to annotation. Annotation is central to the question

of how to utilize this explosion of genome assemblies, and high quality annotation sets

with orthology mappings across species will enable a wide range of comparative genomics

analyses.

1.2.2 Sequence Based Comparative Annotation

In conjunction with the release of the first mouse draft assembly[44], multi-

ple different tools were created to try and leverage comparative information to human

to look for genes, including TWINSCAN [45], SGP [46] and SLAM [47]. Table 1.1

provides an overview of comparative annotation tools, including those written in the

years following the mouse genome assembly. These tools provide probabilistic frame-

works which combine established single-genome gene prediction approaches [48, 49] with

informant data obtained through genomic alignments to improve gene predictions. No-

tably, all of these tools work only on pairwise alignments and cannot use information

extrinsic to this alignment and the underlying input sequences.

As more vertebrate genomes were sequenced, the need for comparative gene

predictors that could use more than one informant species arose. Some of the previous

tools were re-engineered, as is the case with N-SCAN [50, 51]. However, N-SCAN pre-

dicted only 35% of human genes correctly, and using a multiple sequence alignment was

no more accurate than a high quality pairwise alignment [52]. In contrast, CONTRAST

[53] remarkably was able to accurately predict 65% of human genes using 11 informant

genomes. Prior to CONTRAST, practically all gene prediction tools relied on hidden

Markov models (HMM), a generative model, while CONTRAST relied on a discrimina-

tive support vector machine (SVM) model. The SVM is used to model coding regions,

while an additional model called a conditional random field (CRF) is used to model the
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gene structure itself. A CRF can be considered a generalization of a HMM [54].

For the most part, after the initial mouse genome project, none of these tools

have been used on full vertebrate genomes. There are two reasons for this. First, these

tools require very careful parameter training which must be performed on every genome

in the alignment. Second, these tools require evaluating all pairwise comparisons leading

to running times quadratic in the number of genomes. Combined with the overall lower

efficacy of comparative prediction vs. transcriptome and proteome sequence alignment

approaches, this has led the field of comparative gene finding to languish for the past

ten years.

1.2.3 Transcriptome Evidence Based Comparative Annotation

None of the annotation programs described above were capable of incorporat-

ing extrinsic information, instead relying entirely on sequence composition. In species

with sufficient transcriptome data, mapping these data to the assembly generally per-

forms far better at gene finding than the de-novo approaches outlined above [55, 56].

In the early 2000s, projects like the Mammalian Gene Collection (MGC) [57]

were generating full length cDNA sequences for model organisms. These full length tran-

scripts, in addition to expressed sequence tags (ESTs), were being stored in databases

like GenBank [58], supplemented by submissions from labs around the world. Tools

were developed to incorporate alignments of these sequences in gene prediction, includ-

ing N-SCAN EST [59], GenomeWise [60], and AUGUSTUS [55, 61, 62].

While these tools were developed for annotating single genomes with extrinsic

information from the same genome, they can be applied in a comparative fashion. Many

species of interest have limited transcriptome data available but are closely related to

well annotated species. Examples include mouse vs. rat, and human vs. other great

apes. Alignment of related transcript sequences is used in the gene builds produced

both by Ensembl [25] and RefSeq [38].

Another approach is to use alignments of protein sequences instead of tran-

script sequences, which is more robust across long phylogenetic distance. The popular

annotation pipeline MAKER2 [39] provides such functionality, and recommends provid-

ing protein sequences from at least two related genomes [63].
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For more distantly related species, approaches that generate profiles of proteins

and protein domains may be used. Databases such as InterPro [64] store precomputed

models of protein sequences and motifs that are conserved across long periods of evo-

lutionary history. Genewise [60] can perform gene prediction using a profile-HMM like

those stored in InterPro. Additionally, AUGUSTUS-PPX [65] is a extension of the AU-

GUSTUS annotation program that models protein families and combines them with the

existing ab-initio model.

1.2.4 Transcript Projection

Transcript projection uses sequence alignments to project the coordinates of

an existing annotation in one genome to another genome. This powerful approach lever-

ages high quality annotations in well studied organisms to annotate diverse transcripts

in related genomes. Many genes and isoforms are expressed in specific tissue types

[66], at specific developmental time points, or only in response to specific environmental

conditions [67]. Gathering the data for a new species to fully annotate their transcrip-

tome is thus prohibitively expensive. Transcript projection methods allow this to be

bypassed, by making use of the high quality information in well studied organisms[68,

69]. Additionally, traditional ab-initio gene finding models rely heavily on the signature

of protein coding genes, which limits these models’ ability to predict UTR sequences,

non-coding RNAs such as lncRNAs, and pseudogenes. Transcript projection methods

can be combined with any available extrinsic information either from the genome in

question or related genomes and provide the highest quality annotation as a result [55].

The first tool to perform transcript projection was Projector [70], which uses a

pair hidden Markov model and models exon-intron structure through a pairwise align-

ment, similar to how tools like TWINSCAN work. However, Projector can make use

of the known gene information in one sequence in the alignment to restrict the prob-

ability paths to those that match the known gene. A subsequent tool, Annotation

Integrated Resource (AIR) [71], introduced the concept of a splice graph, a directed

acyclic graphic structure that represents exons as vertices and introns as edges, where

isoforms of a gene are paths through this graph. AIR projects transcripts from a ref-

erence genome through a syntenic alignment to score the paths in the graph, reducing
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the large number of combinations that are biologically improbable.

1.2.4.1 transMap

transMap [55], first developed in conjunction with improvements to AUGUS-

TUS to model extrinsic information [62], relies on whole genome alignments to project

existing annotations from one genome to the other genome in the alignment. This pro-

cess is purely arithmetic, but has proven to be immensely helpful at providing extrinsic

information to guide AUGUSTUS and improve on purely sequence based prediction.

Compared to methods that incorporate EST alignments, transMap provides both full

length transcript information as well as isoform information. transMap provided the

biggest benefit to specificity in AUGUSTUS predictions in all cases except in cases

where the existing cDNA repertoire for the species in question exceeded the quality of

the reference [55].

1.2.4.2 CESAR

Coding Exon-Structure Aware Realigner (CESAR) [69] is a tool that projects

exons through a whole genome alignment, handling splice site shifts that are a common

feature of evolutionary change. CESAR is a straightforward hidden Markov model that

takes as input the linear alignment of a single exon to other genomes with a small

amount of flanking intronic sequence, and outputs a re-aligned region that accounts

for exon frame and evolutionary change. CESAR was able to achieve a nearly 89%

accuracy at realigning splice sites, leading to the number of frameshifts seen when

mapping human genes to mouse to drop from 2.7% to 0.3%. These spurious frameshifts

must be addressed when working with transcript projection methods.

1.2.5 Comparative Augustus

AUGUSTUS recently added a novel objective function parameterization option

that makes use of whole genome alignments to predict coding genes simultaneously in

every genome in the alignment [72] called Comparative AUGUSTUS or AugustusCGP.

With recent updates, training the AugustusCGP model is straight-forward and inte-

grated in the AUGUSTUS binary. In contrast to previous comparative gene finding

13



tools, AugustusCGP runs linearly in the number of genomes, making the possibility of

annotating dozens of genomes computationally tractable. Currently, AugustusCGP re-

lies on a referenced multiple-genome alignment format called MAF, and as such cannot

annotate many-to-many relationships.

AugustusCGP makes use of the phylogenetic information inherent in the whole

genome alignment to look for evidence of negative selection. This is done by calculating

the ratio of synonymous and non-synonymous substitutions in candidate exons. Au-

gustusCGP can incorporate extrinsic evidence, including RNA-seq, IsoSeq, and cDNA

alignments, loading these into a database that allows for predictions to be parallelized

and scaled. AugustusCGP can also incorporate evidence from annotation sets on one or

more genome in the alignment, which can help guide comparative annotation efforts by

providing strong hints on where genes are expected to be found. Making use of as many

of these forms of extrinsic evidence is recommended, as it greatly improves the accuracy

and specificity of the model. AugustusCGP, along with all gene finding tools, can often

produce false positives. For the Mouse Genomes Project , as well as the default in the

CAT pipeline[68], we find that filtering for predictions with at least 2 splices reduces the

false positive rate to an acceptable level. However, this can remove interesting unspliced

genes like olfactory receptors [73].

1.3 Genome Annotation Pipelines

The most commonly used annotation pipeline for individual researchers is

MAKER2 [39]. MAKER2 was designed to enable researchers to annotate genome

assemblies they produce and not rely on institutional pipelines, and was specifically

aimed at non-model and non-vertebrate species, including prokaryotes. MAKER2 com-

bines multiple forms of extrinsic evidence with ab-initio prediction, and provides a fully

automated end-to-end annotation pipeline. MAKER2 can make use of multiple gene

prediction tools, including GeneWise, GeneMark, SNAP and AUGUSTUS. MAKER2

also performs repeat masking of the assembly.

However, MAKER2 has drawbacks. It is technically challenging to run the

pipeline, and it relies on difficult to use parallel computing paradigms. MAKER2 also

requires that all extrinsic evidence exist in the form of sequences, and as such requires
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that RNA-seq data undergo de-novo assembly before use. MAKER2 does not attempt

to track orthology relationships or anything about the genes predicted, and so requires

subsequent processing of the gene models to determine gene family and protein domain

information.

Most vertebrate annotation sets available right now are produced by large

institutional pipelines at either Ensembl (Ensembl Gene Build) or NCBI (RefSeq).

These institutional efforts are important for the larger size and complexity of verte-

brate genomes, but as computing power becomes cheaper the need to outsource these

efforts is diminishing. Turn around for annotation by RefSeq often takes months. Both

of these pipelines do track orthology relationships, and assign gene common names

where applicable.

This process of tracking orthology relationships will become increasingly im-

portant as the number of assembled vertebrate genomes continues to grow. A systematic

framework that can track many-to-many orthology relationships is required. Ensembl

has put effort into this with the Compara browser[74].

1.3.1 CAT

CAT is a annotation pipeline we have constructed that combines a variety of

parameterizations of AUGUSTUS, including comparative AUGUSTUS, with transMap

projections through whole-genome progressiveCactus alignments to produce an annota-

tion set on every genome in the Cactus alignment[68]. CAT is an attempt to synthesize

together all of the possible methods of genome annotation, relying on transcript pro-

jection, transcriptome and proteome alignments, simultaneous gene finding, and single

genome gene finding with full length cDNA reads. CAT leverages high quality gene

sets like those produced by GENCODE on mouse and human to project annotations

to other genomes, augmented with predictions that add species-specificity and detects

gene family expansion and collapse.

We showed that CAT was capable of leveraging GENCODE to re-annotate

the rat genome, improving on the existing RefSeq and Ensembl annotations[68]. We

also applied CAT to the great apes, re-annotating the existing great ape assemblies

as well as annotating the new PacBio-derived great ape assemblies. In all cases, CAT
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provided the highest isoform concordance compared to the Ensembl annotations when

compared to a IsoSeq dataset generated from induced pluripotent stem cells from each

of the great ape species. Isoform concordance for the chimpanzee annotation of the new

PacBio assembly was 82.1%, the same as it was for human GRCh38 using GENCODE

V27. In testing these new annotation sets by using them to quantify RNA-seq, we found

an average of 9,518 more expressed genes in the great ape species than when we used the

Ensembl annotations. These annotation sets greatly improved the ability to perform

cross-species RNA-seq expression estimates, with Pearson r=0.96 seen when comparing

CAT annotation of chimpanzee to human, compared to r=0.69 when mapping the same

RNA-seq to human directly and r=0.73 when using common gene names in Ensembl

V90 to perform the cross-species comparison.

1.3.2 Non-coding annotation

Comparative annotation of non-coding genes has been considered since the ex-

plosion of comparative genomics tools in the mouse genome project era[75]. MAKER2,

as well as most standard annotation tools like AUGUSTUS, are not capable of detect-

ing non-coding transcripts due to the inherent difficulty in detecting these without the

strong statistical signal that protein coding transcripts provide. Tools like transMap

can leverage non-coding annotations curated in high quality genomes to transfer these

annotations to new genomes. However, important spliced non-coding transcripts like

lincRNAs are inherently less conserved, especially at the sequence level[76, 77, 78]. This

can present challenges to using whole genome alignments to annotate such transcripts.

It also can be difficult to determine whether a predicted non-coding RNA is actually

expressed in a species without finding it in an extrinsic dataset. An opposite problem

also exists — it is not difficult to find a non-conserved ORF in a non-coding transcript,

and tools like AUGUSTUS will predict coding transcripts at non-coding loci, particu-

larly when provided extrinsic evidence that contains expression of these loci. Tools like

PhyloCSF[79] can help diagnose these regions by leveraging whole genome alignments

to evaluate conservation of coding signal, but are not fool-proof and the authors rec-

ommend manual curation. The phyloCSF model is being used by GENCODE to help

improve manual annotation efforts.
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1.4 Discussion

Recent improvements in genome sequencing technology are dropping the price

of genome assembly, and particularly high quality genome assembly. Improvements in

whole genome alignment have made it possible to begin to assess a new explosion of

genome assemblies, giving new insight into evolution previously not possible. In this

new era of comparative genomics, comparative annotation will play a central role in

helping to synthesize useful information out of the deluge of data. Considering genome

annotation is essential to this new era of genomes, where the question of how we will

use these new genomes must be considered.

1.4.1 The future of comparative annotation

All of the comparative annotation paradigms described above are insufficient

for the annotation of true many-to-many orthology. In fact, the concept of many-to-

many is inherently a simplification – by definition, 1-to-1 or 1-to-many relationships

are the only true relationships, with 1-to-many existing in the case where multiple

duplications happened in a specific lineage.

As the number of assembled genomes grows, it will become possible to track

these relationships in new ways. New approaches must be developed to assess these rela-

tionships. Cactus provides a method for generating alignments amenable to annotating

this, but currently no comparative annotation tool can approach this. Comparative

AUGUSTUS, for example, still relies on a alignment file format that is referenced on a

specific genome. We see the possibility of a future where these problems are side-stepped

through iterative use of pipelines like CAT. Gene predictions can be performed on many

genomes, perhaps picking representatives evenly spread throughout the tree of life that

have high quality assemblies and a decent variety of extrinsic evidence like RNA-seq

available. These predictions can then be mapped via transMap to other genomes in the

alignment, and then assess, combined and collapsed in a process similar to the consensus

finding step that CAT currently performs.
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1.5 Addendum

There are other factors to consider when talking about whole genome alignment

and comparative annotation that can be overlooked. These include assembly quality,

contiguity and base level accuracy.

1.5.1 Assembly quality

One issue often overlooked in the rush to assemble new genomes is assembly

quality. Common metrics such as contig N50 and scaffold N50 can obscure serious

problems with genome assemblies. Misjoins are common, as well as unrealistic gaps.

Problems such as false tandem duplications are widespread in current reference assem-

blies. Too many tools currently consider genome assemblies as ground truth, without

consideration for errors that are inevitably present.

1.5.2 Base level accuracy

Of particular issue to comparative annotation efforts are indel errors. These er-

rors vastly inflate the number of transcripts seen as frame-shifted relative to a reference

genome, and cause serious problems for gene finding tools leading to premature termi-

nation of gene prediction, or the introduction of false introns to bypass a false in-frame

stop. Unfortunately, modern assemblies rely heavily on long-read sequencing technolo-

gies, which at this point are all inherently noisy. Much effort has been put into reducing

these errors, including the introduction of diploid assembly methods [80], which reduce

the rate of indel errors in the assembly caused by collapsed heterozygosity. However,

our analysis of recent diploid assemblies produced by the PacBio tool Falcon Unzip[80]

suggests that indel errors are still problematic and inflate the number of frame-shifting

indels, with around 1% of transcripts frame-shifted in a diploid Zebrafinch assembly[81]

compared to the Illumina based assembly of the same species. Additionally, these errors

appear in assemblies of haploid cell lines, suggesting that heterozygosity is not the only

cause.

As part of the great ape paper, techniques were developed to improve the base-

level accuracy of PacBio assemblies. The currently recommended protocol involves using
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Quiver or Arrow (https://github.com/PacificBiosciences/GenomicConsensus) to

polish the assemblies, followed by Pilon [82] to perform base-level correction. Quiver is

a tool published by PacBio that uses a conditional random field model of PacBio errors

to correct reads mapped to a de-novo assembly. PacBio recommends using the newer,

simpler hidden Markov model called Arrow instead, but in our experience not many

groups are doing this at this point. Pilon is a tool that takes alignments of short reads

to an assembly and then uses the short reads to error correct the assembly. This is

powerful because it leverages the high sequence accuracy of Illumina reads to fix base

level errors, but it has drawbacks. The first is simply that Illumina reads can only

map to less repetitive and duplicated portions of the genome, and so the remaining

portions cannot be corrected. The second is that the Pilon model has trouble with

nearby heterozygous indels, leading to a sequence that does not match any haplotype

present in the source sample. This led to the development of a Freebayes [83] based

indel correction method that uses variant calls against the assembly to pick a haplotype

at random. This process inherently produces a monoploid assembly, or an assembly

that is an arbitrary mixture of all input haplotypes. However, this result is better than

one that incorrectly represents any of the input haplotypes. Approaches that generate

synthetic long reads, or read set technologies like 10X Genomics Linked Reads [84, 85]

combined with read-cloud alignment approaches [86], allow for approaches like Pilon to

improve base level accuracy on regions not directly mappable by short read alignments.
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Figure 1.1: A diagram showing the difference between a reference-free and a reference-

biased multiple alignment. In a human-biased multiple alignment, any regions that are

deleted in human, or inserted somewhere else in the tree, cannot be aligned.
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Program Year Description

ROSETTA 2000 [87] Uses pairwise genomic alignments to find regions
of homology. Incorporates a splice junction and
exon length model.

SGP-1/-2 2001 [46] Uses pairwise genomic alignments to find syn-
tenic loci. Evaluates a coding and splice model
in these loci.

TWINSCAN 2003 [45] Uses local alignments between a target genome
and a reference (informant) genome to identify
regions of conservation.

SLAM 2003 [47] Treats two alignments in a symmetric way, pre-
dicting pairs of transcripts.

EvoGene 2003 [88] Phylogenetic HMM that performs ab-initio pre-
diction of genes across a multiple sequence align-
ment (more than 2 genomes), making use of phy-
logenetic information.

ExoniPhy 2004 [89] Phylogenetic HMM that performs ab-initio pre-
dictions across a multiple sequence alignment.

DOGFISH 2006 [90] Two step program that combines a classifier that
scores potential splice sites using a multiple se-
quence alignment and a ab-initio gene predictor
that makes use of the scores from the classifier
to predict gene structures.

N-SCAN 2006 [50] Extends the TWINSCAN model to N genomes.

CONTRAST 2007 [53] Uses a combination of SVM and CRF predictors,
providing a big boost over traditional HMMs.

Table 1.1: Overview of comparative annotation tools.
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Program Year Description

GeneWise 2004 [60] HMM based gene prediction tool using extrinsic
evidence. MAKER2 can make use of it.

NSCAN-EST 2006 [59] HMM based gene prediction tool that makes use
of EST and genomic alignments, incorporating
phylogenetic information.

AUGUSTUS 2004 [62],[61] CRF based gene prediction tool with many
modes. Features are still being added. Can
perform ab-initio gene prediction as well as in-
corporate extrinsic evidence. Has the ability to
provide non-linear weights to various types of
evidence.

EVM 2008 [91, 92] A ‘chooser’ algorithm that combines previously
predicted gene sets with extrinsic information to
construct consensus gene sets.

PASA 2003 [93] Uses alignments of cDNA, EST or RNA-seq
to predict gene structures, including alternative
splice events.

MAKER2 2008 [39, 63] A all-in-one pipeline that runs programs in-
cluding AUGUSTUS and GeneWise with extrin-
sic information such as RNA-seq or protein se-
quences to both predict annotations and con-
struct a gene set.

Table 1.2: Overview of gene prediction tools that incorporate transcriptome data.

Program Year Description

Projector 2004 [70] Similar to DOUBLESCAN, but extends the
model to make use of annotation information on
one sequence to inform the other. Works better
than GENEWISE over long branch lengths.

AIR 2005 [71] Integrates multiple forms of extrinsic evidence to
perform alternative splice junction prediction.

transMap 2007 [55] Uses whole genome alignments to project exist-
ing annotations from one genome to one or more
other genomes.

CESAR 2016 [69] Uses a HMM to adjust splice sites in whole
genome alignments, improving transcript pro-
jections.

Table 1.3: Overview of transcript projection tools.
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Program Year Description

MUMmer 1999 [6] Fast aligner relying on maximal
unique matches from a query se-
quence to a reference sequence. Re-
cent versions remove the colinearity
restriction of the first version and
improve the speed.

Chains and nets 2003 [8] Combines fragmented local align-
ments into larger, high-scoring
”chains”, which are arranged into
hierarchical ”nets” representing re-
arrangements.

Shuffle-LAGAN 2003 [94] A ”glocal” (global + local) aligner
that is less restrictive than global
alignment, but still enforces mono-
tonicity of the blocks relative to one
sequence.

Table 1.4: Pairwise genome alignment tools.
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Program Year Colinear Reference-
biased

Single-
copy

Description

TBA 2004
[10]

X X Multiple aligner (us-
ing MultiZ internally)
that produces a collec-
tion of partially ordered
”threaded blocksets.”

MultiZ (au-
toMZ)

2004
[10]

X X Multiple alignment
based on pairwise
alignment from every
genome to a single
reference.

ABA 2004
[16]

Aligner based on the
concept of A-Bruijn
graphs.

EPO 2008
[15,
24]

* Graph-based aligner
allowing duplica-
tions, and optionally
producing ancestral
reconstructions.

VISTA-
Lagan (Su-
perMap)

2009
[95]

* Progressive aligner
based on Shuffle-
LAGAN [94].

progressive
Mauve

2010
[96]

X Progressive aligner that
attempts to remove an-
chors causing small re-
arrangements by opti-
mizing a breakpoint-
weighted score.

Cactus 2011
[27]

Graph-based aligner
that attempts to remove
anchors representing
small rearrangements.

Table 1.5: Popular and/or historically important multiple genome alignment tools.
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Chapter 2

Comparative Annotation Toolkit

This chapter goes through the history of the development of the Comparative

Annotation Toolkit (CAT), and then follows with a detailed description of the CAT

pipeline derived from the supplementary text of the CAT publication.

2.1 Introduction

CAT development first started in January 2015 as I took on the project of an

outgoing Haussler lab member Dent Earl. Dent and Benedict were involved in the Mouse

Genomes Project, an ongoing effort to assemble the genomes of sixteen laboratory mouse

strains. Building on Dent’s work [97], I constructed the first version of CAT, which was

called comparativeAnnotator, located on GitHub at https://github.com/ucsc-mus-

strain-cactus/comparativeAnnotator.

2.2 comparativeAnnotator

comparativeAnnotator2.2 was designed to build on transMap [55]. In develop-

ing comparativeAnnotator, I introduced the concept of classifying transcript projections

based on a series of binary classifiers. These classifiers evaluate a variety of features on a

transcript projection evaluating transcript completeness, identity, intron-exon structure,

in-frame stops, mapping over assembly gaps, mapping to multiple contigs, and likelihood

of orthology. In collaboration with Mario Stanke, building on previous work[55], compar-
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ativeAnnotator also introduced the concept of AugustusTMR. This process helps clean

up transcript projections, rescuing missing exons and resolving evolutionary changes to

splice sites. The original version performed only AugustusTM, relying on the splice in-

formation of transMap projections and sequence composition itself without considering

extrinsic evidence. After evaluating the results, and realizing that we had strain-specific

RNA-seq for all strains, I worked with Mario to construct the AugustusTMR param-

eterization by tweaking the weights on the model to be slightly more permissive at

disregarding transMap evidence in favor of RNA-seq evidence. comparativeAnnotator

introduced the first version of the consensus algorithm. The consensus algorithm takes

in all transcript projections for a given source transcript, and based on a heuristic com-

bination of binary classifiers as well as alignment metrics, chooses the best orthologous

candidate.

During the mouse genomes project, simultaneously to the development of com-

parativeAnnotator, Stefanie Nachtweide in Mario’s lab was developing AugustusCGP,

a novel parameterization of AUGUSTUS that performs simultaneous prediction of cod-

ing genes using a whole genome alignment. I developed an extension to the consensus

algorithm that incorporates these predictions. First, I define relationships with the

lift-over annotation set by comparing both exonic and intronic overlap. Then, for pre-

dictions that overlap comparative annotations, I include those that incorporate novel

splice junctions supported by extrinsic evidence. Additionally, the first concept of Au-

gustusPB was introduced during this project after IsoSeq data were generated for a

few wild-derived lab strains. The version of the pipeline for that project was not fully

integrated. It was not possible at the time to train AugustusCGP in an automated

fashion, and not yet wrapped in Toil, and so I was not able to run it myself. All of

the code to reproduce the version of the gene sets for that project that eventually got

included in Ensembl release 86 are available on GitHub at https://github.com/ucsc-

mus-strain-cactus/MouseGenomesAnnotationPipeline.

2.3 CAT development

Building on comparativeAnnotator, I worked to create a comprehensive anno-

tation pipeline named CAT2.1. CAT integrates AugustusCGP and automates model
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training, incorporates AugustusPB and wraps all of this in a Luigi and Toil based

pipeline that automates genome annotation, producing both assembly hubs and anno-

tation sets in the final product2.3.

2.4 CAT detailed description

Below is a walkthrough of the CAT pipeline. Please see the README on

github (https://github.com/ComparativeGenomicsToolkit/Comparative-Annotation-

Toolkit) for the most up to date information as well as practical information on how to

run the pipeline. The text below is Supplementary Note 1 from the CAT publication.

2.5 Whole genome alignment

CAT relies on a reference-free whole genome alignment produced by the tool

progressiveCactus. One or more of the genomes in the alignment should be a high

quality reference whose existing annotations will be projected. Care should be taken

when generating cactus alignments to provide sufficient outgroup genomes. Having high

quality outgroups improves the resolution of paralogies and rearrangements.

2.6 Alignment chaining

CAT converts HAL format alignments into pairwise genome alignments via a

conversion to the UCSC chain format [98]. This is accomplished by using the halLiftover

tool to provide a PSL-format alignment describing each pairwise relationship to the high

quality reference, and this alignment is then chained via the axtChain tool.

2.7 transMap

transMap [55, 99] is a process for using pairwise whole genome alignments

to project transcript annotations from one genome to another. The main program in

the Kent repository for this process is pslMap. Custom software was written for CAT

and included in the Kent repository, including pslMapPostChain which chains together
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mapped over transcript projection, and transMapPslToGenePred which converts the

transcript projections to a gene model, keeping track of frame information and optionally

filling in coding and non-coding gaps. Frameshifting gaps are not filled. CAT currently

hard-codes those values at 50bp and 80bp respectively.

2.8 transMap filtering and paralogous alignment resolu-

tion

After transMap projection, alignments are filtered to their most likely ortholog,

and paralogies are detected. This is performed using the tool pslCDnaFilter from the

Kent repository in two parameterizations. The first parameterization does not actually

filter the alignment set, but detects paralogies by relying on the localNearBest algo-

rithm. This algorithm filters alignments based on windows of the input sequence. This

process will keep multiple alignments for a given input sequence if they are in non-

overlapping portions of the source transcript. This algorithm was originally designed

for highly discontiguous assemblies. CAT leverages this concept to instead detect par-

alogies by looking at the difference. Alignments that localNearBest filters out are likely

to be paralogous alignments and not instances of discontinuity, and so can be flagged as

such. Putatively paralogous alignments are filtered further setting minSpan to 0.2 and

providing a user-changeable minimum paralog coverage, which defaults to 50. minSpan

is an effective filter against retroposed pseudogenes by filtering out any projection whose

genomic size is smaller than 20% of the source transcript. The minimum paralog cov-

erage flag does not consider any alignments whose query coverage is smaller than that

value as a paralog, providing extra filtering for discontinuity. The best localNearBest

parameter depends on the phylogenetic distance and assembly qualities involved, and

can require tuning. The default value in CAT is 0.2, which is a fairly relaxed value.

Decreasing this value will increase the rate at which discontinuity is called as paralogy.

The actual filtering of transMap projections is performed by the globalN-

earBest algorithm parameterized to 0, which forces pslCDnaFilter to pick the one highest

scoring alignment for each input sequence. In this mode, the same minSpan value of 0.2

is used, and a minimum coverage of 10% is required. After this step, a locus resolution
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step is performed to make sure that all transcripts from a given source gene end up

in the same location. If globalNearBest ended up choosing multiple disjoint loci for a

given gene, the highest average score locus is chosen and then lower scoring alignments

for transcripts assigned elsewhere are chosen in this locus, if they exist.

2.9 AUGUSTUS

CAT runs the gene finding tool AUGUSTUS in up to four distinct param-

eterizations – AugustusTM (TM), AugustusTMR (TMR), AugustusCGP (CGP) and

AugsutusPB (PB). The output of each of these modes is combined with the origi-

nal transMap output in the consensus gene set finding process. The first two modes,

TM/TMR are intended to reproduce the input isoform exactly, fixing regions where the

alignment dropped an exon or introduced a small gap, or where the splice site may have

shifted. These modes cannot detect novel genes or transcripts. In contrast, CGP/PB

both can detect novel isoforms and genes. However, CGP can only detect one isoform

for a locus and cannot find UTRs. CGP also cannot find genes in regions that did not

align.

2.10 AugustusTM/AugustusTMR

The primary parameterization of AUGUSTUS for comparative annotation is

primarily a method to clean up transMap projections. Due to a combination of assembly

error, alignment noise and real biological changes transMap projections have frame

shifting indels, missing or incomplete exons, and invalid splice sites. TM is given every

protein coding transMap projection one at a time with some flanking sequence and

asked to construct a transcript that closely matches the intron-exon structure that

transMap provides. Since AUGUSTUS enforces a standard gene model, frame shifts

and invalid splices will be adjusted to a valid form. In some cases this will mangle

the transcript, producing either another isoform or something that does not resemble

the source transcript. TMR runs the same inputs to AUGUSTUS, but with less strict

weights on the transMap hints such that extrinsic hints from RNA-seq or IsoSeq have

more bearing on the outcome. This is particularly useful in regions where an exon was
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dropped in the Cactus alignment, or where a rearragement broke the alignment chains.

2.11 AugustusCGP

As TM/TMR is built on the transMap projections, it can neither identify

novel genes nor existing genes of the reference annotation for which the mapping en-

tirely failed. For this purpose, AUGUSTUS is run in its new comparative mode (CGP)

recently published [72]. This mode uses a novel objective function to simultaneously

predict coding transcripts in every genome in a Cactus alignment, taking in extrinsic

information from any provided existing annotations as well as RNA-seq and/or IsoSeq

data in any of the aligned genomes. The genome alignment is used to exploit evolution-

ary content for gene finding (e.g. sequence conservation, conservation of exon boundaries

and selective pressure) and to transfer extrinsic evidence across genomes. The latter

has the effect that each genome can benefit from the combined evidence for the clade.

CGP performs best when high quality RNA-seq derived from polyA selected libraries

is provided for as many genomes as possible. If this is not available, consider provid-

ing a FASTA file with previously annotated proteins of one of the currently annotated

genomes.

