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ABSTRACT OF THE DISSERTATION

Secure Automated and Autonomous Systems

by

Ahmed H. Abdo

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2022

Professor Nael Abu-Ghazaleh, Chairperson

Automated and autonomous systems are emerging new technologies that promise to revolutionize

transportation and traffic applications. Connected vehicles (CV) applications can improve

safety, efficiency, and capacity of transportation systems while reducing their environmental

footprints. A large number of CV applications have been proposed towards these goals, with

the US Department of Transportation (US DOT) recently initiating three deployment sites.

Unfortunately, the security of these protocols has not been considered carefully, and due to the

fact that they affect the control of vehicles, vulnerabilities can lead to breakdowns in safety

(causing accidents), performance (causing congestion and reducing capacity), or fairness (vehicles

cheating the intersection management system). In our work, we perform a detailed analysis

of a recently published CV-based application protocol, Cooperative Adaptive Cruise Control

(CACC), and use this analysis to classify the types of vulnerabilities that occur in the context of

connected Cyber-physical systems such as CV. We show, using simulations, that these attacks

can be extremely dangerous: we illustrate attacks that can cause crashes or stall emergency

vehicles. We also carry out a more systematic analysis of the impact of the attacks, showing

that an individual attacker can even have substantial effects on traffic flow and safety, even in

the presence of message security standard developed by US DOT. We believe that these attacks
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can be carried over to other CV applications if they are not carefully designed. We also explore

various defense frameworks to mitigate these classes of vulnerabilities in CV applications. At

the same time, autonomous systems AVs are vulnerable to physical attacks that manipulate

their sensors through spoofing or other adversarial inputs. If the sensor values are incorrect, an

autonomous system that acts on them can be made to malfunction or even controlled to perform

an adversary’s chosen actions, making this a critical threat to the success of these systems. To

counter these attacks, recent works propose developing physics- based detectors that estimate the

future state of an autonomous vehicle and use this estimate to detect anomalous sensor inputs.

The accuracy and responsiveness of this detection algorithm are important to the security and

robustness of autonomous systems. State of the art solutions that are based on Kalman filters

face challenges in terms of configuration parameters and the limitations of the algorithm: we

show that, while they constrain some attacks, an attacker is still able to bypass them. We focus

on the security of CVs and AVs in terms of application- level attacks and defenses. First, we

demonstrate scenarios where the vulnerabilities can be exploited to cause safety breakdowns or

to interfere with an emergency vehicle. We define metrics for evaluating the attack impact that

measures mobility (traffic throughput) and safety (average separation between cars). We show

that attacks can substantially interfere with the operation of CVs, leading to increased vehicular

speeds and reduced safety margins. Having established these attacks on the CVs application-

level, we need to consider a mitigation framework where we use the classification of the five

vulnerability types we introduce to guide the design of the mitigation steps that either eliminate

or interfere with them. For example, one class of vulnerabilities occurs when the application

logic does not check whether the data in the messages are consistent with other information it

has about the system. Some of the message values are impossible to verify due to the lack of

independent information to confirm it. Thus, we propose having an alternative source of data

(specifically, data from cameras) to validate information in CVs application messages. We show
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that the defense indeed mitigates the vulnerabilities we identified in CVs without substantially

harming performance. We also use blockchain, which is traditionally used in applications from

cryptocurrencies to smart contracts, as a potential solution to CV security. The BlockChain

technology has the potential to revolutionize connected vehicles. It is far more secure than other

record keeping systems because each new message transaction is encrypted and linked to the

previous transaction. Specifically, we exploit the immutability of BlockChain to ensure safety

from falsified information and attacks. Therefore, we propose a BlockChain -based scheme

to protect the vehicular ecosystem and increase its security. We demonstrate these properties

by developing an algorithm that uses BlockChain to maintain trusted communications between

vehicles in the context of a cooperative ramp merging application. Next, we propose a new

system to defend against physical attacks on AVs through: (1) Training the Kalman Filter to

improve its ability to operate within its target environment; (2) Introducing a residual machine

learning- based algorithm to capture non-linear dynamics of the system; and (3) Incorporating

a change detection model to detect anomalies in the temporal behavior of the sensor data, to

improve the assessment of deviation between the predicted and measured data. Our framework

combines components that track a number of non-linear physical invariants and derives additional

learned invariants coefficients through an optimization algorithm. It also uses an optimized

residual prediction module based on a neural network, followed by a change detection algorithm,

for keeping track of the historical anomalies. Taken together, these ideas enable for high accuracy

to estimate the physical state of the vehicle, detecting a number of attacks that bypass state of the

art defenses, with low overhead compatible with real-time implementations.
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Chapter 1

Introduction

The automotive industry [68] will introduce the autonomous vehicle into the consumer

market in the near future. At this moment, several forms of connected vehicles have already

been introduced. Both types of vehicles provide the foundation to propel the automotive industry

into the technological future. The United States Department of Transportation (US DOT) has

been developing next-generation Intelligent Transportation Systems (ITS) [1] where vehicles

and transportation infrastructure communicate and collaborate towards goals, such as improving

safety, increasing traffic flow capacity, supporting driver assistance functionality, and reducing

overall carbon footprint [25]. Some of these technologies are already installed across the country

and can be found in traffic signal coordination, transit signal priority, and traveler information

systems.

During the initial stages when researchers and engineers are developing early prototypes

of connected vehicles and autonomous applications, security is not being considered deeply. For

example, connected vehicles expose a large attack surface with many participants and complex

functionality. Attacks may target application protocols, networking, and sensing and vehicle

control, with the potential to cause accidents, traffic delays and other harm to the system. The
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US DOT utilizes a Secure Certificate Management System (SCMS) to ensure that cars and road

side units have certificates which enable them to participate in communication [45].

Autonomous vehicles [94] also suffer from two great threats to their sensors: (1) GPS

spoofing and (2) transduction attacks. GPS spoofing attacks have occurred in real-world systems

and can badly affect autonomous vehicles via their navigation systems. Other important attacks

against autonomous vehicles are transduction attacks, which inject out-of-band signals to sensors

or actuators in order to translate a physical signal into an electrical one. However, these sensors

can sometimes pair the property being measured and the analog signal, which can be manipulated

by the attacker. For example, sound waves can affect accelerometers and make them report

incorrect movement values, while radio waves can trick pacemakers into disabling pacing shocks.

These attacks have been shown to be effective on autonomous vehicles by using sound to affect

gyroscopes, lasers to affect camera sensors in drones, lasers to affect lidar sensors in cars, and

intentional electromagnetic interference to manipulate actuators in drones.

1.1 Motivation

Connected and autonomous vehicles [53] are considered “phones with wheels” and

combine cars, telecommunications, and IT risks while centralizing them in car fleet management.

Notably, phones are some of the most potent surveillance devices ever made, and thus, they

expose cars to hazards related to surveillance, privacy, and fraud. Now more than ever, it is

essential to explore these risks to better prepare the proper defenses against threats and future-

proof the security of the connected and autonomous vehicles. This dissertation aims to help

understand cyber security on the single- vehicle level. It also evaluates the cyber-security problem

at a multi-vehicle level and transportation system level. In order to secure any automotive system,

we first need to ensure that it is designed and developed to enable vehicles to have confidence in
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one another and their sensors. Thus, we must study the different vehicular credential management

systems and evaluate their reliability in various scenarios and cases. We also need to research

application layer attacks affecting vehicle applications’ functionalities since these attacks are

particularly dangerous and critical and not well studied. We also need to look at different

vehicular cyber defenses, study their efficiencies, and design better versions with improved

accuracies and run times. As a result, this dissertation is motivated by three security aspects

that are very critical for connected and autonomous systems: 1) Automated applications and

authentication vulnerabilities, 2) Physical based attack detection and 3) Anomaly detection.

1.1.1 Automated applications and authentication vulnerabilities

CV applications rely on the use of the Security Credentials Management System

(SCMS) [5], and most recently, the US DOT deployed SCMS devices at three CV pilot sites

(New York, Tampa, and Wyoming) [9, 10, 8]. The current implementation is a proof-of-concept

certificate-based authentication system which uses a Public Key Infrastructure [45] for certificate

management. Pseudonym Certificates (PCs) are used and rotated to enable message authentication

and validation without exposing the privacy of a vehicle by having a permanent certificate. A

CV can enroll in the system by submitting an enrollment request to US DOT. A PC can be

obtained by vehicles for short-term use, ranging from 5 minutes to few days, and is utilized for

basic safety message (BSM) authentication. On Board Equipment (OBE) uses identification

certificates to authenticate itself in V2I applications. However, none of the V2I applications we

reviewed require encryption by the OBE at the application level. SCMS prevents an attacker

from falsifying messages from another vehicle, as each message gets signed with a certificate.

However, SCMS cannot prevent a malicious actor from obtaining a certificate and participating

in the protocol by replaying the messages while they are valid, or sending its own message,

with fabricated data, using its certificate. Although the protocol discusses detection of potential
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malicious activities and reporting them to revoke certificates ostensibly, this behavior is currently

completely undefined. It is important to note that the SCMS certificate protocol prevents a

number of attacks. Without it, an attacker can merely spoof any other car, and interfere with any

maneuver. In contrast, with this protection in place, the attacker may only replay messages, or

send bad information using its certificate. In general, application- level exploitation is possible,

and perhaps can be used in conjunction with application- level attacks to amplify their damage.

This could be seen in situations where the attacker is a compromised vehicle which uses a

radio capable of reaching cars farther away than typical vehicular radios, and is capable of

authenticating itself to the SCMS as a regular vehicle, then applying its attacks in the application

level.

1.1.2 Physical based attack detection

AVs are typically endowed with many sensors, such as laser, radar, camera, Global

Positioning System (GPS), and Light Detection and Ranging (LiDAR) [131]. As an AV gleans

information from these signals, it adapts its planned path on both small and large scales [15].

These decisions are also guided by communication with other AVs and infrastructure units.

However, autonomous systems are vulnerable to physical attacks that manipulate their sensors

through spoofing or other adversarial inputs. If the sensor values are incorrect, an autonomous

system acting on them can be made to malfunction or may even be controlled to perform an

adversary chosen action, making this a critical threat to the success of these systems. Conventional

security approaches include those for software security, memory protection, authentication, or

cryptography, and are not sufficient to protect cyber-physical systems from attacks originating

from the physical world, such as transduction attacks [42]. To address this security gap and

protect against these attacks, Physics-Based Attack Detection [44] is receiving increased attention.

Specifically, these defenses use a model of physical systems to predict feasible future states or
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state-invariants capturing the correlation between the inputs, outputs, and the state of the system.

The system can then detect anomalous sensor inputs if their values diverge substantially from the

prediction. Physics-Based Attack Detection algorithms include two parts. The first part builds a

model of the physical invariants of the system and can be done offline. In the second part, an

online tool monitors predicted and observed measurements to see if they fit expectations of the

correlations between sensors and the correlations between sensors and actuators.

1.1.3 Anomaly detection

The AVs and CVs technologies [127] rely recently on crash avoidance systems that is

based on radars and cameras to detect collision threats by enabling these vehicles to warn their

surroundings of collisions and potentially hazardous circumstances. However, as vehicles and

infrastructures become more interconnected and automated, the vulnerability of their components

to faults and/or deliberate malicious attacks increases. This vulnerability is exacerbated by the

increase in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Thus,

anomaly detection in the sensor systems enhances safety and reliability of AVs or CVs. Anomaly

detection in AVs and CVs sensors is an important but also challenging task. A traveling vehicle

could use the most recent history of data to detect anomalies. The presence of an anomaly in

the pattern of data collected from the sensor system implies (i) a subset of sensors are faulty,

or (ii) there has been a malicious attack. In both cases, it is vital to detect the anomalies and

exclude the anomalous data from the decision- making process. An anomaly detection scheme

introduces two types of errors; false negatives and false positives. False negative errors can

allow falsified data to affect trajectory planning, which could lead to fatal consequences. False

positive errors can have consequences that are just as severe (e.g., an unexpected braking from a

downstream vehicle), which can lead to an abrupt change in the pattern of observed data. If the

vehicle falsely detects such an unexpected change as a fault/attack and discards the information,
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it may lead to the vehicle not reacting to such abrupt changes in the network appropriately and in

a timely manner, creating dangerous, and potentially fatal scenarios. In order to prevent this type

of false positive error, it is necessary for vehicles to incorporate network-level information in

their anomaly detection scheme.

1.2 Dissertation Contributions

This dissertation introduces application- level attacks and mitigation which will support

building efficient automated and autonomous vehicles with strong security properties.

1.2.1 Automated applications and authentication vulnerabilities

CVs expose a large attack surface since they include many participants and complex

functionality. Attacks may target application protocols, networking, and sensing and vehicle

control, with the potential to cause accidents, traffic delays, and other harm to the system. The

Secure Certificate Management System (SCMS) is a message security standard that has been

defined by US DOT; however, it only ensures that cars and road side units have certificates

that enable them to participate in communication [45]. In our work, we carry out a security

analysis of a previously developed connected vehicle application (Cooperative Adaptive Cruise

Control, CACC). We show that even when an attacker does not spoof or modify messages,

it does not stop a malicious actor from obtaining a certificate, or a compromised participant

with a valid certificate from using it to falsify information in its messages. It is essential to

understand the threats faced by CV protocols in order to understand how to design them securely.

Keeping this goal in mind, we highlight on vulnerabilities that arise at the application level of CV

applications. We present the threat model in Section 5.1. We conduct this analysis in the context

of an important CV application called Cooperative Adaptive Cruise Control (CACC). CACC is
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used to group nearby cars into a platoon and adaptively control their speed. The vehicles in a

platoon are subjected to reduced air drag, as well as improvements in overall traffic flow, driving

safety, capacity, and fuel economy. CACC application logic is complex, involving consideration

of scenarios such as cars joining and leaving a platoon, merging and splitting of platoons, lane

changes, and platoon leaders leaving. These maneuvers are triggered and coordinated through

messages. An attacker can exploit this protocol by sending messages with false information

leading to a number of possible attacks which reduce the safety and performance of the system.

