
UC San Diego
Technical Reports

Title
A Near-Optimal Algorithm for a Locality-Maximizing Placement Problem

Permalink
https://escholarship.org/uc/item/7vv3w0j9

Authors
Chung, Fan
Graham, Ronald
Bhagwan, Ranjita
et al.

Publication Date
2004-01-16

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vv3w0j9
https://escholarship.org/uc/item/7vv3w0j9#author
https://escholarship.org
http://www.cdlib.org/

A Near-Optimal Algorithm for a Loality-Maximizing

Plaement Problem

Fan Chung, Ronald Graham, Ranjita Bhagwan, Stefan Savage, and Geo�rey M. Voelker

Department of Computer Siene and Engineering

University of California, San Diego

ffan, rgraham, rbhagwan, savage, voelkerg�s.usd.edu

Abstrat. The e�etiveness of a distributed system hinges on the manner in whih tasks

and data are assigned to the underlying system resoures. Moreover, today's large-sale dis-

tributed systems must aommodate heterogeneity in both the o�ered load and in the makeup

of the available storage and ompute apaity. The ideal resoure assignment must balane

the utilization of the underlying system against the loss of loality inurred when individ-

ual tasks or data objets are fragmented among several servers. In this paper we desribe this

loality-maximizing plaement problem and show that an optimal solution is NP-hard. We then

desribe a polynomial-time algorithm that generates a plaement within an additive onstant

of two from optimal.

1 Introdution

In reent years, the �eld of global-sale distributed systems has seen tremendous growth.

For example, peer-to-peer storage systems suh as OeanStore [KBC

+

00℄, CFS [DKK

+

01℄,

PAST [RD01℄ and IVY [MMGC02℄ provide persistent data aess using globally distributed

and highly heterogeneous storage resoures. Similarly, distributed omputing e�orts suh as

the Computational Grid [FK99℄, SETI�home [Set℄, Entropia [Ent℄ and BOINC [Boi℄ envi-

sion the use of a widely distributed omputing platform for a variety of resoure-intensive

appliations.

In these systems, tasks and data objets are often too large to be assigned to a single

node and the system must fragment them among several servers. As a result, the system

must balane the utilization of the underlying system resoures against the loss of loality

inurred when individual tasks or data objets are fragmented. We all this trade-o� of

system utilization and resoure loality the loality-maximizing plaement problem.

For example, many peer-to-peer storage systems manage very large objets suh as

MPEG-enoded movies. However, individual hosts taking part in suh systems may not be

willing or able to store suh large �les in their entirety. Therefore, the system must partition

a movie into separate fragments, eah stored on a separate host. However, to reover the

movie in its entirety, the hosts storing all of the fragments need to be available at the same

time. As a result, the availability of a movie dereases as the number of fragments used to

store it inreases. To maximize availability, the system must minimize the number of times

�les are fragmented, while still assigning all objets to servers.

Distributed omputing appliations also enounter a similar problem. For many appli-

ations it is important to shedule an appliation's tasks to meet a given timing onstraint.

However, one or more individual tasks may require more proessing power than any sin-

gle hosts an provide. As a result, tasks must be split aross hosts to meet the response

time onstraint. However, splitting inurs its own osts, suh as ommuniation between

the di�erent task fragments, repliation of data required for the task to exeute aross all

hosts, and data aggregation one the task ompletes. Therefore the system must selet a

shedule that makes the minimum neessary number of splits while still sheduling all tasks

suessfully.

These problems, instanes of a loality-maximizing plaement problem, represent a spe-

i� kind of bin-paking problem that an be stated as follows. Given are a �xed set of

bins of varying sizes as well as items of varying sizes that need to be plaed into the bins.

The sizes of the items may be too large to �t into individual bins, and so they may need

to be split into fragments to �t into the bins. However, fragmenting of items auses a \loss

of loality" for that item. In the peer-to-peer storage problem mentioned above, the loss of

loality dereases �le availability. In the distributed omputing problem, it leads to higher

ommuniation and storage overheads. In general, the more fragments for an item, the worse

its loality.