2.12 AugustusPB

PB is run when IsoSeq data are provided and the appropriate flags set. PB

runs AUGUSTUS in single genome ab-initio + evidence-based gene finding mode, pro-

viding high weight to extrinsic hints derived from IsoSeq data, and with the model

parameterized to allow for alternative isoforms. PB provides the advantage of being

able to detect genes in regions that did not align to any of the other genomes.

2.13 Parent gene assignment

CGP/PB transcripts are then assigned a possible source transcript by com-

paring their genomic overlap with both filtered and unfiltered transMap projections. If

a transcript is assigned to an orthologous projection, then it will be evaluated for being
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a novel isoform during consensus finding. If a transcript is assigned to a projection

that was filtered out during paralog resolution, then it is a candidate being a possible

paralog. A likely cause of this situation is a gene family expansion. If a transcript does

not overlap with any transMap projections, then it is a candidate novel gene. However,

the false positive rate of these is inherently high due to the likelihood of novel genes

being dwarfed by the likelihood of assembly or alignment errors leading to no transMap

projections in the region.

2.14 Transcript classification

transMap projections are classified by a series of classifiers that evaluate their

strength. These classifiers include evaluating whether the projection was complete

(100% coverage), alignment identity, whether the projection ran off the edge of a contig,

whether the projection had a 1-1 ortholog relationship, and importantly how many of

the exon junctions lie nearby in transcript coordinate space. This original intron classi-

fication is very important when assigning isoform relationships. Due to alignment errors

and real biological changes, transMap projections may have gaps that are not near the

source transcript exon junctions. The number of original introns is an important fea-

ture in the consensus finding process, protecting from retroposed pseudogenes as well

as isoform switching.

Transcripts produced by TM/TMR are also classified. To do so, they are first

aligned in transcript space using BLAT [100]. Alignments are performed twice, once

on a whole transcript mRNA level and once using the in-frame CDS sequence using a

mode of BLAT that does translation alignment. The mRNA alignments are used to

perform the same original intron analysis described above, as well as record standard

alignment metrics such as coverage and identity. The CDS alignments are used to

evaluate transcripts for having frame shifting indels. A track of the frame shifting

indels are added to the assembly hubs produced.
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2.15 homGeneMapping

homGeneMapping is a tool in the Augustus package for cross-species evaluation

of gene sets. It uses Cactus alignments to project the coordinates of genomic features

to other genomes. Homologous gene structures are evaluated based on their consistency

across species and their agreement with the combined extrinsic evidence for the clade.

The latter effectively means, that a gene structure of a species with no native evidence

can be ”confirmed” with evidence for another species by mapping it through the genome

alignment. CAT uses homGeneMapping to evaluate intron and exon features in the

target genomes for 1.) consistency with the reference annotation and 2.) having extrinsic

support by the combined RNA-seq and/or IsoSeq. These measures of support are used

in the consensus finding process.

2.16 Consensus finding

The consensus finding process takes in transcripts from every mode and at-

tempts to find the highest quality ortholog for a source transcript. The modes that are

capable of predicting new transcripts are also evaluated for providing novel isoforms or

novel loci. The final gene set is output with a series of features measuring how confident

the prediction is.

To evaluate transMap, TM and TMR transcripts a consensus score is as-

signed to each. This score is the sum of the alignment identity target alignment

coverage, intron/exon annotation support, original intron support, and intron/exon

RNA-seq/IsoSeq support if extrinsic data were provided.

If CGP and/or PB is run, then the those transcripts are evaluated for providing

novel information. If a prediction did not overlap any transMap projections, then it is

tagged as putative novel and incorporated into the gene set. If a prediction overlaps a

transMap projection that was filtered out during paralog resolution, then it is tagged as

a possible paralog as well as with the names of overlapping transcripts and incorporated

into the gene set. If a prediction overlaps a transMap projection and contains a splice

junction not seen in the reference annotation, then it is tagged as a novel isoform and

incorporated into the gene set as a member of the gene it overlapped with.
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After consensus finding is complete, a final filtering process is performed. This

filtering process deduplicates and strand resolves the transcript set. Duplicates most

often occur when the AUGUSTUS execution modes create an identical transcript model

from different input isoforms. In this case, the duplicates are removed and the remain-

ing transcript tagged with the names of alternative source transcripts. Finally, strand

resolution throws out transcripts that are on opposite strands. The correct strand is

chosen by looking at which contains the most high quality transcripts.

The consensus finding process provides many user-tunable flags that can be

adjusted based on the phylogenetic distances being considered. Users can change how

many exons and introns should be supported by the reference annotation and extrinsic

sources before being considered. Users can also decide if they want only to consider

extrinsic data within that individual species or within all species in the alignment.

Another consideration is the quality of the input extrinsic data. Low quality

RNA-seq data, or RNA-seq libraries not polyA selected, lead to a higher false positive

rate in CGP. These often manifest as small single exon transcripts that can inflate the

rate of putative novel gene calls. Adjusting a cutoff for the number of exons required

to be considered novel can help drill down to a set of interesting candidates.

2.17 assemblyHubs

CAT automatically produces UCSC assemblyHubs [101], which provide a way

to view assemblies, alignments and annotations on the UCSC browser without UCSC

actually hosting any files. An assembly hub needs to be placed in a HTTP accessible

location on the internet, and then can be loaded and viewed on the UCSC browser

directly. The assembly hubs produced by CAT provide the progressiveCactus alignments

as a special type of track called a snake track. These tracks allow for rearrangements to

be viewed, and can be used to click through to other genomes and view the alignment

from that perspective. Additionally, the reference annotations are loaded onto the

reference genome, and all of the steps of CAT annotation are loaded. Splice junctions

inferred from input RNA-seq files are placed in their own track. All annotation tracks

have extra features added to them based on the CAT database that can be viewed by

right clicking a specific transcript and looking at the details page.
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Figure 2.1: CAT pipeline logo
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Figure 2.2: comparativeAnnotator pipeline schematic

Used in the mouse genomes paper.

Figure 2.3: CAT pipeline schematic

CAT pipeline schematic. See the CAT pipeline description for more details.
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Chapter 3

Mouse Genomes Project

This chapter introduces the Mouse Genomes Project, and is largely derived

from my advancement proposal. This section goes into the history of the project, why it

is important to assemble lab mouse strains, and how this project led to the development

of CAT. Key results from the Mouse Genomes Project paper are highlighted. All of

the figures from that paper included here are my own work except for the evolutionary

history overview of Efcab3-like.

3.1 Introduction

As outlined in Chapter 2, the Mouse Genomes Project was the background for

the introduction of CAT. Below, I have adapted the introduction of my PhD advance-

ment proposal in which I explain the scientific importance of this project.

3.2 History of Inbred Mice

Laboratory mouse strains have been vital to biological, biomedical, and bio-

chemical research since the early 20th century. The first published work involving

laboratory mice came in 1902 from Lucien Cuenot, a French scientist who showed that

coat colors follow Mendelian inheritance. Going further, in 1905, he showed that the Ay

allele of the agouti locus, which controls coat color banding, was a lethal allele. In 1910,

W.E. Castle and C.C. Little completed this experiment by showing that the Mendelian
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ratios found by Cuenot were consistent when in-utero death of homozygous mice was

accounted for.

In 1909 E.E. Tyzzer published a paper on the inheritance of tumor transplanta-

tion resistance in mice which suggested non-Mendelian inheritance of resistance. Little

disagreed, and in 1914 published a theory paper suggesting that tumor resistance inheri-

tance was instead a polygenic Mendelian trait. In 1916, Tyzzer and Little demonstrated

evidence of inheritance of tumor resistance with a larger sample size. In the process of

these experiments, Little began the first inbreeding crosses to create a genetically uni-

form strain of mice. These first crosses formed the beginning of the inbred mouse strain

now called DBA [102]. Little went on to create the C57/C58 strain, and founded the

Jackson Laboratory. The Jackson Laboratory today is the central repository of mouse

strains and the home of mouse genetics.

The mouse strains used to found these first colonies came from the collection

of Abbie Lathrop, a mouse fancier in Massachusetts. Mouse fanciers in the late 19th

century collected and bred mice, crossing many wild-derived mouse strains to get desir-

able traits. As a result, the genetic background of most laboratory mouse strains are

a mix of Mus musculus musculus (Eastern Europe), Mus musculus domesticus (West-

ern Europe), Mus musculus castaneus (Southeast Asia), and the hybrid Mus musculus

molossinus (Japan). The majority of the genetic background of laboratory mice is from

Mus musculus domesticus [103]. In mouse research, genetic background is defined in a

single-gene study situation to mean “the genotypes of all other related genes over the

genome that may interact with the gene of interest and potentially influence the specific

phenotype” [104]. In the case of whole genome approaches, as will be discussed here,

genetic background can be generalized to mean the set of genotypic differences that

contribute to phenotype differences between laboratory mouse strains.

3.3 The Mouse Genome Project

The mouse genome, published in 2002, was the second mammalian genome to

be fully sequenced [105]. The assembly was based entirely on mice from the C57BL/6J

strain, which had since become the standard for wild-type inbred mice. This genome,

along with the transgenic and knockout mice that had been produced since the early
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1980s, gave scientists an unprecedented ability to relate genetic sequence to gene func-

tion. Knockout mice with a null allele for every gene were created [106].

While individuals within an inbred mouse strain are genetically almost iden-

tical, there exists variation between strains depending on genealogy and history [107].

Phenotypic differences among strains are pronounced, and dictate which strains are

useful for which experiments. For example, strains that carry the Cdh23ahl allele, in-

cluding A/J, DBA/2J, and NOD/ShiLtJ, have progressive hearing loss starting at 3

months [108]. C57BL/6NJ mice easily get addicted to narcotics and alcohol and so

are used as a model for drug addiction in humans [109]. Other strains were devel-

oped for particular disease models, such as NOD/ShiLtJ for type 1 diabetes [110] and

NZO/HILtJ for type 2 diabetes [111].

Despite the wide use of various mouse phenotypes for specific research aims,

very few of these phenotypes have specific molecular characterization. Many pheno-

types are polygenic, and arise not just from single nucleotide polymorphisms (SNPs)

but also from a complex mixture of genetic architectural changes that include small

insertions and deletions, large scale rearrangements, and mutations caused by the ac-

tion of retroelements [112]. These phenotypes have often been mapped to one or more

quantitative trait loci (QTL), with a handful of functional variant candidates. QTLs

generally have small effect sizes – that is, the percent of a quantitative trait which

can be explained by the loci. Analysis of 843 QTLs in mice found an average effect

size of 3% [113]. In order to better understand the genetic differences between mouse

inbred strains, and how these differences lead to phenotypic differences, two projects

were launched: The Mouse Genomes Project (MGP) [114] and The Mouse Phenome

Database (MPD) [115].

3.4 The Mouse Genomes Project

The first genome-wide analysis of multiple mouse lines came in 2007 with

microarray analysis of of 8.27 million SNPs in fifteen common mouse inbred strains

[116]. These strains were chosen to cover three groups: eight classical strains used

for research, three classical strains used as models for complex human diseases, and

four outgroup strains derived from wild mouse populations. Wild derived strains were
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included to improve understanding of the ancestral history of laboratory mouse strains.

This project was followed by phase 1 of the mouse genomes project, which

sequenced a total of seventeen inbred strains with coverages ranging from 17x to 44x.

Analysis of these data netted a total of 56.7 million SNPs, 8.8 million indels and 0.28

million structural variants [117]. Functional analysis found 120,000 non-synonymous

substitutions and 2,051 premature stop codons. Functional variants previously char-

acterized in a strain were found in strains not previously known to carry the variant.

They found considerable phylogenetic discordance between the wild-derived strains,

with three different phylogenetic histories supported by the same number of loci.

De novo assembly of these strains found 424Mb of new sequence (in contigs

>100bp) not present in the C57BL/6J-derived reference genome. The variants described

above represent, on average, 83.8% of the reference genome and 94.7% of the coding

sequence. The remaining portions are inaccessible to short-read sequencing technologies

due to low-quality mapping. For individual genomes, between 13% and 23% was inac-

cessible. As expected, a higher rate of inaccessibility was found in wild-derived strains

due to divergence from the reference.

A genome only being 75% to 85% accessible is normal for mammals. This

number is actually smaller than the true value, because genome assemblies do not

fully represent repeat structures such as centromeres and telomeres. The sequence

that is represented in an assembly but remains inaccessible is generally from regions of

recent duplications or containing repetitive sequence which leads to multiple mappings.

Structural variant breakpoint regions will also be inaccessible due to reads not mapping

correctly. In order to investigate sequence in these regions, and analyze large structural

variants, high quality genome assemblies of new individuals (humans) or strains (mice)

need to be generated.

3.5 The Mouse Genomes Project – Phase 2

The second phase of the mouse genomes project is ongoing, and was initiated

to address the shortcomings of whole genome sequencing (WGS) alignment detailed

above. This phase will generate reference-quality assembly of eighteen mouse strains

(Table 3.2). These include twelve inbred laboratory strains, four wild-derived inbred
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strains, and two wild strains (Figure 3.1). In order to accomplish this, large insert

size mate pair libraries were constructed and combined with the short insert size data

used for phase 1. The assemblies were constructed and scaffolded by String Graph

Assembler (SGA) [118]. Scaffolding was performed progressively by adding increasing

size mate pair libraries starting at 3kb, then 6kb and 10kb. Available bacterial artificial

chromosome (BAC) end sequencing data were included for the closely related laboratory

strains. Optical mapping [119] and Pacific Biosciences (PacBio) long read data were

included for the wild Mus species Mus castaneus and Mus spretus. These assemblies

were tweaked and then pseudochromosomes produced.

Pseudochromosomes refer to the creation of chromosome-sized scaffolds that

use information from a high-quality reference assembly to combine scaffolds and contigs

from new assemblies into chromosome sized pieces. Currently, two techniques are being

developed to do this.

The first tool, called Ragout (Reference-Assisted Genome Ordering UTility)

[120] uses whole genome alignments to order contigs and scaffolds taking into account

a phylogenetic tree of the genomes being assembled. To do this, whole genome align-

ments are produced between all strains and the reference using the multiple genome

alignment tool progressiveCactus [121]. The second tool, being developed at Oxford by

Leo Goodstadt, uses more traditional BLAST alignments to against the reference, in

this case the strain C57BL6/J represented as the mm10 assembly, to order contigs.

3.6 Analysis of the Mouse Genomes Project

Genome assembly on this scale is unprecedented. Full reference-quality genome

assembly of dozens of individuals of a species has not been done yet for any eukaryotic

species, including humans. Mouse inbred strains provide two important advantages

for undertaking such a project. The first advantage is that inbred mice are generally

considered to be homozygous at every site – by 35 generations of inbreeding 0.001% of

the genome will contain heterogenic tracts [122]. This is important because high-quality

genome assembly of diploid individuals is difficult. Resolving variable repeat regions

and structural variants can be nearly impossible without a way to phase haplotypes.

Currently, phasing haplotypes is limited by the high cost of long-read sequencing or
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alternative technologies such as bacterial artificial chromosome sequencing or optical

mapping [119]. Standard linear representation of genomes cannot accurately represent

regions of heterozygosity, particularly for complicated structural variants segregating

in the population. To address this, graph-based techniques are being developed to

represent all haplotypes present in a individual or individual strain.

By using inbred mice, phasing haplotypes is not necessary. The second advan-

tage to assembly of mouse strains is that they have distinct phenotypic differences that

are as of yet unexplained, but are well characterized. Mouse inbed strains are phylo-

genetically extremely close, having only been separated for around 50-100 years. This

improves the chances of being able to correlate genotype to phenotype without being

confounded by genetic noise. Mouse inbred strains can therefore be a model for using

genomic information to explore phenotypic differences between individuals of a species

that cannot be explained by a small number of genes.

Annotation of genomes is currently a slow and expensive process. Very few

genomes currently available have a high quality gene set annotation. High quality

annotation requires a combination of computational and wet-lab work to validate the

annotations. More than 10 years after the first assemblies, improved annotations of both

human and mouse genomes are regularly released. Starting in 2003, the Encyclopedia

of DNA Elements (ENCODE) [123] project was started with the aim of a complete

functional annotation of the human genome. Starting with 1% of the genome as a

pilot, the project released the first full version in 2011. The Gencode Consortium

[124] provides the reference gene sets to the ongoing efforts of the ENCODE project as

well as other projects such as the 1000 Genomes Project [125]. In 2013, the Gencode

Consortium was awarded a further grant to expand the reference gene sets to the mouse

genome and continue improving the human gene sets.

The main reason that the human and mouse genome annotations are of such

high quality is because of manual annotation. Through the Human and Vertebrate Anal-

ysis and Annotation (HAVANA) group at the Sanger Institute, bioinformaticians are

employed to manually annotate genomes and improve genome annotation. This process

is extremely slow and laborious. The HAVANA working group focuses on pseudogenes,

non-coding transcripts, and splice variants, as these are more difficult for automated
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annotation procedures to detect. In addition to HAVANA, the GENCODE Consortium

continues to try and improve annotation of the mouse and human genome assemblies,

particularly focusing on pseudogenes and noncoding elements.

3.7 Results

The annotation sets generated by this project were included in Ensembl release

V86, and have been included since then. The publication for this project is pending.

Figure 3.3 breaks down the number of genes comparatively annotated, while figure 3.2

breaks down the number of transcripts comparatively annotated. Figure 3.4 highlights

one of the most interesting findings of the project. AugustusCGP identified a previously

unannotated 188-exon gene in mouse. That this gene went unannotated for so long is

a exemplar of continuing human-bias in genome annotation projects. Evolutionary

analysis revealed that this long gene is conserved through vertebrate evolution, and

was broken in the Hominini common ancestor by a large chromosomal inversion co-

occurring with a deletion that wiped out many of the internal exons. In Hominini, both

halves of the gene that remain intact appear to be expressed (Figures 3.6,3.7). The half

that contains the original promoter has higher expression in GTEx data, with increased

expression in testis (Figure 3.9). Fascinatingly, the other half without the promoter has

measurable expression in testis data only despite a lack of histone markers suggesting

that there is a functional promoter (Figure 3.8). Unfortunately, phenotyping of knockout

mice did not produce a noticeable phenotype.

CAT is also useful for lifting non-coding annotations. While the majority of

currently annotated lncRNAs have unknown function, some are well understood. One

such example is lincRNA-cox2, which is a key regulator of inflammatory response in

mice [126]. CAT was able to lift and evaluate this gene in lab mice strains, revealing

a small number of single nucleotide changes present in a subset of lab mouse strains

Figure (3.10).

CAT can be used in conjunction with retrogene finding tools to improve retro-

posed gene detection. In collaboration with the lab of Mark Gerstein, for the Mouse

Genomes Project I provided annotation sets for the laboratory strains to serve as input

to their pseudogene prediction pipeline. These pseudogene predictions were incorpo-
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Figure 3.1: Phylogenetic tree of mouse strains in the Mouse Genomes Project

Phylogenetic distances were inferred from progressiveCactus alignments of the

assemblies and are measured as the rate of nucleotide substitutions found in the

alignment. The alignment outgroup, Rattus, is omitted. Arrows label the groups of

strains in this project. There are twelve classical inbred laboratory strains, four

wild-derived inbred strains, and two wild Mus species.

rated into the final annotation set in combination with the direct liftover of lab mouse

strains Figure (3.11).

Strain Alleles

(unexplained)

Description

129S1/SvImJ Disc1del Developed to serve as a control inbred

strain for many of the steel-derived

ES cell lines (e.g. W9.5 and CJ7).

Genetic background for the Knockout

Mouse Project.
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A/J Ahrb-2, Bhr1A/J,

Bhr5A/J, Cdh23ahl,

Csahl4-A/J, Dysfprmd,

Hc0, Il3ram1, Micrln,

Naip5Lgn1-s, Nrg3ska,

RmcfS, Wnt9bclf1,

mt-Trm1

Cancer/immunology research. Pro-

gressive hearing loss between 3-5mo

(Cdh23ahl). Late onset progressive

muscular dystrophy (Dysf). Resistant

to atherosclerosis, diabetes, obesity,

insulin resistance and glucose intoler-

ance. High incidence of lung adeno-

mas, mammary adenocarcinomas.

AKR/J Ahrd, Hc0, Il3ram1,

Obq3AKR/J,

Obq4AKR/J, RmcfS,

Soat1ald

Cancer/immunology research. High

leukemia incidence. Express ecotropic

retrovirus AKV in all tissues. Obq al-

leles are unknown obesity QTLs.

BALB/cJ Hld, Micrln Used to generate monoclonal antibody

generating plasmacytoma cell lines.

C3H/HeJ Ahrb-2, Gria4spkw1,

In(6)1J, Pde6brd1,

Tir4Lps-d

General purpose strain for cancer, in-

fectious disease, sensorineural, and

cardiovascular research.

C57BL/6NJ Crb1rd8, Cyfip2M1N Split from reference C57BL/6J in

1951. NIH strain.

CBA/J Ahrb-2, Pde6brd1 Blindness by wean age. Spontaneous

exocrine pancreatic insufficiency syn-

drome.

DBA/2J Ahrd, Cdh23ahl,

Fbrwt1DBA/2J,

Fbrwt2DBA/2J,

Fscn2ahl8, Gpn-

mbR150X, Hc0,

Klrd1DBA/2J,

Myo5ad, P2rx7P451L,

Tyrp1isa, A, asp2

Progressive hearing loss between 3-

5mo (Cdh23ahl). Progressive eye ab-

normalities similar to human glau-

coma. Oldest inbred mouse strain.
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FVB/NJ Disc1del, Hc0,

Pde6brd1, mt-Atp8m1,

Fv1

Used for transgenesis due to promi-

nent pronuclei. Inbred for sensitiv-

ity to the Friend leukemia virus B

strain. Early onset retinal degenera-

tion (Pde6brd1). Susceptible to chem-

ically induced tumors.

LP/J Ahrd, cdh23ahl,

Disc1del, EdnrbS

Audiogenic seizures. High incidence

of late life tumors. Endothelin re-

ceptor mutation leads to white areas

of coat completely lacking neural-crest

derived melanocytes.

NOD/ShiLtJ Cdh23ahl, H2g7, Hc0,

Il2m1, mt-Trm1

Polygenic model for type 1 diabetes.

Insulitis, leukocytic infiltration of pan-

creatic islets.

NZO/HILtJ PctpR120H Severe obesity. Model for type 2 dia-

betes.

PWK/PhJ Wild-derived. Crossed with inbred

strains to create polymorphic panels.

Mus musculus musculus (Prague).

SPRET/EiJ Ahrb-3 Wild-derived. Genetic mapping. Mus

musculus spretus (Spain)

WSB/EiJ A, Kitfsl-blz Wild-derived. Genetic mapping. Mus

musculus domesticus (Maryland).

CAST/EiJ Ahrd, Oas1bFlv-r Wild-derived. Genetic mapping. Mus

musculus castaneus (Asia).

Table 3.2: Mouse strains assembled

Phenotype information and descriptions from the Jackson Laboratory. Annotated

alleles with unexplained genotypes are in boldface. The rough divergence times are

included in millions of years. The branch lengths are calculated from the substitution

rates seen in the progressiveCactus alignments of the assemblies.
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Figure 3.2: Lab mouse strain transcripts

Transcript biotype breakdown in the comparative annotation set of laboratory mouse

strains.
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Figure 3.3: Lab mouse strain genes

Gene biotype breakdown in the comparative annotation set of laboratory mouse

strains.
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Figure 3.4: EFCAB evolutionary history

The previously unannotated 188 exon gene Efcab3-like was discovered by

AugustusCGP as part of the mouse genomes project.
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Figure 3.5: EFCAB transcript alignment

Alignment of mouse Efcab3-like to transMap projections on other mammalian

genomes.
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Figure 3.6: EFCAB3

The EFCAB3 side of the rearrangement in human has no promoter markers.
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Figure 3.7: EFCAB13

The EFCAB13 side of the rearrangement in human retains the original promoter.
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Figure 3.8: EFCAB3 expression

EFCAB3 has no measurable expression any tissue but testis, where low expression can

be seen.
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Figure 3.9: EFCAB13 expression

EFCAB13 has expression in most tissues, with a boost in testis and thyroid.
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Figure 3.10: lincRNA-Cox2

lincRNA-cox2 was mapped over to lab mouse strains and a multiple sequence

alignment generated of the resulting transcripts. This revealed a single nucleotide

change present in a subset of lab strains. As phylogenetic distance increases in the

wild-derived strains and other mus sub-species, differences accumulate.
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Figure 3.11: Mouse pseudogenes

The pipeline produced by Cristina Sisu that takes CAT annotations as input to

evaluate pseudogenes in species (top). The number of pseudogenes predicted in each

lab mouse strain, broken down by respective biotype (bottom)
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Source Institute

Sanger Jackson UNC EBI

Strain Brain B-cell T-cell Liver Brain Liver Heart Brain Kidney

129S1 2 16

AJ 2 17

AKRJ 2

BALBcJ 2

C3HHeJ 2

C57B6NJ 2

CASTEiJ 2 5 6 16 7 2 2 2 2

CBAJ 2

DBA2J 2

FVBNJ

LPJ 1

NODShiLtJ 4 16

NZOHlLtJ 2 16

PWKPhJ 2 16 8

SPRETEiJ 2

WSBEiJ 2 16 8

CAROLIEiJ 2 2 2 2

PAHARIEiJ 1 1 1 1

Table 3.3: RNA-seq data available for the mouse strains.

RNA-seq data are available from a variety of source institutions and tissues for each of

the strains in this project. Number represent the number of biological replicates in each

group.
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Chapter 4

CAT paper

This chapter includes the entirety of the CAT paper, which will be submitted

soon. I wrote the text of this paper and performed all of the experiments.

4.1 Introduction

We are entering a new era of genome assembly, an era in which high-quality

vertebrate and plant sized genome assemblies can be created for many orders of magni-

tude less money than the original major reference sequencing projects.

Short read sequencing prices continue to drop and new technologies are be-

ing combined to produce assemblies of quality comparable to those previously created

through intensive manual curation [127, 41, 128, 129, 40] (Kronenberg et al., submit-

ted). These advances have allowed researchers to perform clade genomics, producing

assemblies for multiple members of a species or clade [130, 131], and are required for the

ambitious goals of projects such as Genome 10K [42] which aim to produce thousands

of assemblies of diverse organisms. In addition, efforts are growing to produce de-novo

assemblies of individual humans to evaluate the human health implications of structural

variation and variation within regions not currently accessible with reference assisted

approaches [132, 133, 134].

These advances in genome assembly require subsequent advances in genome

comparison. Central to this comparison is annotation. The challenge of finding func-

tional elements in genome assemblies has been considered for at least the past 20 years
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[37]. This problem is traditionally approached by ab initio prediction (using statistical

models of sequence composition) [62] and sequence alignment of known mRNAs or pro-

teins[25]. The former has limited accuracy while the latter is limited by the existence

of useful sequence information. Annotation pipelines such as MAKER [39], RefSeq [38]

and AUGUSTUS [61] make use of both approaches. See [56] for a recent review of

genome annotation methods.

A huge amount of effort has gone into the annotation of model organisms,

in particular human and mouse. For the past five years, the GENCODE Consortium

[30] has used a wide range of sequencing and phylogenetic information to manually

build and curate comprehensive annotation sets, with over 43,281 and 60,297 ORFs

in mouse and human, respectively. The GENCODE databases give a glimpse into

the diversity of alternative isoforms and non-coding transcripts present in vertebrate

genomes. Similarly, efforts in other model organisms such as zebrafish [135], C. elegans

[136], A. thaliana [137] and many others, have produced high quality annotation sets

for their respective assemblies.

As we enter a second era of genome assembly, consideration should be given

to scaling annotation. Traditional genome assembly projects have been conducted by

large consortia, but now individual labs can now feasibly produce high quality genome

assemblies, and tools must be created to give these labs opportunities to produce high

quality annotation sets on these assemblies.

Here, we present a method and toolkit to make use of multiple genome align-

ments produced by progressiveCactus [138] and existing high quality annotation sets to

simultaneously project well curated annotations onto lesser studied genomes. In con-

trast to most earlier alignment methods [139, 140, 141], progressiveCactus alignments

are not-reference based, include duplications, and are thus suitable for the annotation of

many-to-many orthology relationships. We show how the output of this projected anno-

tation set can be cleaned up and filtered through special application of AUGUSTUS [55],

and how novel information can be introduced by combining the projected annotation

set with predictions produced by Comparative Augustus [72]. These predictions can

be further supplemented and validated by incorporating long range RNA-sequencing

data such as those generated by the IsoSeq protocol [142]. We provide a fully featured
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annotation pipeline, the Comparative Annotation Toolkit (CAT), that can perform this

annotation process reproducibly on any combination of a local computer, a compute

cluster, or on the cloud. We show that this pipeline can be applied to a wide range of

genetic distances, from distant members of the same clade to individualized assemblies

of the same species.

4.2 Results

4.2.1 Comparative Annotation Toolkit

CAT provides a software toolkit designed to perform end-to-end annotation.

The only required inputs are a hierarchical alignment format (HAL) [143] multiple

genome alignment as produced by progressiveCactus and a GFF3 format annotation

file for the previously annotated genome(s). CAT can take as optional input a set of

aligned RNA-seq or IsoSeq BAM format files, as well as protein FASTA files, which

are used to construct hints for AUGUSTUS. Based on input parameters, CAT will run

AUGUSTUS in up to four distinct parameterizations, two of which rely on transMap

projections and two which perform ab-initio predictions using extrinsic information to

guide prediction. The output of these modes of AUGUSTUS are evaluated alongside

the original transMap projections using a combination of classifiers as well as the output

from homGeneMapping [62], which uses the cactus alignments to project features such

as annotations and RNA-seq support between the input genomes. A consensus finding

algorithm combines these gene sets (Figure 4.1). For a more detailed description of

CAT see Supplementary Note 1.

4.2.2 Annotation of great apes

The previous generation great ape assemblies (panTro4, ponAbe2 and gor-

Gor4) as well as the new SMRT (PacBio) great ape assemblies [40] (Kronenberg et al.,

submitted) were annotated by CAT, using GRCh38 and GENCODE V27 as the refer-

ence. CAT identified an average of 141,477 more transcripts and 25,090 more genes in

the SMRT assemblies compared to the Ensembl V91 annotation of the older great ape

assemblies. Relative to the existing human annotation, the CAT annotations represent
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an average of 95.0% of GENCODE gene models and 94.3% of GENCODE isoforms in

the SMRT great ape assemblies. Comparing the CAT annotations of SMRT and older

assemblies, we see an average increase of 610 genes (1.9%) and 3,743 isoforms (1.0%)

(Supplemental Figure 4.5) in the SMRT assemblies; given this relatively small increase,

most of the observed increase in genes and isoforms in the CAT annotations relative to

the Ensembl annotations are therefore a result of the CAT annotation process rather

than the updated assemblies.

Conversely to the overall increases in genes and isoforms, CAT identifies on

average 3,553 fewer protein coding genes than Ensembl. However, this brings the total

number of coding genes more closely in line with the GENCODE annotation of hu-

man, as Ensembl has an average of 2,081 more protein coding genes in great apes than

GENCODE has for human (Supplemental Figure 4.5).