Since CV systems are not deployed and/or generally available for public experimentation, to

evaluate these attacks, we use a previously developed implementation of CACC in a state-of- the-

art vehicular simulator that is widely used by practitioners and developers (VENTOS [7]. We

demonstrate scenarios where vulnerabilities can be exploited to cause safety breakdowns, such

as interfering with an emergency vehicle. We evaluate the impact of the attacks using metrics of

mobility (traffic throughput) and safety (average separation between cars). We show that attacks

can substantially interfere with the operation of CACC, leading to increased vehicular speeds

and reduced safety margins. Having established these attacks on the CACC application- level,

we need to consider a mitigation framework. We use the classification of the five vulnerability

types we introduce to guide the design of the mitigation steps that either eliminate or interfere

with them. For example, one class of vulnerabilities occurs when the application logic does not

check whether the data in the messages are consistent with other information it has about the

system. Some of the message values are impossible to verify due to the lack of independent

information to confirm it. Thus, we propose having an alternative source of data (specifically,

data from cameras) to validate information in CACC application messages. In our work, we show

that the defense indeed mitigates the vulnerabilities we identified in CACC without substantially

harming performance.
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1.2.2 Physical based attack detection

Achieving autonomy requires processing typically large amounts of data coming

from various sensory sources to synthesize situational awareness and guide control decisions

towards providing functionality, safety, and performance. Specifically, a fully autonomous

vehicle extracts information from the surrounding environment obtained via various sensory

devices using different Electronic Control Units (ECUs). As a result, compromising or tampering

with any of these components may destabilize an AV or even allow attackers to gain control,

causing property damage and bodily injury. An adversary can compromise the AV sensors of

a victim autonomous vehicle [33, 95]. For instance, an attacker may use GPS spoofing [62],

by leveraging a nearby radio transmitter to create malicious GPS signals leading to erroneous

location or velocity estimates. GPS spoofing can be accomplished with inexpensive, commercially

available, software-defined radios using open-sourced software. Within our threat model are

also transduction attacks [44], which inject out-of-band signals to sensors or actuators to cause

erroneous measurements [43]. Transducers are components that are responsible for converting

physical signals into digital measurements. A transduction attack leverages the physics of a

transducer, manipulating physical inputs to try to cause measurement errors to the advantage

of the attacker. For example, sound waves can affect accelerometers and make them report

incorrect values [121]. Other attacks are shown to be effective, such as using sound to affect

gyroscopes [111], lasers to affect camera sensors in drones [35] and LiDaR sensors in cars [31],

and intentional electromagnetic interference to manipulate actuators in drones [99]. Some of

these attacks have been shown to lead to catastrophic compromise of the system, including drone

crashes [111]. In our work, we propose a mitigation system that leverages a number of techniques,

including the use of machine learning, to capture the non-linear dynamics of the system, enabling

accurate detection of attacks with low false positives, and substantially outperforming previous
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defenses. Specifically, our work uses an optimization framework to learn effective Kalman filter

(KF) configuration for the characteristics of the vehicle and operating environment. The results

of the Kalman filter are improved by applying a genetic algorithm (GA) to tune Kalman filter

parameters to obtain well suited parameters before its application to AVs. In order to improve the

accuracy of the KF in dynamic environments, our work introduces a new machine learning- based

component that estimates the amount of error/residual resulting from the non-linear dynamics of

the system, without having to build expensive non-linear models. Finally, to avoid false positives

due to noisy sensors and other transients, we leverage a change detection model which analyzes

the sensor data to differentiate real changes from transients, further improving accuracy. Our

work performs better than previous work in terms of the root-mean-square-error, with negligible

false positives. This added accuracy makes is significantly harder for attackers to conduct an

attack without triggering the detector, which in turn initiates safe maneuver actions.

1.2.3 Anomaly detection

CV security is critical, since one malicious actor can reach numerous vehicles through

connectivity and compromise safety by affecting entire traffic flows. Therefore, it is challenging

to ensure that all CVs have proper and timely protections against spoofing attacks [47]. In

a CV environment, diversity of the receivers (e.g., vehicles, infrastructures and pedestrians)

further increases the system complexity. For example, in the case of the Nissan Leaf, security

testers [74] demonstrated how they could gain unauthorized access to control the heated steering

wheel, seats, fans and air conditioning remotely. Thus, to fundamentally solve the problem,

it is necessary to prevent data spoofing in a timely way. Therefore, we design a new scheme

with the consideration of utilizing BlockChain (BC) consensus mechanisms for CV security

against cyber spoofing attacks. At its core, our system leverages BC to create a decentralized

verification authority, with equivalent functionality to Security Credential Management System.
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In particular, we use a data-driven methodology to maintain trusted communications between

vehicles in the context of a cooperative ramp merging application, supported using BC. Our

results show that we are able to detect malicious vehicles in a quick manner (less than two

seconds) using a BC implementation with low computational cost. We believe that our results

demonstrate the feasibility and effectiveness of using BC to track trust in a CV environment.

We develop a prototype of V2X security mitigation scheme based on BC technology, and a

data driven solution for malicious trajectory information. We show how BC consensus can be

designed to avoid various spoofing attacks with the help of different vehicular units that act

together to validate information coming from any suspicious actor. We perform an extensive

simulation to demonstrate efficiency and effectiveness of our scheme using an open-source

simulation framework.

1.3 Outline

In Chapter 2, we provide a literature review and discuss the attacks and state-of-the-art

mechanisms of secure, connected vehicles’ maneuver and autonomous systems. We then present

our implemented application -level attacks on Connected Vehicle Protocols in Chapter 3.

In Chapter 4, we present a new defense against application-level attacks on CV systems.

This defense models both vehicle level dynamics and inter-vehicle interactions to enable the

detection of application-level attacks. Then, we discuss securing autonomous vehicles (i.e.,

securing a single vehicle from on-board cyber attacks), by Learning Control Invariants and

Residual Prediction in Chapter 5.

Moreover, in Chapter 6, we present another proposed mitigation for a secure CV system

to ensure safety from falsified information and cyber attacks without any supervising from a

central monitoring controller, such as a RSU. This solution is based on developing an algorithm
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that uses BlockChain (BC) to maintain trusted communications between vehicles in the context

of a cooperative ramp merging application. We finally conclude and present the future work in

Chapter 7.
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Chapter 2

Related Work

We organize the discussion of related work into five groups: (1) Connected vehicles

deployment (2) Attacks against connected vehicles; 3) Attacks Detection in connected vehicles;

4) Attacks against autonomous vehicles; and (5) Attack detection for autonomous vehicles.

2.1 CV deployment

The Intelligent Transportation Systems Joint Program Office (ITS JPO) [5] works with

its partners with a fund of nearly 25$ million to support a foundational vehicle cyber security

threat assessment for CV applications. Their work includes designing, developing, and operating

the security credential management system (SCMS) for the CV Safety Pilot evaluations were

conducted in some cities such as Ann Arbor, Michigan, as well as the current US DOT CV

pilot studies in NYC [9], Tampa [10], and Wyoming [8]. They developed certification practices

to check equipment prior to implementation in the Safety Pilot to ensure that they meet cyber

security requirements. The program is also working to ease providing certification services for

different industries. The program’s primary goal is to improve the best practices for handling

foundational electronics control and reliability cyber threat information for existing vehicle fleets.
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2.2 Attacks against CVs

Chen et al. [32] performed a security analysis on a system called Intelligent Traffic

Signal System (I-SIG). In this system, a real-time vehicle trajectory data is sent through the

dedicated short-range communications (DSRC) technology that is acquired by any CV. This data

is then used to control the sequence and duration of traffic signals. The system that was attacked

includes real deployments at road intersections in some cities such as Anthem, AZ, and Palo Alto,

CA. In these deployments, it enhanced the traffic by reducing total vehicle delay by 26.6%. This

paper presented an attack that can cause the traffic mobility to be 23.4% worse than that without

adopting I-SIG. The attack consists of a packet spoofed to tell the I-SIG of a vehicle approaching

from a long distance, causing the traffic light to wait for it, while holding up traffic from other

directions. The authors suggested a possible defense that considers scheduling over multiple

periods. Amoozadeh et al. [24] performed a security and vulnerabilities risks analysis related

to the VANET communication in CV in specific applications including cooperative adaptive

cruise control application (CACC). They focused mainly on how to attack a single platoon. The

adversary has the ability to falsify, spoof, or replay messages in general to slightly affect the

stability of vehicle stream by altering some parameters such as velocity, acceleration, or vehicle

location. They considered a CACC vehicle stream that is moving in a straight single-lane highway

where all the vehicles use a simple one vehicle look-ahead communication scheme. They did

not consider the security credential management system (SCMS) in their simulation. In their

work, they examined existing countermeasures, and explored the limitations of these methods

and possible ways to lighten negative effects.
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2.3 Attacks detection in CVs

[54] developed an architecture where they reduced the conflicts based on a simple

comparison of conflicts before and after the operation of their mitigation scheme in this scenario.

Recently another study [34] used micro-simulation to analyze the impact of cyber attacks on a

platoon of ten CACC vehicles on a single lane. Jamming was identified as the most dangerous

cyber attack and resulted in crashes and oscillations in speed. [63] analyzed the cyber risks in

the communication medium of an active traffic management system and developed a real-time

prototype monitoring system to revert the system back to a safe state of operation under cyber

attacks. Researchers in [70], investigated the impact of slight cyber attacks (defined as an

attack on a single vehicle for a short interval of time) on the longitudinal safety of CVs. The

communicated positions and speeds from preceding vehicles are used as attack factors, and it was

observed that a slight cyber attack has a more serious impact on the deceleration period than the

acceleration period of nine vehicles. [48] proposed CV Shield, which utilizes the recent advances

in hardware-assisted security (e.g., ARM Trust-Zone) to prevent compromised vehicles from

sending falsified sensor data. CV Shield can ensure the integrity of the sensor data from their

reading to their transmission at the vehicle side. In general, all codes that are related to sensor

data reading, processing, encapsulation, and transmission from the rich execution environment

(REE), are relocated into the trusted execution environment (TEE). However, manually extracting

code sections is laborious and error-prone. Also, the trusted computing base (TCB) size in TEE

should be minimized to reduce the attack surface. Thus, they proposed to leverage program

slicing to automatically extract code sections and eliminate irrelevant codes in large code bases.

The initial results demonstrated that CV Shield could support GPS data reading and eliminate the

time overhead of Trust Zone’s context switches.
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2.4 Attacks against AVs

[123, 79, 60] are based on raising an alert when any electronic control unit is compro-

mised. If an attacker successfully compromises any electronic control unit, a sudden change in

the vehicle’s state will be used to detect the attack. These schemes mitigate the target system

by comparing signals with pre-defined attack patterns known as attack signatures that achieve a

low false positive rate. However, it requires maintaining an up-to-date attack database but cannot

handle zero-day attacks or even adversary attacks. [104] proposes a hardware-based framework

that implements mutual authentication and encryption over the CAN Bus, which adds more

overhead to the AV systems and does not prevent sensor or physical invariant attacks. [101] uses

Indisputable Code Execution (ICE), a protocol to securely execute codes on a network node from

a trusted station based on checking the integrity of the firmware update code and setting up an

environment for firmware update. However, by definition, this scheme is not resilient against

sensor attacks. Redundancy-based techniques [38, 41] duplicate the essential system components

(e.g., controller) and cross-check their states and outputs at run-time for detecting attacks and

anomalies. The redundancy can include software and hardware modules. However, this approach

requires additional cost and complexity, such as more hardware capacity for multiple versions of

the same software.

2.5 Attack detection for AVs

Recently, [33] proposes a framework based on instantiating control invariant parameters

to detect physical or sensor attacks without having to reverse engineer the specific control

algorithm of a vehicle. However, their algorithm uses a simple linear prediction filter that exploits

the geometric properties of the accelerometer and magnetometer, which are well-known nonlinear

physical invariants. [95] uses a second-degree nonlinear filter to check statistical differences
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between sensor measurements and observed states over time. However, their prediction algorithm

uses the first-order Taylor expansion approach to transform the nonlinear system into a linear

system which brings some systematic deviations because of ignoring the system’s nonlinearity.
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Chapter 3

Application level attacks on Connected

Vehicle Protocols

3.1 Threat Model

We assume a CV application using Security Credentials Management System (SCMS) [5].

SCMS became available to coincide with the full-scale deployment of devices at three US DOT

CV pilot sites (New York, Tampa, and Wyoming) [9, 10, 8]. The current implementation is

a proof-of-concept Certificate-Based Authentication system that uses a Public Key Infrastruc-

ture [45] for certificate management. Pseudonym Certificates (PCs) are used and rotated to enable

message authentication and validation without exposing the privacy of a vehicle by having a

permanent certificate. A vehicle can enroll in the system by submitting an enrollment request to

US DOT. PC can be obtained by vehicles for a short term, ranging from 5 minutes to few days,

and is used for basic safety message (BSM) authentication. On Board Equipment (OBE) uses

identification certificates to authenticate itself in V2I applications. However, none of the V2I

applications we reviewed require encryption by the OBE at the application level.
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SCMS prevents an attacker from falsifying messages from another vehicle as each

message gets signed with a certificate. However, SCMS can not prevent a malicious actor from

obtaining a certificate and participating in the protocol through replaying the messages while

they are valid, or sending its own message, with fabricated data, using its certificate. Although it

is currently unclear how well SCMS can function since it is not open source, we assume that

it introduces no significant latency. In general, we do not consider message delays, jamming,

physical attacks on sensors or controllers, DoS attacks, or any similar attacks to be part of our

threat model since our focus is on application level exploitation. It is clear that such attacks are

possible, and perhaps can be used in conjunction with application level attacks to amplify their

damage. We also do not consider attacks exploiting bugs in the software stack of any of the

existing components running on the infrastructure components, or other cars which we consider

to be orthogonal to our threat model. We also do not consider physical attacks on the sensors of

the vehicles or any sensors deployed by the infrastructure.

In some attacks, we assume that the attacker is a compromised vehicle which uses a

radio that is capable of reaching cars farther away than typical vehicular radios and is capable of

authenticating itself to the SCMS as a regular vehicle, then applying its attacks in the application

level. We assume that the attacker knows the application logic and crafts its actions to manipulate

this logic.

3.2 Cooperative Adaptive Cruise Control

In this section, we introduce the Cooperative Adaptive Cruise Control (CACC) ap-

plication to provide background necessary to understand its potential security vulnerabilities.

In CACC, a group of vehicles, with a close spacing between them, can form a platoon if they

are traveling in the same direction. Once created, vehicles in the platoon co-operate to travel
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at the same speed and make decisions as a group, maintaining reduced clearance gaps between

each other, allowing for more efficient use of the highway and reducing the air drag compared

to vehicles traveling individually. A Platoon Management Protocol (PMP) controls platoon

operations and maneuvers. The leading/front vehicle acts as the coordinator and controls platoon

decisions such as the speed, lane changes, and merging with other platoons. Vehicles commu-

nicate typically through Dedicated Short Range Communication (DSRC/IEEE 802.11p [46]),

although eventually they may use 5G instead [50]. Road Side Units (RSUs) [40] are infrastructure

units that are used to coordinate behavior or maneuver across cars, or to maintain shared certain

state. Each vehicle has On Board Unit (OBU) that can uses Basic Safety Messages (BSMs) to

send some periodic information such as speed and location and receive event messages such as

those informing of traffic conditions in an area they are entering.

In our experiments we use PMP, which was proposed and developed by Amoozadeh et

al [23]. PMP supports a number of maneuvers representing different operations that platoons

could potentially perform. This section introduces some of the primary maneuvers.