One potential solution to the problem is to �nd a paking that maximizes the average (or

total) loality of the items, i.e., minimizes the average (or total) number of item fragments.

However, minimizing the average does not bound the worst-ase number of fragments of

individual items, and so some items ould have a large loss in loality due to extensive

fragmentation.

A more desirable solution of the problem is a paking that maximizes the minimum

loality over all items, or in other words, minimizes the maximum number of fragments

made of any item. This ensures a minimum loality for all the items. In the �rst example,

the system would fragment and store �les suh that it maximizes the minimum �le avail-

ability. In the seond example, the system would minimize the maximum ommuniation

and storage overhead.

In this paper, we show that determining the optimal solution to the loality-maximization

plaement problem is NP-hard. We then desribe a polynomial-time algorithm that gen-

erates a plaement within an additive onstant of two from optimal. We also show ex-

perimental results obtained from applying our algorithm to a large number of simulated

systems.

The rest of the paper is organized as follows. Setion 2 provides the formal problem

de�nition, and shows that solving it is NP-hard. In Setion 3, we derive a lower-bound for

the optimal solution of the problem. We also state and prove laims that will be used in later

setions in the desription and veri�ation of our algorithm. In Setion 4, we desribe our

algorithm, alulate its running-time, and provide experimental results. Finally, Setion 5

summarizes the ontributions of this paper.

2 Problem de�nition

Let I = (I

1

; I

2

; : : : ; I

m

) be the set of items and let B = (B

1

; B

2

; : : : ; B

n

) be the set of bins.

Also, let jI

i

j denote the size of item I

i

, and let jB

j

j denote the apaity of bin B

j

. Without

loss of generality, we assume that the umulative sizes of the bins equals the umulative

size of the items, i:e:,

P

i

jI

i

j =

P

j

jB

j

j.

We de�ne a paking P as an assignment of every item to the set of bins, given that eah

item an be fragmented aross multiple bins, and similarly, a bin an hold multiple item

fragments. For a given paking P , we de�ne h

P

(I

i

) = h(I

i

) := number of bins \hit" by I

i

,

or, in other words, the number of bins that ontain a fragment of the item I

i

. Similarly,

h

P

(I

i

[I

j

) = number of bins hit by I

i

and I

j

, et.

We want to �nd a paking that minimizes the maximum number of fragments made of an

item, whih is equal to the maximum number of bins hit by an item. So, de�ne

OPT (I;B) = min

P

max

1�k�m

h

P

(I

k

)

where P ranges over all pakings of (I;B).

2.1 OPT(I; B) is NP-hard

We point out that determining OPT(I;B) in general is an NP-hard problem. To see this,

we onsider the following known NP-hard bin paking problem BP ([Kar72℄, also see page

223 of [GJ75℄). We will redue the problem BP to a speial ase of our problem, spei�ally

to the question \Is OPT(I;B) = 1 ?"

Problem BP

Input : Set S of n positive integers s

1

; s

2

; : : : ; s

n

with sum = 2�.

Question: Is there a subset of S with sum = �.

We an use this input data to onstrut a speial ase of our problem by de�ning

I = fI

1

; I

2

; : : : ; I

n

g with jI

k

j = s

k

; 1 � k � n, and

B = fB

1

; B

2

g with jB

1

j = jB

2

j = �.

Then OPT(I;B) = 1 if and only if the answer to the BP question is yes.

3 Basi fats

Sine the loality-maximizing plaement problem is NP-Hard, we have developed a polynomial-

time algorithm that provides a solution that is within an additive onstant of 2 from the

optimal. In this setion, we provide several de�nitions and prove various fats that are re-

quired for an explanation of our algorithm. We �rst derive a lower bound to the optimal

solution to the above problem. We then make additional laims that shall be used in future

setions and in the proposed algorithm.