To evaluate these annotations in a non species-biased fashion, consensus iso-

form sequences created from IsoSeq reads for each species were compared to their re-

spective species annotations. As a baseline comparison, equivalent human data was

compared to the high-quality human GENCODE V27 annotation. The CAT annota-

tion of both the SMRT and older great ape assemblies (which used the raw IsoSeq reads

during the annotation process), and the Ensembl annotation of the older assemblies

were compared. We calculated the rate of isoform concordance, that is the fraction

of consensus IsoSeq sequences that match either exactly or fuzzily an annotated iso-

form (Figure 4.2A; methods). Fuzzy matching allows for the intron boundaries to shift

slightly in a isoform. For the SMRT chimpanzee (74.0%/82.1% exact/fuzzy matching)

and orangutan (71.4%/80.4%) genome assemblies the isoform concordance rates were

comparable to the rate for human (74.6%/82.1%). The gorilla GSMRT3.2 assembly

showed lower concordance (67.6%/76.9%), likely due to the higher indel error rate in

that assembly (Supplemental Figure 4.6). In contrast, the isoform concordance rate for

the older assemblies was lower (on average 60.0%/69.6%), mostly reflecting exons in

gaps and mis-joins, and was lower still for the existing Ensembl annotations (on average

47.9%/57.6%).

To assess the utility of CAT annotations for short-read analysis of RNA ex-

pression, species-specific iPSC Illumina RNA-seq data were quantified (Figure 4.2B).
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Comparing the annotations of the older assemblies, CAT identified an average of 9,518

more genes and 54,107 more transcripts with measurable expression compared to En-

sembl.

We might expect the per-gene abundance estimates of the majority of genes in

matched cell types to agree between species, particularly for closely related species. It

is reasonable to therefore prefer a priori an annotation of the great apes that produces

expression estimates that agree with expression estimates from the matched human data

using the GENCODE annotation. Doing these comparisons, we find better correlations

on average using the CAT annotation of the older assemblies (avg. Pearson r=0.63;

Figure 4.2D, Supplemental Figure 4.6) than the Ensembl annotations of the older as-

semblies (avg. Pearson r=0.44). However, we find by far the highest correlation when

CAT annotates the SMRT primate assemblies (avg. Pearson r=0.90). This reflects the

increased representation in the updated assemblies of transcript sequence, especially 3’

UTR regions that are important for quantifying polyA primed RNA-seq (Kronenberg

et al., submitted). Notably, we find that the correlations between the CAT annotations

of the SMRT assemblies and the matched human data are higher than when mapping

the species specific data back to the human GENCODE annotations and comparing to

the human data (4.2D, Supplemental Figure 4.6), demonstrating the benefit of having

species specific annotations within closely related species that have clear cross species

orthology relationships. Analysis at the isoform level showed the same patterns (Sup-

plemental Figure 4.6), albeit with slightly weaker correlations.

Predictions performed by AugustusCGP and AugustusPB were incorporated

into the gene sets based on the presence of splice junctions supported by RNA-seq or

IsoSeq and not present in the transMap/AugustusTMR derived annotations (Figure

4.2C). An average of 1,677 novel isoforms and 64 novel loci were found across the

assemblies with at least one IsoSeq read supporting the prediction.

CAT provides new metrics for diagnosing assembly quality. In the process

of annotating the great ape genomes, we noticed that assemblies that had undergone

Quiver and Pilon [82] correction still exhibited a systematic bias towards coding dele-

tions. These were identified to be related to heterozygosity in the input dataset and a

variant calling based correction method (Kronenberg et al., submitted) was developed
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to resolve these issues, dramatically lowering the coding indel rate and reducing system-

atic bias (Supplemental Figure 4.6). CAT can also measure gene assembly contiguity by

reporting the number of genes whose transcripts end up split across multiple contigs, or

on disjoint intervals in the same contig. Comparison of split gene metrics between the

old and new primate assemblies shows 504 fewer split genes in chimpanzee, 560 fewer

in gorilla and 1,858 fewer in orangutan (Supplemental Figure 4.7).

4.2.3 Annotation of personal human diploid assemblies

High-quality de novo assembly of a human genome is increasingly feasible;

both Pacific Biosciences [80, 144, 81] and 10x Genomics [145] provide tools to con-

struct phased, diploid assemblies. Annotating diploid assemblies provides a window into

haplotype-specific structural variation that may affect gene expression. To evaluate the

ability of CAT to provide this analysis a progressiveCactus alignment was generated

between hg38 and the two haploid cell line assemblies, CHM1 (GCA 001297185.1) and

CHM13 (GCA 000983455.2), and CAT used to annotate the resulting pseudo-diploid

CHM1/CHM13 genome in the alignment. 99.3% of genes present in GENCODE V27

were identified in CHM1, and 99.2% in CHM13 (Figure 4.3A).

After filtering, 733 genes in CHM1 and 585 genes in CHM13 were identified

with frame-shifting indels. Compared to ExAC, which found between 75 and 125 pu-

tative truncating events per individual [146], this result suggests indel errors in the

assemblies are producing false positives. Both assemblies exhibit a systematic over-

representation of deletions despite coming from haploid cell lines (Figure 4.3B, left).

Split gene analysis found the CHM1 assembly to be slightly more gene contiguous (Fig-

ure 4.3B, right).

Manual analysis of the 27 genes missing in CHM13 relative to CHM1 and the

6 genes missing in CHM13 relative to CHM1 led to the discovery of the example region

in Figure 4.3C. This deletion removes most of the exons of TRIB3, a pseudokinase

associated with type 2 diabetes [147] (Supplemental Figure 4.8).

62



4.2.4 Reannotating the rat genome

To test the ability of CAT to translate annotations between more distantly

related genomes, we tested CAT’s ability to reannotate the rat genome using information

from the mouse genome. These genomes differ by approximately 0.18 substitutions/site,

much more, for example, than the 0.04 substitutions/site separating the human and

orangutan genomes[148].

CAT was run on a Cactus alignment between mouse (mm10) and rat (rn6)

using rabbit (oryCun2), Egyptian jerboa (jacJac1) and human (hg38) as outgroups. To

provide hints to AUGUSTUS, RNA-seq data were obtained from SRA [149, 150, 151]

(Supplemental Table 4.2). For comparison we used existing Ensembl and RefSeq rat

annotations and ran the MAKER2 pipeline [39] to generate an annotation set. MAKER

was provided both a Trinity [92] de-novo assembly of the input RNA-seq data provided

to CAT (MAKER does not process raw RNA-seq) as well as the mouse protein sequences

from GENCODE VM11, together providing a comparable input set to what CAT had.

CAT comparatively annotated 78.1% of genes and 91.9% of protein coding

genes present in GENCODE VM11 on rn6 (Supplemental Figure 4.9), representing an

increase of 14,675 genes and 74,308 transcripts over Ensembl V90, 5,104 genes and

32,157 transcripts over RefSeq and 14,541 genes and 81,022 transcripts over Maker.

13,651 loci were identified with no overlap to any other annotation set (Supplemental

Figure 4.10).

We compared CDS exon and CDS intron predictions between annotation sets

(Supplemental Figure 4.10). Ensembl, RefSeq and CAT CDS Exon annotations were all

comparably similar (between 0.648 and 0.659 Jaccard similarity), while for CDS introns

CAT and RefSeq displayed the highest Jaccard similarity (0.841). In all comparisons

MAKER was the outlier (Figure 4.4A) with the lowest similarity to the other sets.

The input RNA-seq dataset was used for isoform quantification against the

CAT, MAKER, Ensembl and RefSeq transcriptomes (Figure 4.4B). CAT identified 1,881

protein coding genes and 1,011 lncRNAs with measurable expression not present in

either Ensembl or RefSeq. CAT also identified 27,712 expressed coding splice junctions

not in the union of RefSeq and Ensembl, for a total of 21,267 novel expressed isoforms.

5,526 of the 13,651 loci unique to CAT had measurable expression.
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AugustusTMR, which uses TransMap and RNA-seq, provides CAT with a

way to improve transcript predictions projected between species. Comparing the 10,335

multi-exon protein coding transcripts in which the AugustusTMR prediction differed

from the input transMap projection, we see considerable overall improvement in result-

ing RNA-seq support of predicted splice boundaries in the AugustusTMR transcripts

(Figure 4.4C).

4.2.5 Annotation of a diverse set of mammals

Finally to test CAT’s ability to annotate across a substantial and diverse range

of genomes, 13 mammalian genomes were comparatively annotated using the mouse

(mm10) GENCODE VM15 as the reference transcript set (Figure 4.5A). Species-specific

RNA-seq was used for every genome (Supplemental Table 4.2). To assess the com-

pleteness of these annotation sets, 4,104 benchmarking universal single copy orthologs

(BUSCO) were used [152], which by design should be nearly uniformly present in each

of these genomes. On average, only 108 BUSCO genes (2.63%) were not annotated by

CAT in each genome (Supplementary Table 4.1).

To estimate the usefulness of these annotation sets, the input RNA-seq datasets

were used to quantify expression of the annotation sets (Figure 4.5B). The main factor

in measurable expression is the variety of the input RNA-seq datasets, as exemplified

by the ability to measure expression of 88.9% of genes annotated in the sheep genome.

To assess the CAT translation of annotations over large phylogenetic distances,

the annotation of human hg19 (GRCh37) produced in the representative mammalian

genome annotation was compared to the current human GENCODE annotation set for

that assembly (GENCODE V27lift37). Of the 19,233 ICE isoforms detected when run-

ning ToFu [142] against hg19, 12,911 (67.15%) fuzzy matched a CAT isoform compared

to 15,920 (82.8%) of the human GENCODE annotations (Figure 4.5C). The Jaccard

similarity of the human CAT annotation to the human GENCODE annotation set was

similar to the similarities seen in the rat comparison (Figure 4.5D).
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4.3 Discussion

Gene annotation is a longstanding and critical task in genome informatics that

must now be scaled to handle the rapidly increasing number of available genomes. At

the time of writing there were XX vertebrate genomes available from NCBI, but only

YY (YY%) had available gene annotation sets, and only ZZ (ZZ%) and WW (WW%)

had Ensembl and RefSeq annotations, respectively.

We introduce CAT to help meet this need, building around a number of key

innovations. Firstly, CAT utilizes the reference-free, duplication aware multiple genome

alignments we have developed. This allows CAT to annotate multiple genomes symmet-

rically and simultaneously, breaking from the traditional pattern of annotating each new

genome individually, as is currently the practice for the RefSeq, Ensembl and MAKER

gene building pipelines. Not only does this solve a key scalability issue, by annotating

multiple genomes simultaneously and consistently CAT is able to produce orthology

mappings, naming each equivalence class of orthologs based upon an initial reference

annotation, and adding to this sets of newly discovered genes. This can provide valuable

evolutionary insights. For example, the analysis of the rat genome shows that many of

the alternative isoforms and projected transcription start sites identified by GENCODE

in mouse genes are supported by expression analysis in rat (Supplemental Figure 4.11).

A second key innovation made by CAT is its leveraging of existing reference

annotations. A huge amount of effort has been placed into the annotation of key species,

such as human and mouse, employing myriad technologies and extensive, labor intensive

manual curation. It is very unlikely that this effort will be replicated across a significant

fraction of other genomes, so instead we propose the ”project and augment” strategy

employed by CAT to annotate related genomes. Here we show that this strategy is

very clearly able to improve the annotation of great ape genomes, using the human

GENCODE set as the reference, and we make the case that we can even improve the

annotation of a genome as well studied as the rat.

To circumvent the reference bias of existing annotations and to discover new

genes and isoforms CAT is able to integrate multiple forms of extrinsic information,

using multiple, novel parameterizations of the AUGUSTUS algorithms. This includes

use of new long-read RNA data, in particular IsoSeq data, and shortly will integrate
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nanopore based long-read data[153]. Using this expression data not only allowed us

to confirm expression of a substantial fraction of isoforms, but allowed us to discover

thousands of novel isoforms and dozens of novel genes in the great ape genomes.

With the advent of more affordable de novo genome assembly there is renewed

interest in the generation of de novo human genomes, and in general the creation of

multiple de novo genomes for a species. This has the advantage of providing fully

independent reconstruction and is particularly appropriate for sequences that are highly

divergent from the reference, e.g. structural variations. However, such assemblies do not

negate the need for genome comparison; Cactus can be parameterized to rapidly create

sensitive whole genome alignments of human genomes, and here we have demonstrated

that CAT can be used to build upon this a high quality diploid gene annotation and

ortholog mapping.

CAT works best when provided RNA-seq data, but for many species this may

not be possible. From our experience, a reasonable amount (on the order of 50 million

reads) of RNA-seq from tissues like brain and liver is fairly informative. Using polyA

selected libraries is recommended, as it greatly reduces false positive predictions in

AugustusCGP. IsoSeq data allowed for the discovery of thousands of novel isoforms in

the great apes, but may be too expensive for many projects. In clade genomics projects,

we would suggest generating RNA-seq for a few of the species and then reliance on

the coordinate mapping that AugustusCGP and homGeneMapping provide to evaluate

support in other members of the clade.

A key barrier to the use of bioinformatics tools is their ease of use; we have

focused on providing cloud agnostic distributions of the CAT software so that, despite

its complexity, it can be run within a uniform computational environment by external

groups.

CAT is not without limitations. In future it would be good to use the genome

alignments to not only project transcripts, but to use the evolutionary conservation

signatures to predict the potential likelihood of projected annotations being coding

[79]. CAT also does not yet provide means to detect new processed, unprocessed and

unitary pseudogene predictions other than via projection of existing annotations. CATs

current implementation also does not attempt to put weights on the features used for
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constructing a consensus gene set. Instead, it simply scores transcripts based on the

sum of all features evaluated. In the future deep learning methods could be added to

CAT to construct feature weights and improve consensus finding, and so better mimic

the labor intensive efforts of manual annotators who currently weigh such evidence.

An earlier version of CAT was used to annotate the PacBio-based assembly

of the gorilla genome [40] as well as produce the current Ensembl annotations for 16

laboratory mouse strains as part of the Mouse Genomes Project (http://www.sanger.

ac.uk/science/data/mouse-genomes-project). In addition, CAT has been proposed

for the Vertebrate Genomes Project (VGP), which aims as a pilot project to assemble

and annotate one member of every order of vertebrate species. CAT also will be used

on the 200 Mammals Project, which aims to add approximately 140 new mammalian

genome assemblies to the existing set (https://karlssonlab.org/2017/08/03/the-

200-mammals-project/). These projects will provide a new understanding of gene

evolution.

4.4 Materials and Methods

CAT produces as output a series of diagnostic plots, an annotation set for each

target genome, and a UCSC comparative assembly hub [101]. Both the pipeline and as-

sociated documentation can be found at https://github.com/ComparativeGenomicsToolkit/

Comparative-Annotation-Toolkit. CAT is constructed using the Luigi (https://

github.com/spotify/luigi) workflow manager, with Toil [154] used for computation-

ally intensive steps that work best when submitted to a compute cluster.

4.4.1 RNA-seq

CAT annotation is improved when species-specific RNA-seq data are provided.

These data are used as hints for AugustusTMR and AugustusCGP. In AugustusTMR,

RNA-seq helps fill in missing information in the alignment, as well as resolve evolu-

tionary changes. In AugustusCGP, RNA-seq additionally helps prevent false positives

inherent in ab-initio gene finding. For these reasons, RNA-seq was obtained from SRA

for all species annotated in this paper. All RNA-seq were aligned to their respective

genomes with STAR [155] and the resulting BAM files passed to CAT to construct the
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extrinsic hints database. See Table 4.2 for accessions and tissue types of RNA-seq data

used for annotation. In addition, for the PacBio great ape annotation, RNA-seq data

were generated using iPS cell lines for human, chimpanzee, gorilla and orangutan derived

from cells for the same individuals as the assemblies (Kronenberg et al., submitted). For

all expression analyses, Kallisto [156] was used.

4.4.2 Annotation set similarity analysis

Jaccard similarity analysis was performed with bedtools [157]. The rat locus

overlap analysis was performed with the Kent tool clusterGenes, which requires exonic

overlap on the same strand.

4.4.3 IsoSeq

IsoSeq full-length non-chimeric reads (FLNC) were also generated from the

great ape iPSC lines and aligned with GMAP [158].To perform isoform level validation

in the primates, the IsoSeq data used as input to CAT were also clustered with isoform-

level clustering (ICE) and then collapsed into isoforms using ToFu [142]. Ensembl

provided a pre-release of their new V91 annotations for panTro4 and gorGor4, but did

not yet run their updated pipeline on ponAbe2.

4.4.4 ICE validation

The output transcripts from ICE were compared to various annotation sets in

both an exact and fuzzy matching scheme. In the exact scheme, the genomic order and

positions of all of the introns (an intron chain) of a transcript are compared to any ICE

isoforms which overlap it. In the fuzzy matching scheme, each annotated intron chain

is allowed to move up to 8 bases in either direction and still be called a match.

4.4.5 BUSCO

The mammalian BUSCO analysis was performed using the mammalia odb9 set

of 4,104 genes. BUSCO was ran against the complete protein coding sequence repertoire

produced by CAT in that species in the ‘protein’ mode.
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4.4.6 progressiveCactus

All cactus alignments except the 14-way mammal alignment were generated us-

ing progressiveCactus (https://github.com/glennhickey/progressiveCactus) com-

mit 91d6344. For the mouse-rat alignment the guide tree was

(((Lesser_Egyptian_jerboa:0.1,(Mouse:0.084509,Rat:0.091589)mouse_rat:0.107923)

rodent:0.148738,Rabbit:0.21569)glires:0.015313,Human:0.143908);

For the primate alignments, the guide tree was

(((((((Susie_Gorilla:0.008964,(Human:0.00655,Clint_Chimp:0.00684)human_chimp

:0.00122)gorilla_chimp_human:0.009693,Susie_Orangutan:0.01894)great_ape

:0.003471,Gibbon:0.02227)great_ape_gibbon:0.01204,Rhesus:0.004991)

old_world_monkey:0.02183,Squirrel_monkey:0.01035)monkey:0.05209,Bushbaby

:0.1194)primate_anc:0.013494,Mouse:0.084509);

An identical tree (with different assembly names) was used for the alignment

of current reference great apes. For the pseudo-diploid human alignment, the guide tree

was

((hg38:0.001,chm1:0.001,chm13:0.001)human:0.01,chimp:0.01);

representing a star phylogeny of the three human assemblies. For the 14-way

mammal alignment, the progressiveCactus commit used was e3c6055 and the guide tree

was

((((oryCun2:0.21,((Pahari_EiJ:0.03,mm10:0.025107)1:0.02,rn6:0.013)1:0.252)

1:0.01,((((hg19:0.00642915,panTro4:0.00638042)1:0.00217637,gorGor3

:0.00882142)1:0.00935116,ponAbe2:0.0185056)1:0.00440069,rheMac3:0.007)

1:0.1)1:0.02,((oviAri3:0.019,bosTau8:0.0506)1:0.17,(canFam3:0.11,felCat8

:0.08)1:0.06)1:0.02)1:0.02,loxAfr3:0.15);

Slightly out-of-date versions of some assemblies (hg19 and rheMac3) were used

because a collaborator had data on those assemblies that they wished to use the align-

ment to analyze. The rodent and primate subtrees were first aligned separately (the

rodent subtree originally included additional mouse strains). The two subtrees were

then stitched together into a single alignment by aligning together their roots along

with several Laurasiatheria genomes. This was done to save alignment time by reusing

existing alignments.
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4.4.7 CAT

CAT was ran on the UCSC Genome Browser compute cluster for all annotation

efforts in this publication. CAT commit f89a814 was used. For a detailed description of

how CAT works, see both the supplementary text as well as the README.md on github

(https://github.com/ComparativeGenomicsToolkit/Comparative-Annotation-Toolkit).

4.4.8 Pipeline runtime

CAT is relatively efficient, taking on the order of thousands of core hours to

run. The largest considerations for runtime are running the various parameterizations

of AUGUSTUS. AugustusCGP may run significantly faster on alignments with many

genomes by reducing the chunk size from the default, but at the cost of lower quality

predictions. AugustusTMR runtime scales linearly with the number of protein coding

genes in the input annotation set, but scales non-linearly with the number of extrinsic

hints provided, particularly if the hints are contradictory. Running CAT on the PacBio

primate genomes took a total of 7,030 core hours, with 3,437 of those dedicated to

running AugustusTMR, 1,191 dedicated to running AugustusPB, and 2,190 dedicated

to running AugustusCGP. Running CAT on the 14-way mammalian alignment took a

total of 24,122 core hours, with 14,045 of those dedicated to running AugustusTMR,

and 8,225 dedicated to running AugustusCGP.
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Figure 4.1: CAT pipeline schematic

The CAT pipeline takes as input a HAL alignment file, an existing annotation set and aligned

RNA sequencing reads. CAT uses the Cactus alignment to project annotations to other

genomes using transMap [55]. These transcript projections are then filtered and classified.

Optionally, AUGUSTUS can be run into up to three parameterizations. 1) AugustusTMR,

treats each transcript projection separately and fixes errors in projection. 2) AugustusPB, uses

long read RNA sequencing to look for novel isoforms. 3) AugustusCGP [72] uses the Cactus

alignment to simultaneously predict protein coding genes in all aligned genomes. CGP and PB

predictions are assigned to transMap projections where possible. All transcripts are classified

for extrinsic support and structure and a chooser algorithm picks the best representative for

each input transcript, incorporating CGP and PB transcripts when they provide novel

supported information. The final consensus gene set as well as associated feature tracks are

used to create a assembly hub ready to be loaded by the UCSC browser.
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Figure 4.2: Primate annotation

A) Validating CAT annotations using IsoSeq data. As a baseline comparison, IsoSeq data from

human iPSC cells was compared to the GENCODE V27 annotation. IsoSeq data from

chimpanzee, gorilla and orangutan iPSC lines were compared to respective species specific

annotations. The IsoSeq data were clustered with ICE and collapsed using ToFu[142]. CAT

annotation of PacBio great apes showed similar isoform concordance to human, and

improvement over the older assemblies. B) Kallisto[156] was used to quantify liver Illumina

RNA-seq from each species on both the gene and transcript level on the existing and new great

ape assemblies. Solid bars are transcripts or genes with TPM >0.1, while shaded hatched bars

are the remainder of the annotation sets. CAT annotation of great apes show nearly the same

number of expressed genes and isoforms as the GENCODE reference on human with the

exception of orangutan. C) The number of novel isoforms and paralogous genes with IsoSeq

support discovered by analysis of AugustusPB and Augustus CGP predictions for each species.

D) Kallisto protein coding gene-level expression for chimpanzee iPSC RNA-seq is compared to

human across all of the chimpanzee annotation and assembly combinations as well as when

mapped directly to human. In all cases the x-axis is the TPM of human iPSC data mapped to

human. The highest correlation (Pearson r=0.96) is seen when comparing Clint annotated

with CAT to GRCh38 annotated with GENCODE V27.72
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Figure 4.3: Pseudo-diploid human annotation

A) The number and fraction of genes comparatively annotated from GENCODE V27 in each

assembly. GENCODE biotypes are simplified into protein coding, lncRNA, ncRNA,

pseudogene and other. Other includes processed transcripts, nonsense-mediated decay, and

immune-related genes. B) Comparative assembly metrics diagnose assembly quality. Frame

shifting insertions, deletions and multiple of 3 indels that do not shift frame are reported for

each assembly (left). Consistent with the great ape genomes, there is a systematic

over-representation of coding deletions, despite these assemblies coming from haploid cell lines.

Split gene analysis reports how often paralog-resolved transcript projections end up on

different contigs, which can measure assembly gene-level contiguity. C) UCSC Assembly

Hub[101] showing TRIB3 deletion in CHM1. Analysis of genes found in one genome and not

the other led to the discovery of a novel structural variant specific to CHM1, which disables

the gene TRIB3. Spanning reads were found in both PacBio and Illumina whole genome

sequencing that validate the deletion.
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C) AUGUSTUS improvement for 10,335 transcripts

Figure 4.4: Validation of CAT annotation using rat

A) Jaccard similarity of CDS introns and exons between rat annotation sets shows

high similarity between CAT and existing Ensembl and RefSeq annotations. B) Each

transcript set was used to construct a Kallisto [156] index, and then all of the input

RNA-seq for annotation were quantified. Solid bars are genes or transcripts with

non-zero expression (TPM >0.1) estimates, while light hatched bars are the remainder

of the annotation set. CAT provides an annotation set with slightly more detectable

genes than other annotation methods, and far more detectable isoforms. C)

AugustusTMR provides a mechanism to clean up transcript projections and shift

splice sites, fixing alignment errors as well as real evolutionary changes. Most of the

10,335 AugustusTMR transcripts chosen in consensus finding show an improvement in

RNA-seq support, which is one of the features used in consensus finding.
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A) Phylogenetic guide tree for 13 mammal alignment

Figure 4.5: 13-way annotation

A) The phylogenetic guide tree for the 13-way mammal alignment. See the methods

section for the exact Newick format tree. B) The gene annotation sets for each of the

13 mammalian genomes were quantified against the mixed input RNA-seq sets

obtained from SRA. Genes or transcripts with TPM>0.1 are solid colors, while genes

or transcripts with no measurable expression are shaded. An average of 2.8 isoforms

per gene per genome had quantifiable expression, suggesting that CAT can infer

isoform information across long branch lengths. C) ICE isoforms were compared in an

exact and fuzzy matching scheme to both the GENCODE annotation of hg19 as well

as the CAT annotation of hg19 derived from mouse. Even at large phylogenetic

distance, CAT still correctly annotates 67.1% of isoforms identified by ICE. D)

Jaccard similarity of CDS introns and exons in human annotation sets show that CAT

identifies a larger portion of introns correctly than exons, with values similar to the

mouse rat comparison.
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Figure 4.5: Primate completeness and biotypes

A) Percent of genes in simplified biotypes identified in both generations of great ape

assemblies. The numbers above the bars are the percent of GENCODE V27 genes

identified broken down by simplified biotypes. The number of genes identified in the

PacBio assemblies increased slightly for all of the great apes. B) The biotypes of the

Ensembl annotations for the older great apes. Compared to the 19,836 protein coding

genes in GENCODE V27, these annotation sets have 23,534, 21,795 and 20,424 protein

coding genes for chimpanzee, gorilla and orangutan respectively, suggesting misclassified

non-coding loci. We found 940 loci in chimp, 1,728 loci in gorilla and 1,270 loci in

orangutan which are labeled as protein coding in Ensembl but are labeled other biotypes

in the CAT annotation. Not only does CAT make tracking orthology relationships

easier, but it also provides much higher correlation with real data, greatly improving

cross-species RNA-seq analysis.
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Figure 4.6: Primate Coding Indels

The rate of transcripts with coding indels seen in the consensus gene sets for the

SMRT primate assemblies are shown with Quiver and Pilon correction (left), and

subsequent Freebayes [83] based correction (right). Freebayes correction was not

performed on GSMRT5 (gorilla). Coding indels are measured by pairwise translated

BLAT alignments of a transcript to its ortholog in human. SMRT assemblies show a

systematic over-representation of coding insertions. After Freebayes correction, the

rate of insertions to deletions is roughly equal and lower than the rate of multiple of 3

indels, which is the expected result due to purifying selection.
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Figure 4.6: Cross-species RNA-seq expression estimates

Gorilla and orangutan iPSC RNA-seq are compared to human iPSC RNA-seq using a

variety of annotation and assembly combinations. All comparisons were performed

with Kallisto. Cross-species comparison was used by tracking gene common names,

and only protein coding genes were considered. Because the pre-release of Ensembl

V91 provided to us lacked common names, we used V90. Ensembl V90 annotation is

on gorGor3, so that genome was used. The x-axis in all plots are the TPM of human

iPSC data mapped to GENCODE V27. The y-axis in all plots is the TPM of

species-specific iPSC RNA-seq mapped to the assembly/annotation pair in the title.

In all cases, using the newest version of the assemblies with CAT provides the highest

correlation.
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Figure 4.6: Cross-species RNA-seq isoform expression estimates

The same analysis as in Figure 4.2D and 4.6 was performed on the isoform level. For

this analysis Ensembl was not included because we lacked a mapping of isoform IDs

between the Ensembl annotation set and GENCODE. Only protein coding isoforms

were considered. The highest correlation is seem in CAT annotation of SMRT

genomes, although correlation falls off considerably as phylogenetic distance increases

from chimpanzee to orangutan.
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Figure 4.7: Primate Split Genes

Split gene analysis looks for transcript projections after paralog resolution that map to

multiple contigs. This provides a metric for assembly contiguity. Despite the PacBio

assemblies not being in chromosome sized pieces, fewer split genes are detected,

suggesting that most contig breaks are not in genic regions.
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Figure 4.8: TRIB3 example

The CHM1 structural variant in figure 4 is shown here from all perspectives. In

CHM1, the short transMaps for the few remaining exons are filtered out and do not

end up in the annotation set. In contrast, CAT annotated 3/4 of the isoforms. This

figure shows the power of the UCSC assembly hub for evaluating structural variants

by being able to view the alignment from any species present.
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Figure 4.9: Rat completeness

The number of genes comparatively identified in the rn6 assembly from mm10

GENCODE VM11, broken down by simplified biotypes. The percentages on top are

the percent of the total genes in each simplified biotype present in VM11. While a

large portion of protein coding genes are identified, much fewer lncRNAs and other

non-coding biotypes are identified.
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Figure 4.10: Rat Locus Venn Diagram

Gene loci were compared between CAT, Ensembl V90, MAKER and RefSeq on rat

rn6. Loci were clustered using the Kent tool clusterGenes, which requires exonic

overlap on the same strand. Only 15,179 loci are shared between all sets.
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Figure 4.10: Rat Exon/Intron Support Venn Diagram

CDS Intron (left) and CDS exon (right) interval exact matches were compared

between CAT, Ensembl V90, MAKER and RefSeq on rat rn6. MAKER had the

highest proportion of unsupported exons and introns, followed by CAT. Only 37.0%

and 34.0% of introns and exons respectively are present in all four annotation sets.
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Figure 4.11: Unsupported junctions example

The rat gene Mast3 has two annotated isoforms in Ensembl supported by RNA-seq.

CAT annotation added 9 new isoforms, two of which had unsupported junctions.