Joining a new Platoon (or forming a new platoon): If a vehicle receives a beacon message

sent from a vehicle ahead of it, it will evaluate the position, speed, acceleration, and other relevant

information to determine whether or not to join the platoon. Beacon messages also contain a

Platoon Id, which is a locally distinct number used to distinguished the various platoons in the

area.

Split Maneuver: Split maneuver is always initiated by the platoon leader. When the platoon size

exceeds the optimal platoon size, the maneuver can be used to break the platoon into two, at a

specific position. First, a SPLIT REQ message is sent to the vehicle where the split should occur.

If the request is accepted, a SPLIT ACCEPT message is sent back to the leader. Subsequently, the

leader sends a unicast CHANGE PL to the potential leader of the new platoon resulting from the

split. Finally, the original leader will report split end by sending SPLIT DONE message.
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Merge Maneuver: In this maneuver, two platoons, traveling in the same lane and close to each

other, merge to form one platoon. If the leader of the rear platoon discovers another platoon in

front of it with capacity to merge, the leader sends a unicast MERGE REQ to the front platoon

leader. Once the front leader accepts the merge request, it sends back a MERGE ACCEPT message.

On receiving this message, the rear platoon leader starts a catch-up maneuver. Upon reaching the

front platoon, the rear platoon leader sends CHANGE PL to all its followers to change the platoon

leader to the front leader. Now the followers start listening to the front leader and eventually the

rear leader changes its state from leader to follower after sending a MERGE DONE message.

Leave Maneuver: The departing vehicle initiates the process by sending a LEAVE REQ message.

The leader sends a LEAVE ACCEPT message and then split process starts. Once the leaving

vehicle changes lane, a GAP CREATED message is broadcast. A merge process begins to reduce

the gap until the platoon has the target gap distance between each car.

Change Lane Maneuver: In this maneuver, the platoon leader decides that the platoon needs

to change lane. A platoon might need to change lanes if the platoon need to exit the highway

or if it has been given instruction from the RSU due to lane congestion. The platoon leader

sends CHANGE LANE instruction to all the other vehicles in the platoon and they perform the

maneuver together following the leader’s lane change. After that, all the followers send an ACK

message to the leader, if they changed the lane successfully.

3.3 Vulnerability Analysis and Classification

It is tempting to consider networked cyber-physical systems such as CV as simply

another networked system from the perspective of security, and indeed this is the case with

respect to the vulnerability vectors. However, these systems differ in two important aspects with

profound implications on vulnerabilities and defenses. The systems are (1) cooperative: they
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Vulnerability Explanation
V1 Fake message contents Attacker sends messages with false information
V2 Insufficient information Critical data not communicated
V3 Inadequate identifier binding Incorrect binding of physical object to logical object
V4 Incomplete or unsafe protocol

logic
Protocol does not consider all scenarios

V5 Trust delegation Decisions delegated to possibly malicious participant

Table 3.1: Vulnerability Classification in Networked Cyber-physical Systems

coordinate to accomplish a combined outcome; and (2) constrained by physics: protocol logic,

as well as misbehavior outcomes are defined with respect to their impact on the system in the

physical world, for example, considering both space and time.

The factors, outlined above, lead to vulnerability classes that are tied to the protocol

logic and the physical system. Based on our analysis of multiple CV applications, we identified a

number of vulnerability classes, which we believe generalize to other networked cyber-physical

systems as well. These vulnerabilities arise even if vehicles have a certificate, which, to begin

with, is not that difficult to obtain.

The first vulnerability class (V1) relies on the ability of the attacker to generate

messages with malicious content (e.g., a fake location). By manipulating the information shared

to other participants, the protocol logic can be exploited leading to safety or performance

compromises. A related class of vulnerability (V2) concerns protocols where information that

is critical to a sound decision is not considered, perhaps because it is not available, or is not

exchanged. For example, the vehicles’ lane position and platoon identification number are

important parameters that we discovered were not considered when initiating a merge.

A third class of vulnerability (V3) relates to ambiguities that arise in binding identifiers

to vehicles, the act of associating a detected physical information with a moving object such as a

vehicle or pedestrian that is known through communication messages. Specifically, sensors can

detect physical signals such as proximity to an object and mistakenly associate it with a different
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object in the message identifier space. For example, an attacker may pretend to be a platoon

leader while a vehicle is attempting to join the platoon, a different vehicle may be mistakenly

identified as the attacker/leader.

The next vulnerability class (V4) relates to under-specified or incomplete protocol

logic. The application logic fails to consider corner cases such as the sudden loss of a platoon

leader. In the reference CACC implementation [23], follower cars drive aimlessly if the platoon

leader does not communicate with them. Ensuring the robustness of the protocol algorithm is

essential for secure application.

The final vulnerability class (V5) arises when one object in the system delegates

decisions to a malicious or compromised object, thus safety can be compromised. For example,

trust is delegated to the platoon leader in CACC which enables arbitrary dangerous maneuvers

that can cause crashes and blocking emergency vehicles.

3.4 Application level attacks on CACC

In this section, we present application layer attacks that attempt to exploit the func-

tionality of the PMP implementation of CACC. These attacks were identified from a detailed

code review of the PMP implementation. In each attack, we start with explaining the maneuver

functionality and consider an attacker that participates in the protocol, sending messages in

a way that passes the certificate based authentication and the application logic but results in

disrupting the operation of one or more vehicles. We demonstrate the impact of these attacks in

later sections.
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Figure 3.1: Attack scheme of distant merge attack

Figure 3.2: Attack scheme of the fake obstacle attack

3.4.1 Attack 1: Merge over large distances

If two platoons are traveling in the same lane and they are close enough while exchang-

ing messages with each other, the PMP application allows them to merge to form one platoon for

added efficiency. The application checks prerequisite conditions for the merge, such as, ensuring

that the resulting combined platoon does not exceed the size limit. In our experiments, we found

out that for two platoons to merge, the rear platoon must receive beacon messages from the front

platoon. Then, it measures a certain distance to the last member of the front platoon using its

ranging sensor. In our attack scenario, the attacker takes advantage of fake message contents

(V1) and insufficient information (V2) vulnerabilities to target two platoons that are not within

the communication range of each other. The attacker in this scenario is located between two
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platoons such that it can communicate with both platoons simultaneously and deceive ranging

sensor by pretending that it is a member of the front platoon. For a farther distance, the attacker

can have a sophisticated radio that can send and receive messages for a longer range.

The attack (Fig. 3.1) begins when the attacker replays the front platoon beacon mes-

sages to the rear platoon; since they are merely instantaneous replaying messages, the credentials

on these messages are considered valid by the receiving vehicles. Upon receiving these beacons,

the leader of the rear platoon will check to see if a platoon exists ahead by using its local sensors

to look for a car from the front platoon in the lane ahead, which will be in this case, our malicious

vehicle. The rear platoon will then speculate that the front platoon is approaching and initiates

merging if the new platoon size is under the predefined permissible threshold (i.e., size of the

combined platoon is less than the maximum platoon size).

The rear platoon leader extracts the platoon ID of the front platoon from the beacon

and sends a unicast merge request message to the front platoon (which is again relayed by the

attacker). The front platoon leader, if it accepts the request, sends a unicast merge accept message,

which the attacker then transmits back to the rear platoon. Upon receiving it, the rear platoon

leader reduces its time-gap by increasing the speed of the whole platoon to the maximum limit to

catch up. At this point, the attack impact shows up when the rear platoon increases its speed for

a large distance degrading both safety and economy. Once the inter-platoon spacing becomes

small, the rear platoon leader sends change platoon message to all its followers to change the

platoon leader to the front platoon leader. Finally, the rear platoon leader sends a merge done

message to front platoon leader and changes its state from leader to follower.

3.4.2 Attack 2: Fake Obstacle Attack

A platoon may have automatic incident detection enabled; with this option, the platoon

can receive and rapidly react to an obstacle message. Upon encountering an obstacle or accident
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in its lane, a vehicle will come to a stop and send an obstacle message with its position to

any oncoming vehicles, allowing them to stop or change their lanes when they arrive at the

location of the incident. In this scenario, the malicious vehicle exploits the fake content (V1)

vulnerability and creates a false obstacle message with a specific location in the lane, forcing

incoming platoons to slow down until they stop or change lanes. The attack scheme is shown in

Fig. 3.2. The fake obstacle attack affects the speed of the platoon and this rapid deceleration can

affect safety. The presence of an obstacle is impossible to validate by a distant platoon. Note,

that it is possible to combine this attack with Attack 1 to attempt to create an accident by first

speeding up the cars and then forcing them to stop quickly.

3.4.3 Attack 3: Merge across different lanes

In this scenario, we attack two platoons, within the communication range of each other,

that are traveling in separate lanes. Critical variables such as lane number and other surroundings

information for each vehicle are neither communicated nor checked (V2 and V4 vulnerabilities).

The attacker can look for a slow platoon in front and try to merge it with a faster platoon from a

different lane to slow down traffic flow.

The attack (Fig. 3.3) starts when the malicious vehicle is in front of the rear platoon,

and sends messages pretending to be a part of the other platoon (in another lane). This can be

done by manipulating the platoon ID parameter in Basic safety message. The rear platoon will

see the attacker vehicle using its LiDAR sensor and assumes that the attacker is part of the platoon

(V3). Information such as Lane ID is neither communicate nor checked. It then begins a merging

maneuver. As consequence, the adjacent leading platoon leader sends a merge accept message.

As a result, the rear platoon leader increases the speed of the platoon to catch up. Afterwards, the

attacker leaves its location and the rear platoon leader sends change platoon to all its followers.
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Figure 3.3: Attack scheme of merging across lanes attack

Figure 3.4: Attack scheme of platoon takeover attack

3.4.4 Attack 4: Platoon Takeover

This attack is conceptually similar to the Attack 3 except that there is only one platoon

(the rear platoon), with the attacker attempting to become its leader. The attacker counts on

different vulnerabilities but mainly on the fake message contents (V1) vulnerability by pretending

to be the leader of the fictitious front platoon by generating any logically consistent description

of the front platoon such as the locations and speeds of a fake platoons’ members in front of

the victim platoon. The attacker transmits the fake messages for each false vehicle of the fake

platoon. The rear platoon leader will notice the attacker through the LiDAR sensor and initiate
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a merging maneuver since it believes that this is the platoon in front of it that it listens to. The

attacker responds to all requests from the rear platoon. This leads to the completion of the

merging process. The platoon is now under the attackers’ control and can be manipulated in a

dangerous manner as we show in Section 3.5.1, exploiting the trust delegation (V5) vulnerability.

We show the steps of this attack are shown in Fig. 3.4.

3.5 Experimental Attack Scenarios and Results

In this section, we first describe the simulation set up used in the experiments. We

then present an experimental evaluation of the proposed attacks and evaluate their impact on the

traffic system with respect to safety and performance. Given the limited availability of deployed

CV applications, and the closed nature of these systems, we elected to evaluate the attacks

using simulation. We used VENTOS (VEhicular NeTwork Open Simulator), an extension of

Veins [109]. Veins integrates a C++ simulator for studying vehicular traffic flows, collaborative

driving, and interactions between vehicles and infrastructure with another simulator which models

communication through a DSRC-enabled wireless communication. Veins combines two widely

used simulators, Simulation of cars/physics simulator (SUMO) [4] and OMNET++ [2]. SUMO

is an open-source road traffic simulator developed by the Institute of Transportation Systems at

the German Aerospace Center and serves as the traffic flows physics simulator. This framework

has been used in hundreds of studies from academia, industry, and the government (a partial

list can be found on the project [6]). VEINS uses SUMO’s Traffic Control Interface, TraCI, to

communicate simulation commands to it. OMNET++ is an open-source simulation package and

carries out the wireless communication simulation. We configure it to use the models for the

IEEE 802.11p [46] protocol, a standard adopted for V2V communication. VEINS has been used

by other researchers to simulate connected vehicle applications [98], [56]. We use Wave Short
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Message Protocol (WSMP) to carry beacon and micro-command messages. These messages are

directly sent to the data-link layer which uses continuous channel access based on IEEE 1609.4.

The channel frequency is 5.89 GHz with a data rate of 18 Mbps and transmission power of 10

mW.

3.5.1 Dangerous Attack Demonstrations

First, we demonstrate the potential impacts of the attacks using two specific scenarios,

one causing a collision and the second interfering with and delaying an emergency vehicle.

Causing a Collision: In this attack, the followers of a platoon that is controlled by a compromised

leader, fail to see and stop for stationary or slower vehicles. The malicious car may have acquired

leadership of the platoon using the platoon takeover attack. The attacker can suddenly veer out

of a lane without informing the followers to slow down or change lanes. The followers’ braking

systems may not be able to stop if an obstacle appears immediately in their path. We can see the

sudden stop then collision at the time 60s for the victim vehicles in Fig. 3.5. After investigating

this scenario in detail, we discovered that vehicles in the platoon were not keeping a safe distance

between each other. Instead, they were delegating trust (V5) to the platoon leader (the attacker),

trusting that the leader will maintain safe separation from any obstacles.

Emergency Vehicle Interference: We again start with the attacker using the Platoon Takeover

Figure 3.5: Speed profile using a collision attack
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Figure 3.6: Speed profile using an emergency vehicle attack

attack. The attacker slows down the whole platoon then makes some followers move to another

lane. If an emergency vehicle (police or ambulance) is coming fast in that lane, a slow vehicle

on the same lane will make it much slower or even stop it, as shown in Fig. 3.6. This can cause

catastrophic slowdowns in real life (e.g., potential loss of life). Other approaches to delay an

emergency vehicle can be devised, for example, using the merge across different lanes attack.

Figure 3.7: Speed profile without using a distant merge attack

Figure 3.8: Speed profile using a distant merge attack
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Figure 3.9: Speed profile without using a fake obstacle attack

Figure 3.10: Speed profile using a fake obstacle attack

3.5.2 Isolated Attack Scenarios

In this set of experiments, we investigate vehicle performance after implementing the

four different attacks described in Section 3.4 isolating the impact on just one or two targeted

platoons. These scenarios allow us to evaluate the isolated impact of the attacks.

Attack 1– Distant Merging attack: Our intention in this attack is to make some platoons go to

the catch-up process where they speed up abnormally for some time potentially degrading both

safety and efficiency. Fig. 3.7 shows the average speed of two platoons in the scenario in the

absence of an attack. The rear platoon starts a little later, but both platoons accelerate to 40mph

before cruising at that speed. Fig. 3.8 shows the behavior of the platoons in the presence of the

attack. In this case, the rear platoon accelerates aggressively, reaching the maximum velocity, in

an effort to catch up with the front platoon.
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Attack 2– Fake Obstacle attack: From Fig. 3.9, we see a platoon of 3 cars accelerating to

60mph. After initiating the attack starting around time 20s, we can notice how the platoon

suddenly comes to a halt as shown in Fig. 3.10. This occurs for a certain time then the platoon

changes the lane and accelerates again, but the attack can be repeated.

