
UC San Diego
Technical Reports

Title
A Near-Optimal Algorithm for a Locality-Maximizing Placement Problem

Permalink
https://escholarship.org/uc/item/7vv3w0j9

Authors
Chung, Fan
Graham, Ronald
Bhagwan, Ranjita
et al.

Publication Date
2004-01-16

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vv3w0j9
https://escholarship.org/uc/item/7vv3w0j9#author
https://escholarship.org
http://www.cdlib.org/

A Near-Optimal Algorithm for a Lo
ality-Maximizing

Pla
ement Problem

Fan Chung, Ronald Graham, Ranjita Bhagwan, Stefan Savage, and Geo�rey M. Voelker

Department of Computer S
ien
e and Engineering

University of California, San Diego

ffan, rgraham, rbhagwan, savage, voelkerg�
s.u
sd.edu

Abstra
t. The e�e
tiveness of a distributed system hinges on the manner in whi
h tasks

and data are assigned to the underlying system resour
es. Moreover, today's large-s
ale dis-

tributed systems must a

ommodate heterogeneity in both the o�ered load and in the makeup

of the available storage and
ompute
apa
ity. The ideal resour
e assignment must balan
e

the utilization of the underlying system against the loss of lo
ality in
urred when individ-

ual tasks or data obje
ts are fragmented among several servers. In this paper we des
ribe this

lo
ality-maximizing pla
ement problem and show that an optimal solution is NP-hard. We then

des
ribe a polynomial-time algorithm that generates a pla
ement within an additive
onstant

of two from optimal.

1 Introdu
tion

In re
ent years, the �eld of global-s
ale distributed systems has seen tremendous growth.

For example, peer-to-peer storage systems su
h as O
eanStore [KBC

+

00℄, CFS [DKK

+

01℄,

PAST [RD01℄ and IVY [MMGC02℄ provide persistent data a

ess using globally distributed

and highly heterogeneous storage resour
es. Similarly, distributed
omputing e�orts su
h as

the Computational Grid [FK99℄, SETI�home [Set℄, Entropia [Ent℄ and BOINC [Boi℄ envi-

sion the use of a widely distributed
omputing platform for a variety of resour
e-intensive

appli
ations.

In these systems, tasks and data obje
ts are often too large to be assigned to a single

node and the system must fragment them among several servers. As a result, the system

must balan
e the utilization of the underlying system resour
es against the loss of lo
ality

in
urred when individual tasks or data obje
ts are fragmented. We
all this trade-o� of

system utilization and resour
e lo
ality the lo
ality-maximizing pla
ement problem.

For example, many peer-to-peer storage systems manage very large obje
ts su
h as

MPEG-en
oded movies. However, individual hosts taking part in su
h systems may not be

willing or able to store su
h large �les in their entirety. Therefore, the system must partition

a movie into separate fragments, ea
h stored on a separate host. However, to re
over the

movie in its entirety, the hosts storing all of the fragments need to be available at the same

time. As a result, the availability of a movie de
reases as the number of fragments used to

store it in
reases. To maximize availability, the system must minimize the number of times

�les are fragmented, while still assigning all obje
ts to servers.

Distributed
omputing appli
ations also en
ounter a similar problem. For many appli-

ations it is important to s
hedule an appli
ation's tasks to meet a given timing
onstraint.

However, one or more individual tasks may require more pro
essing power than any sin-

gle hosts
an provide. As a result, tasks must be split a
ross hosts to meet the response

time
onstraint. However, splitting in
urs its own
osts, su
h as
ommuni
ation between

the di�erent task fragments, repli
ation of data required for the task to exe
ute a
ross all

hosts, and data aggregation on
e the task
ompletes. Therefore the system must sele
t a

s
hedule that makes the minimum ne
essary number of splits while still s
heduling all tasks

su

essfully.

These problems, instan
es of a lo
ality-maximizing pla
ement problem, represent a spe-

i�
 kind of bin-pa
king problem that
an be stated as follows. Given are a �xed set of

bins of varying sizes as well as items of varying sizes that need to be pla
ed into the bins.

The sizes of the items may be too large to �t into individual bins, and so they may need

to be split into fragments to �t into the bins. However, fragmenting of items
auses a \loss

of lo
ality" for that item. In the peer-to-peer storage problem mentioned above, the loss of

lo
ality de
reases �le availability. In the distributed
omputing problem, it leads to higher

ommuni
ation and storage overheads. In general, the more fragments for an item, the worse

its lo
ality.