These new annotations reveal an upstream transcription initiation site supported by

RNA-seq.
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Genome Number of BUSCO genes missing

Mus pahari 38

Rat (rn6) 99

Rhesus (rheMac3) 138

Chimpanzee (panTro4) 90

Human (hg19) 26

Gorilla (gorGor3) 184

Orangutan (ponAbe2) 133

Cat (felCat8) 95

Elephant (loxAfr3) 114

Rabbit (oryCun2) 147

Dog (canFam3) 90

Sheep (oviAri3) 162

Cow (bosTau8) 93

Table 4.1: BUSCO genes missing in 13 mammal annotation

BUSCO was used to quantify the number of core key genes missing in the CAT

annotation of 13 mammalian genomes. For this analysis, the mammalian odb 9 set of

4,104 genes was used. BUSCO genes represent core housekeeping genes present at

single copy across long evolutionary distance. On average, 108 BUSCO genes (2.63%)

are missing in each genome. Only three BUSCO genes (EOG090A0GHJ,

EOG090A05ND, and EOG090A04MN) were missing in all 13 genomes.
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Table 4.2: SRA RNA-seq accessions

Species SRA Accessions Tissues

Rat SRR1041777, SRR1768421, SRR1768443, SRR1768444,

SRR299123, SRR636875, SRR636876, SRR636877,

SRR636925, SRR636926, SRR636927, SRR636970,

SRR636971, SRR636972

Mixed, testis,

liver, kidney,

brain

Orangutan SRR306792, SRR2176206, SRR2176207 Brain, testis

Gorilla SRR832925, SRR3053573, SRR306809, SRR306803,

SRR306804, SRR306801, SRR306807, SRR306810,

SRR306805, SRR306806, SRR306802, SRR306800,

SRR306808

Brain, 20 tis-

sue pool

Chimp SRR2040584, SRR2040585, SRR2040586, SRR2040587,

SRR2040588, SRR2040589, SRR2040590, SRR2040591,

SRR3711187, SRR3711188, SRR873622, SRR873623,

SRR873624, SRR873625

brain, heart,

liver, testis,

8 week old

iPSC derived

neurons, un-

differentiated

iPSC

Rhesus SRR306784, SRR306786, SRR306785, SRR2040593,

SRR306783, SRR306787, SRR306780, SRR306778,

SRR306790, SRR2040595, SRR2040594, SRR2040592,

SRR306788, SRR306782, SRR306789, SRR306777,

SRR306779, SRR306781

Kidney, liver,

heart, brain,

testis

Human ERR579132, ERR579133, ERR579134, ERR579135,

ERR579136, ERR579137, ERR579138, ERR579139,

ERR579140, ERR579141, ERR579142, ERR579143,

ERR579144, ERR579145, ERR579146, ERR579147,

ERR579148, ERR579149, ERR579150, ERR579151,

ERR579152, ERR579153, ERR579154, ERR579155

Ovary, tonsil,

fallopian tube,

placenta, en-

dometrium,

rectum, skele-

tal muscle,

liver, fat,

colon, smooth

muscle, lung
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Sheep SRR1653601, SRR1561187, SRR1561150, SRR1265856,

SRR1536790, SRR1561171, SRR1265854, SRR1561367,

SRR1561365, SRR1653570, SRR1653598, SRR1653597,

SRR1266019, SRR1265849, SRR1653600, SRR1656805,

SRR1561366, SRR1653594, SRR1561196, SRR1265855,

SRR1653596, SRR1536788, SRR1266022, SRR1561156,

SRR1266018, SRR1561195, SRR1536770, SRR1266020

Liver, brain,

blood

Cow SRR2960011, SRR2960020, SRR2960008, SRR2960010,

SRR2960012, SRR2960016, SRR2960006, SRR2960015,

SRR2960025, SRR2960003, SRR2960022, SRR2960029,

SRR2960030, SRR2960017, SRR2960032, SRR2960005,

SRR2960027, SRR2960007, SRR2960036, SRR2960026,

SRR2960035, SRR2960004, SRR2960002, SRR2960034,

SRR2960013, SRR2960001, SRR2960021, SRR2960019,

SRR2960009, SRR2960024, SRR2960014, SRR2960031,

SRR2960033, SRR2960023, SRR2960028, SRR2960018

Liver, udder

Elephant SRR1041765, SRR975189, SRR975188, SRR3222430 Fibroblast

Rabbit SRR636919, SRR636872, SRR636964, SRR636871,

SRR636920, SRR636965

Liver, kidney,

brain

Cat SRR3200450, SRR3200448, SRR3200449, SRR3200453 Fetus, lung,

liver

Publicly available RNA-seq obtained via SRA for annotations performed in this paper.
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Chapter 5

Usages of CAT

This chapter provides a brief overview of the papers that CAT has been applied

to. For each of these papers, at a minimum, I ran CAT on the genomes in question

and provided analysis of the results. In many of these projects I informed on assembly

metrics and helped guide other groups on how to improve their assemblies, leading to

improved gene annotations.

5.1 Overview

CAT has been used in a wide variety of projects at this point. After the initial

work in the mouse genomes project, CAT has been applied to the following projects:

1. Repeat associated mechanisms of genome evolution and function revealed by the

Mus caroli and Mus pahari genomes [130].

2. Long read assembly of the gorilla genome [40].

3. Nanopore sequencing and assembly of a human genome with ultra-long reads [128].

4. Revisiting the mouse reference genome: single molecule sequencing of C57BL/6J

‘Eve’ (publication pending).

5. Genome Assembly and Renal Gene Expression Before and After Hibernation in

the American Black Bear (submitted).

6. NHGRI Reference Genomes Improvement Project.
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7. High-resolution comparative analysis of great ape genomes (publication pending).

8. Structurally conserved primate lncRNAs are transiently expressed during human

cortical differentiation and influence cell type specific genes (submitted).

9. A 3-way hybrid approach to generate a new high quality chimpanzee reference

genome (Pan tro 3.0) (accepted).

Here, I will provide a brief overview of my contribution to these projects.

5.2 Primate Genomes

I became involved in the gorilla long read assembly project [40] in late 2015.

This project produced one of the first mammalian genomes sequenced with PacBio and

assembled with Falcon. I ran comparativeAnnotator on this genome and was able to

report an extremely high rate of coding indels - 63% of protein coding transcripts had

some sort of frame-shifting indel. This led the Eichler lab to go and perform Illumina

based error correction on the genomes, and the final published genome had a 26%

frame-shifting indel rate. This is still far higher than the real biological rate.

5.3 Mus pahari and Mus caroli

Mus pahari and Mus caroli are two wild-derived inbred laboratory strains of

mice that were included in the cactus alignments and annotation of the Mouse Genomes

Project. I ran comparativeAnnotator on these genomes, and the annotation sets for

these genomes are now part of Ensembl.

5.4 lncRNAs in primates

I applied CAT to a alignment of GRCh37, panTro4, gorGor4, ponAbe2, rheMac8

and other outgroup genomes. I then took the FANTOM lv3 lncRNA annotation set in

human and lifted it to all of these genomes. I then further made use of the hom-

GeneMapping tool to project RNA-seq information at various timepoints in cortical
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organoid differentiation to all of these genomes. This analysis provided a whole-genome

view of lncRNA conservation across great apes.

5.5 Eve

I applied CAT to a de-novo assembly of a PacBio assembly of Eve, a lab

mouse strain derived from very early frozen embryos of the C57BL/6J strain, which was

the strain used for the reference mouse assembly (mm10). This project was recently

presented as as a poster at ASHG.

5.6 NHGRI Reference Genomes Project

The NHGRI Reference Genomes Project is a project to produce high quality

PacBio assemblies of representatives of various human populations. I used CAT to

annotate 5 such genomes and inform on the indel error rates, leading to the use of

improved indel correction. This project is ongoing.

5.7 Nanopore seqencing of NA12878

I applied CAT in this project to annotate the Oxford Nanopore based assembly

of NA12878, a well studied human individual. Indel analysis showed that this genome

assembly has a similar level of errors to uncorrected PacBio assemblies, and has very

high gene locus contiguity.
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Chapter 6

NOTCH2NL

6.1 Introduction

In my time at UCSC, I also worked on a very different comparative genomics

project. The NOTCH2NL project is an intensive effort to understand a complicated,

segmentally duplicated region of human chromosome 1 implicated in human neurode-

velopmental phenotypes.

I was the lead author on this project. I developed most of the genomics exper-

iments represented in this paper, including designing the microarray based enrichment

approach to analyzing normal and patient genomes. Sections in the methods that

I developed are the 10x Library Enrichment, NOTCH2NL Simons Samples Coverage

Analysis, Hominid Copy Number Analaysis, Gordian Assembler (in conjunction with

Alex Bishara), Establishment of Paratypes in Population (in conjunction with Colleen

Bosworth), Enrichment and Sequencing of Full-Length cDNA (in conjunction with Gary

Mantalas and Ryan Lorig-Roach), CRISPR Mutation of NOTCH2NL in the H9 ES Line

(in conjunction with Meghan Mooring), Estimate of NOTCH2 and NOTCH2NL Expres-

sion in human fetal brain scRNA-Seq (in conjunction with Aparna Bhadun), Paraype

Estimation of NOTCH2NL in Human Population, and NOTCH2NL Expression in Week

5 Neurospheres (in conjunction with Frank Jacobs and Andrew Field).

I wrote a significant portion of the text and helped in editing the entire paper.

I would like to thank David Haussler for his dedication to this project and to making

the impossible possible.
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This project is in many senses very similar to CAT. It is a comparative ge-

nomics project that relies on accurate assembly and annotation of genes to make bio-

logical sense of data. It is different in that instead of being a genome-wide scan, it is

focused on a specific location and gene family.

Below is the full paper as submitted to Cell, and published to BioRxiv as of

November 18th, 2017.

6.2 NOTCH2NL paper
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Summary: 

Genetic changes causing dramatic brain size expansion in human evolution have 

remained elusive. Notch signaling is essential for radial glia stem cell proliferation and a 

determinant of neuronal number in the mammalian cortex. We find three paralogs of 

human-specific NOTCH2NL are highly expressed in radial glia cells. Functional analysis 

reveals different alleles of NOTCH2NL have varying potencies to enhance Notch 

signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch 

signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, 

while deletion accelerates differentiation. NOTCH2NL genes provide the breakpoints in 

typical cases of 1q21.1 distal deletion/duplication syndrome, where duplications are 

associated with macrocephaly and autism, and deletions with microcephaly and 

schizophrenia. Thus, the emergence of hominin-specific NOTCH2NL genes may have 

contributed to the rapid evolution of the larger hominin neocortex accompanied by loss 

of genomic stability at the 1q21.1 locus and a resulting recurrent neurodevelopmental 

disorder. 

Introduction 

The human brain is characterized by a large neocortex that forms the substrate for the 

development of human-specific higher cognitive functions (Lui et al., 2011; Molnar et al., 

2006; Rakic, 2009), but evolutionary changes to our genome that underlie the increase 

in size and complexity of the human neocortex are poorly understood (Varki et al., 

2008). Structural genomic variants account for 80% of human-specific base pairs and 

are therefore an important class of genomic regions to consider (Cheng et al., 2005). Of 
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particular interest are loci where segmental duplications have created entirely new 

human-specific gene paralogs that are associated with cortical development, such as 

SRGAP2C (Dennis et al., 2012), (Charrier et al., 2012), ARHGAP11B (Florio et al., 

2015) and TBC1D3 (Ju et al., 2016). Interestingly, human-specific duplicated genes are 

often located within segmental duplications that mediate recurrent rearrangements 

associated with neurodevelopmental disorders (Stankiewicz and Lupski, 2010) (Florio et 

al., 2015), (Nuttle et al., 2016), (Popesco et al., 2006), (Dumas et al., 2012), (Dougherty 

et al., 2017). One region susceptible to these rearrangements lies on human 

chromosome band 1q21, which was involved in a large pericentric inversion involving 

considerable gene loss and duplication during human evolution (Szamalek et al., 2006), 

contains a disproportionate number of human-specific genes (O'Bleness et al., 2012), 

and also contains the 1q21.1 distal deletion/duplication syndrome interval (Mefford et 

al., 2008), (Brunetti-Pierri et al., 2008). De novo deletion of one copy of this 1q21.1 

locus frequently leads to an abnormal reduction in brain size (microcephaly) and 

reciprocal duplication often results in an abnormal increase in brain size 

(macrocephaly), among other symptoms.  

The 1q21.1 locus was not correctly assembled in the human reference genome until the 

most recent version, GRCh38, hampering early research of 1q21.1 syndromes. This is 

due to several tracts of almost identical paralogous DNA. The most recent work 

(Dougherty et al., 2017) hypothesized that the typical breakpoints for the distal 1q21.1 

deletion/duplication syndrome lie within two of these tracts, at ~chr1:146,200,000 and 

chr1:148,600,000 in GRCh38, respectively, in regions of ~250 kb at 99.7% identity. We 

confirm this, and show that these regions contain little-studied, paralogous genes we 
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call NOTCH2NLA and NOTCH2NLB that affect Notch signaling during human 

neurodevelopment. There are also atypical breakpoints for the distal 1q21.1 syndrome 

(Dougherty et al., 2017) that reach further almost to a third NOTCH2NL paralog we call 

NOTCH2NLC. We show both the typical and atypical breakpoints lead to change in 

NOTCH2NL copy number. This suggests that NOTCH2NL paralogs could contribute to 

the brain size and other cognitive symptoms of 1q21.1 distal deletion/duplication 

syndrome since Notch signaling is central to brain development, determining the timing 

and duration of neuronal progenitor proliferation and neuronal differentiation (Louvi and 

Artavanis-Tsakonas, 2006), (Kageyama et al., 2009), (Hansen et al., 2010).  

We also find that NOTCH2NL genes are unique to the human, Neanderthal and 

Denisovan species among all species that have been sequenced (i.e., unique to 

hominin species), and originated just prior to or during the period where fossil evidence 

demonstrates the most rapid growth in the size of the hominin neocortex (Holloway et 

al., 2004). NOTCH2NL’s origin appears to be in an ectopic gene conversion event 3-4 

million years ago in which part of NOTCH2 “overwrote” an earlier NOTCH2-like 

pseudogene creating a new functional, short, secreted form of NOTCH2.  

NOTCH2NL is expressed in the developing fetal brain at highest levels in radial glia 

neural stem cells, including outer radial glia cells, a cell type hypothesized to generate 

the majority of primate cortical neurons and to contribute more to cortical expansion in 

hominin than in other apes (Lewitus et al., 2013), (Smart et al., 2002). Functional 

analysis of NOTCH2NL by ectopic expression in mouse embryonic stem cell (mESC)-

derived cortical organoids, as well as analysis of CRISPR-generated NOTCH2NL 

deletion mutant human embryonic stem cell (hESC)-derived cortical organoids, 
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suggests that NOTCH2NL expression delays differentiation of neuronal progenitor cells 

including dorsal radial glial cells. This is consistent with cerebral neoteny observed in 

hominin brain development where, perhaps for obstetrical reasons, the human and 

Neanderthal brains are slower to mature during fetal development and expand by a 

factor of 3.3 after birth, compared to a factor of 2.5 in chimpanzees (DeSilva and Lesnik, 

2006; Ponce de Leon et al., 2008).  

Finally, we demonstrate that NOTCH2NL physically interacts with NOTCH receptors 

and can activate NOTCH signaling in reporter assays in the presence and absence of 

NOTCH ligands. From functional and genomic evolutionary evidence, we propose that 

with the creation of the modern forms of NOTCH2NL genes in the last few million years, 

hominins gained a new, secreted NOTCH-like protein that can act to amplify Notch 

signaling and promote increased cortical neurogenesis by delaying differentiation of 

neuronal progenitor cells. Thus, the emergence of NOTCH2NL genes in hominins may 

have contributed to the increase in size and complexity of the human neocortex at the 

expense of susceptibility to 1q21.1 distal duplication/deletion syndrome.  

Results 

NOTCH2NL is a novel NOTCH-like gene, uniquely expressed in humans 

The gene annotated as NOTCH2NL (Duan et al., 2004) on human genome assembly 

GRCh37 resides on the q arm of human chromosome 1 in the 1q21.1 locus, which long 

remained one of the most difficult regions in our genome to assemble due to its highly 

repetitive nature (Szamalek et al., 2006), (Dennis et al., 2012), (Doggett et al., 2006). 

The 1q21.1 locus has undergone a number of human lineage-specific rearrangements, 
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including a pericentric inversion (Szamalek et al., 2006) and the creation of new human-

specific gene paralogs, including HYDIN2 (Dougherty et al., 2017) and SRGAP2B 

(Dennis et al., 2012). Resequencing of the pericentric region of chromosome 1 in a 

haploid human cell line finally resolved previously unmapped regions and led to a 

revised assembly of the 1q21.1 locus, which is incorporated in the human genome 

assembly GRCh38 (Steinberg et al., 2014). This improved assembly reveals the 

presence of four paralogous NOTCH2NL-like genes (Figure 1A): NOTCH2NLA, 

NOTCH2NLB and NOTCH2NLC reside in the 1q21.1 locus, and a fourth quite different 

paralog, NOTCH2NLR (NOTCH2NL-Related) is located near NOTCH2 on the p-arm of 

chromosome 1. The greater than 100 kb genomic regions spanning each NOTCH2NL 

gene show greater than 99.1% identity to NOTCH2 (Figure S1A), suggesting that 

NOTCH2NL paralogs were created within the last few million years, on a time scale 

similar to that of SRGAP2  and HYDIN2 (Dennis et al., 2012), (Dougherty et al., 2017). 

NOTCH2NL results from a partial duplication of the NOTCH2 gene. The duplicated 

segment includes the upstream region of NOTCH2, the NOTCH2 promoter and EGF 

domains from NOTCH2 exons 1 through 4, while excluding the membrane spanning 

and cytoplasmic domains of NOTCH2. Because it lacks a transmembrane domain, the 

NOTCH2NL protein can be secreted by the cells that express it (Duan et al., 2004). 

NOTCH2NL genes contain a fifth exon derived from NOTCH2 intronic sequence that 

provides NOTCH2NL with 20 unique amino acids (Figure 1B, Figure S1I). In paralogs 

NOTCH2NLA, NOTCH2NLB and NOTCH2NLC the 5th exon has a 4 bp deletion 

compared to the corresponding sequence in NOTCH2. We established that this 4 bp 
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deletion is essential for NOTCH2NL protein expression (Figure S1B-E). NOTCH2NLR 

lacks this 4 bp deletion, contains many variants in its protein coding region relative to  

 
Figure 1. NOTCH2NL genes are associated with a neurodevelopmental disease locus and exhibit variable 
protein structures in the human population. (A) Location of NOTCH2NL genes in chromosome 1q21.1 flanking 
the 1q21.1 distal deletion/duplication syndrome locus. This region contains many additional genes derived from 
human segmental duplication (shaded light blue). TAR syn is Thrombocytopenia Absent Radius syndrome. (B) Gene 
and protein features of NOTCH2 and NOTCH2NL. (C) Results of the de novo assembly of NOTCH2NL loci for H9 
human embryonic stem cells and relative allele expression from week 5 cortical organoids as measured by full-length 
cDNA sequencing. * Not enough nucleotide differences present to distinguish between the two NOTCH2NLsh2ntdel 
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alleles, so counts evenly split between the two. (D) Observed NOTCH2NL paratypes (n=72, counting paratypes 
transmitted from parent to child only once) obtained from linked-read sequencing and assembly of 15 individuals. See 
also Fig. S1 and Table S1 and S4. 

NOTCH2 and NOTCH2NL paralogs including a very recent still segregating variant 

(Figure S1I), and analysis of human genome sequence data from the Simons diversity 

project (N=266) (Mallick et al., 2016) reveal a significant fraction of the population (14%) 

lack NOTCH2NLR (Figure. S1G). Together these results suggest that NOTCH2NLR is 

a non-functional pseudogene, although additional investigation would be needed to 

verify that its mRNA and/or protein product is not functional. 

Despite the overall high sequence homology of the NOTCH2NL-gene loci as present on 

GRCh38, each NOTCH2NL gene paralog has distinguishing characteristics (Figure 

1D): GRCh38NOTCH2NLA has an ATG→ ATA mutation in the NOTCH2 initiator 

methionine codon and as a result, GRCh38NOTCH2NLA protein lacks the N-terminal 

39 amino acids including the signal peptide of NOTCH2. We term this allele “short 

NOTCH2NL” and denote it NOTCH2NLSh. GRCh38NOTCH2NLB encodes a longer 

protein with the signal peptide, but has a Thr→Ile substitution in the 5th EGF repeat, 

and is referred to as “long NOTCH2NL with Thr→Ile substitution” (NOTCH2NLL,T197I, 

coordinates relative to the NOTCH2 protein). This substitution occurs at a site for 

fucosylation of NOTCH2. GRCh38NOTCH2NLC contains a 2 bp deletion just 

downstream the original NOTCH2 start codon (NOTCH2NLSh-2ntdel), and like 

NOTCH2NLSh, NOTCH2NLC protein is initiated at a downstream ATG, resulting in a 

short NOTCH2NL protein that lacks the N-terminal signal peptide. 

To better understand the spectrum of NOTCH2NL alleles in the human population we 

sought to fully resolve the NOTCH2NL haplotypes in several individuals. To overcome 
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the challenge of accurately assembling these highly homologous genes we took 

advantage of the linked reads of readset genome sequence technology whereby small 

DNA molecules compatible with short read DNA sequencers are labeled (barcoded) 

according to individual long genomic DNA fragments (>30 kb) from which they are 

derived. We developed an assembly-by-phasing approach called Gordian Assembler 

utilizing this barcoded data to resolve the five NOTCH2-related gene paralogs in 8 

normal individuals (STAR Methods, Figure S1H, Table S1). This and related analysis 

revealed recent, likely ongoing, ectopic gene conversion occurring between 

NOTCH2NLA, B and C (Figure S1F) that is so extensive that NOTCH2NLA and 

NOTCH2NLB act essentially as a single gene with 4 alleles, and to some extent all 

three paralogs act as a single gene with 6 alleles. Our discovery of a large number of 

gene conversion alleles segregating in the human population is consistent with previous 

analysis of 1q21.1 (Nuttle et al., 2013). This, coupled with ~250 kb of DNA at 99.7% 

identity between the genomic regions containing NOTCH2NLA and NOTCH2NLB, 

makes it nearly impossible to assign individual alleles to a specific locus. Focusing on 

one assembly, that of the H9 hESC line, we identified six different alleles derived from 

NOTCH2NLA, NOTCH2NLB and NOTCH2NLC (Figure 1C, Figure S1F). These 

include three additional NOTCH2NL alleles beyond those present in the GRCh38 

reference genome, including a short version with Thr→Ile (NOTCH2NLSh,T197I) and a 

long version without Thr→Ile (NOTCH2NLL). We also observed an additional long 

version with a SNP (rs140871032) causing an in-frame stop codon at amino acid 113 

(NOTCH2NLL,R113*), also seen in 35 of 266 genomes in the Simons Diversity collection 

(Mallick et al., 2016). Finally, we observed a rare paratype NOTCH2NLSh,A154T 
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(rs76765512) with a non-synonymous change in EGF repeat 3 in one assembled 

genome and six Simons Diversity collection genomes. By RNA-seq analysis of cortical 

organoids derived from H9 hESCs (see below), we confirmed that all the NOTCH2NL 

alleles assembled in H9 are expressed. NOTCH2NLL,R113* represents only about 3.5% 

of the transcripts, perhaps due to nonsense-mediated decay (Figure 1C). In the 17 

genomes in which we have determined 72 NOTCH2NL alleles, we have found seven 

different NOTCH2NL sequence variants that affect the features of the resulting protein 

(Figure 1D, Figure S1I). We refer to these various NOTCH2NL alleles as paratypes 

since their physical location can vary among paralogous locations and therefore they do 

not conform to standard haplotypes. A typical NOTCH2NL genotype consists of 6 

NOTCH2NL paratypes (Figure 1C), rather than two haplotypes as for most genes. 

Sequencing of these initial 72 NOTCH2NL-related paratypes is unlikely to have 

revealed all the structural variation in NOTCH2NL in the human population. We expect 

more variants will be found as additional genomes are sequenced and assembled in a 

manner allowing us to read these paratypes (Figure 1D, Table S1, S4). 

Multiple rounds of gene duplication and gene conversion lead to functional 

NOTCH2NL genes only in hominins 

To explore the evolutionary history of NOTCH2NL genes in more detail, we assessed 

the presence and structure of NOTCH2NL genes in other primate genomes. Based on 

alignment of genomic DNA-reads matching or nearly matching the parental NOTCH2 

locus, and determination of allele frequency distributions of Singly Unique Nucleotides 

(SUNs), base variants that occur only in one paralog (Sudmant et al., 2010), we 

established that the NOTCH2NL sequence emerged by a partial duplication of NOTCH2 
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prior to the last common ancestor (LCA) of human, chimpanzee and gorilla. Based on 

absence in orangutan and all other outgroups, it occurred after the LCA of human, 

chimpanzee, gorilla and orangutan (Figure 2). Both chimpanzee and gorilla have 

 

Figure 2. Evolutionary analysis of NOTCH2NL-like genes reveals only hominin NOTCH2NL genes encode 
NOTCH-related proteins. (A) Coverage of Illumina genome sequencing reads mapped to the NOTCH2 locus 
demonstrating an excess of coverage in the 5’ region of NOTCH2 into intron 4 in all hominins examined, chimpanzee 
and gorilla, but not orangutan. (B) Schematic of NOTCH2NL-containing genes identified in gorilla, chimpanzee and 
human demonstrating that only in human NOTCH2NL genes encode NOTCH2-related proteins. (C) Immunoblot 
using an N-terminal NOTCH2 antibody (aa 25-255) of protein extracts from human and chimpanzee pluripotent stem 
cells showing expression of full-length NOTCH2 in both samples, but NOTCH2NL only in human. (D) Summary of the 
major events leading to the emergence of NOTCH2NL-related genes in the great ape lineage. See also Figure S2. 

variable read depth over the region encompassing their NOTCH2NL-like sequences, 

suggesting they contain multiple versions of truncated NOTCH2 putative pseudogenes 

sharing the same breakpoint within NOTCH2 present in the human NOTCH2NL genes 

(Figure 2A). Using Bacterial Artificial Chromosome (BAC) clones and whole-genome 

shotgun contigs, we identified several individual NOTCH2NL-like genes in the 

chimpanzee genome, all of which were truncated and predicted to be non-functional 
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(Figure 2B, Figure S2). Some of these chimpanzee NOTCH2NL-like pseudogenes lack 

a 52 kb region containing exon 2. The resulting NOTCH2NL-like Δexon2 transcripts 

encode a protein of 88 amino acids with no homology to human NOTCH2NL (Figure 

S2F), which was confirmed by ectopic expression of one of these chimp NOTCH2NL-

like cDNAs (Figure S2D). From whole-genome shotgun contigs we found evidence for 

additional NOTCH2NL-like pseudogenes in the chimpanzee lacking either exon 1 or 

exon 1-2, located downstream of various 3’ truncated genes (Figure 2B, Figure S2B) 

These make pseudogene fusion-transcripts of the form PDE4DIPexon1-27-

NOTCH2NLexon2-5, TXNIPexon1-NOTCH2NLexon2-5 MAGI3exon1-NOTCH2NLexon3-5, and 

MAGI3exon1-14-NOTCH2NLexon3-5 as confirmed by RT-PCR using RNA derived from 

chimpanzee induced pluripotent stem cells (IPSCs) (Figure S2C). Sequence analysis of 

these transcripts established that the NOTCH2NL exons in all of these fusion-genes 

were out of frame with the upstream exons, indicating that these fusion genes cannot 

produce functional NOTCH2NL proteins (Figure S2F). In support of this result, whereas 

we can detect NOTCH2 protein in extracts derived from chimpanzee IPSCs, we cannot 

detect a NOTCH2 N-terminal antibody reactivity in the molecular weight range expected 

for NOTCH2NL proteins under the same conditions where we can detect human 

NOTCH2NL protein (Figure 2C). Overall, the analysis of the configuration of 

NOTCH2NL-like genes in the chimpanzee genome and experimental evidence of lack 

of the protein indicates that chimpanzees lack a functional NOTCH2NL gene. 

In the gorilla genome, three fusion pseudogenes involving NOTCH2NL-like sequence 

were identified (Figure S2A). In one gorilla BAC, exons 1-12 of BRD9 are fused to 

exons 3-5 of NOTCH2NL. Surprisingly, two other gorilla fusion pseudogenes were 
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similar to NOTCH2NL-fusion pseudogenes found in chimpanzee: a PDE4DIPexon1-27-

NOTCH2NLexon2-5 fusion was supported by BAC sequence and a MAGI3exon1-14-

NOTCH2NLexon3-5 fusion was supported by trace archive sequence. Transcript support 

was obtained for BRD9-NOTCH2NL and PDE4DIPexon1-27-NOTCH2NLexon2-5 using RNA 

from gorilla iPSCs (Marchetto et al., 2013) (Figure S2C).  

The presence of two distinct fusion pseudogenes in both gorilla and chimpanzee, 

PDE4DIP-NOTCH2NL and MAGI3-NOTCH2NL, suggests that these two pseudogenes 

were established in the LCA of human, chimp and gorilla. Yet none of the chimpanzee 

or gorilla pseudogenes are found in the human genome. Further, human NOTCH2NL 

genes are all in the vicinity of PDE4DIP, but in stark contrast to the PDE4DIP-

NOTCH2NL fusion genes in chimp and gorilla, human NOTCH2NL genes have a 5’ 

genomic structure highly similar to NOTCH2. This suggests a plausible evolutionary 

history of NOTCH2NL genes as follows (Figure 2D): Both the PDE4DIP-NOTCH2NL 

and MAGI3-NOTCH2NL fusion pseudogenes were present the common ancestor of 

human, chimp, and gorilla between 8 and 14 MYA. Then, only in the human lineage, the 

ancestral PDE4DIP-NOTCH2NL fusion gene was ‘revived’ by NOTCH2 through ectopic 

gene conversion. With the acquisition of exon 1 and the upstream promoter, this 

created a viable NOTCH2NL gene encoding a stable NOTCH-related protein. Because 

no remnants of the MAGI3-NOTCH2NL fusion pseudogene are found in the human 

genome, this must have been lost, perhaps in the upheaval of the pericentric inversion 

on chromosome 1 and subsequent large-scale copy number changes (Szamalek et al., 

2006). The revived human NOTCH2NL subsequently duplicated twice more to form the 

cluster of three nearly identical NOTCH2NL genes on the q arm of chromosome 1 in the 
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human genome. Chimpanzee and gorilla had additional, species-specific NOTCH2NL-

like gene duplications, but none produced functional genes.  

It should be noted that ectopic gene conversion is not unusual in this region (Nuttle et 

al., 2013). This scenario involves quite a number of lineage-specific gene duplications, 

rearrangements and other losses. Close neighbors of NOTCH2NL have a similarly 

elevated number of lineage-specific structural events, e.g., the NBPF paralogs, which 

are estimated to have had six lineage-specific duplications in the human lineage 

(O'Bleness et al., 2014). This propensity for segmental duplication, loss, rearrangement 

and ectopic gene conversion is characteristic of what have been called duplication hubs 

in the ape genomes (Bailey and Eichler, 2006). NOTCH2NL is part of such a hub.  

To explore when the gene conversion event that revived NOTCH2NL occurred, we 

calculated the number of substitutions per kilobase between NOTCH2 and NOTCH2NL, 

and we analyzed three archaic human genomes (Lazaridis et al., 2014), two 

Neanderthal genomes (Prufer et al., 2017), (Prufer et al., 2014) and one Denisovan 

genome (Meyer et al., 2012). While archaic humans appear to have three NOTCH2NL 

loci (presumably A, B and C) and one NOTCH2NLR like modern humans, the 

Neanderthal and Denisovan genomes have only A, B and C-like sequence, and lack 

NOTCH2NLR. The presence of NOTCH2NLA, B, and C in all 3 hominin genomes 

suggests that the ectopic gene conversion creating hominin NOTCH2NL happened prior 

to their LCA, more than 0.5 MYA. The substitution rate between human NOTCH2 and 

human paralogs NOTCH2NLA, B or C is roughly half of that between human and chimp, 

which, if calibrated to a human-chimp divergence of 6.5 MYA, gives a date for the 

ectopic gene conversion between 3 and 4 MYA. This corresponds to a time just before 
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or during the early stages of the expansion of the hominin neocortex (Holloway et al., 

2004) (Figure S2E).  