Attack 3– Merging platoons across lanes: In this scenario, two platoons travel on different

lanes where the front platoon is slower than the rear one. The attacker realizes that both platoons

are close to each other and locates itself in front of the rear platoon. Next, the attacker initiates

the merge maneuver as described in Attack 3. When the attack succeeds, all the members of the

rear platoon will follow the front platoon (despite being in a different lane) and travel according

to its speed as shown in Fig. ??. In this case, the lower speed platoon slows down the traffic flow.

In another case, the rear platoon may be tricked to go faster than the optimal speed for the lane,

compromising safety.

Attack 4– Platoon Takeover Attack: The attacker starts with sending different beacon messages

Figure 3.11: Speed profile without using a merging across lanes attack

Figure 3.12: Speed profile using a merging across lanes attack
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pretending that they come from a front platoon. Once the platoon finds that the leading vehicle

on the same lane is the last platoon member that it listens to (through its LiDAR sensor), it will

then start the merging process. After the merging succeeds, the attacker now acts as a platoon

leader and controls this platoon in any way it desires within the platoon operational parameters.

For this example attack, the attacker decreases the platoon velocity and then repeatedly changes

the lane of the platoon in order to affect as many lanes as many as possible. Fig. ?? shows the

platoon speed changes.

3.5.3 Attacks within traffic scenarios

Next, we evaluate the impact of the attacks when applied as part of an active traffic

scenario. We use different metrics to quantitatively analyze the effects of the attacks on Mobility

and Safety. For mobility, we use two metrics: (1) Average speed of vehicles is a common metric

Figure 3.13: Speed profile without using a platoon takeover attack

Figure 3.14: Speed profile using a platoon takeover attack
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for mobility; and (2) Flow of traffic, is defined as the number of vehicles passing a point on the

road in a given time. To measure safety, we also use two metrics: (1) Average speed difference

between consecutive vehicles measures the differences in speed among vehicles. This metric is

known to correlate with the onset of collisions and near-collisions; and (2) Time-to-Collision

(TTC) [78] is metric for safety which measures the time taken for a vehicle to collide with the

vehicle in front of it, should they maintain the same speed. TTC of vehicle i at instant t can be

calculated as follows,

T TCi(t) =
Di(t)−Di−1(t)− li

Vi(t)−Vi−1(t)

here, Vi(t) stands for the speed of the vehicle i at instant t ,li is the length of the vehicle i, and

Di(t) stands for the location of the vehicle i.

California Department of Transport provides real time traffic condition through Perfor-

mance Measurement System [3] by using various sensors installed in the state’s most highways

sections. We use data from a section of the highway I-5 in south California and generate scenarios

with vehicles entering stochastically following the observed distribution. Each scenario, ran for 5

minutes, simulates the entrance of traffic into a highway section of length 6 miles. We assume

that all vehicles are CV enabled to avoid making assumptions on the interactions of CV and

non-CV vehicles. We configure about 25% of the vehicles to form platoons of different sizes.

The maximum speed for the road is 70 mph. The communication range for each vehicle is 300

meters. Each road has five lanes and approximately evenly spaced road side units (RSU) such

that all points in the highway are in range with at least one RSU.

Attack 1–Distant Merging Attack: Fig. 3.15 shows the effects of attack 1 on the average speed,

flow, average speed difference, and average TTC for the scenario. The attack causes an increase

in average speed and flow of traffic. Even though the flow of vehicle increases by a small amount,

the attack causes vehicles under attack to travel at a much higher speed, thus compromising
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Figure 3.15: The impact of the distant merge attack on the traffic flow

Figure 3.16: The impact of the fake obstacle attack on the traffic flow

Figure 3.17: The impact of the merge across lanes attack on the traffic flow

Figure 3.18: The impact of the platoon takeover attack on the traffic flow

safety, which is reflected by the increased average speed difference and reduced TTC. Even

though the flow of vehicle increases by a small amount, distant merge attack causes vehicles

under attack to travel at a much higher speed, thus compromising safety.
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Attack 2– Fake Obstacle Attack: Fake obstacle attack causes the traffic to slow down potentially

abruptly, similar to the slow down due to road site construction. Thus, it has slight adverse effect

on safety, with increased average speed difference and TTC, but a large effect on the mobility,

with decreased average speed and flow, as depicted in Fig. 3.16.

Attack 3– Merging across lanes: In this attack, the attacker connects the flow of traffic of two

or more lanes, forcing a faster platoon to slow down. The effect of the attack is shown in Fig. 3.17.

Average speed difference increases only slightly, while TTC increases, leading to a marginal

impact on safety. However, the flow of the traffic is severely hindered which is shown by the

steep drop in average speed and flow.

Attack 4– Platoon takeover: In this attack, the attacker takes over the control of a platoon and

can control it fully. This is the most dangerous form of attack that the attacker can carry out.

Although different arbitrary maneuvers are possible once the attacker controls the platoon, we

went with a speed reduction and repeated lane change maneuvers. Both safety and mobility

metrics are highly affected by this attack, as seen in Fig. 3.18.

3.6 Potential Mitigation

Our eventual goal is to develop a defense approach that is automated and can mitigate

the vulnerability classes we identified in Table 3.1, thus making the protocol logic more secure in

a principled way. The general defense approach relies on augmenting the information available to

vehicles with a redundant source of information that enables detection of incorrect or malicious

information, and makes the protocol logic more robust. If such a source of redundant information

is available, the veracity of the exchanged messages can be checked before conducting critical

actions within a maneuver, thus addressing V1 and V2 vulnerabilities. To give an example, if a

merge is attempted with a far-away platoon, the requested platoon should check if the distance
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of the front platoon is within the merge range; previously, this was assumed from the fact that

the messages were received from the front platoon, an assumption that can be exploited by an

attacker that replays a message (effectively extending its reach) or to use higher power radio to

increase its range. Moreover, this defense substantially reduces the opportunities for V3 attacks

since it becomes more difficult to create wrong bindings between message sources and other

physical objects. This check would defeat the replay attack that allows the adversary to initiate

a merge. V4 can be addressed by in depth protocol testing and analysis. Finally, V5 can be

addressed by either avoiding trust delegation or verifying delegated decisions.

We collect complementary information through a reliable sensory system to protect

against fake message contents (V1). Validating protocol components by linking message contents

and redundant sensor data is also desirable for a reliable decision. The consistency of the

application and environment constraints using a robust algorithm need to be considered to prevent

a message with clearly unfeasible information to be acted on and ensure that the resulting action

is consistent with the protocol logic. If everything checks out, a final decision will be assigned to

protocol controller to lead the required action.

3.6.1 Preliminaries and Assumptions

RSU: Defense components infrastructure: The main component that we rely on in our scheme

is the road side unit (RSU), where its hardware and software components are specified by US

DOT [89]. The RSU is a more sophisticated and more protected component of the system

deployed and managed by the infrastructure provider, making it an attractive component to root

defenses. It is expected to operate unattended in harsh outdoor environments for extended periods

of time (typical Mean Time Between Failures of 100,000 hours). It detects and auto-recovers

from minor software failures, transient power spikes, and power interruptions.
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Moreover, we consider a case where RSUs are reachable from any point on the highway

as a proof of concept, but the protocol can be made to act conservatively in Safe mode when

RSU are not reachable.

We note that without relying on the RSU, the alternative is to reach consensus between

the different cars which is an interesting possibility. A naive implementation could be too costly

to achieve on-demand, and therefore we elected to root our defenses in the RSU.

Safe mode and functionality of RSU: We identify a safe operation mode for platoons with

respect to any maneuver or protocol state. The goal of the safe mode is to be used as a cautious

behavior when protocol exchanges are in progress, or when a decision cannot be made. For

example, the platoons could either maintain their speed or slow down and wait for confirmation

after sending a maneuver request. The defense proceeds by having the RSU check the the

proposed action against the configuration of the platoon (e.g., the location of each member of the

relevant platoons from all basic safety messages (BSMs) it collects). The RSU uses, as a source

of redundant information, a video tracking system to track the vehicle locations. The system

also maps any incoming messages to vehicles based on the geographic information to check the

consistency of messages being sent by any particular vehicle. Other sources of redundancy are

also possible, for example, exchange of past information from nearby RSUs for vehicle tracking,

or alternative real time sensors. Our proposed video tracking system is feasible: many vehicles

tracking systems using video cameras have been proposed [132], [130]. We would next see how

the defense would work for the previous attacks.

3.6.2 Defense overview

Defense against Merging attacks: For Attacks 1, 3, and 4, the defense starts by

allowing the back platoon to send a merging request to RSU. After receiving the maneuver

request, the RSU verifies the relevant information. Then, it tests if the merge process is applicable
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or not by inspecting the constraints between the platoons such as making sure that the distance

between them is within the permissible range. If all checks pass, an approval reply is sent to the

two platoons to start merging. If the maneuver confirmation is received and leader, for any reason

does not exist, the platoon members can start a voting process where they study the collected

BSMs and check its neighbor vehicles through its sensors to choose their leader to control the

maneuver.

Defense against Obstacle attacks: For Attacks 2, RSU carries out the same steps regarding

requesting a maneuver. For this scenario, it checks specifically if the obstacle and the incoming

platoon are in the same lane or not and, if yes, the distance between them. Then, the RSU will

send an approval reply to stop the coming platoon or change its lane. In the meantime, the

traveling platoon leader will go to the safe mode where it moves within the safety speed limit

which we defined here to be below 20 mph. Generally, it is sufficient to ensure the ability to stop

in case the obstacle message is confirmed. If the platoon does not receive any confirmation for

the obstacle maneuver until the obstacle location, it can start the backup protocol where it can

stop or change lane. Fig. 3.19 shows the general protocol for the RSU. Algorithm 1 shows the

steps for the platoon leader.

3.6.3 Evaluation

We implemented the defense logic within the simulator. We emulate the video tracking

by using the ground truth value of the location and adding Gaussian noise to it with a mean

of 2 meters. We augmented the application with the defense by following the mitigation steps

discussed above. Fig. 3.20 demonstrates that with the defense in place, the attack impact is

mitigated from all attacks other than the fake obstacle attack where it has a minor effect. The

effect is due to the delay in confirmation from the RSU, during which the safe mode reduces

performance whether there is a real obstacle or not. This mitigation’s approach will also be able
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Figure 3.19: Pre-Maneuver Protocol process for RSU

Algorithm 1 Pre-Approval protocol for Platoon Leader
1: procedure PRE-APPROVALPROTOCOL

2: SendManeuverRequestToRSU()
3: Change to SAFE mode . Wait for RSU response
4: loop:
5: if Disapproval Received then return AbortManeuver()
6: end if
7: if Approval Received then return StartManeuver()
8: end if
9: if Time Out Exceeded then return Exit-loop

10: end if
11: goto loop . Time Out NOT Exceeded
12: StartBackupProcedure()
13: end procedure

to stop the dangerous attacks described in Section 3.5.1. This is due to the fact that those attacks

are bases on the basic attacks demonstrated in Section 3.4 but used in specific scenarios.
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Figure 3.20: The effect of the potential defense on the studied attacks

3.6.4 Discussion

A concern with any defense strategy that requires additional operations is delays in

making decisions, while information is validated. However, we believe that the redundant

information can be prepared proactively so that the check is often local. Moreover, it is critical to

deploy the safe backup operation while decisions are being taken in any cyber-physical system,

prioritizing safety over performance.

The approach heavily relies on the visual tracking system and sensors for more reliable

decision, which may not be available in all vehicles and in some areas. Thus, we accept that it is a

strong assumption on our part to assume that such redundant data will always be available to the

decision making system. We can see from Fig. 3.20 that safe mode does not significantly degrade

performance in CACC application. Nevertheless, we will carry out analysis and performance

measurements on other CV applications to justify this statement in the future. In the future work,

robust algorithms may be employed to detect all the different attacks in the early stages.
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3.7 Vulnerabilities in other protocols

In this section, we analyze other protocols and classify the vulnerabilities using the

attack vectors defined in Table 3.1. We performed code reviews of two protocols available on the

US DOT open source CV protocol repository [11]: (1) Intelligent Intersection Management and

(2) Eco-Traffic Signal Timing.

Intelligent Intersection Management has shown great potential in improving transporta-

tion efficacy especially for autonomous vehicles where it connects with them wirelessly and

schedules their intersection crossing steps. In [32], they proposed to use existing infrastructure-

side sensors to stop malicious messages. For example, vehicle detectors buried underneath the

stop bar of each lane can be used to measure aggregated traffic information. After analyzing the

scheme, we found out that malicious messages can still be sent to manipulate the application and

increase total delay time. This is due to inadequate identifier binding (V3) vulnerability, where

sensors do not correlate the messages with the vehicles and do not give the exact location for

each vehicle.

Eco-Traffic Signal Timing application aims to improve traffic signals delays thus

reducing environmental impact. It processes real-time and historical CV data at signalized

intersections to reduce fuel consumption and overall emissions. In this application, we discovered

that vehicle trajectory data can be subjected to fake message contents (V1) and inadequate

identifier binding (V3) vulnerabilities. We were able to implement exploits to manipulate the

timing phase for any lane based on sending malicious vehicles information.For both applications,

the defense principles we introduced can be adapted to mitigate these vulnerabilities.
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Chapter 4

Securing Autonomous Vehicles by

Learning Control Invariants and

Residual Prediction

4.1 Sensor Modalities and Threat Model

Our goal is to defend against attacks that target sensors either directly spoofing inputs

to them or indirectly manipulating them using transduction attacks. Sensors are critical to AV

operation since they are used to create situational awareness necessary to plan and execute actions

correctly, efficiently, and securely. In this section, we provide some background on common

sensor modalities in AVs, as well as their use in constructing state space estimation. We then

present the threat model we assume in this paper.

AVs [116] typically include a mix of sensors such as radar, camera, ultrasonic, Light

Detection and Ranging (LiDaR), Inertial Measurement Units (IMUs), and etc. Radar sensors

monitor the position of neighbouring vehicles. Video cameras can be used to detect traffic
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lights, road signs, as well as track other vehicles. Ultrasonic sensors detect curbs and other

vehicles during parking maneuvers. LiDaR sensors can carry out ranging, detect road edges, and

identify lane markings. IMUs [36] detect the motion of the vehicle, combining a 3-axis linear

accelerometer and 3-axis gyroscope to track a vehicle within six axes of motion. Specifically,

IMU tracks both linear (X,Y, and Z) and rotational components: (1) pitch, rotating a vehicle

upwards or down-wards; (2) roll: rotating, the vehicle sideways; and (3) yaw: rotating, the

orientation of the vehicle. These six axes allow the full vehicle position and orientation to be

tracked in real-time.