One potential solution to the problem is to �nd a pa
king that maximizes the average (or

total) lo
ality of the items, i.e., minimizes the average (or total) number of item fragments.

However, minimizing the average does not bound the worst-
ase number of fragments of

individual items, and so some items
ould have a large loss in lo
ality due to extensive

fragmentation.

A more desirable solution of the problem is a pa
king that maximizes the minimum

lo
ality over all items, or in other words, minimizes the maximum number of fragments

made of any item. This ensures a minimum lo
ality for all the items. In the �rst example,

the system would fragment and store �les su
h that it maximizes the minimum �le avail-

ability. In the se
ond example, the system would minimize the maximum
ommuni
ation

and storage overhead.

In this paper, we show that determining the optimal solution to the lo
ality-maximization

pla
ement problem is NP-hard. We then des
ribe a polynomial-time algorithm that gen-

erates a pla
ement within an additive
onstant of two from optimal. We also show ex-

perimental results obtained from applying our algorithm to a large number of simulated

systems.

The rest of the paper is organized as follows. Se
tion 2 provides the formal problem

de�nition, and shows that solving it is NP-hard. In Se
tion 3, we derive a lower-bound for

the optimal solution of the problem. We also state and prove
laims that will be used in later

se
tions in the des
ription and veri�
ation of our algorithm. In Se
tion 4, we des
ribe our

algorithm,
al
ulate its running-time, and provide experimental results. Finally, Se
tion 5

summarizes the
ontributions of this paper.

2 Problem de�nition

Let I = (I

1

; I

2

; : : : ; I

m

) be the set of items and let B = (B

1

; B

2

; : : : ; B

n

) be the set of bins.

Also, let jI

i

j denote the size of item I

i

, and let jB

j

j denote the
apa
ity of bin B

j

. Without

loss of generality, we assume that the
umulative sizes of the bins equals the
umulative

size of the items, i:e:,

P

i

jI

i

j =

P

j

jB

j

j.

We de�ne a pa
king P as an assignment of every item to the set of bins, given that ea
h

item
an be fragmented a
ross multiple bins, and similarly, a bin
an hold multiple item

fragments. For a given pa
king P , we de�ne h

P

(I

i

) = h(I

i

) := number of bins \hit" by I

i

,

or, in other words, the number of bins that
ontain a fragment of the item I

i

. Similarly,

h

P

(I

i

[I

j

) = number of bins hit by I

i

and I

j

, et
.

We want to �nd a pa
king that minimizes the maximum number of fragments made of an

item, whi
h is equal to the maximum number of bins hit by an item. So, de�ne

OPT (I;B) = min

P

max

1�k�m

h

P

(I

k

)

where P ranges over all pa
kings of (I;B).

2.1 OPT(I; B) is NP-hard

We point out that determining OPT(I;B) in general is an NP-hard problem. To see this,

we
onsider the following known NP-hard bin pa
king problem BP ([Kar72℄, also see page

223 of [GJ75℄). We will redu
e the problem BP to a spe
ial
ase of our problem, spe
i�
ally

to the question \Is OPT(I;B) = 1 ?"

Problem BP

Input : Set S of n positive integers s

1

; s

2

; : : : ; s

n

with sum = 2�.

Question: Is there a subset of S with sum = �.

We
an use this input data to
onstru
t a spe
ial
ase of our problem by de�ning

I = fI

1

; I

2

; : : : ; I

n

g with jI

k

j = s

k

; 1 � k � n, and

B = fB

1

; B

2

g with jB

1

j = jB

2

j = �.

Then OPT(I;B) = 1 if and only if the answer to the BP question is yes.

3 Basi
 fa
ts

Sin
e the lo
ality-maximizing pla
ement problem is NP-Hard, we have developed a polynomial-

time algorithm that provides a solution that is within an additive
onstant of 2 from the

optimal. In this se
tion, we provide several de�nitions and prove various fa
ts that are re-

quired for an explanation of our algorithm. We �rst derive a lower bound to the optimal

solution to the above problem. We then make additional
laims that shall be used in future

se
tions and in the proposed algorithm.