NOTCH2NL is expressed in Radial Glia neural stem cells during human cortical 

development 

NOTCH2NL shares promoter sequence with NOTCH2 and is therefore expected to be 

expressed in a pattern similar to NOTCH2. To learn what cell types in the developing 

brain express NOTCH2NL, we examined NOTCH2NL expression in 3,466 single cells 

derived from human fetal brains ranging in age from 11 to 21.5 post coital weeks (pcw) 

that were sampled from multiple regions of the dorsal and ventral telencephalon 

(Nowakowski, et al, Science, In Press, <bit.ly/cortexSingleCell>) (Figure 3). 

 

Figure 3. Radial glia-specific expression of NOTCH2NL in human fetal brain samples. Scatterplot of 3466 fetal 
brain cells after principal components analysis and t-stochastic neighbor embedding (tSNE) samples as described in 
Nowakowski, et al, 2017. Cells are colored by annotated cell type clusters (A), NOTCH2NL expression (B) and 
NOTCH2 expression (C). See also Figure S3. 

This data set contains a broad diversity of cell types including radial glia neural stem 

cells, intermediate progenitor cells (IPC), excitatory and inhibitory neurons, 

oligodendrocyte progenitors (OPC), astrocytes and microglia. The NOTCH2NL 
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expression pattern we found closely resembles that of NOTCH2 and is highest in 

various radial glia populations, including outer radial glia cells (oRG), as well as 

astrocytes and microglia (Figure 3, Figure S3). NOTCH2NL expression in the oRG 

population is especially interesting as this pool of neural stem cells is thought to be 

responsible for much of the extended neurogenesis unique to human. This 

neurogenesis occurs in the more sparsely packed outer subventricular zone and recent 

transcriptional analysis suggests that oRG cells themselves express factors to support 

the subventricular niche (Pollen et al., 2015). In this setting, a secreted factor like 

NOTCH2NL might have a critical role in promoting maintenance of the neural stem cell 

fate. 

We also estimated the relative expression of the H9 hESC paratypes of NOTCH2NL in 

bulk RNA undifferentiated cells and week 5 cortical organoids derived from H9 ESCs 

(see below). We used two different methods for this analysis. First, we measured the 

relative abundance using paratype-specific features in Illumina short-read RNA-seq 

data (Figure S3B). This analysis suggests that NOTCH2NLL has the highest 

expression, and the other NOTCH2NL paratypes are expressed at levels 20-60% of 

NOTCH2NLL. These estimates have some degree of uncertainty as much of the short 

read data is uninformative as to which paratype is being measured. As an alternative 

approach, we made a full-length cDNA library enriched for transcripts originating from 

chromosome 1q21.1 using biotinylated oligos and sequenced this library using a 

MinION nanopore sequencer. The resulting full-length NOTCH2NL transcripts were 

then assigned to their appropriate paratype, which allowed for a more accurate 

estimation of relative paratype expression (STAR Methods). The results confirmed that 
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NOTCH2NLL has the highest expression, accounting for 43.6% of the transcripts, and 

indicated that the other paratypes have expression levels between ~8% and 40% of 

NOTCH2NLL (Figure 1C).  

Ectopic expression of NOTCH2NL delays mouse cortical neuron differentiation 

 

To address the role of NOTCH2NL in cortical development, we assessed the effects of 

ectopic NOTCH2NL in mouse cortical organoids. We generated stable cell lines of 

mouse ESCs ectopically expressing human NOTCH2NLSh,T197I, and mESC EV control 

cell lines. mESCs were differentiated into cortical organoids using an established 

protocol (Eiraku et al., 2008) (Figure 4A). 

 

Figure 4. Ectopic expression of NOTCH2NL delays neuronal differentiation. (A) Overview of mouse cortical 
organoid differentiation protocol. (B) Genes upregulated in mouse organoids ectopically expressing 
NOTCH2NLSh,T197I compared to EV. Asterisks indicate genes associated with radial glia cells. (C) Genes 
downregulated in mouse organoids ectopically expressing NOTCH2NLSh,T197I compared to EV. Asterisks indicate 
genes involved in neuron differentiation. n = 3 per condition, pools of 16 organoids per replicate. See also Figure S4 
and Table S2. 

 At day 6 of differentiation, a stage where most cells express the neural stem cell 

marker Pax6, mouse cortical organoids were harvested for RNA sequencing (RNA-seq). 

Differential expression analysis identified 147 differentially expressed genes (p-adj < 
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0.05, Figure S4A-B, Table S2). Mouse organoids ectopically expressing NOTCH2NL 

showed increased expression of genes involved in negative regulation of neuron 

differentiation, such as Foxg1, Id4, Fezf2, Sox3 and Six3 (Figure 4B) and several 

genes associated with neuronal differentiation were downregulated, including Cntn2, 

Nefl, Gap43, and Sox10 (Figure 4C, Figure S4C). These results suggest ectopic 

expression of NOTCH2NL in mouse organoids delays differentiation of neuronal 

progenitor cells. 

Deletion of NOTCH2NL affects 

development of human cortical 

organoids 

To explore the functional role of 

NOTCH2NL in human cortical 

development, we used the 

CRISPR/Cas9 system to generate 

genetic deletions of NOTCH2NL 

genes in hESCs. To avoid 

targeting NOTCH2, whose 

sequence is >99% identical to 

NOTCH2NL even in intronic 

regions, we used two guides, one 

in intron 1 with a 1 base mismatch  

Figure 5. Cortical organoids from hESCs lacking NOTCH2NL show premature neuronal maturation. (A) 
Schematic showing NOTCH2NL alleles present in control (H9*) and NOTCH2NL mutant (H9NOTCH2NLΔ) cell lines. (B). 
Multi-region UCSC genome browser view of NOTCH2 and NOTCH2NL genes with tracks showing normalized 
genome sequencing coverage demonstrating homozygous loss of exon 2-5 sequence for NOTCH2NLA and 
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NOTCH2NLB and heterozygous loss for NOTCH2NLC. Some coverage is seen in NOTCH2NLA and NOTCH2NLB 
due to a small portion of ambiguous linked read barcodes. Schematics of the cortical organoid protocol used (C) with 
pictures showing cells at various stages (D) and cell types generated. (F-I) Immunofluorescence staining of H9 hESC 
cortical organoids with markers of radial glia (PAX6, BLBP), intermediate progenitor cells (TBR2) and deep layer 
excitatory projection neurons (TBR1, CTIP2). (J) Spearman’s rank correlation plot of the top 250 upregulated and 
downregulated genes (H9NOTCH2NLΔ / H9*), and the matching data in W3, W4 and W5 H9 organoids. Numbers in plot 
indicate pairwise correlation values. (K) Heatmap showing expression profiles for a selection of genes in the 
significantly enriched GO cluster ‘neuron differentiation’. n = 3. 

with NOTCH2 and NOTCH2NLR, but identical to the corresponding sequence in all H9 

1q21 NOTCH2NL genes, and another that spans a 4 bp deletion relative to NOTCH2 at 

the start of exon 5. This region is also quite different in NOTCH2NLR (13/20 

mismatches to NOTCH2NL) (Figure S5A).  

Clones were screened by PCR for the large deletion from intron 1 to exon 5 and then 

several were expanded and analyzed by targeted linked-read sequencing and assembly 

as described above to determine which NOTCH2NL genes were affected and to 

evaluate potential off-target effects at NOTCH2. For one clone, the sequence analysis 

revealed that NOTCH2NLA and B genes showed a homozygous deletion, and 

NOTCH2NLC a heterozygous deletion, leaving only one NOTCH2NLC (NOTCH2NLSh-

2ntdel) intact. This clone is denoted H9NOTCH2NLΔ (Figure 5A-B). As a control, another 

clone was selected that went through the same CRISPR/Cas9 transfection and 

selection process, but does not harbor any alterations around the guide sites in 

NOTCH2NL, NOTCH2NLR or NOTCH2 loci (denoted H9*). 

Neuronal tissues were generated from these clones by directed differentiation of human 

H9 hESC into cortical organoids (Figure 5C-D). hESC-derived cortical organoids 

resemble early developmental stages of primate cortex development (Eiraku et al., 

2008) (Figure 5E-I), displaying neural rosette structures that contain radially organized 

cortical RG cells giving rise to cortical neurons (Figure 5E-F) (Lancaster et al., 2013), 

(Pasca et al., 2015). Bulk RNA-seq transcriptome analysis of cortical organoids isolated 
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at weekly time points reveals that human ESC-derived cortical organoids display 

efficient and selective induction of dorsal forebrain marker genes, highly resembling the 

expression pattern during early stages (8-9 post conception weeks) of human dorsal 

forebrain development in vivo (Figure S5B, Table S2). H9NOTCH2NLΔ organoids remained 

slightly smaller compared to control (H9*) organoids (Figure S5C). At week 4 (w4), 

cortical organoids were harvested for RNA-seq analysis and differentially expressed 

(DE) genes between H9NOTCH2NLΔ and H9* were discovered by DESeq2 analysis (Love 

et al., 2014). To investigate a potential shift in timing of cortical neuron differentiation 

between H9NOTCH2NLΔ and H9* organoids, gene expression of the top 250 up- and down-

regulated DE genes was correlated to the previously generated RNA-seq profiles of H9 

w3, w4 and w5 cortical organoids (Figure S5B, Table S2). This analysis reveals that 

while differentially expressed genes in w4 H9* correlate best with w4 H9 cortical 

organoids, strikingly, w4 H9NOTCH2NLΔ showed a better correlation with w5 H9 cortical 

organoids (Figure 5J). This indicates that w4 H9NOTCH2NLΔ organoids prematurely 

express characteristics of older w5 organoids, suggesting H9NOTCH2NLΔ are advanced in 

their development compared to H9* organoids. To obtain better insights into what 

aspects of cortical organoid development were advanced by NOTCH2NL deficiency, we 

performed GO-term enrichment analysis for the selection of DE genes in H9NOTCH2NLΔ 

which were found to correlate better with w5 H9 cortical organoids than organoids of w4 

(Figure 5K). This cluster of 212 DE genes was found to be enriched for genes involved 

in neuron differentiation, including key regulators of neuron differentiation such as 

DLX1, BCL11B, SEMA3A, UNC5D and FGFR2. These data suggest that w4 
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H9NOTCH2NLΔ display premature differentiation, which further supports a potential role for 

NOTCH2NL in delaying differentiation of neuronal progenitors in the human cortex.  

NOTCH2NL amplifies Notch-signaling through direct interaction with NOTCH 

receptors 

We next sought to test whether NOTCH2NL can influence NOTCH2 signaling. The 6 N-

terminal EGF domains encoded in NOTCH2NL are also present in the full-length 

NOTCH2 receptor. These 

specific domains do not 

have a clearly described 

function in activation of 

the NOTCH pathway. 

However, they are 

conserved from 

Drosophila to human, 

indicating that they are 

important for normal 

NOTCH receptor function. 

There is evidence that the 

N-terminal EGF domains 

are involved in  

Figure 6. NOTCH2NL paratypes interact with NOTCH receptors and amplify NOTCH signaling. (A) Co-
immunoprecipitation of NOTCH2 and NOTCH2NL analyzed by immunoblot. (B-C) Co-transfection of NOTCH2-GAL4 
and NOTCH2NL boosts activity of the pGL3-UAS reporter. Upon stimulation of NOTCH2-GAL4 with JAG2 in a co-
culture setup, NOTCH2NL remains effective in boosting reporter activity. Average of 4 independent experiments with 
6 replicates each. Two-way ANOVA with Tukey’s HSD (** p <10-8, *** p <10-12), error bars indicate SEM. (D) 
NOTCH2NL is secreted and can be immunoprecipitated from the medium of mouse ESCs ectopically expressing 
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NOTCH2NL. (E) Addition of NOTCH2NL-conditioned medium to cells transfected with NOTCH2-GAL4 and the pGL3-
UAS reporter also enhances reporter activity. Average of 2 independent experiments with 4 and 3 replicates each. 
One-way ANOVA with Tukey’s HSD (* p < 10-4), error bars indicate SEM. (F-G) The effect of NOTCH2NL is not 
restricted to NOTCH2, in an assay with NOTCH1-GAL4 we observe similar effects. (H-K) The presence or absence 
of the ancestral start codon, and the amino acid 197 Thr→Ile variant, each show specific characteristics in the 
reporter assays. (H-I) Average of 2 independent experiments with 6 replicates each. Two-way ANOVA with Tukey’s 
HSD (** p < 10-8, *** p < 10-12), error bars indicate SEM. (J-K) 6 replicates in one experiment. Student’s t-test with 
Holm-Bonferroni correction (* p < 0.05, ** p < 10-3), error bars indicate SD. See also Figure S6. 

dimerization of NOTCH receptors, and that receptor dimerization modulates NOTCH 

activity (Duering et al., 2011), (Kopan and Ilagan, 2009), (Xu et al., 2015), (Nichols et 

al., 2007). For example, mutations in the N-terminal EGF domains of NOTCH3 are 

commonly found in patients suffering from a disease called CADASIL, a hereditary 

stroke disorder, (Joutel et al., 1997) and these mutations cause aberrant aggregation 

and dysfunction of NOTCH3 receptors (Karlstrom et al., 2002). 

To establish a functional relationship between NOTCH2NL and NOTCH2, we searched 

for interactions between these proteins. By co-transfecting HA-tagged versions of 

NOTCH2NLSh and NOTCH2NLL,T197I with a myc-tagged version of NOTCH2 in HEK293 

cells we were able to detect co-immunoprecipitation of both proteins by pull-down of 

either NOTCH2NL or NOTCH2 (Figure 6A).  

Under these co-IP conditions, we did not find detectable interactions with the other 

EGF-like domain interacting proteins EGFR and PDGFRB (Figure S6A-B). These 

findings indicate NOTCH2NL may influence the conformation and dimerization of 

NOTCH2. 

To assess the influence of NOTCH2NL on activation of the NOTCH2 receptor, a 

luciferase reporter assay was used. The NOTCH2-ICD DNA binding domain was 

replaced with a GAL4 domain (NOTCH2-GAL4), and used together with a pGL3-UAS 

luciferase reporter. CMV-Renilla was used in all reporter experiments for normalization. 
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This allows for precise measurements of NOTCH2-GAL4 activation, without secondary 

effects from other NOTCH receptors or other pathways (Habets et al., 2015), (Groot et 

al., 2014). Co-transfection of empty vector (EV), NOTCH2NLSh or NOTCH2NLL,T197I with 

NOTCH2-GAL4 in U2OS cells increased pGL3-UAS reporter activity (Figure 6B). 

NOTCH2NLSh increased activity by 24% and NOTCH2NLL,T197I increased activity by 

63%, indicating both the short and long forms of NOTCH2NL can enhance NOTCH 

receptor activation.  

Next, we tested whether NOTCH2NL is still functional under active NOTCH signaling 

conditions. For this, U2OS cells were transfected with NOTCH2-GAL4 and either EV, 

NOTCH2NLSh or NOTCH2NLL,T197I. The transfected cells were then co-cultured on a 

layer of cells expressing the NOTCH ligand JAG (U2OS-JAG2-Myc) or control (U2OS) 

cells. Trans-interaction of NOTCH2-GAL4 with JAG2 leads to high activation of the 

pGL3-UAS reporter in this system. NOTCH2NL was able to increase cleavage of the 

NOTCH2-GAL4 receptor, indicating that even under these high-signaling conditions 

NOTCH2NL can further amplify Notch signaling (Figure 6C).  

We then tested interactions specific to secreted NOTCH2NL. To make secreted 

NOTCH2NL, mouse ESCs were transfected with NOTCH2NLSh or EV as a control. The 

medium was collected after 32 hours, and used for immunoprecipitation with NOTCH2 

aa 25-255 antibody. The isolated protein samples were analyzed by Western blot, which 

confirmed the presence of secreted NOTCH2NL in the medium (Figure 6D). The two 

bands of NOTCH2NLSh may represent the glycosylated protein (higher band) and 

unmodified protein (lower band). This pattern was also observed in ectopic expression 

of N-terminal fragments of the NOTCH3 receptor (Duering et al., 2011). 
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To determine if NOTCH2NL can act cell non-autonomously on NOTCH signaling, we 

generated medium conditioned with secreted NOTCH2NL or EV-transfected control 

cells. U2OS cells were transfected with only NOTCH2-GAL4 and the luciferase reporter. 

After 6 hours, cells were replated in either EV-, NOTCH2NLSh- or NOTCH2NLL,T197I-

conditioned medium harvested from other transfected U2OS cells. After 24 hours, cells 

were isolated for luciferase measurements. NOTCH2NLSh-conditioned medium 

increased pGL3-UAS reporter activity by 24% and NOTCH2NLL,T197I-conditioned 

medium increased reporter activity by 22% (Figure 6E). NOTCH2NLSh and 

NOTCH2NLL,T197I have a different N-terminal structure (Figure 1C), whereby 

NOTCH2NLSh lacks the NOTCH2 signal peptide for canonical transport through the 

secretory pathway, yet NOTCH2NLSh is equally potent as NOTCH2NLL,T197I when 

present in conditioned medium. This suggests NOTCH2NLSh acts in a cell non-

autonomous manner on Notch signaling after being secreted by an unconventional 

pathway  (Steringer et al., 2015), (Rabouille, 2017). In contrast, in the co-transfection 

experiments NOTCH2NLL,T197I was clearly more potent than NOTCH2NLL,T197I-

conditioned medium (Figure 6B). This suggests NOTCH2NLL,T197I can amplify Notch 

signaling through both cell-non-autonomous and cell-autonomous mechanisms. 

We next tested if NOTCH2NL could also influence the activity of the other NOTCH 

receptor paralogs NOTCH1 and NOTCH3. NOTCH2NLSh and NOTCH2NLL,T197I were 

able to activate cleavage of both NOTCH1-GAL4 and NOTCH3-GAL4, both in co-

culture with U2OS control cells and U2OS-JAG2 cells, at a level similar to NOTCH2-

GAL4 (Figure 6F-G, Figure S6C). To assess whether NOTCH2NL functions differently 

under various ligand stimulated conditions, we tested the ability of NOTCH2NL to 
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enhance NOTCH receptor activity in OP9 cells stably expressing DLL1 and control OP9 

cells. NOTCH2NLSh and NOTCH2NLL,T197I mediated activation of the NOTCH2-GAL4 

receptor was essentially the same when stimulated by JAG2 or DLL1 (Figure S6D). 

Lastly, NOTCH2NL was similarly able to activate NOTCH2-GAL4 in U2OS cells seeded 

on recombinant DLL4 coated plates (Figure S6E). These data show that NOTCH2NL’s 

amplifying effect on Notch signaling is not restricted to NOTCH2, and that the potency 

of NOTCH2NL to enhance NOTCH receptors is not specific for a particular NOTCH-

ligand.  

Unlike NOTCH2NLSh, NOTCH2NLL,T197I harbors a common variant present in EGF 

domain 5 that changes the ancestral threonine at position 197 to isoleucine (Figure 

1C). This threonine can be fucosylated, while isoleucine cannot. Fucosylation is 

essential for modifying binding of EGF domains to their interaction sites. We tested the 

short and long versions of NOTCH2NL with and without the T197I variant in the 

NOTCH2-GAL4 - pGL3-UAS reporter assay. Interestingly, the single amino acid 

changes had subtle but significant influences on NOTCH2-GAL4 cleavage. 

NOTCH2NLSh and NOTCH2NLSh,T197I performed equally under baseline conditions 

(29% and 31% increase, respectively, Figure 6H). However, with JAG2 co-culture, 

NOTCH2NLSh,T197I variant was more potent than NOTCH2NLSh (53% and 25% increase 

respectively, Figure 6I). NOTCH2NLL,T197I was also a more potent activator than 

NOTCH2NLL (63% and 21% increase, respectively, Figure 6J). However, co-culture 

with JAG2 cells showed the opposite. Here, NOTCH2NLL,T197I had less effect than 

NOTCH2NLL (17% and 38% increase, respectively, Figure 6K). 
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Altogether, these data suggest that NOTCH2NL can enhance NOTCH receptor 

activation. Structural changes between the various NOTCH2NL paratypes, varying from 

the absence/presence of the signal peptide to single amino acid changes in the EGF-

like repeats, show differential effects under different conditions. This implies that the 

influence of NOTCH2NL genes on cortical neurogenesis in any particular individual may 

be dependent on the combination of NOTCH2NL paratypes he or she carries. However, 

widespread genomic variation in NOTCH2NL paratypes in the healthy human 

population shows that the absence or loss of one specific paratype is not necessarily 

associated with disease, so there must be some robustness to the system as well.  

 

Deletions and duplications of NOTCH2NL genes are associated with 

neurodevelopmental phenotypes 

The revision of the sequence of the 1q21.1 band in the human reference genome 

GRCh38 for the first time clearly separated the Thrombocytopenia Absent Radius (TAR) 

syndrome’s centromerically proximal locus from the 1q21.1 deletion/duplication 

syndrome’s distal locus (Figure 1A). The latter is bracketed by NOTCH2NLA at 

GRCh38.chr1:146,151,907-146,229,032 (within a remapped region that was previously 

called breakpoint 3) and NOTCH2NLB at GRCh38.chr1:148,602,849-148,679,774 (aka 

breakpoint 4) (Mefford et al., 2008), (Rosenfeld et al., 2012) (Figure S7). 
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Figure 7. Patients with 1q21.1 Distal Deletion/Duplication Syndrome show breakpoints and CNV in 
NOTCH2NLA and NOTCH2NLB. (A) UCSC Genome Browser screenshot from GRCh38. The duplication depth track 
indicates duplicated genome sequences as colored bars: white (single copy, N=1), orange (N=2-4), green (N=5), 
black (N > 5). The normalized read depth for each individual is in red (see methods). For breakpoints in NOTCH2NL, 
due to sequence similarity and gene conversion, we expect the average normalized coverage of NOTCH2NLA and 
NOTCH2NLB to be 1.5 for deletions and 2.5 for duplications. Similarly, we expect the normalized coverage of the 
sequence in between to be 1.0 for deletions and 3.0 for duplications (blue). The region was then broken into 5 
portions -- centromeric to NOTCH2NLA, NOTCH2NLA, in between NOTCH2NLA and NOTCH2NLB, NOTCH2NLB 
and telomeric to NOTCH2NLB. The average values of the normalized coverage based on the five regions are drawn 
in green. Where all models agree, the colors combine to black. (B) Schematic of the NOTCH2NL chromosomal 
configuration before and after a duplication or deletion event. In the case of duplication, there is an extra NOTCH2NL 
paratype that is a hybrid of the NOTCH2NL paratype at the NOTCH2NLA position and that at the NOTCH2NLB 
position from that position. For a deletion, only a hybrid of the two NOTCH2NL paratypes from that chromosome 
remains. See also Figure S7, Table S3-S4. 

These breakpoints are 99.7% identical over an interval of approximately 250,000 bases, 

creating frequent non-allelic homologous recombination that results in either deletion or 

duplication of a 2.4 MB segment in the chromosome in which it occurs. Supporting the 

high frequency of the event, it is estimated that 18-50% of distal duplications and 

deletions seen in the clinic are de novo (Haldeman-Englert and Jewett, 1993). The 

remainder inherit the condition, often from an asymptomatic or mildly symptomatic 

parent. The frequency of the deletion in the European general population has been 

estimated at 0.03% and the duplication at 0.049% (Mace et al., 2017).  
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When present, symptoms are strikingly, but not exclusively, neurological. In several 

independent large studies 1q21.1 distal deletion has been shown to be associated with 

schizophrenia (International Schizophrenia Consortium, 2008; Mace et al., 2017), 

(Grozeva et al., 2012), (Chang et al., 2016). In contrast, in patients ascertained as part 

of the Simons Variation in Individuals (VIP) autism study, 1q21.1 distal duplication 

probands exhibited ADHD (29%), behavior disorder (18%), autism spectrum disorder 

(41%), developmental coordination disorder (23%), intellectual disability (29%), while 

deletion probands exhibited these symptoms at lower frequencies, but with a relatively 

high percentage (26%) exhibiting anxiety and mood disorders (Bernier et al., 2016). Of 

particular interest regarding the function of NOTCH2NL in the enhancement of NOTCH 

signaling during neurodevelopment is the fact that studies have consistently shown that 

the duplication is associated with macrocephaly and the deletion with microcephaly 

(Mefford et al., 2008), (Brunetti-Pierri et al., 2008). 

Because the copy number variation studies that identified the 1q21.1 syndromes were 

performed on microarrays that were based on the GRCh37 and earlier assemblies that 

were incorrect in the 1q21.1 band, we reanalyzed copy number variation microarray 

data derived from 11 previously characterized patients where remappable data could be 

obtained, 9 with microcephaly and 2 with macrocephaly, to determine the boundaries of 

their 1q21.1 variations in GRCh38 coordinates. Probe positions were realigned to the 

revised assembly, and a more sensitive method of copy number variation analysis 

involving optimization by integer linear programming was developed (STAR Methods). 

The remapped data suggest that NOTCH2NLA and NOTCH2NLB are located inside the 

1q21.1 locus implicated in microcephaly and macrocephaly (Figure S7). Nine out of the 
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nine microcephalies were consistent with NOTCH2NLA and/or -B deletion and both 

macrocephalies were consistent with NOTCH2NLA and/or -B duplication. In at least one 

out of nine microcephaly patients (number 2), the HYDIN2 locus exhibits a normal copy 

number, consistent with results previously published (Dougherty et al., 2017).  

The sparsity of unique probes in the highly repetitive 1q21.1 region precludes a precise 

breakpoint analysis of these older data. In order to better map the breakpoints of the 

copy number variations in 1q21.1 patients, we obtained primary fibroblasts from six 

autism patients in the Simons VIP project (Bernier et al., 2016) one listed as having 

1q21.1 distal duplication and five identified as having the distal deletion (Figure 7, 

Table S3), and prepared high molecular weight DNA for targeted sequencing and 

assembly as described above. The sequencing coverage data demonstrates that all of 

these samples have their deletion or duplication in the breakpoint 3 and 4 regions 

containing NOTCH2NLA and NOTCH2NLB (Figure 7A). In particular, in deletions we 

see normal copy number 2 for unique DNA outside of the locus and copy number 1 for 

unique DNA inside the locus. In the two near-identical breakpoint regions that flank the 

locus we expect both NOTCH2NLA and NOTCH2NLB to be present on the non-deleted 

chromosome, and a homology-driven deletion in the other chromosome is expected to 

leave a single NOTCH2NL A/B gene, possibly a fusion gene (Figure 7B). Indeed, we 

see combined read coverage 3 for both breakpoint regions, which is split into two, 

leaving an “intermediate level plateau” of read depth at roughly 1.5 in each of the 

NOTCH2NL regions. In the case of a duplication, these intermediate level plateaus at 

the breakpoint flanks are at read depth 2.5, implying 5 copies of NOTCH2NLA and B. 
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When we assembled the NOTCH2NL paratypes in these individuals we confirmed that 

indeed all of the deletion samples have three NOTCH2NLA or NOTCH2NLB alleles and 

the duplication sample has five. In all but one sample (SV788) we could determine all of 

the NOTCH2NLA/B paratypes as well (Figure 7, Table S1). As expected from the 

position of the breakpoints in the coverage analysis, all 6 individuals showed no 

evidence of gain or loss of NOTCH2NLC, which has two NOTCH2NLSh-2ntdel alleles. The 

patients, like normal individuals, show a variety of combinations of NOTCH2NL 

paratypes. If there is any pattern in the set of NOTCH2NL paratypes that is particular to 

1q21.1 distal deletion/duplication syndrome, this patient set is too small to discern it. 

Nevertheless, this analysis suggests that the typical 1q21.1 distal deletion/duplication 

syndrome events are driven by non-allelic homologous recombination between 

NOTCH2NLA and B or nearby sequence, and these events produce NOTCH2NL copy 

number change. Thus, it remains possible that NOTCH2NL copies not only provide the 

breakpoints for these events, but may have a contribution to the neurodevelopmental 

phenotypes associated with them as well.  

Discussion 
NOTCH2NL joins ARHGAP11B (Florio et al., 2015) and BOLA2 (Nuttle et al., 2016) as 

a third example of the concomitant emergence of a potential adaptive evolutionary 

innovation and susceptibility to a recurrent genomic disorder from chromosomal 

instability mediated by hominin-specific duplication hubs. These duplicated regions not 

only represent the bulk of human-specific genomic DNA (Cheng et al., 2005), but are an 

important a reservoir of new genes, carrying with them the potential to rapidly change 

the structure of the genome via non-allelic homologous recombination. Indeed the most 
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promising genes recently implicated in human brain evolution in addition to those 

above, such as SRGAP2C (Dennis et al., 2012), (Charrier et al., 2012) and TBC1D3 (Ju 

et al., 2016) map to regions of human-specific structural variation.  

The peculiar evolutionary history of NOTCH2NL includes a series of complex genomic 

reorganization events that eventually led to the creation of three functional NOTCH-

related genes early in hominin evolution. NOTCH2NL-like pseudogenes lacking coding 

potential, including a PDE4DIP-NOTCH2NL pseudogene, were already present in the 

gorilla, chimpanzee and human LCA and still remain in the genomes of chimpanzee and 

gorilla, but are not found in hominin genomes. Instead, in each of the three hominin 

species sequenced, human, Neanderthal and Denisovan, we find 3 NOTCH2NL genes, 

NOTCH2NLA, B and C, and in humans we find an additional pseudogene, 

NOTCH2NLR. The most plausible explanation for this is that in a common ancestor of 

humans, Neanderthals and Denisovans, the ancestral PDE4DIP-NOTCH2NL 

pseudogene was repaired by ectopic gene conversion from NOTCH2. This event may 

have been crucial to hominin evolution, as it marks the birth of a novel hominin-specific 

NOTCH-related gene that likely functions to delay yet eventually increase production of 

neurons from neural stem cells during fetal brain development, and whose introduction 

was prior to or during a time of rapid expansion of brain size in hominins approximately 

3 MYA (Halloway, et al., 2004) (Fig. S2E). Subsequent duplication events created 

additional NOTCH2NL genes in hominin ancestors, increasing NOTCH2NL dosage. In 

modern humans, three NOTCH2NL genes are present with at least eight different 

“paratypes”, i.e., haplotype configurations that can occur in different paralogous 

locations.  
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Consistent with a potential role in brain development, NOTCH2NL is expressed in the 

germinal zones of the developing human cortex where it likely promotes NOTCH 

signaling. Of particular interest is the expression of NOTCH2NL in outer radial glia cells, 

which are responsible for a more pronounced proliferative zone in the human 

developing cortex compared to that in related primates and are thought to be involved in 

the evolutionary expansion of the human cortex (Hansen et al., 2010, Lui et al., 2011). It 

has remained elusive how these loosely organized oRG cells maintain their sustained 

capacity for self-renewal and proliferation, as they lie in the outer subventricular zone 

(OSVZ) far away from the proliferative zone of strictly laminar radial glial cells near the 

surface of the ventricle. Recent work suggests that oRG cells directly contribute to a 

stem cell niche of the OSVZ through increased expression of extracellular matrix 

proteins and growth signal factors (Pollen et al., 2015). It has been shown that Notch 

signaling is essential for oRG cell self-renewal (Hansen et al., 2010), and our data 

suggest NOTCH2NL may act as a potentiating factor on Notch signaling to support oRG 

cell self-renewal. In particular, we show that NOTCH2NL can act in part in a cell non-

autonomous manner to amplify Notch signaling. Our data also supports a separate, cell-

autonomous function of NOTCH2NL, and indeed, in a very recent related study (Suzuki, 

et al, Submitted), it was found that the long version of NOTCH2NL (NOTCH2NLL,T197L) 

promotes NOTCH signaling and neural progenitor proliferation in a cell-autonomous 

manner. Through these actions NOTCH2NL could support self-renewal of oRG cells in 

the OSVZ environment.  