These sensor streams are processed by software modules which use them to generate

and adapt trajectory paths, which are effectuated by sending control signals to the vehicle’s

actuators to control acceleration, braking, and steering. To visualize these axes, the inertial

frames of a quadcopter and a car are shown in Fig. 4.1 and Fig. 4.2 respectively.

Threat Model: We consider attacks where one or more of the sensors on an AV are interfered

with by an attacker either directly or indirectly (e.g., using transduction attacks) [92]. Since

these sensors are critical to the AV’s estimation of its own behavior and that of the environment,

Figure 4.1: Quadcopter motion axes and thrust controls
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Figure 4.2: Car motion axes

compromising sensors may lead to erroneous estimates of its operating state, leading to control

actions from the AV that serve an attacker’s goal. For example, the attacker may control the

vehicle to cause property damage, block emergency traffic, or cause accidents and bodily injury.

Prior work has shown that a range of common sensors are vulnerable to attacks

including those that target IMUs [121, 111, 122], RADAR sensors [72], LiDAR [31, 91, 102],

ultrasonic sensors [72], camera sensors [35, 72, 91], and GPS signals [52, 120, 84, 133].

The weaknesses enabling these attacks are specific to the different sensor modalities and their

implementations. For example, GPS signals [92] do not contain authentication information and

are susceptible to spoofing attacks. Conversely, LiDAR [31] is used for measuring distances to

surrounding obstacles using infrared lasers, can provide 360◦ viewing angles and generate 3-

dimensional representations of the road environment. A LiDAR spoofing attack can be performed

by replaying the LiDAR laser pulses from a different position to create fake points further than

the location of the spoofer [91].

Our threat model is similar to the threat model in previous research efforts so that an

adversary can inject false signals in one or more of the sensors used by AVs at a time. Our defense

can also be used to predict and monitor actuator commands that are potentially controllable by an

attacker. We do not consider a powerful attacker that has complex hardware base and can inject
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signals to all sensors and actuators simultaneously to mimic specific physical events or situation.

An attacker may gain access in different ways with different capabilities [55] either by physical

access to the system, or remotely through open interfaces or through remote interference with the

sensors.

We assume that the attacker cannot compromise or bypass our invariant-checking

module. We also assume that the attacker does know the physical properties of the vehicle (e.g.,

weight or frame shape), or low-level control parameter settings. The main strategy of these

attacks is to inject a time series of biased attack values so that ya = y+bias, where ya is selected

to harm the system. We also consider sophisticated attacks, such as those where the attacker

relies on a machine learning model, and it aims to generate adversarial example where ya is

selected so that it causes incremental drift in the state of the AV without sudden changes to avoid

detection by anomaly detection algorithms.

4.2 System invariants and their use in defenses

We next provide a brief review of the autonomous system’s dynamics, including aerial

and ground vehicles, which serve as the basis of the models used within AVMon. We then show

how these models are used as part of a physics-based attack detection defense.

4.2.1 Physics-based System invariants

Aerial vehicles, such as quadcopters [26], operate by controlling variable torques and

thrusts through four rotors instead of the two used in standard helicopters. The motors in the

quadcopter are arranged in pairs along the horizontal and vertical axes, with the forward pair

rotating clockwise and the horizontal pair rotating counter-clockwise. This design produces

reaction torques from the pairs of motors that oppose each other, providing equilibrium if they

are all operating at the same speed. The elimination of the rotating moment allows the vehicle
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to maintain a constant heading while hovering. Yaw is controlled by varying the motors pairs

to create a non-zero net counter torque. Altitude is managed by changing the thrust from each

motor by equal amounts to provide a net thrust vector and without a rotational moment. To move

laterally, the relative speed of each pair of motors varies to create the desired lateral thrust offset.

A quadcopter can move in six degrees of freedom; longitudinally (forward and back-

ward), vertically (upward and downward), and laterally (right and left), by controlling the

differential thrusts to the rotors. It can also move rotationally among each axis to produce

roll, pitch, and yaw movements. The basic quadrotor parameters that depict Euler angles [58]

including roll, pitch, yaw, and body coordinate frame, can be shown in Fig. 4.1. The dynamical

model of a four-wheel vehicle is also well studied [19, 88]. This model has two degrees of

freedom that are represented by the vehicle’s lateral position and the vehicle yaw angle. The

vehicle’s lateral position is measured along the lateral axis of the vehicle to the vehicle’s center

of rotation. The vehicle yaw angle is defined as the angle between the vehicle’s longitudinal axis

and an axis parallel to the surface of the earth in the earth-fixed coordinate system.

4.2.2 Physics-based attack detection

Monitoring the physics of cyber-physical systems [97] to capture sensor attacks is a

growing area of research. Our contribution is to substantially improve these predictions for AVs

by improving the KF estimator by learning its optimal configuration, leveraging residual learning

to compensate for nonlinear dynamics, and using context information to filter out transients and

reduce false positives. Physics-based attack detection can be thought of as a security monitoring

system that creates a time-series prediction model of sensor readings for the autonomous system

and identifies anomalies as deviations between the predicted and actual sensor readings. Thus,

such a framework consists of 1) Physical model prediction and 2) Anomaly detection. Physical

model captures the relationship between the control inputs and the system dynamics. For example,
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Figure 4.3: AVMon design overview for the online invariants monitoring

to obtain the following time frame position and velocity values for a ground vehicle, matrix A

has to be defined as shown in Equation 4.1 which reflects the dynamical model of the ground

vehicle. Based on Equation 4.1, the position at any time is the position at the last time instant

updated with the velocity multiplied by the time step.
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(4.1)

A physical vehicular system can predict the expected future measurements using a state-space

representation that describes the physical system as a set of inputs, outputs, and state variables.

In general, the control invariants model can be represented as follows [73]:

x(t +1) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)

(4.2)

where x(t) is the state variables, u(t) is the system inputs and y(t) is the system outputs. Equa-

tions 4.2 determine the next state and output of the system based on the current state and control

signals. Specifically, A, B, C, and D are matrices modeling the state and inputs of the system as
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follows: A represents the time-invariant dynamic state matrix; B, the time-invariant input matrix;

C, the time-invariant measurement matrix; and D, the time-invariant feedforward matrix.

4.3 AVMon Design overview

Fig. 4.3 shows AVMon design. It consists mainly of sensors pre-processing, prediction

process using KF, residual learning, and anomaly detection function. These components work

together in a real-time/online manner to achieve substantially higher attack detection accuracy by

improving the physics-based prediction and anomaly detection components. Generally, three

types of KFs can be used for physical states estimation. In our work, we use the Extended

Kalman Filter (EKF) that was designed for nonlinear system estimation and filtration. AVMon

starts by receiving the sensor data as input and uses it to predict the next state in the prediction

model. Then, the prediction data is compared to the sensor data to carry out anomaly detection,

as shown on the right-hand side of Fig. 4.3.

AVMon improves the prediction process using two ideas; First, it uses an optimization

algorithm that is executed offline to configure the primary EKF module to operate more accurately

with respect to the AV parameters. Second, it also carries out residual learning to compensate for

the nonlinear dynamics of the model that are not captured effectively by the EKF. Finally, in the

anomaly detection process, a time series of residuals rk, i.e., the difference between the received

sensor measurement yk and the predicted or expected measurement ŷk, is used to detect unusual

deviations and raise an alarm if the sensor values are sufficiently different from the predicted

values. We improve anomaly detection by using a change-aware model instead of just looking

for deviations between predictions and sensor data to monitor the sensor data for self-consistency

over time and reduce false positives.
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Figure 4.4: AVMon offline learning and optimizing

Fig. 4.4 shows the total offline or training components required for each subsystem

within the design. In this section, we describe each of these components in detail.

Preliminaries: Data Collection and Preprocessing

We collect the vehicle’s operation profile data, including the series of input states (e.g.,

velocity and acceleration) and inputs (e.g., latitudes and longitudes) values from the sensors. At

the same time, we also pre-process the data to convert it to the variables needed in the physical

model. For example, we obtain the GPS readings that correspond to the latitude, longitude, and

altitude to convert them to the corresponding flat-Earth coordinates (X, Y, and Z). Then, we

use these coordinates to estimate the position of the AV object (e.g., aerial or ground vehicle)

in meters. Another example is using the Inertial Measurement Unit (IMU) sensor data that the

AV employs by receiving the 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer

variables to calculate the orientation parameters (roll φ , pitch θ , yaw ω angles) tuples.

4.3.1 Baseline Model Parameter Optimization

AVMon predicts the AV states using an Extended (or nonlinear) Kalman Filter (EKF) [59,

57]. EKF is a lightweight algorithm that does not require historical data, using only the previous

state information to predict the next possible state of the system. It is capable of solving the non-

linear estimation problem through linearizing AV dynamics and output functions for the current

estimate to produce an estimate of the next state of the system using Bayesian inference [28].
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Its output is an estimate of the joint probability distribution over the variables for each time

frame. More information about EKF can be found in Appendix ??. Our design uses sensory

measurements and previously estimated outputs as the inputs to the EKF model to predict the

following sensor states. They are compared with the subsequent time frame measurements to

detect anomalies. EKF model in our design has two procedures; (1) prediction and (2) correction.

The first component takes the last sensors’ values estimation and the current sensor readings to

generate preliminary predicted sensors’ values for the next time step. However, these predicted

values have to be refined due to the nonlinear nature of the estimation process. The covariance

matrix of the estimation error (i.e., the error between the actual measurements and the predicted

states) and the state transition matrix (encapsulating the equations for the vehicle dynamics)

are used to obtain the predicted states. Secondly, the correction procedure relies on previous

sensors’ values predictions, the observation matrix (i.e., a transformation matrix that transforms

the AV system from the physical state space to measurement space), and the covariance of the

measurements’ noises to compute the Kalman gain. Kalman gain is defined as the uncertainty in

a predicted state divided by uncertainty in the predicted state plus uncertainty in measurement

readings or messages data. Therefore, we get the sensors’ predictions that are corrected using the

measurement and covariance updated matrices. The outputs of this procedure will be used in the

Residual Learning module and will feed the next iteration of this algorithm (i.e., EKF). Next, we

need to specify the unknown equations’ coefficients to effectively predict the successive states of

the AV sensors’ values.

To define the dynamics for the AV model and its control algorithm to be used in the

EKF for prediction, we have first to use System Identification (SI) [105] to extract the AV control

invariants and equations that describe how the vehicle behaves given the control objectives (e.g.,

a reference position) and the current states. SI derives such equations through regression over a

set of collected traces of vehicle operation. Then, since EKF can generate errors in predicting
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the dynamic behavior of many systems due to the poor tuning of some of its parameters, such as

the covariance matrices Q and R respectively, these parameters have to be tuned to improve the

model performance. Thus, we use a Genetic Algorithm (GA) to tune these parameters based on

measurement data. Note that this is an offline procedure as shown in Fig. 4.4. GA [16, 119, 85] is

a method for solving both constrained and unconstrained optimization problems that are inspired

by the Human genetic process of passing genes from one generation to another. We model the AV

dynamics prediction competence by evaluating its accuracy based on its coefficients’ values. The

specific coefficients’ values corresponding to the EKF model are coded into a typically binary

array, which can be viewed as a chromosome carrying genetic information about the individual,

i.e., the EKF model in our case. Thus, GA starts from a widely dispersed initial population of

coefficients setups for the EKF model design and converges to the best coefficients’ estimation.

The pseudocode flowchart of GA is shown in Fig. 4.5.

4.3.2 Residual Learning

Another source of inaccuracy arises because EKF approximates a nonlinear physical

system (e.g., the quadcopter) using a piecewise linear process; the prediction suffers large

inaccuracies and even filter instability in highly dynamic scenarios [124]. Thus, the prediction

can be inaccurate based on two ways: (1) it’s physical properties change rate (i.e., position or

velocity), (2) how far it drifts away from its real-time behavior due to accumulation of errors.

When an AV vehicle changes its velocity slowly, or it moves in a straight line most of the time,

the linear approximation will be a good fit, and prediction errors will be lower. However, if the

AV vehicle changes its velocity intermittently, the linear approximation will not capture all the

velocity variations over most of its domain. Similarly, the further away the vehicle moves from

its operating trajectory due to any disturbance, the more likely the linear approximation diverges

from the accurate prediction.
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Figure 4.5: The genetic algorithm optimization overview

For more effective detection, we need to minimize the generated error between the

predicted and observed measurements. One approach uses a more complex filter that models

the nonlinear behavior, but these become computationally prohibitive. Moreover, they may not

account for sensors’ transient errors and other perturbations that may arise in the real world.

Thus, we approach this problem using machine learning to predict the residual dynamics (the

expected deviation between the EKF prediction and the measurements). It is important to note

that using only data-driven approaches such as machine learning to predict future AV dynamics

requires a great source of data to get decent results. When we started our design using only

machine learning, we found that its structure is more complicated than using the EKF and a

neural network scheme together, and it produces less accuracy and slower response. To learn

the residual dynamics, we use a neural network model with ReLU activation to converge faster

during training and demonstrate more robust behavior with respect to hyperparameters changes.

As shown in Fig. 4.6, our model includes one input layer, three hidden layers, and one

output layer. The inputs for our neural network model include different sensors readings such

as the location and orientation of the AV object. At the same time, the outputs are the residual

vector per each time frame. The hidden layers include 256, 128, and 64 neurons, respectively.

The output layer represents the prediction errors that can be used to validate the outputs coming

from the EKF equations. However, designing the critical error-related inputs from a list of

all inputs that feed the dynamic model of the vehicle (e.g., roll speed, pitch rate, yaw rate,

longitude, latitude, altitude, etc.) is challenging. We solve this problem using a Sequential

Forward Selection (SFS) algorithm [51]. SFS is a greedy search algorithm that is used to reduce
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Figure 4.6: The structure of our residual learning neural network module

an initial d-dimensional feature space to a K-dimensional feature subspace, where K < d. The

motivation behind the feature selection algorithm is to select a subset of the most relevant features

automatically. The goal of feature selection is to improve the computational efficiency and reduce

the model’s generalization error by removing irrelevant features or noises. In our work, we use

SFS to add one feature at a time based on the classifier performance for the ANN-based residual

prediction model until a subset of features of a size K is reached. Thus, we eventually get a

set containing all the essential and most effective K features representing the input layer for

learning the residual neural networks model. We start the algorithm by having an empty list of

inputs. Then, we add an additional feature, x+, to our feature subset XK in each irritation. x+ is

the feature that maximizes our criterion function, that is, the feature that is associated with the

best classifier performance if it is added to XK . We repeat this procedure until the termination

criterion is satisfied. The SFS is outlined in Algorithm 2.