We assume that the items and bins are sorted in non-as
ending order, that is (after

relabeling),

jI

1

j � jI

2

j � : : : � jI

m

j

jB

1

j � jB

2

j � : : : � jB

n

j

We next
reate the \
anoni
al pa
king" C by assigning bins in the sorted order to the

items, also in a sorted order. For example, as shown in Figure 1, B

1

, B

2

and B

3

are assigned

to I

1

. The rest of B

3

is �lled by I

2

, and so on. So I

1

\hits" B

1

, B

2

and B

3

, making h(I

1

)

equal to 3. I

2

hits B

3

, B

4

and B

5

, and therefore h(I

2

) is also equal to 3. Sin
e I

1

and

I

2

together hit B

1

, B

2

, B

3

, B

4

and B

5

, h(I

1

[I

2

) is 5. We
an always assume that in

representing the bins into whi
h I

i

is pa
ked, ea
h bin B

j

is represented by an interval of

I

i

. The ordering of these bins, or intervals, within I

i

, is irrelevant.

I1 I2 I3 I4

B1 B2 B3 B4 B5 B13

I1 I2 I3 I4

B1 B2 B3 B4 B5 B13

Fig. 1. An example problem with 4 items and 13 bins. This shows the
anoni
al pa
king C with the items

and bins both sorted in non-as
ending size order.

For 1 � k � m, we de�ne

�(k) := d

1

k

h(I

1

[: : : [I

k

)e

and � := max

k

�(k)

where h = h

C

, and C is the
anoni
al pa
king.

Going ba
k to the example of Figure 1,

h(I

1

) = 3; h(I

2

) = 3; h(I

3

) = 4; h(I

4

) = 6;

�(1) = 3;

�(2) = d5=2e = 3;

�(3) = d8=3e = 3;

�(4) = d13=4e = 4;

� = 4:

Claim 1 OPT(I;B) � �:

Proof. We shall show by
ontradi
tion that it is not possible for OPT(I;B) to be less than

� , and
onsequently � is a lower bound to the solution of our pa
king problem. Suppose

OPT (I;B) < � (1)

Let us
hoose k su
h that

�(k) = d

1

k

h

C

(I

1

[: : : [I

k

)e = �

Thus, k
orresponds to the maximum value of �(i), whi
h is equal to � . Let h = h

C

(I

1

[

: : : [I

k

). Now, from the de�nition of � , we
an say that there exists I

i

, i � k, for whi
h

h(I

i

) � � (2)

However, for assumption (1) to hold, the number of bins hit by any item must be less

than � . To a
hieve this, we need to
hange the pa
king from the
anoni
al pa
king C.

If we
hange the ordering of bins within the �rst k items, thus obtaining a new pa
king,

inequality (2) would still hold, sin
e h(I

1

[: : :[I

k

) would remain the same. So for the new

pa
king, we will need to use some bins for the �rst k items that have not already been hit

by them in the
anoni
al pa
king. But sin
e B

1

; : : : ; B

h�1

are the largest h � 1 bins, no

other set of h� 1 bins
an hold items I

1

[: : :[I

k

. Hen
e, by
hanging the ordering, we
an

only in
rease the number of bins hit by the �rst k items. Thus, there is no way that we
an

satisfy (1), whi
h is a
ontradi
tion. ut

Claim 2 For the
anoni
al pa
king C,

h

C

(I

1

) + : : :+ h

C

(I

k

) � h

C

(I

1

[: : : [I

k

) + k � 1

for 1 � k � m.

Proof. There are a total of k � 1 boundaries between I

i

and I

i+1

, 1 � i � k � 1, and these

items share at most one
ommon B

j

a
ross the boundary. So the total number of shared

bins is at most k � 1. ut

For any pa
king P , we now de�ne a \deviation" d

i

for ea
h I

i

by d

i

= h

P

(I

i

) � � . We

denote the sequen
e (d

1

; : : : ; d

m

) of deviations by D.

Claim 3 For the
anoni
al pa
king C, for 1 � k � m ,

k

X

i=1

d

i

� k � 1 (3)

Proof.

k

X

i=1

d

i

=

X

i�k

h

C

(I

i

)� k�

� h

C

(I

1

[: : : [I

k

) + k � 1� k� by Claim 2

= k(

1

k

h

C

(I

1

[: : : [I

k

)� �) + k � 1

� k(d

1

k

h

C

(I

1

[: : : [I

k

)e � �) + k � 1

� k � 1 by def. of �

ut

Claim 4 Suppose for any pa
king P , D = (d

1

; d

2

; : : : ; d

m

) satis�es (3), and let

D

0

= (d

1

; d

2

; : : : ; d

j�1

; d

j+1

; : : : ; d

m

) = (d

0

1

; d

0

2

; : : : ; d

0

m�1

) be formed from D by deleting

some term d

j

� 1. Then D

0

satis�es (3).