Enhancement of NOTCH signaling is likely the mechanism that underlies the gene 

expression phenotypes we observed in experiments in which NOTCH2NL is ectopically 
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expressed in mouse or is deleted in human cortical organoids. We showed that stable 

expression of NOTCH2NL in mouse organoids leads to downregulation of genes 

involved in neuronal differentiation and upregulation of genes involved in negative 

regulation of neuronal progenitor differentiation. These results are further supported in 

human cortical organoids grown from hESC lines with five out of six alleles of 

NOTCH2NLA/B/C deleted by CRISPR/Cas9, where NOTCH2NL deficiency resulted in 

premature expression of genes involved in neuronal differentiation. 

The combined role of NOTCH2NL genes in any particular genotype may depend on the 

combined expression pattern of structurally distinct NOTCH2NL paratypes. The short 

forms of NOTCH2NL may act primarily in a cell non-autonomous way, as they are likely 

secreted by unconventional secretion pathways due to the lack of a signal peptide. 

Several routes of unconventional protein secretion have been described (Rabouille, 

2017), of which FGF2 secretion is a well-studied example (Steringer et al., 2015). In 

contrast, the long forms of NOTCH2NL contain the signal peptide required to enter the 

canonical secretory pathway, where they can encounter NOTCH receptors and NOTCH 

ligands in secretory vesicles before they are transported to the outer membrane of the 

cell. The long forms of NOTCH2NL therefore may act primarily cell autonomously or 

may act both autonomously and non-autonomously. We found that the different 

paratypes of NOTCH2NL have different potencies to amplify NOTCH activity and do so 

under different circumstances (presence or absence of Notch ligand, secreted in the 

medium or generated within the cell, etc.). This suggests there may have been an 

evolutionary gene-dosage optimization, where NOTCH2NL paratypes with different 
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structural and sequence properties have undergone multiple changes to reach a 

balanced state of NOTCH pathway modulation.  

The existence of many distinctly functional NOTCH2NL paratypes, created by 

substitutions and small indels that were likely to have been combinatorially amplified by 

ectopic gene conversion during hominin evolution, is striking. While this has resulted in 

many versions of NOTCH2NL encoded at the NOTCH2NLA and NOTCH2NLB positions 

in chromosome 1q21, the overall copy number of NOTCH2NLA and NOTCH2NLB is 

remarkably stable at a combined copy number 4 in almost all the 266 individuals of the 

Simons Diversity collection, with some being ambiguous. This suggests total dosage of 

these A/B paratypes may be important. In contrast, NOTCH2NLC has distinct paratypes 

(characterized primarily by a 2 bp deletion that forces use of a downstream start codon, 

denoted NOTCH2NLSh-2ntdel), and does not show as stable a copy number in the Simons 

collection (appearing to have copy number 3 in 3 individuals, copy number 1 in 20 

individuals, and 0 in 1 individual). Further, despite the apparent conservation of A/B 

copy number, one of the A/B paratypes, NOTCH2NLLR113*, contains a premature stop 

codon that is predicted to render the protein nonfunctional. This paratype appears to be 

present at copy number 2 in 4 individuals and copy number 1 in 31 in the Simons 

collection. There also appear to be 4 individuals who have 1 copy of NOTCH2NLLR113* 

and lack one copy of NOTCH2NLSh-2ntdel, so copies of NOTCH2NLSh-2ntdel in the C 

paralog position are not always there to make up for stop codon-containing copies in the 

A or B positions.  

Detailed modeling of selective forces on NOTCH2NL is complicated by the relatively 

small number of individuals whose genotypes have been resolved into a specific 
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combination of paratypes, and the peculiar mix of substitution and ectopic gene 

conversion between equivalent loci that creates a diversity of paratypes. Lacking large 

scale sequencing with long DNA fragments, the selective forces on NOTCH2NL 

genotypes remain mysterious. Still, it is clear that NOTCH2NL genotypes exist with 

different dosages of different functionally distinct paratypes in the population. Either the 

physiological system is quite robust to these protein differences despite their differential 

effect on Notch signaling, or the optimal balance of NOTCH2NL alleles has not been 

fixed in the population.  

Despite their presence in the breakpoints of the 1q21.1 distal deletion/duplication 

region, NOTCH2NL genes have not previously been associated with this syndrome 

because the reference genome assembly was incorrect until the GRCh38 assembly. By 

reanalyzing older data and generating new data from patients from whom long genomic 

DNA fragments could be isolated, we find that all patients we have examined have copy 

number variations that include an extra NOTCH2NL copy in the duplication and loss of 

a copy in the deletion. Further, wherever it was possible to determine, we find that non-

allelic homologous recombination has occurred inside or near NOTCH2NLA and B, 

leaving behind an intact NOTCH2NL copy, possibly a chimera of A and B (Figure 7B). 

Therefore, NOTCH2NLA and B should be considered candidates for contributing to the 

phenotypes of 1q21.1 deletion/duplication syndrome, including abnormal brain size 

phenotypes (Mefford et al., 2008), (Brunetti-Pierri et al., 2008), (Dumas et al., 2012), 

(Girirajan et al., 2013). However, they are not the only genes whose copy number is 

changed. Protein coding genes between NOTCH2NLA and NOTCH2NLB include 

HYDIN2, CHD1L, BCL9, GJA5, GJA8, PRKAB2, FMO5, ACP6, PPIAL4G, GPR89B, 
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and DUF1220-domain containing NBPF11, NBPF12 and NBPF14 paralogs, three of the 

more than fourteen functional paralogs of NBPF. The progressive increase in number of 

DUF1220 domains in primate genomes has been shown to correlate with the 

evolutionary expansion of the neocortex (Popesco et al., 2006), and CHD1L is amplified 

in many solid tumors and promotes tumor growth (Cheng et al., 2013), (Xu et al., 2013), 

thus it could be associated with cell proliferation. HYDIN2 was the strongest candidate 

for brain size effects of 1q21.1 distal deletion/duplication syndrome as it shares a 

protein domain with the microcephaly-associated protein ASPM and its paralog HYDIN 

lies in the 16q22.2 locus that has also been associated with microcephaly. However, 

recent work found 6 symptomatic patients with atypical breakpoints excluding HYDIN2, 

thus eliminating it as a likely driver (Dougherty et al., 2017). Mapping of these atypical 

patients indicates that the NOTCH2NLA locus was also excluded in these atypical 

events, but the NOTCH2NLB locus was fully duplicated in the three atypical duplication 

cases (all macrocephalic), and fully deleted in the three atypical deletion cases (all 

microcephalic). Therefore, these cases are consistent with a possible contribution of 

NOTCH2NL to 1q21.1 deletion/duplication syndrome. There are scattered reports of 

patients with smaller duplications or deletions, a few of these including neither 

NOTCH2NLA nor NOTCH2NLB (Girirajan et al., 2013), (Van Dijck et al., 2015). These 

studies have variously pointed to CHD1L, BCL9 or the noncoding RNA gene 

LINC00624 as candidates for causing 1q21.1 deletion/duplication syndrome symptoms. 

However, no consistent pattern has been found and no mechanistic explanation for the 

possible association of these genes with neurodevelopmental changes has yet been 

established. 2.4 megabases is a considerable stretch of DNA, and it may well be that 
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these or other genes, such as the three NBPF paralogs in the region, contribute to the 

neurological effects of this large copy number change. Indeed non-neurological 1q21.1 

distal deletion/duplication effects in the heart and eyes are thought to be caused by the 

copy number changes in GJA5 and GJA8 (Gollob et al., 2006) (Shiels et al., 1998), so it 

is plausible that several genes may contribute to the apparently complex neurological 

effects. At the very least, by providing the substrates for non-allelic homologous 

recombination, NOTCH2NL genes enable the 1q21.1 distal deletion/duplication 

syndrome. 

The strongly directional association of 1q21.1 distal deletion/duplication syndrome with 

brain size, with duplications tending to cause macrocephaly and deletions microcephaly, 

is most intriguing from a NOTCH2NL perspective, given that duplications are associated 

with increased NOTCH2NL dosage, which in ex vivo experiments delays differentiation 

of neuronal progenitor cells allowing for a longer period of proliferation, and deletions 

decrease NOTCH2NL dosage, which promotes premature differentiation of neuronal 

progenitor cells. While still circumstantial, these data support a role of NOTCH2NL 

genes not only in the cognitive and brain size symptoms of 1q21.1 distal 

deletion/duplication syndrome, but in the evolution of the hominin-specific larger brain 

size and associated cognitive traits. A delay in cortical maturation, coupled with a net 

increase in the size of the neocortex, in large part from sustained activity of outer radial 

glia progenitor cells, is characteristic of human brain development. Humans may in fact 

be caught in an evolutionary compromise in which having multiple identical copies of 

NOTCH2NL provides a neurodevelopmental function we need while at the same time 

predisposing our species to recurrent de novo non-allelic homologous recombination 
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events that underlie a neurodevelopmental syndrome and contribute to our overall 

genetic load. Given the many different alleles (“paratypes”) of NOTCH2NL we observe 

segregating in the current human population, the tension caused by this compromise 

may still be a factor in our ongoing evolution. 
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Figure S1. Related to Figure 1. (A) Identity between NOTCH2-related genes as 

measured over the alignable genomic region (blue) or the gene exons (pink). (B) DNA 

and amino acid sequence of human NOTCH2NL genes in exon 5, which is derived from 

NOTCH2 intron 4. (C) Immunoblot of mouse ESCs transfected with WT NOTCH2NL, or 

NOTCH2NL with ancestral ATAA inserted in exon 5. (D) Relative protein levels based 

on the immunoblot in panel C. (E) RT-qPCR analysis of the same samples for 

determination of transcript levels for each condition. (F) Alignment of the H9 assembled 

paratypes to GRCh38. Each paratype is colored as to whether a position aligns best to 

GRCH38 NOTCH2NLA, NOTCH2NLB or NOTCH2NLC. (G) Observed frequency of 

individuals with the indicated NOTCH2NLC and NOTCH2NLR copy number in the 

Simons Diversity Panel (n=266). (H) Schematic of linked-read sequencing and Gordian 

Assembler protocol using the 10X genomics Chromium genome assay and oligo-

capture to enrich for library fragments containing the desired genomic region. (I) Protein 

alignment of observed NOTCH2, NOTCH2NL and NOTCH2NLR paratypes based on 

our assembly results. Note that NOTCH2 sequence extends beyond what is shown in 

the alignment. A segregating variant in NOTCH2NLR is found at amino acid position 

235. 

Figure S2. Related to Figure 2. Details of NOTCH2NL-like genes in Gorilla (A) and 

Chimp (B) and source of genome sequence support. (C) Verification of fusion genes by 

RT-PCR on Chimp and Gorilla RNA. H = Human, C = Chimpanzee, G = Gorilla. (D) 

Immunoblot blot using an N-terminal NOTCH2 antibody (aa 25-255), comparing ectopic 

expression of Chimp NOTCH2NL-like gene lacking exon 2 compared to ectopic 

expression of human NOTCH2NLSh, T197I in mESCs. (E) Endocranial volume of fossil 
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hominids versus time as determined by Holloway, et al. 2004. (F) Details of splice 

junctions of fusion genes and related open reading frames. Top rows show nucleotide 

sequence in fusion transcripts. Middle rows show peptides derived from these 

transcripts. Lower rows contain the orthologous human NOTCH2NL protein sequence. 

Figure S3. Related to Figure 3. (A) Summary violin plots indicating NOTCH2NL and 

NOTCH2 expression in various cell types. (B) NOTCH2NL paratype expression in 

undifferentiated hESCs and week 5 cortical organoids from bulk Illumina RNA-Seq. 

Figure S4. Related to Figure 4. (A) MA plot of RNA-sequencing data of mouse cortical 

organoids based on DESeq2 analysis. (B) Z-score of differentially expressed genes (p-

adj < 0.05, DESeq2). (C) GO terms significantly associated with the upregulated genes 

in organoids ectopically expressing NOTCH2NLSh,T197I. 

Figure S5. Related to Figure 5. (A) Schematic of strategy to generate NOTCH2NL-

specific deletions using CRISPR/Cas9 and alignment of the two guide sequences used 

to NOTCH2NL-related sequences. (B) Heatmap of expression levels for a selection of 

brain structure marker genes from hESC-derived cortical organoids at the indicated time 

points (Left) and from human embryonic dorsal prefrontal cortex (DFC) samples at 8 

pcw, 9 pcw, 12 pcw and 13 pcw, derived from the Allen Brain Atlas 

(http://www.brainspan.org). w = week; pcw = post conception week; FPKM= fragments 

per kilobase of exon per million fragments mapped. (C) Brightfield images of developing 

H9* and H9NOTCH2NLΔ cortical organoids. Day 28 images show organoid pools for 1, 

RNA-Seq replicate. 
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Figure S6. Related to Figure 6. (A-B) Investigation of co-immunoprecipitation of 

NOTCH2NL with PDGFRB and EGFR in two independent experiments. (C) Reporter 

assay to assess the effect of NOTCH2NL using either NOTCH1-GAL4, NOTCH2-GAL4 

or NOTCH3-GAL4 to induce pGL3-UAS reporter activation. 6 replicates in one 

experiment. Student’s t-test with Holm-Bonferroni correction (* p < 0.05, ** p < 10-3, *** p 

< 10-5), error bars indicate SD. (D) NOTCH2NL effects of NOTCH2-GAL4 reporter 

assay co-culture with JAG2 or DLL1 expressing cells. 6 replicates in one experiment. 

Student’s t-test with Holm-Bonferroni correction (* p<0.05, ** p<10-3, *** p<10-5), error 

bars indicate SD. (E) NOTCH2NL remains effective in an assay with activation of 

NOTCH2-GAL4 using recombinant DLL4 coated plates. Average of 3 independent 

experiments with 4 or 5 replicates each. Two-way anova with Tukey’s HSD (* p < 10-4, 

** p <10-8, *** p < 10-12), error bars indicate SEM. 

Figure S7. Related to Figure 7. Relative probe intensities from CNV-microarrays for 2 

controls and 11 patients with reported 1q21.1 aberrations mapped to the GRCh38 

1q21.1 assembly. Gray: normal, red: deletion, blue: duplication. Dark red/blue is high 

confidence deletion/duplication based on probe values, light red/blue are potentially part 

of the deletion/duplication. 

Table S1. Related to Figures 1. Results of NOTCH2NL gene de novo assembly. 

Table S2. Related to Figure 4 and 5. Gene expression measurements from RNA-seq 

experiments. 

Table S3. Related to Figure 7. Features of Simons VIP samples. 
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Table S4. Related to Figures 1 and 7. Curated Paratypes of Assembled and Simons 

Normals 

 

STAR Methods 

 

Mouse stem cell culture and organoid differentiation 

Mouse 46c ESCs were grown according to the BayGenomics protocol (Skarnes, 2000), on 0.1% gelatin 

coated plates, and cultured in GMEM (Thermofisher) with 10% HIFBS, 2 mM L-Glutamine, 1x NEAA, 1x 

NaPyr, 100 µM 2-mercaptoethanol and 1x P/S. ESGRO LIF (Millipore) was added fresh daily. To 

generate stable cell lines, 46C cells seeded on 100 mm plates and were transfected with 24 μg of 

linearized pCIG-NOTCH2NL-ires-GFP or empty pCIG-ires-GFP vector, using lipofectamine 2000 

(Thermofisher). After 36 hours, GFP-positive cells were sorted using a FACSAria III (BD Biosciences) and 

recovered for further culturing. After 4 passages sorting was repeated and GFP-positive cells that had 

stably integrated the plasmid DNA in their genome were recovered for expansion and further culturing. 

We verified continued stable expression of NOTCH2NL-ires-GFP or empty vector (Supplemental Figure 

S4). Mouse 46C ESC organoid differentiation was performed as described previously (Eiraku and Sasai, 

2011). Three pools of 16 organoids were isolated in TRIzol after 6 days of differentiation for EV and 

NOTCH2NL organoids. 

Human stem cell culture 

Mitomycin-C treated mouse embryonic fibroblasts (MEFs, GlobalStem) were seeded on 0.1% gelatin 

coated plates at a density of 35.000 cell/cm2. MEFs were cultured in DMEM, 4.5 g/l glucose + GlutaMax 

(Thermofisher, 10% heat inactivated fetal bovine serum (HIFBS, Thermofisher), 1x Penicillin/Streptomycin 

(P/S, Thermofisher) and 1x sodium pyruvate (NaPyr, Thermofisher). H9 human embryonic stem cells (H9 

hESCs, WiCell), were cultured in W0 medium: DMEM/F12 (Thermofisher) with 20% KnockOut serum 

replacement (KOSR, Thermofisher), 2 mM L-glutamine (Thermofisher), 1x non-essential amino acids 

(NEAA, Thermofisher), 100 uM 2-mercaptoethanol (Thermofisher) and 1x P/S (Thermofisher). W0 was 
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freshly supplemented daily with 8 ng/ml FGF2 (Sigma). H9 hESCs were grown on MEF feeder layers, and 

manually passaged every 5-6 days when colonies reached approximately 2 mm in diameter.  

Human organoid differentiation  

For organoid differentiation, medium was replaced with W0 medium + 1x NaPyr without FGF2 

(Differentiation medium). Colonies of 2-3 mm in diameter were manually lifted using a cell lifter, and 

transferred to an ultra-low attachment 60mm dish (Corning). After 24 hours (day 0) embryoid bodies had 

formed, and 50% of medium was replaced with Differentiation medium supplemented with small molecule 

inhibitors and recombinant proteins to the following final concentrations: 500 ng/ml DKK1 (peprotech), 

500 ng/ml NOGGIN (R&D Systems), 10 μM SB431542 (Sigma) and 1 μM Cyclopamine V. californicum 

(VWR). Medium was then replaced every other day until harvest. On day 8, organoids were transferred to 

ultra-low attachment U-shaped bottom 96 well plates (Corning). On day 18, medium was changed to 

Neurobasal/N2 medium: Neurobasal (Thermofisher), 1x N2 supplement (Thermofisher), 2 mM L-

Glutamine, 1x P/S, supplemented with 1 μM Cyclopamine. From day 26 on, Cyclopamine was not 

supplemented anymore. Organoids were harvested in TRIzol at weekly time points. Total-transcriptome 

strand-specific RNA sequencing libraries were generated using dUTP for second strand synthesis on 

Ribo-zero depleted total RNA (Parkhomchuk et al., 2009). For organoid formation of H9 hESC 

CRISPR/Cas9 NOTCH2NL knockout lines, an updated protocol was used: Differentiation medium was 

supplemented with 10 µM SB431542 (Sigma), 1 µM Dorsomorphin (Sigma), 3 µM IWR-1-Endo (Sigma) 

and 1 µM Cyclopamine (Sigma). Medium was then replaced every other day until harvest. On day 4, 60 

mm dishes with organoids were placed on a hi/lo rocker in the incubator. From day 18 on, medium is 

replaced with Neurobasal/N2 medium. From day 24 on, Cyclopamine was not added anymore. Pools of 

5-10 organoids per replicate were harvested in TRIzol at day 28 for RNA extraction. 

RNA-Sequencing Analysis 

Paired-end Illumina reads were trimmed from the 3’ end of read1 and read2 to 100x100 bp for human. 

Bowtie2 v2.2.1 (Langmead and Salzberg, 2012) was used with the “--very-sensitive” parameter to filter 

reads against the RepeatMasker library (http://www.repeatmasker.org) which were removed from further 

analysis. STAR v2.5.1b (Dobin et al., 2013) was used to map RNA-seq reads to the human reference 
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genome GRCh37. STAR was run with the default parameters with the following exceptions: --

outFilterMismatchNmax 999, --outFilterMismatchNoverLmax 0.04, --alignIntronMin 20, --alignIntronMax 

1000000, and --alignMatesGapMax 1000000. STAR alignments were converted to genomic position 

coverage with the bedtools command genomeCoverageBed –split (Quinlan and Hall, 2010). DESeq2 

v1.14.1 (Love et al., 2014)) was used to provide basemean expression values and differential expression 

analysis across the time course. Total gene coverage for a gene was converted to read counts by dividing 

the coverage by N+N (100+100) since each paired-end NxN mapped read induces a total coverage of 

N+N across its genomic positions. Results are in Table S2 and data are available from GEO: 

GSE106245. 

For mouse cortical organoids, H9* and H9NOTCH2NLΔ organoid samples, RNA was isolated according to 

standard TRIzol protocol. RNA was treated with DNAseI (Roche) according to standard protocol for DNA 

clean-up in RNA samples. RNA was then isolated by column purification (Zymo RNA clean & 

concentrator 5) and stored at -80°C. For RNA sequencing, mRNA was isolated from total RNA using 

polyA selection Dynabeads mRNA DIRECT Micro Purification Kit (Thermofisher). Library was prepared 

using strand-specific Ion Total RNA-seq Kit v2 (Thermofisher) and Ion Xpress RNA-seq Barcode 1-16 

(Thermofisher) to label different samples. The samples were sequenced on an IonProton system 

(Thermofisher), generating single-end reads of around 100 bp in length. IonProton RNA sequencing data 

was processed using the Tuxedo package, in consideration of parameters recommended by 

Thermofisher for IonProton data. Briefly, samples were mapped using Tophat2 (Kim et al., 2013), using 

Bowtie2 (Langmead and Salzberg, 2012) as the underlying alignment tool. The target genome assembly 

for these samples was GRCh38/UCSC hg38, and Tophat was additionally supplied with the gene 

annotation of ENSEMBL84 (GRCh38.p5). Reads mapped per exon were counted using HT-Seq count 

(union) and summed per corresponding gene. HT-Seq count output was normalized using DESeq2, and 

pairwise comparisons were made to determine significant differences in gene expression. Results are in 

Table S2.  

For comparison of week 4 H9* and H9NOTCH2NLΔ organoid data to the previously established H9 organoid 

timeline, the following procedure was used: The top 250 upregulated and the 250 downregulated genes 
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between week 4 H9* and H9NOTCH2NLΔ based on p-adj were selected. The matching expression profiles of 

these 500 genes were extracted from the H9 organoid timeline, yielding 361 genes expressed in both 

datasets. The expression profiles in week 4 H9* and H9NOTCH2NLΔ and H9 Week 3, Week 4 and Week 5 

were sorted from high to low, and ranked 1 to 361. Then, pairwise comparisons were made between each 

sample to calculate Spearman’s rank correlation between all samples, and plotted using multi-experiment 

viewer. 212 genes showed shift towards better correlation with Week 5 data in H9NOTCH2NLΔ compared to 

H9*. These 212 genes were subjected to GO analysis using Panther V13.0 (Mi et al., 2017). A selection 

of genes from the significantly associated term neuron differentiation was plotted in a heatmap. Z-scores 

were calculated for the different samples of Week 4 H9* and H9NOTCH2NLΔ, and H9 Week 3, Week 4 and 

Week 5. 

Co-immunoprecipitation and immunoblot 

HEK293T cells were cultured according to standard protocol in DMEM, 4.5 g/l glucose + GlutaMax, 10% 

HIFBS and 1x P/S. For co-IP experiments, HEK293T cells were transfected in T25 flasks at 50% 

confluency. pCIG-NOTCH2-Myc and pCAG-NOTCH2NL-HASh + pCAG-NOTCH2NL-HAL,T197I were 

mixed in equimolar ratios and transfected using Lipofectamine 2000 (Thermofisher). For control 

conditions, pCIG-EV and pCAG-EV were used in equimolar ratios. 6 hours after transfection, medium was 

replaced, and another 24 hours later medium was replaced. Cells were harvested 48 hours after 

transfection. Cells were washed 3 times with cold 1x PBS, then incubated in 40 minutes in IP buffer 

(50mM Tris-HCl, 150mM NaCl, 5mM MgCl, 0.5mM EDTA, 0.2% NP-40, 5% glycerol, supplemented with 

cOmplete, EDTA-free protease inhibitor cocktail (Sigma)) Cells were lysed by passing cell suspension 

through 273/4 gauge needle 10 times. Lysate was centrifuged 10 minutes at 4°C, supernatant was 

transferred to a fresh 1.5ml tube. 2 μg of one specific antibody was added (anti-HA Abcam ab9110, anti-

Myc Abcam ab9E10, anti-His Abcam ab9108, anti-NOTCH2 SCBT sc25-255) and incubated overnight at 

4°C in a rotating wheel. DynaBeads were blocked using 3 washed of 1x PBS + 0.5% BSA and added to 

IP samples, incubating 3 hours at 4°C rotating. Using a magnetic separator, samples were washed 2 

times in cold IP buffer. Then samples were eluted in Tris-EDTA buffer and transferred to new 1.5ml tubes. 

2x Laemmli buffer + DTT was added 1:1 prior to SDS PAGE. Samples were loaded on 4-20% Tris glycine 
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gels (Bio-Rad), followed by blotting on nitrocellulose membranes following manufacturer’s recommended 

protocol. Membranes were blocked in 5% skim-milk powder in 1x PBS + 0.05% Tween or 1x TBS + 0.1% 

Tween. Primary antibodies were incubated 3 hours at room temperature in 1x PBS (anti-NOTCH2 sc25-

255) or 1x TBS-T (other antibodies), followed by 3 washes in 1x PBS-T (anti-NOTCH2 sc25-255) or 1x 

TBS-T (other antibodies). Secondary antibodies (anti-Rabbit-HRP, anti-Mouse-HRP, Thermofisher) were 

incubated 60 minutes at room temperature, followed by 3 more washes in 1x PBS-T or 1x TBS-T. 

Membranes were incubated with supersignal westdura ECL substrate (Thermofisher) and imaged using 

Bio-Rad Chemidoc imager. For experiments with pCAG-NOTCH2NL-His, pCIG-NOTCH2-Myc, pCIG-

PDGFRB-Myc and pCIG-EGFR-Myc, the same protocol was used with equimolar mixes of plasmid DNA. 

For immunoprecipitation of NOTCH2NLSh,T197I from mouse 46c ESCs, the same protocol was used and 

protein was isolated from medium using the NOTCH2 sc25-255 antibody. 

NOTCH reporter cell line culture 

U2OS cells were cultured in DMEM, 4.5 g/l glucose + GlutaMax, 10% HIFBS and 1x P/S. U2OS-JAG2 

cells (gift of Arjan Groot and Marc Vooijs, MAASTRO lab, Maastricht University) were supplemented with 

2 µg/ml puromycin. OP9 cells and OP9-DLL1 (gift of Bianca Blom, Academic Medical Center Amsterdam) 

were cultured in MEMα without nucleosides (Thermofisher), 2mM L-glutamine, 20% HIFBS, 100 µM 2-

mercaptoethanol and 1x P/S. For routine culturing, cells were passaged every 3-4 days using 0.25% 

Trypsin (Thermofisher) + 0.5 mM EDTA (Sigma) in PBS at densities of 1/8 to 1/10 (U2OS), or 1/4 to 1/6 

(OP9). 

NOTCH reporter co-culture assays 

U2OS cells were seeded at a density of 425,000 cells per well for transfection (6-wells plate). In parallel, 

U2OS control or U2OS-JAG2 cells were seeded at a density of 110,000 cells per well for co-culture (12-

wells plate). After 24 hours, U2OS cells in 6-wells plates were transfected the following amounts of 

plasmid DNA per well. For control conditions: ng pGL3-UAS, 33.3 ng CMV-Renilla, 16.7 ng pCAG-GFP, 

200 ng pcDNA5.1-NOTCH2-GAL4, 167 ng pCAG-EV, and 273 ng pBluescript. For conditions including 

NOTCH2NL:500 ng pGL3-UAS, 33.3 ng CMV-Renilla, 16.7 ng pCAG-GFP, 200 ng pcDNA5.1-NOTCH2-

GAL4, 200 ng pCAG-NOTCH2NL, and 240 ng pBluescript. Plasmid DNA mix was transfected using 
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polyethylenimine (PEI, linear, MW 25000, Polysciences). All amounts were scaled accordingly for multiple 

transfections. For larger experiments, cells were seeded and transfected in T25 flasks or on 100 mm 

plates and amounts used were scaled accordingly to surface area. 6 hours after transfection, 6-wells 

plates were treated with 0.5 ml of 0.25% Trypsin and 0.5 mM EDTA in PBS per well for 2 minutes at 37 

degrees. Cells were resuspended in a total volume of 7 ml after addition of culture medium. Medium of 

12-wells plates was removed, and 1 ml of transfected cell suspension was added to each well for co-

culture. 10 µM DBZ was added to selected control wells. After 24 hours, medium was removed and cells 

washed once with PBS. Cells were incubated in 150 µl of 1x passive lysis buffer (PLB, Promega) on an 

orbital shaker for 15 minutes. Lysates were stored at -80°C until analysis. In OP9 and OP9-DLL1 co-

cultures, 80,000 cells were seeded per well of a 12-wells plate. For generating conditioned medium, 

U2OS cells were seeded on 100 mm plates, and were PEI transfected with 2000 ng of pCIG-EV, or 2400 

ng of NOTCH2NLA or NOTCH2NLB. Another 10000 ng or 9600 ng of pBluescript was used as carrier 

DNA. 6 hours after transfection, medium was replaced. 32 hours after transfection, medium was collected 

and 0.2 µm filtered and used the same day. The experiments using conditioned medium were done as 

previously described, but were seeded on 0.25% gelatin, 0.1% BSA coated plates instead. For the 

reporter U2OS cell transfection, only pCAG-EV, and NOTCH2NL plasmids were not added to the plasmid 

DNA mix, and replaced by pBluescript. Instead, transfected cells are resuspended and seeded in 

conditioned medium harvested from other cells. For DLL4 assays, 24-wells plates were coated overnight 

at 4°C with 150 µl of 5 µg / ml rDLL4 (R&D Systems), 0.25% gelatin, 0.1% BSA in PBS. Control plates 

were coated with 0.25% gelatin, 0.1% BSA in PBS only. U2OS cells were transfected and seeded 

according to co-culture protocol as previously described, except 0.5 ml of cell suspension was used for 

each well of the coated 24-wells plates. NOTCH-GAL4 and reporter constructs were kindly gifted by Arjan 

Groot and Marc Vooijs (MAASTRO lab, Maastricht University). 