4.3.3 Online Anomaly and attack detection

Relying on the instantaneous error value between the prediction states and sensors

observation after comparing it to a pre-defined threshold can lead to false positives in the presence

of transients and sensor noises. To ensure that only true anomalies are detected, we incorporate

a change detection algorithm [117] that is capable of detecting subtle changes in dynamics
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Algorithm 2 Sequential forward selection algorithm
A list of the critical features (R) used for our ANN model Parameters:
S→ a whole d-dimensional feature set as input.
XK → a return subset of selected features K, where K<d.
ek→ total error when using selected features.
Inputs:
S = {s1,s2, ...,sd}
XK = {x j | j = 1,2, ...,k;x j ∈ S},k = (0,1,2..,d)
e = {∞}
Initialization:
X0 = 0,k = 0;

while k < K do e+ = argmine(e,e(Xk + x+))< e,where x+ ∈ S-Xk;
k=k+1;
if (e+ < e) then Xk = Xk + x+;
S = S− x+;

providing high confidence decisions. Note that this algorithm applies to the predicted data itself,

not as a comparison to the sensor data, to see if the data sequence over time is self-consistent. In

our anomaly detection approach, the attacks are detected by first getting the pre-processed sensor

readings Ỹ(k) to generate the predicted sensor value Ŷ(k+1) using the EKF algorithm described

above. Next, we update the predicted residual e(K) using a neural network so that it is used to

compute the final residuals associated with each sensor as follows:

ri(k) = Ỹ (k)− Ŷ (k)− e(K). (4.3)

Transient errors can be generated from overshoot spikes in the velocity when making

a turn due to the simplicity of the Proportional-Integral-Derivative (PID) control algorithm.

The PID algorithm determines the control signals based on the error and a weighted sum

of the propositional (P), integral (I), and derivative (D) terms. Thus, we should not treat

transient errors as an indication of actual attacks. On the other hand, we do not want to miss

or delay true attack detection. Our solution is to utilize a function responsible for alerting

for the actual malicious activities by computing a statistical detection test [21] that quantifies
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the deviation. Specifically, we perform detection by sequentially discounting autoregression

time series modeling (SDAR) [96]. In this algorithm, older data values in the sequence are

‘discounted’, i.e., are less important than more recent values in the sequence. Because recent

data is weighted more heavily in an SDAR model, SDAR is well-suited for online change point

detection, which focuses on detecting the most recent changes in a sequence. As a result, it

outperforms many change detection algorithms and detects malicious values as early as possible.

In AVMon, the anomaly detector algorithm, SDAR, keeps track of the historical

changes of the residuals instead of a fixed time window to prevent an attacker from hiding their

attack between time windows. In each iteration, new residuals data arrives each time frame with

(t = k+1,k+2, ...). Here, we define a parameter S that represents the anomaly score of value.

Sk is calculated by updating the mean vector µ and the variances-covariances vector µ̂ as in

equation 4.4:

µ̂ = (1− r)µ̂0 + r ∗Xt (4.4)

Then we calculate Sk through equation 4.5

Sk = Θ̂i(Sk−i − µ̂)+ µ̂ (4.5)

where r is the discounting parameter and Θ is a coefficients matrix. Once X̂t > τi, an alarm will

be triggered. Finally, the summary of the whole detection block is given in Fig. 4.7.

4.4 Implementation

First, we implement our approach using CARLA simulator [37] that is an open urban

driving simulator powered by Unreal Engine (UE) to support development, training, and valida-

tion of autonomous urban driving systems and provides open digital assets (e.g. urban layouts,
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Figure 4.7: The high level structure of the different components inside AVMon

buildings, vehicles). Then, our approach is applied on two different AVs (aerial and ground).

Despite both vehicles having different invariants, real-time needs, and specific environments, we

show that our methodology can be applicable to AVs in general.

4.4.1 Autonomous vehicles’ simulation

In CARLA simulation, the vehicle becomes autonomous by decomposing its driving

tasks among perception, planning, and continuous control sub-systems. The perception stack

uses semantic segmentation, based on RefineNet classification model [71], to estimate lanes, road

limits, and dynamic objects and other hazards. The perception neural network model is trained to

classify each pixel in the image into one of the following semantic categories; (road, sidewalk,

lane marking, dynamic object, or miscellaneous static). The local planner is based on a state

machine with the following states; (road-following, left-turn, right-turn, intersection-forward,

and hazard-stop). It is used to synthesize way points that keep the car on the road and prevent

collisions . Transitions between these states are performed based on estimates provided by the

perception module and on topological in-formation provided by the global planner. Continuous

control is performed by a proportional-integral-derivative (PID) controller that receives the current

position, speed, and a list of way points to actuate the steering, throttle and brake, respectively.

In addition, we create a program that executes our AVMon algorithm based on Actors which are
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spawned in the simulation by carla.World. These Actors interact with its sensors via designated

APIs (e.g. Getters and Setters methods) to read sensors’ measurements and control vehicle

motion.

4.4.2 Aerial AV

We choose Dronecode’s open-source PX4 autopilot to simulate our aerial autonomous

vehicles experiments. We run the autopilot on a dedicated hardware, Pixhawk 4 [12, 76], which is

powered by 32 bit Arm Cortex M7 processor of 216 Mhz, 2MB memory, 512kb RAM. There are

also couple of sensors on the Pixhawk board, namely accelerometer, gyroscope, magnetometer,

and barometer. We use latest stable version (v1.11.0) of the autopilot. We also made modification

on top of this version to run our anomaly detection system, AVMon.

The simulation environment uses Gazebosim [20, 64] for the physics portion of the

code. Gazebosim can be used to design a physical world and along with the physics that

comes with it. This makes the simulation more realistic. For mission control inputs, we use

QGroundControl (QGC) [13]. QGC is a versatile software which can be used in different platform

such as computers and mobile devices. Apart from manual control of the drone, it allows users to

plan extensive flight missions, such as designating landing location, altitude at which the drone

would fly, location of each waypoints, hovering delay at each location, and maximum velocity of

the drone between the different points of the flight, etc. All the communication between these

components is carried out by MAVLink (Micro Air Vehicle Link). For a run of the simulation,

the autopilot code is initiated from the terminal, which also start the Gazebosim. QGC is then

started and mission parameters are set. Various data, such as location and orientation of the UAV,

actuator controls, actuator outputs, airspeed, CPU and RAM usage, sensor data, etc., get logged

by QGC. We use these logs to analyze the flight. We create a module called re f erence monitor

(written in Python) that represent AVMon in the real hardware. On hardware, we use the raspberry
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pi 3 model b for re f erence monitor module with PX4 as a flight controller for QGC. Moreover,

in the re f erence monitor, sensor data, such as GPS coordinates, are per-processed and used for

next state prediction so that sensor data can be evaluated as anomaly or not. This module is

structured sequentially to introduce a small amount of overhead on the hardware platform.

4.4.3 Ground AV

Our ground vehicle is based on the AVWLtoys A242 model, as shown in fig. 4.8, that

is controlled by Raspberry Pi 4 with 2 GB RAM, 1.5 GHz system on a chip (SoC), and a HD

camera to stream a reliable frame rate while running the different autonomous algorithms, such

as the trajectory planning process. To control the DC motors running towards different directions

and different speeds, a motor drive controller board with dual H-bridge DC stepper modules

(L298N) is used. Through the Pulse-width modulation (PWM) signals from the (sending) GPIO,

the motors drive the vehicle using power from the on board battery via required speed values and

directions. The vehicle includes two infrared speed encoders installed on each drive wheel to

provide the rotational speed feedback of the wheels, one-dimensional TOF LiDAR (VL53L1X)

that is deployed at the front end of the vehicle to detect precisely the longitudinal distance to the

closest object in front of the vehicle, and an HD 160-degree fish-eye camera that is deployed on

the top of the vehicle. Raspbian is selected as the operation system for the Raspberry Pi board

. Raspbian is a Linux distribution based o Debian mostly composed of free and open-source

software. The Robot Operating System (ROS) [65] is then applied as the robot platform. ROS is

a collection of tools, libraries, and conventions that aim to simplify the task of creating complex

and robust robot behavior across a wide variety of robotic platforms. Through the ROS nodes,

the distributed control strategy can be utilized, where each node can be a sensor, a computation

module, or an actuator. By broadcasting or subscribing to the specific messages, the nodes are

able to transmit the information as designed.
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Figure 4.8: Original front wheel steering vehicle

The architecture of the entire system includes four sections: perception, communication,

high-level control, and low-level control. The perception is responsible for understanding the

environment through the on-board sensors, and then for transmitting the high-level information

(e.g., traffic signs ahead) to the high-level control module. Combining the high-level information

from both the perception section and the communication section, the high-level control is

responsible for transforming the abstract information into detailed instructions such as desired

speed and orientation. Finally, the low-level control block calculates the required control signals

based on the vehicle dynamics model and sent them to the actuators. Our AVMon algorithm is

implemented as a running node within ROS. It receives sensors’ measurements from the low-level

control node through subscribing and broadcasting pre-defined ROS massages.

4.5 Evaluation

4.5.1 Experimental Setup

In this section, we evaluate our implementation on PX4 autopilot running on Pixhawk

4 and Gazebosim for the aerial vehicle and ROS Kinetic Kame[118] running on Raspberry Pi

4 for the ground vehicle. For the autonomous vehicle simulation, we used CARLA simulator

that runs on Windows 10 64-bit with Intel(R) Core(TM) i5-9400 CPU @ 2.90GHz x6 processor
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and 16 GB RAM. First, we show the efficiency analysis of the different components in AVMon

and how our defense can detect attacks. Then we compare our proposal with other approaches

proposed in the literature. Finally, we measure the overhead of our implementation using PX4

for the quadrotor and the AVWLtoys autonomous car.

We implemented our proposed system for the evaluation using python. The experiments

were performed on a real data set containing information obtained from different trajectory

scenarios. Our experiments are based on maps designed in the autonomous vehicle simulator

(i.e., CARLA) for training, testing, and validating. For real experiments, we performed missions

to obtain real data-sets containing information obtained from different trajectory scenarios,

including simple (i.e., low curvature) and complex(i.e., increased curvature) ones with varying

settings of velocity as shown in Fig. 4.9. Different configurations were considered for training

the ANN-based residual learning model by changing the number of neurons in the hidden layer,

the activation function, and learning rates. For every configuration of ANN, multiple independent

experiments were conducted for training, and average results are reported to factor out the

stochastic element in ANN network weights’ initialization.

To show our model efficiency and generality on a different data set for an AV after

training is complete, we tested the resulting ANN-based residual model’s weights and biases

to show the accuracy of the model on the test data to estimate the accuracy model with new

or previously unseen conditions. Once we obtained the highest accuracy, we wanted to ensure

that our residual learning model was not over-fitting (i.e., it cannot perform accurately against

unseen data, which defeats its purpose). Thus, we used K-fold cross-validation [114], one of

the most popular techniques commonly used to detect over-fitting. Moreover, we tested our

model against regularized ones using drop out [112] and L2 regularization [82]. Regularization

is a technique used to reduce prediction errors by fitting the function appropriately on the given

training set. So, we split the data points into five equally sized subsets in K-folds cross-validation,
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called ”folds”. One split subset acts as the testing set, and the remaining folds train the model.

The model is trained on some trajectories to estimate how the (RL) model generally performs

to make predictions on data not used during the model’s training. The rest of the trajectories

acts as a validation set in each turn. After all the iterations, we average the scores to assess the

performance of the overall model. From Table 4.1, we can see that the generated residual learning

model is considered the optimal model for generalization among different data sets without any

additional over-fitting techniques.

4.5.2 Attack benchmarks

Our attacks were developed as additional software in each system that hijacks the

interface between the (actual) control code and the sensor modules. We impersonated the

software modules to (1) publish false sensor data (in both PX4 and ROS) to compromise inertial

sensors and GPS sensors, (2) control signal spoofing by targeting the control outputs such as the

steering from the PID controller or the motor pulse width modulation (PWM) signals, and (3) do

parameter corruption through modifying control parameters (e.g., the PID control coefficients) at

run time. As an example, the malicious node (attack 2), as shown in listing ??, replays a chosen

image at a higher rate than that of the camera, overwriting any legitimate image with a malicious

one and compromising the visual data to affect the steering decisions as shown in Fig. 4.10.

Creating simple attacks by adding bias values stochastically to sensors can introduce

significant errors, which is challenging to accomplish without being detected due to the high

accuracy of AVMon(although we use some attacks such as these to compare the accuracy of

Avg. Standard W/L2 W/drop out

Quadrotor
Loss 0.00072 0.00624 0.00174
Accuracy 0.9776 0.934 0.9628

Ground Loss 0.00022 0.00364 0.0037
Vehicle Accuracy 0.988 0.972 0.98

Table 4.1: Average K-Fold cross-validation results for the quadrotor and ground vehicle.

61



((a)) ((b))

Figure 4.9: Sample trajectories used by the quadrotor (a) Simple or low curvature; (b) Complex
or high curvature

((a)) ((b))

Figure 4.10: A visual attack on a ground vehicle (a) A real image; (b) An injected image

AVMon to prior work). Consequently, we also consider an advanced attack where the attacker

is aware of the internal structure of this detector and attempts to carry out an adversarial attack

such that it fools the machine learning component to misclassify the attack as benign eventually.

Moreover, we are concerned with a more sophisticated adaptive attacker who attempts to attack

while avoiding detection. Thus, we evaluate AVMon against such an attack to show that it is

resilient even to powerful adversaries.

4.5.3 AVMon characterization and efficiency analysis

In the first set of experiments, the impact of the individual components of our solution

is evaluated as they together track closed loop and straight line trajectories.In a straight line track,

using only the default EKF estimator after configuring its relevant parameters can cause an error

up to almost 9 meters and an average of 1.77 meters, especially during the turn maneuver for

the vehicle. After using GA optimization to configure the EKF, the prediction error becomes

significantly lower. However, it experiences spikes of up to 6.5 meters during turns and an average

of 1.06 meters. Finally, considering the Residual learning (RL) component further decreases the
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prediction error to be less than 0.5 meters at its maximum and 0.16 meters on average (a 10x

reduction from just EKF) because it compensates for the non-linear effects that challenge the

EKF estimator. For a closed loop or cyclic track, the average error using only the default EKF

estimator was not high (0.08 meters). However, the RL component likewise assisted in lowerings

the prediction error (0.03 meters). The average and maximum errors of each component are

shown in Table 4.2.

Next, we evaluate our anomaly detection performance. In Fig. 4.11, we involved a

spoofed wheel speed sensor attack which can be quickly done by injecting a magnetic field. As

the attack started at the second ”12”, the signal was maliciously replaced by a constant value.

As a result, the ground vehicle lost its control and then tried to compensate for correcting its

orientation, potentially causing a crash.