We assume that the items and bins are sorted in non-asending order, that is (after

relabeling),

jI

1

j � jI

2

j � : : : � jI

m

j

jB

1

j � jB

2

j � : : : � jB

n

j

We next reate the \anonial paking" C by assigning bins in the sorted order to the

items, also in a sorted order. For example, as shown in Figure 1, B

1

, B

2

and B

3

are assigned

to I

1

. The rest of B

3

is �lled by I

2

, and so on. So I

1

\hits" B

1

, B

2

and B

3

, making h(I

1

)

equal to 3. I

2

hits B

3

, B

4

and B

5

, and therefore h(I

2

) is also equal to 3. Sine I

1

and

I

2

together hit B

1

, B

2

, B

3

, B

4

and B

5

, h(I

1

[I

2

) is 5. We an always assume that in

representing the bins into whih I

i

is paked, eah bin B

j

is represented by an interval of

I

i

. The ordering of these bins, or intervals, within I

i

, is irrelevant.

I1 I2 I3 I4

B1 B2 B3 B4 B5 B13

I1 I2 I3 I4

B1 B2 B3 B4 B5 B13

Fig. 1. An example problem with 4 items and 13 bins. This shows the anonial paking C with the items

and bins both sorted in non-asending size order.

For 1 � k � m, we de�ne

�(k) := d

1

k

h(I

1

[: : : [I

k

)e

and � := max

k

�(k)

where h = h

C

, and C is the anonial paking.

Going bak to the example of Figure 1,

h(I

1

) = 3; h(I

2

) = 3; h(I

3

) = 4; h(I

4

) = 6;

�(1) = 3;

�(2) = d5=2e = 3;

�(3) = d8=3e = 3;

�(4) = d13=4e = 4;

� = 4:

Claim 1 OPT(I;B) � �:

Proof. We shall show by ontradition that it is not possible for OPT(I;B) to be less than

� , and onsequently � is a lower bound to the solution of our paking problem. Suppose

OPT (I;B) < � (1)

Let us hoose k suh that

�(k) = d

1

k

h

C

(I

1

[: : : [I

k

)e = �

Thus, k orresponds to the maximum value of �(i), whih is equal to � . Let h = h

C

(I

1

[

: : : [I

k

). Now, from the de�nition of � , we an say that there exists I

i

, i � k, for whih

h(I

i

) � � (2)

However, for assumption (1) to hold, the number of bins hit by any item must be less

than � . To ahieve this, we need to hange the paking from the anonial paking C.

If we hange the ordering of bins within the �rst k items, thus obtaining a new paking,

inequality (2) would still hold, sine h(I

1

[: : :[I

k

) would remain the same. So for the new

paking, we will need to use some bins for the �rst k items that have not already been hit

by them in the anonial paking. But sine B

1

; : : : ; B

h�1

are the largest h � 1 bins, no

other set of h� 1 bins an hold items I

1

[: : :[I

k

. Hene, by hanging the ordering, we an

only inrease the number of bins hit by the �rst k items. Thus, there is no way that we an

satisfy (1), whih is a ontradition. ut

Claim 2 For the anonial paking C,

h

C

(I

1

) + : : :+ h

C

(I

k

) � h

C

(I

1

[: : : [I

k

) + k � 1

for 1 � k � m.

Proof. There are a total of k � 1 boundaries between I

i

and I

i+1

, 1 � i � k � 1, and these

items share at most one ommon B

j

aross the boundary. So the total number of shared

bins is at most k � 1. ut

For any paking P , we now de�ne a \deviation" d

i

for eah I

i

by d

i

= h

P

(I

i

) � � . We

denote the sequene (d

1

; : : : ; d

m

) of deviations by D.

Claim 3 For the anonial paking C, for 1 � k � m ,

k

X

i=1

d

i

� k � 1 (3)

Proof.

k

X

i=1

d

i

=

X

i�k

h

C

(I

i

)� k�

� h

C

(I

1

[: : : [I

k

) + k � 1� k� by Claim 2

= k(

1

k

h

C

(I

1

[: : : [I

k

)� �) + k � 1

� k(d

1

k

h

C

(I

1

[: : : [I

k

)e � �) + k � 1

� k � 1 by def. of �

ut

Claim 4 Suppose for any paking P , D = (d

1

; d

2

; : : : ; d

m

) satis�es (3), and let

D

0

= (d

1

; d

2

; : : : ; d

j�1

; d

j+1

; : : : ; d

m

) = (d

0

1

; d

0

2

; : : : ; d

0

m�1

) be formed from D by deleting

some term d

j

� 1. Then D

0

satis�es (3).