Proof. For k � j � 1, we have

X

i�k

d

0

i

=

X

i�k

d

i

� k � 1

by the hypothesis on D. For k � j, we have

X

i�k

d

0

i

=

X

i�j�1

d

0

i

+

X

j�i�k

d

0

i

=

X

i�j�1

d

i

+

X

j�i�k+1

d

i

� d

j

=

X

i�k+1

d

i

� d

j

� k � d

j

� k � 1

by the hypothesis on D. ut

4 The algorithm

We now give a pa
king algorithm that will give a near-optimal solution requiring at most

� +2 bins for ea
h I

i

. In the next subse
tion, we des
ribe a pro
edure referred to as \
ross-

spli
ing", whi
h will be used by the algorithm. The des
ription of the main pro
edure of

the algorithm follows.

4.1 Cross-spli
ing

Let us say that the sequen
e of deviations D is redu
ed if d

i

62 f1; 2g for any i. Suppose for

some i < j,

h(I

i

) = � � a; h(I

j

) = � + b

where a � 0; b � 3:

Let us line up I

j

below I

i

(see Figure 2) and de�ne the following fun
tion:

�(x) := h(I

j

; x)� h(I

i

; x)

where h(I

j

; x) := number of di�erent bins that I

j

has hit up to x (with h(I

i

; x) de�ned

Ii

0 |Ij|x

Ij

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

B4 B5 B6

B'9

Ii

0 |Ij|x

Ij

Ii

0 |Ij|x

Ij

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

B4 B5 B6

B'9

Fig. 2. Lining up I

i

and I

j

similarly). By
onvention �(0) = 0 (If we want, we
an imagine that bin intervals are of

form (: : :℄, i.e., semi-open intervals
losed on the right.)

Note that �(x) only
hanges as x
rosses a bin boundary, and
onsequently, it
an

hange (up or down) by at most 1. If I

i

and I

j

have a
ommon boundary value at some

point x

0

, then �(x) does not
hange as x goes through x

0

. Also note that

�(jI

j

j) � a+ b

This follows from the fa
t that sin
e i < j, then jI

i

j � jI

j

j. Thus, h(I

i

; jI

j

j) is less than or

equal to � � a.

For an arbitrary value
, 0 <
 � a+b, let x

0

be the �rst bin interval right-hand endpoint

with �(x

0

) =
. A
ross-spli
e at x

0

is the following modi�
ation: The portion of I

i

and I

j

Ii

Ij

x0

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

Ii

Ij B1 B2 B3

B'1 B'2 B'3 B'4 B'5 B3

Ii

Ij

x0

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

Ii

Ij

x0

B1 B2 B3

B'1 B'2 B'3 B'4 B'5

Ii

Ij B1 B2 B3

B'1 B'2 B'3 B'4 B'5 B3

Fig. 3. Cross-spli
ing at x

0

for 0 � x � x

0

are inter
hanged, as shown in Figure 3. In this example,
 = 2. The �rst

right-hand endpoint of a bin interval, for whi
h x

0

= 2, is that of B

0

5

. Hen
e, B

0

1

through

B

0

5

are inter
hanged with B

1

, B

2

, and part of B

3

. Of
ourse in doing so, we have split bin

B

3

between I

i

and I

j

.

This obviously
hanges the values of h(I

i

) and h(I

j

). Normally, x

0

will not be a boundary

point for I

i

, and in this
ase, we see that

h

0

(I

i

) = h(I

i

) +
+ 1

h

0

(I

j

) = h(I

j

)�

In the example of Figure 3, I

i

initially hits 6 bins, and I

j

hits 10 bins. After the
ross-spli
ing,

I

i

hits 9 bins, and I

j

hits 8.