Fig. 4.12 also shows the anomaly score over time using the SDAR detection metric,

which clearly and rapidly detected the attack crossing the detection threshold line. The anomaly

Figure 4.11: An example of a velocity attack on an AV

Figure 4.12: Anomaly detection under same attack
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Cyclic track Straight track
Components Avg(M) Max(M) Avg(M) Max(M)

EKF 1.77 8.92 0.08 0.16
EKF+GA 1.06 6.46 0.042 0.08

EKF+GA+RL 0.16 0.49 0.03 0.05

Table 4.2: Average and maximum errors (distances in meters) of main components in AVMon.

score S quantifies the historical deviation based on the SDAR algorithm of the AV system. If

S > threshold, then an alarm will be raised. Otherwise, the system is normal.1 Moreover, we

launched GPS, IMU, and gyroscope attacks during the quadrotor missions solely to measure the

efficiency of our model. As a consequence, AVMon caught all the attacks successfully within

an average of less than 0.2 seconds after launching (i.e., zero false negative rate with detection

timeliness).

Finally, to depict that our solution does not rely only on the dynamics of the vehicle,

we first established solely spoofing attack on GPS position to see the anomaly performance as

demonstrated in Fig. 4.13. Then, we added the corresponding injected change to the velocity and

acceleration signals to create consistency by fooling the dynamic equations (i.e., vehicle position

estimation requires three components: velocity, direction, and acceleration). Nonetheless,

the anomaly value got even more significant with the injected values in position, velocity,

and acceleration, as shown in Fig. 4.14. We believe that Kalman Gain will decrease if the

measurements match the predicted states by analyzing the error covariance matrix. Otherwise, it

becomes larger.

4.5.4 Comparison to Savior

In this section, we demonstrate how AVMon improves the security of cyber physical

systems by comparing it to Quinonez et al.’s recent defense, Savior [95], under a range of

scenarios and attacks. SAVIOR algorithm predicts physical observations based on EKF for

1A video demonstrating the attack can be found at this link.
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Figure 4.13: Anomaly value over time after the spoofed attack in latitude

Figure 4.14: Anomaly value attacking latitude, velocity, and acceleration simultaneously

predicting the observations and cumulative sum (CUSUM) [80] algorithm for anomaly detection

We performed a series of experiments comparing AVMon and SAVIOR using CARLA simulator,

ground, and aerial vehicles.

Prediction performance

First, both predictions can predict well in most cases due to using nonlinear prediction

filters, which are suitable for the nonlinear dynamics of the AV. However, SAVIOR has larger

prediction errors. On the other hand, AVMon can accurately predict the system states even when

there are quick changes in the trajectory of an AV as depicted for in Fig. 4.15 and Fig. 4.16.

Then, to study both schemes under different uncontrolled conditions to realize under

what circumstances AVMon can be better and under which ones will be worse or more expensive.

We tested both schemes on the quadrotor under different parameters, including various trajectories’

curvatures, velocity, multiple stopping in midair, etc. We used the quadrotor in this test since it

has more movement ranges or dimensions. From Table. 4.3, we can see that AVMon improves
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Figure 4.15: Pitch angle prediction comparison

Figure 4.16: Yaw angle prediction comparison

the prediction quality slightly over previous schemes on straightforward trajectories. However, it

significantly improves the prediction quality in high dynamical or curative routes.

Next, we launched different bias attacks that are injected into the location reading of the

ground vehicle, and we measured if the anomaly detector in both schemes is capable of detecting

the attacks for different intensities, as shown in Table. 4.4. The results show again that AVMon

outperforms SAVIOR with better precision, so faster detecting attacks can be accomplished.

The previous examples show that our system can detect attacks efficiently. Still,

the question is now, what if both schemes did not detect an attack and considered it in their

calculations (i.e., worst-case scenario)? How long will the system be unstable? The stability of a

state estimator [49] is typically defined in terms of the convergence of the state estimate to the

normal state, or, in other words, the state estimate error converges to zero or becomes bounded

within some region near zero. Thus, we analyzed all the sensors’ attacks on AVMon as shown

in Fig. 4.17, and we found out that roll angle has the most impact on the system stability. We
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Curvature Velocity Mid-air
stops

AVMon
accu-
racy

SAVIOR
accu-
racy

High High no 98.77% 89.19%
High low no 100.0% 95.03%
High low Yes 99.44% 88.72%
low High no 100.0% 97.62%
low low no 100.0% 98.26%
low low Yes 100.0% 97.58%

Table 4.3: Prediction accuracy comparison over different routes.

Attack bias range (M) AVMon SAVIOR
< 1 detected Not detected
3 detected Not detected
> 5 detected detected

Table 4.4: Detectability comparison using different bias values in the location readings for a
ground vehicle.

compare the stability under different bias attacks in the roll angle generated by the gyroscope of

the quadrotor by computing how long the systems stay faulty or unstable as shown in Fig. 4.18

and Fig. 4.19. From the results, it is noted that AVMon performs slightly better than SAVIOR for

low curvature trajectories. However, errors drop dramatically in AVMon and the system stability

can improve up to more than %70 in some cases in high curvature trajectories.

Time-To-Detect (TTD is an essential metric for cyber physical systems because de-

tection delays can provide an attacker an opportunity to cause significant damage. Thus, we

Figure 4.17: Sensors’ attacks effect on the state estimator stability
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Figure 4.18: Stability effect by roll angle bias attack under AVMon

Figure 4.19: Stability effect by roll angle bias attack under SAVIOR

launched various bias attacks injected into the AV sensor signals to compare TTD performance.

Fig. 4.20 shows a bias attack injected into the quadrotor gyroscope, especially into the pitch

angle rate (i.e., angular velocity over the Y-axis), and we measured the time it takes to detect the

attack for different intensities. As a result, AVMon can catch this attack faster than SAVIOR by

(0.2 seconds). SAVIOR takes longer to detect such an attack due to the significant prediction

errors from its algorithm, which requires larger margins to reach the desired anomaly detection

threshold without causing excessive false positives. On the other hand, AVMon uses a nonlinear

states estimation filter with the help of the residual learning model to improve prediction accuracy

so that the change detection component (SDAR) detects the attack quicker.

An accurate position estimation is perhaps the most critical component of establishing

context-awareness in AVs. Therefore, we show the position error (i.e., the difference between the

measured position of the AV system and the next time frame predicted position based on x, y,

and z coordinates) by carrying out two experiments: (1) a ground vehicle with a simulated trip in

CARLA simulator; (2) a quadrotor using a real data set [29] of a Parrot (Bebop 2) quadrotor as it
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Figure 4.20: Time to detect (TTD) for AVMon and SAVIOR against the same attack

captures videos; the data set includes comprehensive sensor readings including current timestamp,

GPS, and IMU sensor data. Fig. 4.21 shows that AVMon outperforms SAVIOR in positional

prediction for the ground vehicle with errors less than 0.3 m, whereas SAVIOR reaches over 1

meter error in some cases. Fig. 4.22 shows the predicted position errors for the quadrotor, staying

less than 0.5 m for AVMon but fluctuating up to 4 m using SAVIOR. The higher accuracy gives

the attackers less opportunity to hide within the prediction envelope. Moreover, the stability of

the prediction allows the detection thresholds to be tightly set without generating false positives.

Furthermore, we experimented with different spoofed values for derivative coefficient

Kd and integral coefficient Ki for the PID controller to cause the AV to get out of its reference

trajectory. Kd reduces the overshoot caused by the proportional component. Ki fixes the system-

Figure 4.21: Positional error comparison in a ground AV

Figure 4.22: Positional error comparison in a Parrot (Bebop 2) quadrotor
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atic bias caused by the steering angle over time, which could eventually drive the vehicle out of

the track. We also spoofed the steering angle output from the PID controller. As a result, we can

see that AVMon has faster TTD action than SAVIOR as depicted in Fig. 4.23 and Fig. 4.24.

End to End Attack Detection

We evaluate the end-to-end performance of the AVMon compared to Savior. For each

detector, a threshold needs to be chosen on the anomaly score to balance sensitivity to attack

against the probability of false positives. When we decrease the threshold, we get more positive

values. Thus, it increases the sensitivity but decreases the specificity. Similarly, if we increase the

threshold, we get higher specificity and lower sensitivity and potentially increased TTD. To tune

the detection thresholds, we empirically used a large number of diverse experiments, including

those with complex trajectories, to plot the Receiver Oriented Characteristics (ROC) curve, which

characterizes the performance of the detectors for different detection thresholds. Thus, we picked

suitable thresholds that balance between sensitivity and specificity. From Fig. 4.25, we observe

that: (1) with the same threshold, AVMon outperforms and has lower FP rates, (2) by selecting

Figure 4.23: Anomaly performance with high injected Kd value

Figure 4.24: Anomaly performance after spoofing steering
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smaller threshold values, we can detect attacks faster due to the smaller FP values, (3) AVMon

can detect the attack with a probability close to 100% while having an FP rate (below 1%) using

the same thresholds values for detecting the anomaly values as SAVIOR uses. To achieve the

same sensitivity, SAVIOR would have over 30% FP rate.

Resiliency to stealthy adversarial attacks

Here we developed a stealthy adversarial attack that injects adversarial perturbations to

avoid detection. Specifically, we sampled the system operation over N training samples and used

these samples to obtain a loss function to produce adversarial turmoils with small magnitudes

representing an attack without being detected. In this attack, we predict the target sensor reading

Yi(k), such as altitude, to calculate a loss function SQR err as follows:

SQR err = (Yi(k)− ˆYi(k))2 (4.6)

Figure 4.25: ROC comparison implemented in a quadrotor

Figure 4.26: Adversarial attack targeting altitude
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The next step is to compute the gradients with respect to SQR err as follows:

gradient =−2∗Σ(sq error)/N (4.7)

where N is the number of sampling iterations. Then, the adversarial perturbation that will be

added to the sensor value will be calculated as follows:

Y
′
i (k) = Yi(k)+ ε ∗gradient (4.8)

Fig. 4.26 shows an example of an adversarial sensor attack that is injected in the GPS

altitude measurements with an injected attack using the Fast Gradient Sign Method (FGSM)

attack [90]. In this example, ε is set to 0.025 to ensure the perturbations are small. Using AVMon

this attack was detected quickly, while it is hard for SAVIOR to detect it. In this attack, the

adversarial attacker was employed to simulate a crash for a quadrotor by targeting the yaw angular

velocity and the GPS altitude position while landing. The quadrotor failed to land smoothly

after passing the altitude position (0.0285) since the attack produced smooth deviations in the Z

direction, and the controller was trying to compensate for the misleading information. We tried

various epsilon values to make this study systematic since it is a critical parameter for this kind

of attack. Lowering epsilon can generate a slower attack that eventually may not be detected.

Note that from Table. 4.5, the attack was detected efficiently with AVMon and SAVIOR at a

large epsilon value. Nonetheless, AVMon manages to track the adversarial attack under smaller

epsilon values while SAVIOR could not. This experiment shows the importance of considering

such attackers on physical-based control systems for autonomous vehicles. Eventually, AVMon

stops detecting this attack with (ε = 0.0025) since the adversarial attack has a lower anomaly

score than the defined threshold.
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Epsilon value Attack detected Attack detected
for the attach by AVMon by SAVIOR

0.50 Yes Yes
0.25 Yes No
0.025 Yes No
0.0025 No No

Table 4.5: Anomaly detection for different epsilon values.

Sensitivity to external disturbances and noise

In real-world deployments, external disturbances such as weather, road conditions, or

system degradation can occur outside the dynamics model used in the detector. To study the

effect of these disturbances, we measured the prediction errors under different wind speeds and

environmental scales (e.g., clear, overcast, and rain conditions). Even though these effects are not

included as parameters in the physical model, they can interfere with the ability of a model-based

predictor such as EKF to predict accurately. As the prediction quality degrades, the system

can produce higher false positive errors. Specifically, significant weather conditions, such as

wind, can affect an AV by pushing by exerting forces that change their dynamics (position or

angular position) or introducing noise to specific sensor modalities. However, the PID controllers

compensate for these effects, especially if the weather conditions are not extreme (i.e., wind

speed is around less than 5 m/s). Under such conditions, the prediction quality of the EKF

predictor degrades with effects outside of its model. However, the residual learning algorithm in

AVMon can compensate for these external disturbances and therefore experience substantially

lower false alarm rates than SAVIOR, as shown in Fig. 4.27.

To more systematically study this effect, Fig. 4.28 shows the FP rates results for

AVMon and SAVIOR using injected Gaussian noises with increasing standard deviation values

as shown on the x-axis. AVMon outperforms SAVIOR substantially.
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Figure 4.27: False positive rates under different weather condition

Figure 4.28: False positive rates for SAVIOR and AVMon in aerial vehicle for different noise
levels

4.5.5 Performance Overhead

Now, we explore the performance overheads of AVMon. In particular, for practical

deployment, the different components of the system must have low overhead to enable decisions

to be taken within the real-time feedback loop of the AV controller. We implemented AVMon in

the autonomous ground vehicle using a single collection of TensorFlow[14] checkpoint files to

represent the residual learning model requiring 225.5 kB in total storage. We added our module

to the Robotic Operating System (ROS) controller running in the vehicle as a ROS node executed

as a session. We measured the execution time of the AVMon module (e.g., conducting its Path

planning algorithm) for 5 minutes using two different tracks. Time measurement commands

were injected between the start and end of each control loop iteration to record the execution

time for each iteration. Then, the average execution time metric was calculated as an indication

for evaluating the runtime performance. The overhead represents the average execution time with
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respect to the real-time constraints or timestamp (i.e., each 0.1 sec). So for the ground vehicle,

Table 4.6 shows that the average execution time of our module is less than 0.01 seconds with

%4.1 overhead, on average. As for CPU utilization and memory (i.e., capacity overhead), AVMon

consumes on average %7.0 CPU usage, as shown in Table 4.7. Of course, this number can be even

smaller with higher hardware specifications than the Raspberry Pi we used in this experiment

or reduced ROS cycles per second value (currently, we operate at 10 times per second). Note

that using a Raspberry pi based ground vehicle is common in academia. However, working with

smaller size autonomous vehicles is challenging since trajectory planning control algorithms

perform with more stability in more oversized vehicles. For our implementation in the aerial

Quadrotor Ground vehicle
Without residual learning 0.0075 sec 0.0013 sec
With residual learning 0.012 sec 0.0041 sec
Computational overhead %10 %4.1

Table 4.6: Average execution time and overhead for the quadrotor and ground vehicle.