Proof. For k � j � 1, we have

X

i�k

d

0

i

=

X

i�k

d

i

� k � 1

by the hypothesis on D. For k � j, we have

X

i�k

d

0

i

=

X

i�j�1

d

0

i

+

X

j�i�k

d

0

i

=

X

i�j�1

d

i

+

X

j�i�k+1

d

i

� d

j

=

X

i�k+1

d

i

� d

j

� k � d

j

� k � 1

by the hypothesis on D. ut

4 The algorithm

We now give a paking algorithm that will give a near-optimal solution requiring at most

� +2 bins for eah I

i

. In the next subsetion, we desribe a proedure referred to as \ross-

spliing", whih will be used by the algorithm. The desription of the main proedure of

the algorithm follows.

4.1 Cross-spliing

Let us say that the sequene of deviations D is redued if d

i

62 f1; 2g for any i. Suppose for

some i < j,

h(I

i

) = � � a; h(I

j

) = � + b

where a � 0; b � 3:

Let us line up I

j

below I

i

(see Figure 2) and de�ne the following funtion:

�(x) := h(I

j

; x)� h(I

i

; x)

where h(I

j

; x) := number of di�erent bins that I

j

has hit up to x (with h(I

i

; x) de�ned

Ii

0 |Ij|x

Ij

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

B4 B5 B6

B'9

Ii

0 |Ij|x

Ij

Ii

0 |Ij|x

Ij

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

B4 B5 B6

B'9

Fig. 2. Lining up I

i

and I

j

similarly). By onvention �(0) = 0 (If we want, we an imagine that bin intervals are of

form (: : :℄, i.e., semi-open intervals losed on the right.)

Note that �(x) only hanges as x rosses a bin boundary, and onsequently, it an

hange (up or down) by at most 1. If I

i

and I

j

have a ommon boundary value at some

point x

0

, then �(x) does not hange as x goes through x

0

. Also note that

�(jI

j

j) � a+ b

This follows from the fat that sine i < j, then jI

i

j � jI

j

j. Thus, h(I

i

; jI

j

j) is less than or

equal to � � a.

For an arbitrary value , 0 < � a+b, let x

0

be the �rst bin interval right-hand endpoint

with �(x

0

) = . A ross-splie at x

0

is the following modi�ation: The portion of I

i

and I

j

Ii

Ij

x0

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

Ii

Ij B1 B2 B3

B'1 B'2 B'3 B'4 B'5 B3

Ii

Ij

x0

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

Ii

Ij

x0

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

Ii

Ij B1 B2 B3

B'1 B'2 B'3 B'4 B'5 B3

Fig. 3. Cross-spliing at x

0

for 0 � x � x

0

are interhanged, as shown in Figure 3. In this example, = 2. The �rst

right-hand endpoint of a bin interval, for whih x

0

= 2, is that of B

0

5

. Hene, B

0

1

through

B

0

5

are interhanged with B

1

, B

2

, and part of B

3

. Of ourse in doing so, we have split bin

B

3

between I

i

and I

j

.

This obviously hanges the values of h(I

i

) and h(I

j

). Normally, x

0

will not be a boundary

point for I

i

, and in this ase, we see that

h

0

(I

i

) = h(I

i

) + + 1

h

0

(I

j

) = h(I

j

)�

In the example of Figure 3, I

i

initially hits 6 bins, and I

j

hits 10 bins. After the ross-spliing,

I

i

hits 9 bins, and I

j

hits 8.