Otherwise, if x

0

is also a boundary point for I

i

then

h

0

(I

i

) = h(I

i

) +

h

0

(I

j

) = h(I

j

)�

Thus, the D sequen
e goes from (d

1

; d

2

; : : : ; d

i

; : : : ; d

j

; : : : ; d

m

)

to (d

1

; d

2

; : : : ; d

i

+
+ 1; : : : ; d

j

�
; : : : ; d

m

)

4.2 The main pro
edure

We begin with the
anoni
al (de
reasing) pa
king C explained in Se
tion 3. Let the D

sequen
e for the pa
king be (d

1

; d

2

; : : : ; d

i

; : : : ; d

j

; : : : ; d

m

), whi
h satis�es (3) and whi
h we

an assume is redu
ed (i.e., no d

i

= 1 or 2). Let j be the least index su
h that d

j

� 3. If

there is no su
h index, then the algorithm
ompletes, and all the items have h(I

i

) less than

or equal to � + 2, whi
h is what the algorithm set out to guarantee. By putting k = 1 in

equation (3), we have d

1

� 0. Thus, j � 2. Hen
e, we have two
andidates, I

1

and I

j

, that

we use for
ross-spli
ing.

We use the same symbols as in the previous subse
tion, d

1

= �a; d

j

= b; a � 0; b � 3:

Now, there are two
ases:

Case (i) b > a. Then we
ross-spli
e I

1

and I

j

using
 = a + 1 � a + b. This produ
es

D

0

= (2; : : : ; b � a � 1; : : : ; d

m

), i.e., d

0

1

= 2; d

0

j

= b � a � 1. Then we redu
e D

0

to D

00

=

(d

2

; d

3

; : : : ; d

0

j

; d

j+1

; : : : ; d

m

) by removing the entry d

0

1

= 2.

Case (ii) b � a. In this
ase we
ross-spli
e I

1

and I

j

using
 = b� 2 � a+ b. This produ
es

D

0

= (b� a� 1; : : : ; 2; : : : ; d

m

) whi
h we redu
e to D

00

= (b� a� 1; : : : ; d

j�1

; d

j+1

; : : : ; d

m

)

by removing the entry d

0

j

= 2.

Claim 5 The resulting redu
ed sequen
e D

00

satis�es (3).

Proof. We shall �rst prove this for Case (i) des
ribed above. For 1 � k � j � 2,

D

00

= (d

2

; : : : ; d

j�1

; b� a� 1; d

j+1

; : : :) = (d

00

1

; d

00

2

; : : :)

Sin
e by de�nition, j was the least index su
h that d

j

> 2, then d

2

� 0; : : : ; d

j�1

� 0. We

re
all that they
annot be equal to 1 or 2 sin
e the sequen
e is assumed to be redu
ed.

Thus,

P

i�k

d

00

i

� 0 � k � 1 .

For k � j � 1 we have

X

i�k

d

00

i

=

j�1

X

2

d

i

+ b� a� 1 +

k

X

i=j

d

00

i

=

j

X

i=1

d

i

� 1 +

k+1

X

i=j+1

d

i

=

k+1

X

i=1

d

i

� 1

� k � 1

by (3).

Now, if b � a � 1 equals 1 or 2, then we remove d

00

j�1

from the sequen
e D

00

to get a new

sequen
e D

000

, whi
h, by Claim 4, still satis�es (3).

We shall now prove that (3) holds for Case (ii). In this
ase, we have

D

00

= (b� a� 1; d

2

; : : : ; d

j�1

; d

j+1

; : : :) = (d

00

1

; d

00

2

; : : :)

Sin
e b � a in this
ase then as before, d

00

1

� 0; : : : ; d

j�1

� 0, so that for k � j � 1,

X

i�k

d

00

i

� 0 � k � 1

If k � j, then

X

i�k

d

00

i

=

X

i�j�1

d

00

i

+

k

X

i�j

d

00

i

= b� a� 1 +

j�1

X

i=2

d

i

+

k+1

X

i=j+1

d

i

=

k+1

X

i=1

d

i

� 1

� k � 1

by (3). ut

We note that (3) =) d

1

� 0. So now the algorithm
an iterate on the new sequen
e D

00

or D

000

. Thus, by
ross-spli
ing, we
an redu
e the number of d

i

6= 1 or 2 by at least one at

ea
h step. Stri
tly speaking, we
ross-spli
e and delete the 2 to get a sequen
e D

00

whi
h

(still) satis�es (3). Values of d

i

= 1 or 2
orrespond to I

i

whi
h are \happy", i.e., they do

not have to be pro
essed any further. Therefore, in at most m � 1 steps we have a stable

sequen
e D

�

with all entries � 0 (or whi
h is empty). At this point, the algorithm halts.