RT-PCR characterization of primate NOTCH2NL fusion genes 

For amplification and detection of potential fusion transcripts, Qiagen one-step RT-PCR kit was used 

according to manufacturer’s protocol. 25 ng of total RNA isolated from gorilla iPSCs, chimpanzee iPSCs, 

or human H9 ESCs was used per reaction. Primers used in these reactions were: 
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Human_N2NL_Fw1_exon1: CGCTGGGCTTCGGAGCGTAG 

Human_N2NL_Fw2_exon2: AGTGTCGAGATGGCTATGAA 

Human_N2NL_Fw3_exon3: ATCGAGACCCCTGTGAGAAGA 

Human_N2NL_Rv2_exon5: CCAGTGTCTAATTCTCATCG 

PDE4DIP_Fw1_exon27: AAGGCCCAGCTGCAGAATGC 

PDE4DIP_Fw2_exon24: ACACCATGCTGAGCCTTTGC  

Chimp_N2NL_Rv1_exon3: GCAAGGTCGAGACACAGAGC 

MAGI3_Fw1_exon1: GGGTTCGGGATGTCGAAGAC 

MAGI3_Fw2_exon10: GCAACTGTGTCCTCGGTCAC 

MAGI3_Fw3_exon14: GGGAGCAGCTGAGAAAGATG 

TXNIP_Fw1_exon1: CAGTTCATCATGGTGATG 

TXNIP_Fw2_exon1: GGGTACTTCAATACCTTGCATG 

BRD9_Fw1_exon12: GCAGGAGTTTGTGAAGGATGC 

BRD9_Fw2_exon10:  ACGCTGGGCTTCAAAGACG 

10x Library Enrichment 

To enrich whole-genome sequencing libraries to allow for cost-effective deep sequencing of the 

NOTCH2NL loci, a MYcroarray MyBaits custom oligonucleotide library was developed. 100 bp probes 

were designed spaced 50 bp apart in chr1:145,750,000-149,950,000, ignoring repeat masked bases, for 

a total of 20,684 probes. A further 8,728 probes were created in the three NOTCH2NL loci by tiling with 

50 bp overlaps, ignoring repeat masking but dropping any probes with very low complexity. 17,866 

probes were added at every SUN position tiling at 5 bp intervals from -75 bp to +75 bp around the SUN. 

To try and capture population diversity and ensure even enrichment, at every SNP in the NA12878 
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Genome In a Bottle variant call set the reference base was replaced and probes tiled in the same fashion 

as the SUNs. Finally, to reach the required 60,060 probes a random 347 probes were dropped.  

Library Preparation and Enrichment of 10x Chromium Libraries 

High molecular weight DNA was processed into Illumina sequencing libraries using the Chromium 

Genome Reagent Kit V2 chemistry and enriched using the custom MyBaits oligonucleotide probes 

described above (Figure S1). Briefly, high molecular weight (HMW) gDNA was isolated from cultured 

cells using a MagAttract kit (Qiagen) followed by quantification with Qubit. HMW DNA was partitioned 

inside of an emulsion droplet along with DNA barcode containing gel beads and an amplification reaction 

mixture. After barcoding the molecules within the emulsion, Illumina sequencing adaptors were added by 

ligation. In preparation for hybridization with MyBaits probes Illumina adaptor sequences are blocked with 

complementary oligonucleotides. Biotinylated probes were hybridized overnight at 65C and isolated using 

streptavidin coated MyOne C1 beads (Invitrogen). The final enriched libraries were amplified using an 

Illumina Library Amplification Kit (Kapa). 

Sequencing of Enriched 10x Libraries 

The MYcroarray probes were used to enriched 10x Genomics sequencing libraries for three well studied 

individuals (NA19240, NA12877 and CHM1), the H9 ESC line, the six Simons VIP samples in Figure 7, 

and the H9 CRISPR mutant in Figure 5. NA12877 was chosen instead of NA12878 because of the 

existence of high depth 10x whole-genome data for that individual (see below). We find that around 50% 

of our reads map to regions of enrichment, leading to >1000x coverage of the NOTCH2NL loci. The 

NA19240, NA12877 and H9 libraries were sequenced to 65 million reads, 71 million reads, and 107 

million reads respectively. The Simons VIP samples SV721, SV877, SV7720, SV780, SV735 and SV788 

were sequenced to a depth of 57 million, 30 million, 44 million, 37 million, 86 million and 37 million reads 

respectively. 

NOTCH2NL Simons Samples Coverage Analysis 

To assess copy number change in the Simons VIP 1q21.1 collection, the H9, NA12877 and NA19240 

normal libraries described above were mapped to GRCh38 using Longranger 2.1.3. bamCoverage was 
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used to extract all reads that mapped to the region chr1:142785299-150598866, normalizing depth to 1x 

coverage across the region to account for library depth. Wiggletools mean (Zerbino et al., 2014) was used 

to average the depth across these samples. Wiggletools was then used to perform a ratio of this average 

with the coverages of every Simons 1q21.1 collection sample, which simultaneously normalizes out bias 

from the array enrichment as well as GC content. These coverages were then re-scaled by the average 

coverage in the region chr1:149,578,286-149,829,369, which is downstream of NOTCH2NLC and not 

observed to have copy number change. This rescaling adjusts for a systematic shift downward caused by 

the combination of the previous normalizations seen in deletion samples, and a similar shift upward in 

duplication samples. Finally, sliding midpoint smoothing was applied to each coverage track, taking into 

account missing data by ignoring it and expanding the window size symmetrically around a midpoint to 

always include 100,000 datapoints, stepping the midpoint 10 kb each time. 

Hominid Copy Number Analysis 

Sequencing data for NA12878 (ERR194147), Vindjia Neanderthal (PRJEB21157), Altai Neanderthal 

(PRJEB1265), Denisovan (ERP001519), Chimpanzee (SRP012268), Gorilla (PRJEB2590) and 

Orangutan (SRR748005) were obtained either from SRA or from collaborators. These data were mapped 

to GRCh37 to obtain reads mapping to the NOTCH2 (chr1:120,392,936-120,744,537) and NOTCH2NL 

(chr1:145,117,638-145,295,356) loci in that assembly, and then those reads were remapped to a 

reference containing just the GRCh38 version of NOTCH2. Coverage was extracted with bamCoverage, 

normalizing to 1x coverage across the custom NOTCH2 reference. The resulting coverage tracks were 

then scaled to the average of the unique region of NOTCH2 then underwent the same sliding midpoint 

normalization described above, with 5,000 datapoints per window and 2.5 kb step size.  

Gordian Assembler 

The extremely low number of long fragments per partition in the 10X Chromium process ensures that 

nearly all partitions containing sequence from a NOTCH2NL repeat will contain sequence from precisely 

one repeat copy. In order to recover the precise NOTCH2NL repeat sequences, a process was 

developed to assemble paratypes using barcoded reads. A 208 kb multiple sequence alignment of 

NOTCH2NL paralogs was constructed and a consensus sequence generated. For each sample being 
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assembled, the 10x Longranger pipeline was used to map enriched or unenriched reads to GRCh38. All 

reads that mapped to any of the five NOTCH2 or NOTCH2NL loci in that alignment were extracted, as 

well as any reads associated with the same input molecules via the associated barcodes. These reads 

were then remapped to the consensus sequence. FreeBayes73 [REF: https://arxiv.org/abs/1207.3907] 

was used to call variants on these alignments with ploidy set to 10 based on the putative number of 

NOTCH2NL repeats.  Each barcode is then genotyped to find the set of alleles supported at each 

informative SNP site.  Alleles for the majority of SNP sites are undetermined in each barcode due to the 

sparsity of the linked reads.  The result is an MxB sparse matrix where M is the number of variants and B 

is the number of barcodes identified as having NOTCH2-like sequence. A statistical model is then used to 

phase this matrix into K paratypes. For each cluster of barcodes representing a single paratype, all reads 

with the associated barcodes are pooled for short-read assembly using the DeBruijn graph assembler 

idba_ud (Peng et al., 2012). This software is available on github at 

https://github.com/abishara/gordian_assembler. 

Establishment of Paratypes in Population 

The paratype assembly process described above was applied to the MYcroarray enriched 10x 

sequencing of NA19240, H9, NA12877, and the six Simons VIP samples. The H9 paratypes were 

validated with full-length cDNA sequencing (below). The NA12878/NA12891/NA12892 trio (Utah) as well 

as the NA24385/NA24143/NA24149 (Ashkenazi) trio were assembled using linked read data produced by 

10x Genomics for the Genome In A Bottle Consortium. Inheritance was established for the Ashkenazi trio, 

as well as for the three NA12878 paratypes that assembled. Inherited paratypes are not double counted 

in Table S1. A scaffolding process using alignments of contigs to GRCh38 was performed to construct 

full-length NOTCH2NL loci for each of these assemblies. The NOTCH2NL transcripts were annotated and 

assessed for their protein level features. 

Enrichment and Sequencing of Full-Length cDNA 

Full-length cDNA was constructed from both week 5 cortical organoids as well as undifferentiated H9 

hESC total RNA similar to previously described protocols (Byrne et al., 2017)] and were enriched using 

the same MyBaits oligonucleotide set as the 10x Chromium libraries. These cDNA libraries were prepared 
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and sequenced on the Oxford Nanopore MinION. 47,391 reads were obtained for the undifferentiated 

cells and 118,545 reads for the differentiated cells. The reads were base called with Metrichor. After 

pooling these datasets, the reads were aligned to GRCh38 to identify putative NOTCH2NL reads. 2,566 

reads were identified in the week 5 dataset that mapped to NOTCH2NL, and 363 in the undifferentiated. 

Both datasets were filtered for full-length transcripts by requiring at least 70% coverage to the first 1.1 kb 

of the consensus sequence. This filtering process removed NOTCH2 like transcripts, leaving a final set of 

1,484 transcripts pooled across both timepoints to be analyzed. 

Validating H9 Haplotypes Using Full-Length cDNA 

The 1,484 NOTCH2NL transcript sequences identified above were aligned to a consensus sequence of 

H9 ESC transcript paratypes using MarginAlign (Jain et al., 2015). The reads were then reduced into 

feature vectors containing variant sites along the first 1.1 kb of the consensus to eliminate noise related to 

alternative transcription stop sites. The feature vectors were aligned using a Hidden Markov Model with 

one path for each of the paratype assemblies. Since the transcripts are already aligned to a consensus, 

there is no need for reverse transitions in the model, and since variation or recombination between 

paralogs is already accounted for in the assemblies, no transitions between paths are allowed. This vastly 

simplifies the Forward algorithm, and the maximum probability path (usually determined with the Viterbi 

Algorithm) is trivial to calculate under these conditions. All mismatches were assumed to be errors and 

were given an emission probability of 0.1 to approximate the error rate of the nanopore. The paratype 

assembly was validated by showing that there were no recurrent feature vectors that did not align well to 

any path through this model. 

CRISPR Mutation of NOTCH2NL in the H9 ES Line 

H9 hESC (WA09, WiCell Research Institute) at passage 42 were plated on a 6-well dish at 40-50% 

confluency. After 24 hours, cells were treated with 10μM ROCK inhibitor (Y27632; ATCC, ACS-3030) for 

1 hour. 2.5μg of each guide plasmid (E2.1& E5.2, Fig. S5 cloned into pX458, Addgene) was then 

introduced for 4 hours using Xfect DNA transfection reagent (Clontech, 631317). Each guide set was 

introduced to all 6 wells of a 6-well plate. 48 hours after transfection, cells were dissociated from wells 

using Accutase cell dissociation enzyme (eBioscience, 00-4555-56), then rinsed twice in PBS 
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supplemented with 0.2mM EDTA, 2% KnockOut Serum Replacement (Thermo Fisher, 10828028), 1% 

Penicillin-Streptomycin (LifeTech, 15140122), and 2μM thiazovivin (Tocris, 1226056-71-8), and 

resuspended in a final volume of 1mL of sorting buffer. The cells were then filtered in a 70μm filter and 

sorted on a FACS Aria II (BD Biosciences) with a 100μm nozzle at 20psi to select for cells expressing the 

Cas9-2A-GFP encoded on pX458. Gating was optimized for specificity. Single cells positive for GFP were 

plated on a 10 cm plate containing 1.5x106 mouse embryonic fibroblasts (MEFs) and cultured in E8 Flex 

with 2μM thiazovivin (Tocris, 1226056-71-8) for added for the first 24 hours. After growing 5-7 days, 

individual colonies were manually isolated into 1 well of a 6-well dish on 250,000 MEFs in E8 Flex. 3-5 

days later, 3-7 good colonies at passage 42+3 were frozen in BAMBANKER (Fisher Scientific, 

NC9582225). Remaining cells on MEFs were used for PCR deletion assay. For all subsequent analysis, 

cells were adapted to culturing on vitronectin (Thermo Fisher A14700) in Gibco’s Essential 8 Flex medium 

(Thermo Fisher, A2858501). 

PCR assay for CRIPSR deletion: For each clone, gDNA was isolated from one 70% confluent well of a 6-

well dish using Zymo Quick-gDNA Miniprep kit (Zymo, D3006) according to the manufacturer’s protocol. 

PCR was performed using approximately 70ng gDNA with Herculase II fusion DNA polymerase (Agilent, 

6006745) using primers N2NL E2del_F (5’ CACAGCCTTCCTCAAACAAA 3’) and N2NL E5del_R (5’ 

GTGCCACGCATAGTCTCTCA 3’). PCR products of the expected size were cloned and sequenced to 

determine that at least one of NOTCH2NL harbored the expected deletion. Positive clones were subject 

Chromium library preparation, target enrichment, Illumina sequencing and NOTCH2NL gene assembly as 

described above. 

Estimate of NOTCH2 and NOTCH2NL Expression in human fetal brain scRNA-Seq data 

To asses NOTCH2NL expression in the developing brain, we re-analyzed single cell RNA sequencing 

data from (Nowakowski, et al, Science, In Press). Initial analysis of this data showed low expression of 

NOTCH2 and NOTCH2NL presumably due to removal of multi-mapping reads. To address this, we 

constructed a custom Kallisto reference based off GENCODE V19 (hg19) where we removed the 

transcripts ENST00000468030.1, ENST00000344859.3 and ENST00000369340.3. The reads for 3,466 
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single cells were then quantified against this Kallisto index, and the NOTCH2 and NOTCH2NL rows of the 

resulting gene-cell matrix compared to previously generated tSNE clusters. 

Copy Number Estimates of NOTCH2NL in Human Population 

The copy number of NOTCH2NLR and NOTCH2NLC in the human population were established by 

extracting reads that map to NOTCH2 (chr1:119,989,248-120,190,000), NOTCH2NLR 

(chr1:120,705,669-120,801,220), NOTCH2NLA (chr1:146,149,145-146,328,264), NOTCH2NLB 

(chr1:148,600,079-148,801,427) and NOTCH2NLC (chr1:149,328,818-149,471,561) from 266 individuals 

in the Simons Diversity Panel. These reads were then remapped to the 101,143 bp consensus sequence 

of a multiple sequence alignment of alignable portions of NOTCH2 and all NOTCH2NL paralogs. This 

multiple sequence alignment was used to define our SUN markers, and the ratio of reads containing a 

SUN to a non-SUN were measured and the median value taken for NOTCH2NLC and NOTCH2NLR. 

Establishing copy number with SUNs proved difficult for NOTCH2NLA and NOTCH2NLB due to the high 

rate of segregating ectopic gene conversion alleles in the population. Each of the 266 samples was 

studied by hand. Using comparison to the 10 normal genomes assembled, it appeared that NOTCH2NLA 

and NOTCH2NLB are not copy number variable in the phenotypically normal population.  

Paratype Estimation of NOTCH2NL in Human Population 

Assigning paratypes without assemblies is not possible. To try and evaluate the gene conversion 

landscape in the population, we took the ratio of SUN read depths in all 266 Simons individuals as well as 

the six Simons VIP samples and our 10 assembled genomes and plotted them split up by paralog (Table 

S4). These were evaluated for NOTCH2NLC and NOTCH2NLR copy number (Figure S1G). Three 

samples were identified in Simons with apparent gene conversion in NOTCH2NLC, which we did not 

observe in any of our assembled samples. Manual analysis of these SUN diagrams led to the annotation 

of six distinct classes of NOTCH2NLA-NOTCH2NLB gene conversion with varying population 

frequencies. In some cases, the data were of lower quality and harder to interpret. The most common 

gene conversion allele is an overwrite of around 20kb of NOTCH2NLB by NOTCH2NLA in intronic 

sequence between exons 2 and 3, present in 42.5% of Simons normals haplotypes. When interpreting 

these SUN plots, it is helpful to remember that the denominator of the ratio is the total copy number, and 
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as such as individuals stray from N=10 the expected values change. Gene conversion can be observed 

as regions where one paralog has ratios on the Y axis go up while the other goes down. Exons 1-5 are 

located at 19,212-19,590 bp, 59,719-59,800 bp, 84,150-84,409 bp, 92,421-92,756 bp and 93,009-97,333 

bp respectively in the consensus sequence. 

Copy Number Estimates of Microarray 1q21.1 Deletion/Duplication Syndrome Patients 

Comparative genomic hybridization (CGH) microarray probes from Agilent array designs #014693, 

#014950, #24616, and #16267 were mapped to the human hydatidiform mole genome assembly using 

the pblat aligner (https://code.google.com/p/pblat/). IDs for microcephaly and macrocephaly patients 

visualized in Figure S7 are as follows: control-1: MCL08273; control-2: GSM1082800; 1: 

LG_252808110380_S01; 2: WSX002375; 3: SGM250214; 4: MCL08277; 5:MUG249341; 6: MCL04601; 

7: MCL00270; 8: MCL02135; 9: NGS260131; 10: MCL01089; 11: MCL01415. The relative affinities of 

each probe for each of its mapping locations were calculated using the DECIPHER R package; the 

predicted hybridization efficiency of a probe and a mapping location was divided by the predicted 

hybridization efficiency of the probe and its reverse complement, yielding the affinity for the mapping 

location. An integer linear programming (ILP) model was created for each sample, with integral variables 

representing the copy number of each probe mapping location in the CGH sample genome and the CGH 

reference genome, and additional variables representing the total affinity-weighted copy number of all 

mapping locations for each probe. Approximate equality constraints were added to represent the 

measured sample/normal hybridization ratios (normalized per-probe to an average control value of 1.0 for 

arrays with control samples (GEO accession GSE44300) available), the chromosomal structure of the 

genome, and the prior belief that the copy number at most locations would be 2. Each approximate 

equality constraint was constructed by creating two variables, which were restricted to be positive and 

greater than the difference between the constrained quantities in each direction; the weighted sum of 

these two variables was then added into the model's objective function. In an alternate method, the 

locations of homologous sequences that could provide a plausible mechanism for duplication or deletion 

of a region were also added (data not shown). Finally, the resulting ILP model was minimized using 
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CBC79 (https://projects.coin-or.org/) to produce the sample's integral copy number calls. The copy number 

inference software used is available from https://bitbucket.org/adam_novak/copynumber. 

NOTCH2NL Expression in Week 5 Neurospheres 

Two replicates of bulk RNA-seq of week 5 cortical organoids derived from H9 ES as well as 

undifferentiated cells from the H9 differentiation time course described above were quantified against a 

custom Kallisto reference based on GENCODE V27. Using bedtools, all transcripts which overlapped our 

curated annotations of NOTCH2NL paralogs and NOTCH2 were removed. After converting this 

annotation set to FASTA, a subset of our paratype assemblies of H9 NOTCH2NL paralogs were added 

in. Only one representative of both NOTCH2NLR and NOTCH2NLC was used due to their high similarity 

on the transcript level. The TPM values of the replicates were averaged. 
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Figure S1. Related to Figure 1. (A) Identity between NOTCH2-related genes as 
measured over the alignable genomic region (blue) or the gene exons (pink). (B) DNA 
and amino acid sequence of human NOTCH2NL genes in exon 5, which is derived from 
NOTCH2 intron 4. (C) Western blot of mouse ESCs transfected with WT NOTCH2NL, 
or NOTCH2NL with ancestral ATAA inserted in exon 5. (D) Relative protein levels 
based on western blot in panel C. (E) RT-qPCR analysis of the same samples for 
determination of transcript levels for each condition. (F) Alignment of the H9 assembled 
paratypes to GRCh38. Each paratype is colored as to whether a position aligns best to 
GRCH38 NOTCH2NLA, NOTCH2NLB or NOTCH2NLC. (G) Observed frequency of 
individuals with the indicated NOTCH2NLC and NOTCH2NLR copy number in the 
Simons Diversity Panel (n=266). (H) Schematic of linked-read sequencing and Gordian 
Assembler protocol using the 10X genomics Chromium genome assay and oligo-
capture to enrich for library fragments containing the desired genomic region. (I) Protein 
alignment of observed NOTCH2, NOTCH2NL and NOTCH2NLR paratypes based on 
our assembly results. Note that NOTCH2 sequence extends beyond what is shown in 
the alignment. A segregating variant in NOTCH2NLR is found at amino acid position 
235. 
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Figure	S2	
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Figure S2. Related to Figure 2. Details of NOTCH2NL-like genes in Gorilla (A) and 
Chimp (B) and source of genome sequence support. (C) Verification of fusion genes by 
RT-PCR on Chimp and Gorilla RNA. H = Human, C = Chimpanzee, G = Gorilla. (D) 
Immunoblot blot using an N-terminal NOTCH2 antibody (aa 25-255), comparing ectopic 
expression of Chimp NOTCH2NL-like gene lacking exon 2 compared to ectopic 
expression of human NOTCH2NLSh in mESCs. (E) Endocranial volume of fossil 
hominids versus time as determined by Holloway, et al. 2004. (F) Details of splice 
junctions of fusion genes and related open reading frames. Top rows show nucleotide 
sequence in fusion transcripts. Middle rows show peptides derived from these 
transcripts. Lower rows contain the orthologous human NOTCH2NL protein sequence.	  
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Figure	S3	

	
Figure S3. Related to Figure 3. (A) Summary violin plots indicating NOTCH2NL and 
NOTCH2 expression in various cell types. (B) NOTCH2NL paratype expression in 
undifferentiated hESCs and week 5 cortical organoids from bulk Illumina RNA-Seq. 
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Figure	S4	

	
Figure S4. Related to Figure 4. (A) MA plot of RNA-sequencing data of mouse cortical 
organoids based on DESeq2 analysis. (B) Z-score of differentially expressed genes (p-
adj < 0.05, DESeq2). (C) GO terms significantly associated with the upregulated genes 
in organoids ectopically expressing NOTCH2NLSh,T197I. 
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Figure	S5	

	
Figure S5. Related to Figure 5. (A) Schematic of strategy to generate NOTCH2NL-
specific deletions using CRISPR/Cas9 and alignment of the two guide sequences used 
to NOTCH2NL-related sequences. (B) Heatmap of expression levels for a selection of 
brain structure marker genes from hESC-derived cortical organoids at the indicated time 
points (Left) and from human embryonic dorsal prefrontal cortex (DFC) samples at 8 
pcw, 9 pcw, 12 pcw and 13 pcw, derived from the Allen Brain Atlas 
(http://www.brainspan.org). w = week; pcw = post conception week; FPKM= fragments 
per kilobase of exon per million fragments mapped. (C) Brightfield images of developing 
H9* and H9NOTCH2NLΔ cortical organoids. 
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Figure	S6 

	
Figure S6. Related to Figure 6. (A-B) Investigation of co-immunoprecipitation of 
NOTCH2NL with PDGFRB and EGFR in two independent experiments. (C) Reporter 
assay to assess the effect of NOTCH2NL using either NOTCH1-GAL4, NOTCH2-GAL4 
or NOTCH3-GAL4 to induce pGL3-UAS reporter activation. 6 replicates in one 
experiment. Student’s t-test with Holm-Bonferroni correction (* p < 0.05, ** p < 10-3, *** p 
< 10-5), error bars indicate SD. (D) NOTCH2NL effects of NOTCH2-GAL4 reporter assay 
co-culture with JAG2 or DLL1 expressing cells. 6 replicates in one experiment. 
Student’s t-test with Holm-Bonferroni correction (* p<0.05, ** p<10-3, *** p<10-5), error 
bars indicate SD. (E) NOTCH2NL remains effective in an assay with activation of 
NOTCH2-GAL4 using recombinant DLL4 coated plates. Average of 3 independent 
experiments with 4 or 5 replicates each. Two-way anova with Tukey’s HSD (* p < 10-4, ** 
p <10-8, *** p < 10-12), error bars indicate SEM.	  
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Figure	S7	

 
Figure S7. Related to Figure 7. Relative probe intensities from CNV-microarrays for 2 
controls and 11 patients with reported 1q21.1 aberrations mapped to the GRCh38 
1q21.1 assembly. Gray: normal, red: deletion, blue: duplication. Dark red/blue is high 
confidence deletion/duplication based on probe values, light red/blue are potentially part 
of the deletion/duplication. 
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Table S1. Related to Figures 1. Results of NOTCH2NL gene de novo assembly. 

	
	 	

 
    NOTCH2NLA/NOTCH2NLB paratypes NOTCH2NLC   

Sample Type Sh Sh-T197I Sh-A154T L 
L-

T197I 
L-

R113* 

L-
A154T, 
R113* 

Ambiguous 
A/B 

paratype Sh-2ntDel 

Total 
A/B/C 
copies 

CHM1       Normal 2       2       2 6 
H9             Normal 1 1   1     1   2 6 
NA12878  Normal 1   1   1     1 2 6 
NA12891  Normal 2 1     1       1 5 
NA12892  Normal 1 1   1       1 2 6 
NA19240 Normal 2 1  1     2 6 
NA24143  Normal 2 2             1 5 
NA24149  Normal 3       1       2 6 
NA24385  Normal 2 1     1       1 5 

SV721 Simons VIP 1 2   1   1     2 7 
SV735 Simons VIP 2 1             2 5 
SV770 Simons VIP 1     1 1       2 5 
SV780 Simons VIP 1 1   1         2 5 
SV788 Simons VIP 1 1           1 2 5 
SV877 Simons VIP 2 1             2 5 
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Table S2. Related to Figure 4 and 5. Gene expression measurements from RNA-seq 
experiments. 
	
Sup_Table_2_RNA-Seq_GeneExpression_V1.xlsx		 supplied	as	an	Excel	Workbook	
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Table S3. Related to Figure 7. Features of Simons VIP samples.	

	
 
	 	

Table S3. Features of Simons VIP samples. 
 

Sample 
SFARI 

ID Sex 

1q21.1 
Genetic 
Status Inheritance 

NOTCH2NL 
A/B 

Genotype 

NOTCH2NL 
C   

Genotype 

Autism 
Spectrum 
Disorder 

Intellectual 
Disability/ 

Developmental 
Delay Other 

SV721 
14815-

x13 M duplication inherited 

L, Sh, L-
R113*, Sh-
T197I, Sh-

T197I 
Sh-2ntdel 

x2 Y N ADHD 

SV735 
14836-

x45 F deletion inherited 
Sh, Sh, Sh-

T197I 
Sh-2ntdel 

x2 N Y   

SV770 
14843-

x15 F deletion de-novo 
L, L-T197I, 

Sh 
Sh-2ntdel 

x2 N Y 
Speech Sound 
Disorder 

SV788 
14842-

x1 F deletion unknown 
Sh, Sh-
T197I, ? 

Sh-2ntdel 
x2 N N 

Anexiety, 
Developmental 
Coordination 
Disorder 

SV780 
14816-

x12 M deletion inherited 
L, Sh, Sh-

T197I 
Sh-2ntdel 

x2 N N Tourette's 

SV877 
14879-

x8 M deletion inherited 
Sh, Sh, L-

T197I 
Sh-2ntdel 

x2 Y N 

ADHD, 
Learning 
Disability 
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Table	S4.	Related	to	Figures	1	and	7.	Curated	Paratypes	of	Assembled	and	Simons	Normals	
	
Sup_Table_4_ParatypeCalls.xlsx		 supplied	as	an	Excel	Workbook	
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Chapter 7

Discussion

7.1 Introduction

Taken as a whole, this thesis presents a deep analysis of the field of comparative

genomics. I have developed a novel comparative genomics framework that will be hugely

useful to the field going forward into new eras of genome assembly and alignment.

7.2 Chapters

In chapter 1, I introduced the history of comparative genomics. As a field,

comparative genomics saw its biggest explosion of analysis and publications in the early

2000s. As the era of short read sequencing began, the field languished due to a lack of

high quality genomes providing avenues for new analysis. Now, in the era of long read

assembly, comparative genomics is poised to become an important field for analyzing

not just evolutionary history but also human diseases.

In chapter 2 I introduced the history of the mouse genomes project, a piv-

otal project showing the culmination of the short read assembly era, augmented by

comparative techniques to sidestep shortcomings of short read assembly. Despite being

begun over three years ago, only now are other projects like the 200 Mammals Project

beginning to reach this scale of genome assembly.

In chapter 3 I introduced CAT, the comparative genomics framework I devel-

oped to leverage existing high quality annotation sets and whole genome alignments to
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produce annotation sets and genome browsers that enable novel comparative genomics

research to be performed.

In chapter 4 I included the entirety of the CAT publication that is in submis-

sion. This paper lays out the incredible usefulness of CAT, showing that it can improve

annotations even on well studied genomes like Rat, and can outperform large institu-

tional annotation pipelines like those at Ensembl and NCBI by leveraging high quality

annotation sets like the carefully curated set that GENCODE produces for mouse and

human.

In chapter 5 I provide a brief overview of the myraid projects that CAT has

been used for over the years. The number of publications CAT has been involved with

is a testament to the usefulness of the pipeline. Much thought has been given over

the past few years to genome assembly, but less to alignmenet and annotation. As the

number of high quality assembled genomes grows, and the assemblies are increasingly

produced by individual labs instead of large consortia, a tool like CAT is required to

automated annotation in a fashion usable by individual labs and bioinformatics scien-

tists. Additionally, the ability of CAT to track orthology relationships is unique in the

realm of genome annotation.

In chapter 6 I changed gears and introduced the NOTCH2NL project. This

project is also a comparative genomics project at its heart, but also involves a lot

of advanced molecular biology techniques. I did not personally perform any molecular

biology experiments for the project, but I did design or help design most of the genomics-

related experiments performed. The NOTCH2NL project was an opportunity to apply

software development skills I learned while working on the CAT project to an extremely

difficult region of the human genome.

7.3 Conclusion

This thesis presents multiple novel approaches in the comparative genomics

space. This field is poised to make major advances in the upcoming years due to

improvements in sequencing technology and falling costs. Projects like Genome 10K

have been proposed for years, but their lofty goals are only becoming tractable now.

Additionally, projects like the NOTCH2NL project are also becoming tractable through
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advances in long read sequencing, particularly of transcriptomes. Methods like the

enrichment process developed for both DNA and RNA in the NOTCH2NL project

allow for specific regions inaccessible to standard methods to be analyzed at reasonable

cost. These techniques provide avenues for research into human disease phenotypes. In

the same sense, CAT provides this opportunity on a whole genome scale when run on

individual human genome assemblies.

In the future, I hope CAT will be incorporated into large institutional pipelines

like those at Ensembl. It seems clear that this novel approach to genome annotation

provides new opportunity for annotation completeness as well as defining orthology

relationships. My work shows that many of the alternative isoforms discovered through

intensive curation like GENCODE are conserved across evolution and can be annotated

comparatively. CAT will also play a role in the Vertebrate Genomes Project, the 200

Mammals Project, and Genome 10K as a whole. As mentioned in the CAT paper, there

is room for these concepts to be taken further by applying machine learning techniques

to the currently relatively simple consensus finding process. Additionally, more work

can be done to completely annotate many-to-many orthology relationships.
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Chapter 8

Supplementary Text

8.1 CAT README

Below I have included the CAT README file as of commit 79bc4b3. This

provides a detailed description of the CAT pipeline, how it functions, and how it can be

parameterized. I was unable to get the figures to import properly, but they are visible

as figures 2.1 and 2.3 respectively.
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This project aims to provide a straightforward end-to-end pipeline that takes as input a HAL-
format multiple whole genome alignment as well as a GFF3 file representing annotations on
one high quality assembly in the HAL alignment, and produces a output GFF3 annotation on
all target genomes chosen.