Otherwise, if x

0

is also a boundary point for I

i

then

h

0

(I

i

) = h(I

i

) +

h

0

(I

j

) = h(I

j

)�

Thus, the D sequene goes from (d

1

; d

2

; : : : ; d

i

; : : : ; d

j

; : : : ; d

m

)

to (d

1

; d

2

; : : : ; d

i

+ + 1; : : : ; d

j

� ; : : : ; d

m

)

4.2 The main proedure

We begin with the anonial (dereasing) paking C explained in Setion 3. Let the D

sequene for the paking be (d

1

; d

2

; : : : ; d

i

; : : : ; d

j

; : : : ; d

m

), whih satis�es (3) and whih we

an assume is redued (i.e., no d

i

= 1 or 2). Let j be the least index suh that d

j

� 3. If

there is no suh index, then the algorithm ompletes, and all the items have h(I

i

) less than

or equal to � + 2, whih is what the algorithm set out to guarantee. By putting k = 1 in

equation (3), we have d

1

� 0. Thus, j � 2. Hene, we have two andidates, I

1

and I

j

, that

we use for ross-spliing.

We use the same symbols as in the previous subsetion, d

1

= �a; d

j

= b; a � 0; b � 3:

Now, there are two ases:

Case (i) b > a. Then we ross-splie I

1

and I

j

using = a + 1 � a + b. This produes

D

0

= (2; : : : ; b � a � 1; : : : ; d

m

), i.e., d

0

1

= 2; d

0

j

= b � a � 1. Then we redue D

0

to D

00

=

(d

2

; d

3

; : : : ; d

0

j

; d

j+1

; : : : ; d

m

) by removing the entry d

0

1

= 2.

Case (ii) b � a. In this ase we ross-splie I

1

and I

j

using = b� 2 � a+ b. This produes

D

0

= (b� a� 1; : : : ; 2; : : : ; d

m

) whih we redue to D

00

= (b� a� 1; : : : ; d

j�1

; d

j+1

; : : : ; d

m

)

by removing the entry d

0

j

= 2.

Claim 5 The resulting redued sequene D

00

satis�es (3).

Proof. We shall �rst prove this for Case (i) desribed above. For 1 � k � j � 2,

D

00

= (d

2

; : : : ; d

j�1

; b� a� 1; d

j+1

; : : :) = (d

00

1

; d

00

2

; : : :)

Sine by de�nition, j was the least index suh that d

j

> 2, then d

2

� 0; : : : ; d

j�1

� 0. We

reall that they annot be equal to 1 or 2 sine the sequene is assumed to be redued.

Thus,

P

i�k

d

00

i

� 0 � k � 1 .

For k � j � 1 we have

X

i�k

d

00

i

=

j�1

X

2

d

i

+ b� a� 1 +

k

X

i=j

d

00

i

=

j

X

i=1

d

i

� 1 +

k+1

X

i=j+1

d

i

=

k+1

X

i=1

d

i

� 1

� k � 1

by (3).

Now, if b � a � 1 equals 1 or 2, then we remove d

00

j�1

from the sequene D

00

to get a new

sequene D

000

, whih, by Claim 4, still satis�es (3).

We shall now prove that (3) holds for Case (ii). In this ase, we have

D

00

= (b� a� 1; d

2

; : : : ; d

j�1

; d

j+1

; : : :) = (d

00

1

; d

00

2

; : : :)

Sine b � a in this ase then as before, d

00

1

� 0; : : : ; d

j�1

� 0, so that for k � j � 1,

X

i�k

d

00

i

� 0 � k � 1

If k � j, then

X

i�k

d

00

i

=

X

i�j�1

d

00

i

+

k

X

i�j

d

00

i

= b� a� 1 +

j�1

X

i=2

d

i

+

k+1

X

i=j+1

d

i

=

k+1

X

i=1

d

i

� 1

� k � 1

by (3). ut

We note that (3) =) d

1

� 0. So now the algorithm an iterate on the new sequene D

00

or D

000

. Thus, by ross-spliing, we an redue the number of d

i

6= 1 or 2 by at least one at

eah step. Stritly speaking, we ross-splie and delete the 2 to get a sequene D

00

whih

(still) satis�es (3). Values of d

i

= 1 or 2 orrespond to I

i

whih are \happy", i.e., they do

not have to be proessed any further. Therefore, in at most m � 1 steps we have a stable

sequene D

�

with all entries � 0 (or whih is empty). At this point, the algorithm halts.