4.3 Running time

There are two main parts to the algorithm. The �rst is the sorting of I and B to yield

the
anoni
al de
reasing pa
king C, whi
h takes O(n log n) time. The se
ond involves the

iterative
ross-spli
ing phase. The number of iterations is at most m � 1. Within ea
h

iteration, �nding
andidate items for
ross-spli
ing takes at most m steps, while
omputing

� values at bin endpoints will take O(n) time. Thus, the running time of this part of the

algorithm is O(mn). Hen
e overall, the time
omplexity of the algorithm is O(n(m+log n)).

� � + 1 � + 2

No
ross-spli
ing reqd. 237 7474 25296

Cross-spli
ing reqd. 0 0 66993

Table 1. Results obtained from experimental evaluation of our algorithm on 100,000 simulated systems.

4.4 Experiments

We performed an experimental evaluation of this algorithm, by simulating a system with

100 items and 6000 bins. The item sizes followed a uniform random distribution with a mean

of 1000 units, and the bin sizes followed a Zipf distribution with � = 1 and a maximum size

of 50 units.

We ran the simulation 100,000 times, ea
h time with di�erent sets of item and bin sizes.

The �rst row of Table 1 shows the number of simulated systems that did not require any

ross-spli
ing, i:e:, the
anoni
al pa
king provided a solution within �+2. This is subdivided

into the number of systems for whi
h the solution was exa
tly � , �+1, and �+2. The se
ond

row provides the same information for the number of systems that required the iterative

ross-spli
ing phase.

The numbers show that
ross-spli
ing always provides a solution that is exa
tly � + 2.

This is be
ause ea
h iteration of
ross-spli
ing always
reates at least one item that hits

� + 2 bins.

5 Summary

In this paper, we have de�ned a spe
i�
 bin-pa
king problem, that of \lo
ality-maximizing

assignment", whi
h is relevant to
urrent distributed appli
ations. We have shown that

obtaining the optimal solution is an NP-hard problem, but that an eÆ
ient near-optimal

algorithm exists. We des
ribe one su
h algorithm and prove that it provides solutions within

an additive
onstant of 2 of the optimal solution. Finally, we provide empiri
al data obtained

from the experimental evaluation of the algorithm.

Referen
es

[Boi℄ Berkeley open infrastru
ture for network
omputing (boin
). http://boin
.ssl.berkeley.edu/.

[DKK

+

01℄ F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoi
a. Wide-area
ooperative storage

with
fs. In pro
eedings of the 18th ACM Symposium on Operating System Prin
iples (SOSP) ,

2001.

[Ent℄ Entropia website. www.entropia.
om.

[FK99℄ Ian Foster and Carl Kesselman, editors. The Grid: Blueeprint for a New Computing Infrastru
-

turre. Morgan Kaufmann, 1999.

[GJ75℄ M. R. Garey and D. S. Johnson. Complexity results for multipro
essor s
heduling under resour
e

onstraints. SIAM Journal of Computing, 4:397{411, 1975.

[Kar72℄ R. M. Karp. Complexity of Computer Computations,
hapter Redu
ibility among
ombinatorial

problems, pages 85{103. Plenum Press, New York, 1972.

[KBC

+

00℄ John Kubiatowi
z, David Bindel, Yan Chen, Patri
k Eaton, Dennis Geels, Ramakrishna Gum-

madi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher Wells, and Ben Zhao.

O
eanstore: An ar
hite
ture for global-s
ale persistent storage. In Pro
eedings of ACM ASP-

LOS, 2000.

[MMGC02℄ Athi
ha Muthita
haroen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: A read/write

peer-to-peer �le system. In Pro
eedings of 5th Symposium on Operating Systems Design and

Implementation, 2002.

[RD01℄ A. Rowstron and P. Drus
hel. Storage management and
a
hing in past, a large-s
ale, persistent

peer-to-peer storage utility. In Pro
eedings of ACM Symposium on Operating Systems Prin
iples

(SOSP'01), O
t 2001.

[Set℄ Sear
h for extra-terrestrial intelligen
e(seti). http://setiathome.ssl.berkeley.edu/.