This pipeline is capable of running both on local cluster hardware as well as on common cloud
infrastructure using the toil	(http://toil.readthedocs.io/en/latest/)	workflow engine. For full runs on
many genomes, a decent amount of computational effort is required. Memory usage is
moderate.

Above is a flowchart schematic of the functionality of the CAT pipeline.

Installation

The pipeline can be installed by a simple pip install:

pip	install	git+https://github.com/ComparativeGenomicsToolkit/Comparative-Annotation-

Toolkit.git

However, at this time, direct pip installation will mean that the luigi.cfg, logging.cfg, and
test files will be buried in your python directory. I am still trying to figure out how to approach
this problem. In the meantime, you may be better off instead cloning the directory and
installing from your clone:

If you want to do the direct pip installation, you can grab the config files from the repository
and place them in whatever directory you want to execute from, or set the LUIGI_CONFIG_PATH
environmental variable to point to their location. Or have an ugly log, your choice.

Either form of pip installation will install all of the python dependencies. However, there are
binary dependencies that must be compiled and installed in addition.

Dependencies
1. Kent toolkit	(https://github.com/ucscGenomeBrowser/kent)	. Follow the installation instructions

there. Make sure you put the newly created ~/bin/$MACHTYPE directory on your path.

2. bedtools	(http://bedtools.readthedocs.io/en/latest/)	.

git	clone	git+ https: //github.com/ComparativeGenomicsToolkit/Comparative-Annotation

-Toolkit.git

pip	install	- e	Comparative- Annotation- Toolkit


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3. samtools	(http://www.htslib.org/)	(1.3 or greater).

4. Augustus	(http://bioinf.uni-greifswald.de/augustus/binaries/)	. Make sure you are installing
augustus	>=	3.3. You need to follow the instructions to compile augustus in
comparative augustus mode. This requires that you modify a few lines in the common.mk
file, and also need to have sqlite3, lp-solve, bamtools, and libboost installed. If you are
using ubuntu, this should work: apt-get	install	libboost-all-dev	libboost	sqlite3
libsqlite3-0	libsqlite3-dev	libgsl0-dev	lp-solve	liblpsolve55-dev	bamtools

libbamtools-dev

After you have the primary augustus binaries compiled, add the directory to your path.
Note that if you move the augustus binaries from their original location, you will need to
set the AUGUSTUS_CONFIG_PATH global variable to point to the species directory.

You will also need to put the contents of the scripts directory on your path. Next, you
need to compile the following auxiliary programs from the folder auxprogs:

1. joingenes. Compiling this program will place it in the augustus binary directory.

2. bam2hints. Compiling this program will place it in the augustus binary directory.
Requires bamtools to be installed. If the bamtools headers are not at
/usr/include/bamtools, you will need to modify the makefile.

3. filterBam. Also requires the bamtools headers.

4. bam2wig. Compiling this program will NOT place it in the augustus binary
directory, you must do so yourself. This program requires you modify the
makefile to explicitly point to your installation of htslib, bcftools, samtools, and
tabix. Tabix is now packaged with htslib, and both are included in your kent
directory at $kent/src/htslib/.

5. homGeneMapping. This program must also have its makefile at
$augustus/trunks/auxprogs/homGeneMapping/src/Makefile modified to turn on
the BOOST	=	true and SQLITE	=	true flags. Then run make	clean	&&	make to
recompile.

6. There are a series of perl scripts that you need to place on your path from the
$augustus/trunks/scripts directory: wig2hints.pl, blat2hints.pl,
transMap2hints.pl, and join_mult_hints.pl.

5. HAL toolkit	(https://github.com/glennhickey/hal)	. To install the HAL toolkit, you must also
have the sonLib	(https://github.com/benedictpaten/sonLib)	repository in the same parent
directory. Compile sonLib first, then compile hal. Once hal is compiled, you need to
have the binaries on your path.

6. wiggletools	(https://github.com/Ensembl/WiggleTools)	. Used to combine RNA-seq expression
in assembly hubs.

7. sambamba	(https://github.com/lomereiter/sambamba/releases)	. Used to name sort faster than
samtools for hints building.

In total, you must have all of the binaries and scripts listed below on your path. The pipeline
will check for them before executing steps. hal2fasta	halStats	halLiftover	faToTwoBit
pyfasta	gff3ToGenePred	genePredToBed	genePredToFakePsl	bamToPsl	blat2hints.pl

gff3ToGenePred	join_mult_hints.pl	pslPosTarget	axtChain	chainMergeSort	pslMap

pslRecalcMatch	pslMapPostChain	augustus	transMap2hints.pl	joingenes	hal2maf
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gtfToGenePred	genePredToGtf	bedtools	homGeneMapping	blat	pslCheck	pslCDnaFilter

pslToBigPsl	bedSort	bedToBigBed	sambamba	wig2hints.pl

Running	the	pipeline

This pipeline makes use of Luigi	(https://github.com/spotify/luigi)	to link the various steps together.
First, start the luigid daemon:

luigid	--background	--logdir	luigi_logs

Which provides the central scheduler as well as the web UI, which can be accessed at
localhost:8082. If you don't want to use the daemon, add the flag --local-scheduler to the
invocation.

To run the test data, change directories to the CAT installation folder and do the following:

luigi	--module	cat	RunCat	--hal=test_data/vertebrates.hal	--ref-genome=mm10	--

workers=10	--config=test_data/test.config	--work-dir	test_install	--out-dir

test_install	--local-scheduler	--augustus	--augustus-cgp	--augustus-pb	--assembly-hub

>	log.txt

The test should take around 30 minutes to execute. You can track progress in the log file.

Command	line	options

As described above, the primary method to executing the pipeline is to follow the invocation
luigi	--module	cat	RunCat	--hal=${halfile}	--ref-genome=${ref-genome}	--

config=${config}. Below are the flags that can modify execution and output.

Main	options
--hal: Input HAL alignment file. (REQUIRED).

--ref-genome: Reference genome sequence name. Must be present in HAL. (REQUIRED).

--config: Path to the config file with annotations and extrinsic hints. See the config section
for more information. (REQUIRED).

--out-dir: Output directory. Defaults to ./cat_output.

--work-dir: Working directory. Defaults to ./cat_work. Stores all the intermediate files as well
as the toil jobStore. Can be removed after completion (but not if you want to re-do any
steps).

--target-genomes: List of genomes to use. If not set, all non-reference genomes in the HAL
are used. Due to how luigi handles command line tuple parameters, this flag must be
formatted as if it was a tuple being passed directly to python, single quoted. So, for example, if
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your target genomes were Human and Mouse, then you would pass --target-
genomes='("Human",	"Mouse")'. As always with python tuples, if you have only one member,
you must have a trailing comma.

--workers: Number of local cores to use. If running toil in singleMachine mode, care must be
taken with the balance of this value and the --maxCores parameter.

transMap	options
--local-near-best: Adjusts the localNearBest parameter passed to pslCDnaFilter. This
algorithm attempts to resolve paralogous alignments for a given source transcript, allowing
for distinct portions of the transcript to align to different locations. The default value is 0.15,
which is a fairly lenient setting. Decreasing this value increases the number of alignments
called as paralogous. If your assembly is fragmented, keep this value higher. Note that this
parameter does not affect paralog resolution, just the calling of paralogous alignments
(populates the Paralogy tag in the output).

--minimum-paralog-coverage: After the localNearBest algorithm is used to filter out
paralogous alignments, the filtered alignments are evaluated for having at least this much
coverage of the whole transcript before being considered a paralog. Default value is 25.
Increasing this value restricts paralog calls.

AugustusTM(R)	options
--augustus: Run AugustusTM(R)?

--augustus-species: What Augustus species do we want to use? If your species is not a
mammal, please choose one of the species listed here	(http://bioinf.uni-greifswald.de/augustus/)	.

--augustus-utr-off: AugustusTMR will crash trying to predict UTRs if your --augustus-
species lacks a trained UTR model. You can check if
$augustusDir/config/species/$augustusSecies/$augustusSpecies_utr_probs.pbl exists. If it
does not, set this flag.

AugustusCGP	options
--augustus-cgp: Run AugustusCGP?

--cgp-param: Parameters file after training CGP on the alignment. See the AugustusCGP
section.

--maf-chunksize: Size to chunk HAL into. Larger values make the CGP jobs take longer, but
reduce problems related to splitting in genic regions. Default is 2500000. If your HAL contains
more than 10 or so genomes, reducing this value to 1000000 or so is a good idea to keep job
run-times below an hour and avoid going over 8GB of RAM per job. For a 25-way alignment, I
set this value to 750000.

--maf-overlap: How much overlap to use in HAL chunks. Larger values increase redundant
predictions (which are merged). Default is 500000. For a 25-way alignment, I set this value to
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150000.

--cgp-train-num-exons: Number of exons to require in the alignment subset used for training
CGP. See the AugustusCGP section. Default is 5000.

AugustusPB	options
--augustus-pb: Run AugustusPB? Will only run on genomes with IsoSeq data in the config file.

--pb-genome-chunksize: Size to chunk genome into. Default is 20000000.

--maf-overlap: How much overlap to use in genome chunks. Default is 500000.

Filtering	and	consensus	finding	options
--intron-rnaseq-support: Amount of RNA-seq intron support a transcript must have to be
considered. Must be a value between 0 and 100. Default is 0.

--exon-rnaseq-support: Amount of RNA-seq exon support a transcript must have to be
considered. Must be a value between 0 and 100. Default is 0.

--intron-annot-support: Amount of reference intron annotation support a transcript must
have to be considered. Must be a value between 0 and 100. Default is 0.

--exon-annot-support: Amount of reference exon annotation support a transcript must have
to be considered. Must be a value between 0 and 100. Default is 0.

--original-intron-support: Amount of original intron support. See transcript evaluation
description of original introns a transcript must have to be considered. Must be a value
between 0 and 100. Default is 0.

--denovo-num-introns: For de-novo predictions, discard any transcripts with fewer than
these number of introns. Important when RNA-seq data are noisy. Default is 0.

--denovo-splice-support: For de-novo predictions, discard any transcripts with less than
this percent of RNA-seq intron support. Must be a value between 0 and 100. Default is 0.

--denovo-exon-support: For de-novo predictions, discard any transcripts with less than this
percent of RNA-seq exon support. Must be a value between 0 and 100. Default is 0.

--require-pacbio-support: If set, all isoforms in the final set must be supported by at least one
IsoSeq read. This flag is likely to discard a ton of transcripts, so be careful.

--in-species-rna-support-only: If set, all of the above intron/exon support flags will look
only at RNA-seq/IsoSeq data from the species in question, and not make use of
homGeneMapping to check support in all species. The output plots will always report in-species
support.

--rebuild-consensus: A convenience flag to allow you to adjust the flags above. When set, will
force the pipeline to re-run consensus finding and will also re-build the downstream plots
and assembly hub.
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See below for toil options shared with the hints database pipeline.

Toil
The remaining options are passed directly along to toil:

--batchSystem: Batch system to use. Defaults to singleMachine. If running in singleMachine
mode, no cluster jobs will be submitted. In addition, care must be taken to balance the --
maxCores field with the --workers field with the toil resources in luigi.cfg. Basically, you want
to make sure that your # of toil resources multiplied by your --maxCores is fewer than the total
number of system cores you want to use. However, I highly recommend using a non-local
batch system. See the toil documentation for more.

--maxCores: The number of cores each toil module will use. If submitting to a batch system,
this limits the number of concurrent submissions.

Config	file

The config file contains the paths to two important pieces of information -- the reference
GFF3 and the extrinsic hints (bams).

A major component of producing high quality comparative annotations is making use of
RNA-seq and/or IsoSeq information. This information is used as hints to the augustus gene
finding tool along with transMap, and is a major component of cleaning up transcript
projections. This is also useful if you run the augustusCGP or augustusPB portions of the
pipeline.

If the genetic distances in your alignment are high (say maybe an average identity in the 70s-
80s), then you may derive great benefit from using a protein reference, if possible. This will be
particularly useful for augustusCGP.

A template for the config file is below. At a minimum, your config file must have the
annotation section. A example config file is provided in the test_data folder.

BAM files must be indexed!

[ANNOTATION]

Genome	= 	/path/to/reference/gff3

[BAM]

Genome	= 	/path/to/fofn	<OR>	/path/to/bam1.bam,	/path/to/bam2.bam

[INTRONBAM]

Genome	= 	/path/to/fofn/of/noisy/rnaseq

[ISO_SEQ_BAM]

Genome	= 	/path/to/isoseq/bams


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Note that the BAM/INTRONBAM/ISO_SEQ_BAM fields can be populated either with a comma
separated list of BAMs or a single file with a line pointing to each BAM (a FOFN, or file-of-
file-names). The reference sequence information will be extracted from the HAL alignment.

For the PROTEIN_FASTA field, every genome you wish to have the protein fasta be aligned to
must be on its own separate line. All of these can point to the same FASTA.

RNA-seq	libraries
It is extremely important that you use high quality RNA-seq. Libraries should be poly-A
selected and paired end with a minimum read length of 75bp. If any of these are not true, it is
advisable to place these libraries in the INTRONBAM field. Any genome can have a mix of BAM
and INTRONBAM hints.

BAM files must be indexed!

ISoSeq	libraries
If you are using IsoSeq data, it is recommended that you doing your mapping with gmap.
Follow the tutorial	(https://github.com/PacificBiosciences/cDNA_primer/wiki/Aligner-tutorial:-GMAP,-STAR,-

BLAT,-and-BLASR)	.

GFF3	Reference

CAT relies on a proper GFF3 file from the reference. One very important part of this GFF3 file
is the biotype tag, which follows the GENCODE/Ensembl convention. The concept of a
protein_coding biotype is hard baked into the pipeline. Proper division of biotypes is very
important for transMap filtering and consensus finding to work properly.

If your GFF3 has duplicate transcript names, the pipeline will complain. One common cause of
this is PAR locus genes. You will want to remove PAR genes -- If your GFF3 came from
GENCODE, you should be able to do this: grep	-v	PAR	$gff	>	$gff.fixed

Execution	modes

The default mode of this pipeline will perform the following tasks:

1. Lift all annotations present in the input GFF3 to all other genomes in the alignment.

2. Filter these comparative transcripts for paralogous mappings.

3. Evaluate these transcripts for potential problems, assigning a score.

[PROTEIN_FASTA]

Genome	= 	/path/to/protein/fasta
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4. Produce a output annotation set as well a series of plots charting how this process
went.

These steps will run reasonably fast on one machine without any need for cluster computing.
However, to construct a high quality annotation set, it is recommended that the pipeline be
run with as many modes of AUGUSTUS as possible.

AugustusTM(R)
The primary parameterization of AUGUSTUS for comparative annotation is primarily a method
to clean up transMap projections. Due to a combination of assembly error, alignment noise
and real biological changes transMap projections have frame shifting indels, missing or
incomplete exons, and invalid splice sites. AugustusTM is given every protein coding transMap
projection one at a time with some flanking sequence and asked to construct a transcript that
closely matches the intron-exon structure that transMap provides. Since AUGUSTUS enforces a
standard gene model, frame shifts and invalid splices will be adjusted to a valid form. In some
cases this will mangle the transcript, producing either another isoform or something that
does not resemble the source transcript. AugustusTMR runs the same genomic interval and
transMap derived hints through AUGUSTUS a second time, but with less strict weights on the
transMap hints and with the addition of extrinsic hints from RNA-seq and/or IsoSeq. This is
particularly useful in regions where an exon was dropped in the Cactus alignment.

AugustusTM and AugustusTMR can be ran by providing the --augustus flag to the pipeline.
AugustusTMR will only be ran for genomes with extrinsic information in the hints database. If
you are running CAT on a non-mammal, you will want to modify the --augustus-species flag
to one of the species listed here	(http://bioinf.uni-greifswald.de/augustus/)	. Take care to check if your
species has a UTR model, and adjust the --augustus-utr-off flag accordingly.

AugustusCGP
augustusCGP is the comparative mode of AUGUSTUS recently introduced by Stefanie Nachtweide
(https://academic.oup.com/bioinformatics/article/32/22/3388/2525611/Simultaneous-gene-finding-in-multiple-

genomes)	. This mode of AUGUSTUS takes as input a HAL format multiple whole genome
alignment and simultaneously produces ab-initio transcript predictions in all genomes,
taking into account conservation as well as any extrinsic information provided. AugustusCGP
allows for the introduction of novel isoforms and loci in the final gene sets.

AugustusCGP can be ran by providing the --augustus-cgp flag to the pipeline. If no previously
trained model is provided to AugustusCGP via the --cgp-param flag, then the pipeline will
automatically train the model using the given alignment. To do so, random subsets of the
alignment will be extracted until --cgp-train-num-exons exons are included. In practice, for
vertebrate genomes, a few thousand exons corresponding to a few megabases of sequence are
sufficient. If your genomes are more dense, this may vary. The trained model will be written to
the AugustusCGP working directory, and can be used again on alignments with similar
genomes.

AugustusPB
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AugustusPB is a parameterization of AUGUSTUS to try and predict alternative isoforms using long
range data. If any IsoSeq data are provided in the config file, and the --augustus-pb flag is set,
the genomes with IsoSeq data will be run through and the results incorporated in the final
gene set. AugustusPB runs on single whole genomes.

Modules

While the primary mode of operation of the pipeline is to launch the RunCat module, you may
want to run specific modules. Any submodule can be ran by changing the luigi invocation to
specify a submodule class instead.

PrepareFiles
This module parses the GFF3 annotation input, creating a genePred format file as well as a
sqlite database. In addition, sequence files for all target genomes are extracted and converted
to 2bit.

This module will populate the folders --work-dir/reference and --work-dir/genome_files.

Chaining
This step is the first precursor step to transMap. Pairwise genomic Kent-style chains are
produced for each target genome from the designated reference. This step uses Toil and can
be parallelized on a cluster.

This module will populate the folder --work-dir/chaining.

TransMap
This step runs transMap. The chain files are used to project annotations present in the GFF3
from the reference genome to each target genome.

EvaluateTransMap
This step performs the preliminary classification of transMap transcripts. This step populates
the TransMapEvaluation table in the sqlite database for each target genome with the following
classifiers:

1. AlnExtendsOffConfig: Does this alignment run off the end of a contig?

2. AlignmentPartialMap: Did this transcript not map completely?

3. AlnAbutsUnknownBases: Does this alignment have Ns immediately touching any
exons?

4. PercentN: Percent of N bases in the alignment.
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5. TransMapCoverage.

6. TransMapIdentity.

7. TransMapGoodness: A measure of alignment quality that takes into account both
coverage and alignment size in the target. Related to Jim Kent's badness score.

8. TransMapOriginalIntronsPercent: The number of transMap introns within a wiggle
distance of a intron in the parent transcript in transcript coordinates.

9. Synteny: Counts the number of genes in linear order that match up to +/- 5 genes.

10. ValidStart -- start with ATG?

11. ValidStop -- valid stop codon (in frame)?

12. ProperOrf -- is the orf a multiple of 3?

This module will populate the folder --work-dir/transMap.

FilterTransMap
This module runs the program PslCDnaFilter in a few different parameterizations. First, it
runs the program with -globalNearBest=0	-minSpan=0.2	-minCover=0.1, which filters out
alignments with coverage <10% and whose target genome span is less than 20% of the largest
alignment, then uses the alignment score to pick the best single alignment. The output of this
process is then split-gene resolved. This process involves identifying source genes that map
to multiple contigs or disjoint on a single contig, identifying the highest scoring locus, then
selecting alignments for transcripts in that locus that were filtered out by globalNearBest. The
result is a single discrete locus for each source transcript. The plot transmap_filtering.pdf in
the plots output gets populated by this, reporting on the number of alignments removed by
span distance, coverage, and paralogy.

This module also runs PslCDnaFilter again, this time to discover paralogs. In this run, instead
of -globalNearBest being set, -localNearBest is set to the user determined value (default is
0.15). This algorithm allows for multiple alignments from a given source to pass through if
they are on different parts of the source transcript. In practice, this generally means filtering
out truly paralogous alignments while retaining alignments of transcripts split across
contigs. The alignments that are filtered out by this process are used to populate the Paralogy
field in the final output, as well as the diagnostic plots.

The final step of this module is to resolve split genes. If transcripts for a given gene end up on
different contigs or on disjoint intervals on the same contig, the locus with the highest
average score is chosen and lower scoring alignments for the transcripts present in the other
locus are rescued, if possible. This result populates the Filter	Mode	=	Rescued part of
transmap_filtering.pdf.

This module will further populate the folder --work-dir/transMap.

Augustus
As discussed above, this module runs AugustusTM(R). If the pipeline is ran without a hints
database, only the AugustusTM mode will be executed. This process is one of the most
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computationally intensive steps, and should not be ran without a cluster.

This module will populate the folder --work-dir/augustus.

AugustusCgp
Running AugustusCGP is trickier than other modes. If your genomes are not closely related to
an existing training set, you may need to perform logistic regression to train AugustusCGP
before execution. A default parameter set is provided. This mode is also computationally
intensive, and requires a cluster.

Each output transcript are assigned a parental gene, if possible. Parental gene assignment is
done by looking to see if this transcript has at least 1 exonic base overlap with any filtered
TransMap as well as unfiltered transMap. If the transcript overlaps more than one gene, the
Jaccard metric	(http://bedtools.readthedocs.io/en/latest/content/tools/jaccard.html)	is used to try and
resolve the ambiguity. If no gene stands out, this transcript is discarded. A sqlite table will
record both the filtered and unfiltered overlaps.

Transcripts which are not assigned a parental gene will be considered novel in the consensus
finding step. Most often, these are the result of gene family expansion or contraction in the
reference. Looking at the raw transMap track in the final assembly hub will help resolve this.

This module will populate the folder --work-dir/augustus_cgp.

AugustusPb
Running AugustusPB requires that IsoSeq data be provided. This mode runs on single
genomes, and attempts to discover new isoforms. Transcripts predicted in this process
undergo the same parental gene assignment described above.

This module will populate the folder --work-dir/augustus_pb.

Hgm
homGeneMapping is a companion tool of AugustusCGP. This tool uses a HAL alignment to project
RNA-seq and annotation information to target genomes. This is used to validate a splice
junction in a target genome as being supported in one or more alternative genomes, as well as
being supported in the reference annotation. This module populates the *_Hgm database table,
where * is one of transMap, augTM, augTMR, augCGP or augPB depending on the transcripts being
evaluated. This table has the following comma separated columns:

1. AllSpeciesIntronRnaSupport. The number of species with RNA-seq data supporting the
intron junctions, in genomic order.

2. AllSpeciesExonRnaSupport. The number of species with RNA-seq data suporting the
exons, in genomic order.

3. IntronRnaSupport. Same as #1, but only within this species.

4. ExonRnaSupport. Same as #2, but only within this species.
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5. IntronAnnotSupport. A bit vector indicating if the intron junctions are supported by the
reference annotation.

6. CdsAnnotSupport. A bit vector indicating if the CDS features are supported by the
reference annotation.

7. ExonAnnotSupport. A bit vector indicating if the exon features are supported by the
reference annotation.

This module will populate the folder --work-dir/hgm.

The output of the homGeneMapping module has more information embedded in the output files.
Each GTF format file in the above folder has a added column on the end with a string like:

"0E-6273,1E-1524,2N:M*-1,3E-742,4E-1912,5E-1208"

Which can be interpreted as 'species 0 had 6273 extrinsic hints (RNA-seq coverage), species 1
has 1524 extrinsic hints, species 2 (the reference) had both a non-coding (N) and coding (M)
junction', and so on. The species numeric values are at the top of the file, and correlate to the
species ID assigned internally in the hints database. These data can be useful if you want to dig
in to a specific annotation.

AlignTranscripts
Transcript alignment allows for AugustusTM(R) transcripts to be compared to their parental
transMap. As a result, only protein coding transcripts are aligned. For each transcripts,
alignment is performed by BLAT two ways -- in frame codon aware alignment, and mRNA
alignment. The results of these alignments are saved in the folder --work-
dir/transcript_alignment. These alignments are used to create functional annotations of
transcripts in the EvaluateTranscripts module.

EvaluateTranscripts
A series of classifiers that evaluate transcript pairwise alignments for transMap and
AugustusTM(R) output.

These classifiers are broken down into 2 groups, which will each end up as a table in the
database:

\_\_Metrics:

These classifiers are per-transcript evaluations based on both the transcript alignment and
the genome context.

1. PercentUnknownBases: % of mRNA bases that are Ns.

2. AlnCoverage: Alignment coverage in transcript space.

3. AlnIdentity: Alignment identity in transcript space.

4. OriginalIntrons. Original introns is a bit vector that evaluates whether the intron
junctions in transcript coordinate space are within 5 bases either direction from the
original transcript. This is a powerful approach to identifying retroposed pseudogenes
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or problematic alignments.

5. ValidStart -- start with ATG?

6. ValidStop -- valid stop codon (in frame)?

7. ProperOrf -- is the orf a multiple of 3?

\_\_Evaluation:

These classifiers are per-transcript evaluations based on the transcript alignment. Unlike the
other two tables, this table stores the actual location of the problems (in genome coordinates)
as a BED-like format. In cases where there are multiple problems, they will be additional rows.

1. CodingInsertion: Do we have any frame-shifting coding insertions?

2. CodingDeletion: Do we have any frame-shifting coding deletions?

3. CodingMult3Insertion: Do we have any mod3 coding insertions?

4. CodingMult3Deletion: Do we have any mod3 coding deletions?

5. NonCodingInsertion: Do we have indels in UTR sequence?

6. NonCodingDeletion: Do we have any indels in UTR sequence?

7. InFrameStop: Are there any in-frame stop codons?

Where txMode is one of transMap, augTM, augTMR and alnMode is one of CDS or mRNA.

The evaluation tables will be loaded as tracks in the final assembly hub.

Consensus
The consensus finding process takes in transcripts from every mode and attempts to find the
highest quality ortholog for a source transcript. The de-novo transcript modes are also
evaluated for providing novel isoforms or novel loci. The final gene set is output with a series
of features measuring how confident the prediction is.

To evaluate transMap, AugustusTM and AugustusTMR transcripts a consensus score is assigned to
each. This score is the sum of the alignment goodness, intron/exon annotation support,
original intron support, and intron/exon RNA-seq/IsoSeq support if extrinsic data were
provided. The transcript with the highest consensus score is chosen.

If one of the de-novo augustus modes is run, then the those transcripts are evaluated for
providing novel information. If a prediction did not overlap any transMap projections, then it
is tagged as putative novel and incorporated into the gene set. If a prediction overlaps a
transMap projection that was filtered out during paralog resolution, then it is tagged as a
possible paralog as well as with the names of overlapping transcripts and incorporated into
the gene set. If a prediction overlaps a transMap projection and contains a splice junction not
seen in the reference annotation, then it is tagged as a novel isoform and incorporated into
the gene set as a member of the gene it overlapped with.

After consensus finding is complete, a final filtering process is performed. This filtering
process deduplicates the transcript set. Duplicates most often occur when the augustus
execution modes create an identical transcript model from different input isoforms. In this
case, the duplicates are removed and the remaining transcript tagged with the names of
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alternative source transcripts. Finally, strand resolution throws out transcripts that are on
opposite strands. The correct strand is chosen by looking at which contains the most high
quality transcripts.

After consensus finding, a final output gene set is produced in both GFF3 and genePred format.
The genePred annotations also have a additional .gp_info file that has the additional fields
described below.

The output will appear in --output-dir/consensus.

Plots
A large range of plots are produced in --output-dir/plots. These include:

1. denovo.pdf. If either de-novo mode was ran, this plot will report the results. See the
above description of the tags in consensus or GFF3 tags sections.

2. completeness.pdf: The number of genes/transcripts successfully mapped over. The top
of the x axis is marked with a red line representing the amount of genes/transcripts the
source annotation had.

3. consensus_extrinsic_support: A violin plot of the level of extrinsic support seen across
all species for splices and exons, as found by homGeneMapping. Provides a overall plot and
a per-biotype plot.

4. consensus_anotation_support: A violin plot of the level of annotation support seen
across all species for splices and exons, as found by homGeneMapping. Provides a overall
plot and a per-biotype plot.

5. coverage.pdf: A violinplot that shows the overall transcript coverage in the consensus
set. Provides a overall plot and a per-biotype plot.

6. identity.pdf: A violinplot that shows the overall transcript identity in the consensus
set. Provides a overall plot and a per-biotype plot.

7. transmap_coverage.pdf: A violinplot that shows the overall transcript coverage in the
filtered transMap output. Provides a overall plot and a per-biotype plot.

8. transmap_	identity.pdf: A violinplot that shows the overall transcript identity in the
filtered transMap output. Provides a overall plot and a per-biotype plot.

9. missing_genes-transcripts.pdf: Similar to completeness.pdf, this plot reports the
number of genes and transcripts in the original annotation set not found on the target
genomes.

10. paralogy.pdf: Stacked bar charts of the number of alignments a given source transcript
had in each target.

11. split_genes.pdf: The number of genes split within and between contigs.

12. transcript_modes.pdf: The number of modes that supported a given comparative
annotation. Applies only to protein coding transcripts derived from transMap, because
AugustusTMR is not ran on non-coding inputs.

13. augustus_improvement.pdf: A scatterplot + density plot reporting the improvement of
primary consensus metrics when an augustus transcript was chosen over a transMap
transcript. The density plot may fail in some cases.
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14. coding_indels.pdf: The rate of insertions, deletions and indels that are a multiple of 3
are reported from the final consensus set based on the pairwise alignments. Preference
is given to the CDS space alignment, if it worked.

15. IsoSeq_isoform_validation.pdf: The number of transcripts in the consensus set whose
intron structure is exactly validated by at least one IsoSeq read.

GFF3	tags:

1. gene_id: Unique gene ID assigned to this gene.

2. transcript_id: Unique transcript ID assigned to this gene.

3. alignment_id: Original alignment ID internally used in the pipeline. Provides a link to
the gene sets input to consensus finding.

4. alternative_source_transcripts: If deduplication collapsed transcripts, report the
other source_transcript IDs.

5. exon_annotation_support: Was this exon supported by the reference annotation?

6. exon_rna_support: Was this exon supported by the extrinsic database?

7. frameshift: Is this transcript frameshifted relative to source_transcript?

8. gene_biotype: The source_gene biotype. If this is a de-novo prediction, this field will say
unknown_likely_coding.

9. intron_annotation_support: Was this intron supported by the reference annotation?

10. intron_rna_support: Was this intron supported by the extrinsic database?

11. source_gene: The gene ID of the source gene, if this is a projection transcript.

12. source_gene_common_name: The common name of the source gene.

13. source_transcript: The ID of the source transcript.

14. transcript_biotype: The biotype of the source transcript, or unknown_likely_coding
for de-novo predictions.

15. transcript_class: For projection transcripts, just says ortholog. For de-novo
transcripts, will be one of poor_alignment, possible_paralog, putative_novel_isoform,
or putative_novel. See the consensus finding section for descriptions.

16. transcript_modes: Comma separated list of transcript modes. The same information as
the transcript_modes.pdf plot.

17. pacbio_isoform_supported: Was this isoform supported by at least one IsoSeq read?

18. paralogy: Comma separated list of alignments identified as possible paralogs for this
transcript.

19. gene_alternate_contigs: If this gene was split across multiple contigs, this will have a
comma separated list of alternative locations.

For GFF3 output, the alignment goodness is in the score field. For .gp_info, it is a column. For
.gp_info, the support features are collapsed into comma separated vectors instead of being on
their respective features.
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