4.3 Running time

There are two main parts to the algorithm. The �rst is the sorting of I and B to yield

the anonial dereasing paking C, whih takes O(n log n) time. The seond involves the

iterative ross-spliing phase. The number of iterations is at most m � 1. Within eah

iteration, �nding andidate items for ross-spliing takes at most m steps, while omputing

� values at bin endpoints will take O(n) time. Thus, the running time of this part of the

algorithm is O(mn). Hene overall, the time omplexity of the algorithm is O(n(m+log n)).

� � + 1 � + 2

No ross-spliing reqd. 237 7474 25296

Cross-spliing reqd. 0 0 66993

Table 1. Results obtained from experimental evaluation of our algorithm on 100,000 simulated systems.

4.4 Experiments

We performed an experimental evaluation of this algorithm, by simulating a system with

100 items and 6000 bins. The item sizes followed a uniform random distribution with a mean

of 1000 units, and the bin sizes followed a Zipf distribution with � = 1 and a maximum size

of 50 units.

We ran the simulation 100,000 times, eah time with di�erent sets of item and bin sizes.

The �rst row of Table 1 shows the number of simulated systems that did not require any

ross-spliing, i:e:, the anonial paking provided a solution within �+2. This is subdivided

into the number of systems for whih the solution was exatly � , �+1, and �+2. The seond

row provides the same information for the number of systems that required the iterative

ross-spliing phase.

The numbers show that ross-spliing always provides a solution that is exatly � + 2.

This is beause eah iteration of ross-spliing always reates at least one item that hits

� + 2 bins.

5 Summary

In this paper, we have de�ned a spei� bin-paking problem, that of \loality-maximizing

assignment", whih is relevant to urrent distributed appliations. We have shown that

obtaining the optimal solution is an NP-hard problem, but that an eÆient near-optimal

algorithm exists. We desribe one suh algorithm and prove that it provides solutions within

an additive onstant of 2 of the optimal solution. Finally, we provide empirial data obtained

from the experimental evaluation of the algorithm.

Referenes

[Boi℄ Berkeley open infrastruture for network omputing (boin). http://boin.ssl.berkeley.edu/.

[DKK

+

01℄ F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoia. Wide-area ooperative storage

with fs. In proeedings of the 18th ACM Symposium on Operating System Priniples (SOSP) ,

2001.

[Ent℄ Entropia website. www.entropia.om.

[FK99℄ Ian Foster and Carl Kesselman, editors. The Grid: Blueeprint for a New Computing Infrastru-

turre. Morgan Kaufmann, 1999.

[GJ75℄ M. R. Garey and D. S. Johnson. Complexity results for multiproessor sheduling under resoure

onstraints. SIAM Journal of Computing, 4:397{411, 1975.

[Kar72℄ R. M. Karp. Complexity of Computer Computations, hapter Reduibility among ombinatorial

problems, pages 85{103. Plenum Press, New York, 1972.

[KBC

+

00℄ John Kubiatowiz, David Bindel, Yan Chen, Patrik Eaton, Dennis Geels, Ramakrishna Gum-

madi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher Wells, and Ben Zhao.

Oeanstore: An arhiteture for global-sale persistent storage. In Proeedings of ACM ASP-

LOS, 2000.

[MMGC02℄ Athiha Muthitaharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: A read/write

peer-to-peer �le system. In Proeedings of 5th Symposium on Operating Systems Design and

Implementation, 2002.

[RD01℄ A. Rowstron and P. Drushel. Storage management and ahing in past, a large-sale, persistent

peer-to-peer storage utility. In Proeedings of ACM Symposium on Operating Systems Priniples

(SOSP'01), Ot 2001.

[Set℄ Searh for extra-terrestrial intelligene(seti). http://setiathome.ssl.berkeley.edu/.