AV type %CPU %MEM
ground vehicle %7.5 %8.0
quadrotor %7.5 %3.0

Table 4.7: CPU and memory utilization for the AVMon module.

vehicle, we used the latest stable version of a popular drone operating system, PX4 v1.11.0.The

size of our module code is 8.5 KB. AVMon module utilizes a library called Dronekit to get

general information from it, including telemetry data, sending action commands like arming, take

off, land, etc. It starts by calling the connect() method. Then, get/set parameters and attributes

are used to control the quadrotor movement. The execution time of the AVMon module, for the

aerial vehicle, was, on average, 0.012 seconds with only %10 overhead, as shown in Table 4.6. In

addition, the module consumes %7.5 of the CPU time (Table 4.7). Besides, we did not observe

any latency during our module execution over 0.1 seconds during our experiments.
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Chapter 5

Mitigating Application Attacks on

Connected Vehicles

5.1 Threat Model

We consider a CV environment where attackers can compromise a device that is eligible

to obtain a certificate from SCMS and participate in the system. SCMS prevents an attacker from

spoofing other CVs’ identifiers. However, our concern is with those attacks where malicious

actors participate in CV protocol by replaying valid messages or sending them with fabricated

data. In this study, we do not consider attacks that target message delays, jamming, physical

attacks on sensors or controllers. We also do not consider mitigation against attacks that exploit

bugs in the software stack of any existing components running on the infrastructure or vehicles.

We assume that vehicles communicate through Dedicated Short Range Communication

(DSRC) devices based on IEEE 802.11p[61]. However, the proposed system does not limited to

DSRC. Equipped vehicles with onboard units (OBUs) can send Basic Safety Messages (BSMs)

to other equipped vehicles or infrastructure consisting of two parts: BSMs-Part 1 are transmitted
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periodically (typically every 100 msec), containing critical data elements such as vehicle size,

position, speed, heading, acceleration, brake system status. BSMs-Part 2 are event-based

messages, containing various optional data elements customized by different manufacturers, e.g.,

ABS activated.

On the other hand, Road Side Units (RSUs)are used to coordinate behaviors across

cars or to maintain certain shared states.

We consider the following types of attacks.

• Fake Message Attack where the adversary starts to create messages’ fields or parameters

such as velocity, position, and acceleration, with injected biased values, and then broadcasts

the messages to harm the entire system.

• Replay Message Attack where the adversary receives and stores a beacon that is broadcast

by the other vehicle, and replays it at a later time with malicious intent. The replayed

beacon contains old information that can lead to hazardous effects.

• Stealthy Message Attack where the adversary is aware of the vehicle dynamics and

hence employs its parameters to avoid normal detection filters that can easily find random

malicious behaviors. To create the position field in this attack, we use the following

equation:

l pt+1 = l pt + st ∗∆t +at ∗∆
2
t /2

where l p, s, a, t, and t +1 are the lane position, speed, acceleration, recent time step, and

next time step, respectively. This equation calculates position using speed, acceleration, and

the time difference between the recent and previous times. The vehicle’s speed increases

with at at each time step until it reaches vmax. The vehicle’s speed cannot exceed the speed

limit of the roadway segment.
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5.2 CV Applications

In this section, we highlight some of the CV applications that are used as case studies

in this paper.

In Intelligent Traffic Signals (I-SIG), RSUs host I-SIG to manage intersections adap-

tively and intelligently with goals such as reducing collision, decreasing idle time, and improving

traffic flows. The BSM messages are broadcast by CVs and captured by a trajectory awareness

process that sustains the latest trajectory for each vehicle linked to its vehicle ID. The signal

planning process monitors the traffic signal status. Then, it develops a signal plan based on

the incoming real-time trajectory data that are fed into the COP (Controlled Optimization of

Phases) algorithm[100][39]. After planning, the I-SIG controller sends signal control commands

to the controller. The COP algorithm estimates each vehicle’s arrival time and uses dynamic

programming to calculate the optimal signal plan with the least (estimated) total delay.

Cooperative Ramp Merging System: In Cooperative Ramp Merging, the V2I system localizes

vehicles on a virtual map to be used later by different control algorithms to provide driver assis-

tance to enable safe and smooth merging. The output of the merging control algorithm contains

the recommended speed for any cooperative vehicles in the merging process. In particular, the

reference accelerations are calculated by a feedforward/feedback control algorithm [128] and sent

to the vehicles, so they can regulate the gaps smoothly even before reaching the merging point.

As a result, rear-end or sideswipe collisions in the conflict zone are essentially eliminated. Finally,

Cooperative Adaptive Cruise Control (CACC) utilizes V2V communication to form platoons

of vehicles that travel with closer spacing, reducing aerodynamic drag, and improving roadway

capacity[113, 93, 77]. In this implementation, the Platoon Management Protocol (PMP) [23]

controls platoon operations and maneuvers. The leading vehicle acts as the coordinator and

controls platoon maneuvers such as speed, lane change, and merging with other platoons.
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Figure 5.1: An example of CVGuard architecture used in CACC

Figure 5.2: The state estimation algorithm

5.3 CVGuard architecture

Application-level attacks rely on communicating falsified information to manipulate a

car or a group of cars into an attacker’s desired action. The essential question to defend against

such attacks is how to determine whether or not the information received from remote CVs is

trustworthy. We break down this problem into three smaller problems: (1) Is the predicted state of

the car consistent with the measured state? (2) Does acting on the received information potentially

lead to collisions or other dangerous actions? And (3) Are the received application-level actions

consistent with the application’s logic (e.g., do they reflect valid maneuvers?). The components

of our defense try to answer these questions, respectively, to detect application-level attacks

from different perspectives: when they deviate from the application logic; when they cause

the measured and predicted states to diverge; and when they lead to dangerous situations such

as collisions. Figure 5.1 gives an onboard architecture of our proposed CVGuard system. It
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consists of: (1) State Estimator; (2) Change Detector; (3) Collision Identifier; and (4) Logic

Identifier. In the State Estimator algorithm, external attacks can be potentially detected by

checking whether the (perceived) physical states of the vehicle are consistent with its expected

states determined by its dynamics and control. It is defined by the dynamic system properties

and control algorithm, mathematically represented by control invariants. The Change Detector

can detect unusual changes in states based on a cumulative sum of recursive residual statistics. It

allows the system to detect attacks accurately and rapidly, avoiding false positives due to transient

errors. Even though individual messages seem to be acceptable by the State Estimator algorithm,

they can still lead to collisions. This could be caused by stealthy attackers who launch attacks that

maximize the damage to the system without being detected to cause a crash or cause other safety

problems. The Collision Identifier predicts the location of nearby vehicles to detect potential

collisions or other hazards. Finally, the Logic Identifier ensures that a protocol or maneuver

output does not compromise the safety even under attacks, which relates to under-specified or

incomplete protocol logic. For example, if an application logic fails to consider corner cases,

such as a large gap between two platoons before merging, CVGuard considers it a V2V anomaly.

The logic identifier is specific to each application.

5.3.1 State Estimator

An accurate state estimator that tracks vehicles with changing dynamics can be achieved

by using multiple filter models that provide estimates of some variables such as velocity and

acceleration. Our state estimator adopts an Interacting Multiple Model (IMM) [75] that estimates

updated states and state covariances based on the ensemble of the most common models (e.g.,

constant velocity, constant acceleration, constant turn, etc.). Every model is a single Kalman

filter that re-initializes with mixed state estimates and covariance based on their probabilities of

”switching to” or ”mixing with” each other. Thus, constantly correcting each filter to reduce its
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residual error, even when it does not represent the true motion of the object. In this way, an IMM

filter can switch to an individual model based on the specific vehicle dynamics without waiting

for convergence first. Thus, using these models can adequately predict the tracked vehicle’s

possible motions, which is better than using only one model over time.

The different models of the IMM, such as constant velocity or constant acceleration

models, follow the same steps of the extended Kalman filter. However, they differentiate in using

the dynamical equations in the ”predict state”. In general,the algorithm [108] is divided into two

main procedures: prediction and correction. The first component takes the last estimation x̂k and

the current input uk, and generates a prediction x̂k+1. However, this prediction is refined using the

received data. Similarly, the covariance matrix of the estimation error P−k (i.e., the error between

the real states xk and the estimated states x̂k) is predicted using the process covariance matrix

Q and the state transition matrix Fk. The second procedure uses the previous predictions x̂−k ,

P−k , the observation matrix Hk, and the covariance of the measurement noise V , to compute the

Kalman gain Kk, which is defined as the uncertainty in a predicted state divided by the uncertainty

in predicted state plus uncertainty in measurement readings or messages. Therefore, the state

prediction is corrected using the measurement and the covariance matrix is updated. The output

of this procedure x̂k+1 and Pk will feed the next iteration of the algorithm as x̂−k and P−k .

The inputs of the EKF can be the position and velocity in a time step. At the same

time, the outputs can be the estimated position and velocity that the vehicle may happen in the

next time step. The goal of using the EKF is to combine any instantaneous reading (which could

be maliciously injected values) with the observed dynamics of the system, allowing us to identify

unreasonable/inconsistent measurements rapidly. The EKF structure is shown in Fig. 6.1.
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Figure 5.3: Overview of the State Estimator phase

5.3.2 Change Detector

The change detector is essential to detect errors from compromised (or noisy) sensors by

characterizing the signals changes and controlling the overall error rate. Thus, we propose using

the Cumulative Sum of Recursive Residual (CUSUM) [81] change detector that continuously

monitors the error of the regression model. A significant increase in the error is interpreted as

a change in the distribution that generates the examples over time. When a change is detected,

the actual regression model is deleted, and a new one is constructed. The CUSUM statistic is

described by the following recurrent equation:

Si(k+1) = Si(k)+ |ri(k)|−bi (5.1)

Where ri is the prediction residual associated with each sensor and Si is the anomaly score.

Si(0) = 0 and bi > 0 are selected to prevent Si(k) from increasing when there are no attacks.

When Si(tk)> τi , an alarm associated with sensor i is triggered where τi is the threshold value.

5.3.3 Collision Identifier

The state estimator is a lightweight solution that efficiently detects cyber-physical

attacks on an individual CV. However, we need to identify and avoid potential collisions and

other undesirable conditions. Thus, we use Reinforcement Learning (RL) [83] to learn the proper

maneuver sequence that can help detect anomalies even if the dynamics of each connected vehicle
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appear to be accurate. The Collision Identifier RL algorithm is based on three components: state,

action, and reward. The state describes the current condition of an agent. The action is what

the agent can do in each time step. Finally, the reward describes positive or negative feedback

from the environment due to the agent’s action. The overall goal of RL is to learn a policy

that maximizes the total reward of an agent through learning from the states and actions when

it interacts with the environment. In our Collision Identifier algorithm, we use Q-learning

[115, 103] because of its combination of effectiveness and simplicity. Q-learning is a value-based

learning algorithm that updates its value function based on the Bellman principle. First, we

create a Q-table where the agent can update its item by learning the rewards associated with all

state-action pairs, based on the following equation at each time step:

Qnew(st ,at) = (1−α).Q(st ,at)+α× (rt − γ.maxaQ(st+1,a))

where α is the learning rate (ranging from 0 to 1) and represents how much the agent should learn

from a new observation; rt is the acquired reward for any taken action; γ is the discount factor

that controls how much each reward can affect our decision; maxaQ(st+1,a)) is the estimated

reward from the next action where the agent selects the optimal action to maximize the reward;

Q(st ,at)-values are the estimated values, and they represent how much the agent expects to

get after performing an action. s is the current state of the vehicle. Since the goal of RL is to

maximize the long-term rewards through maneuvers, we design the state, action, and reward as

follows:

State: We design our states as a set of possible situations where the vehicle can inhabit during

movement. These states represent also neighbor vehicles around the vehicle of interest (also

called ego vehicle) during an action, and its nearby detected vehicles are called remote vehicles. In

our model, we consider a total possible number of the ego vehicle’s states or st of 16 discretizing
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the different configurations of nearby vehicles. For example, s1 represents an ego vehicle that

has only one vehicle in front of it.

Action: We define the action space A = {action1,action2} to refer to the two possible action

patterns of an agent in the system, reflecting either normal or abnormal behavior. The action

classification is based on Time-to-Collision (TTC) while observing the CV traffic system; if

TTC deviates outside preset threshold reflecting normal operation, then we consider the system

to be anomalous (i.e., action2); otherwise, we consider it normal (action1). The action is used

in the Q-table to define the probability that the agent takes a normal behavior or not. TTC is

a metric [78] that measures the time taken for a vehicle to collide with the vehicle in front of

it, which is an important metric to measure how safe CV components are under cyber attacks

quantitatively. TTC of vehicle i at instant t can be calculated as follows,

T TCi(t) =
Di(t)−Di−1(t)− li

Vi(t)−Vi−1(t)

where Di(t) and Vi(t) stand for the position and speed of vehicle i, respectively, at instant t, and

li is the length of the vehicle i.

Reward: We design our reward scheme to have a minimal positive value for safe actions and a

large negative value if any safety violation occurs. The reward value is determined by TTC of the

agent or ego vehicle, as shown below. The T hreshold value is estimated throughout experiments

to be 0.5 seconds.

rt =


1, if T TC > T hreshold.

−10, otherwise.

(5.2)

The RL algorithm is shown in Algorithm 3.
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Algorithm 3 Reinforcement learning training process
1: procedure UPDATE Q AND CALCULATE LOSS FUNCTION

2: Initialize Q and S values
3: while St is not terminated do
4: if At violates the reward policy then
5: Rt = big negative reward
6: else
7: Rt = small positive reward
8: end if
9: end while

10: end procedure

5.3.4 Logic Identifier

To ensure that a CV protocol or maneuver does not compromise the safety of the

included CVs under attack, we have to practice a plausibility check functionality or safety

policies. To achieve this, it is necessary to start with a systematic study of the main properties

of each CV maneuver since the discovery of such characteristics can most generally affect

the security of their corresponding implementation instances. In Algorithm 4, we develop a

simplified protocol in which the model updates the timer according to the event. This event

represents all the known CV events or maneuvers. Every event in EventRangei triggers the

same update on timer[i]. The Retrieve function reacts with the CV environment to pick different

properties if such a property is available. These properties assure the CV protocol’s safety and

include space gaps, relative locations, relative velocities, lane consistency, etc. For example, in

the reference CACC implementation, an anomaly can be generated if the space gap does not

reach the value below the maximum safe threshold. Thus, ensuring the robustness and safety of

the protocol algorithm under the different application-level attacks.
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Algorithm 4 A simplified Logic Identifier Algorithm

1: EventRange = (0 · · ·(N−1))
2: TimerIndexRange = (0 · · ·(M−1))
3: Property = (0 · · ·(P−1))
4: while number o f CV s 6= 0 do
5: for ∀ event ∈ EventRange do
6: timer = [i ∈ TimerIndexRange 7→ None]
7: if timer[i]> 0 then
8: timer[i]−1 . count down
9: RET RIEV E(Property)

10: else
11: TIMEOUT . expire
12: end if
13: end for
14: end while

5.4 Evaluation

5.4.1 Experimental Setup

To evaluate CVGuard, we used VENTOS (VEhicular NeTwork OpenSimulator) [7],

which is an extension of Veins simulation [110]. VENTOS enables us to design, test, and

evaluate different traffic scenarios. It integrates a C++ simulator for studying vehicular traffic

flows and combines two widely used simulators, Simulation of Urban Mobility (SUMO)[4] and

OMNET++[2]. SUMO is an open-source road traffic simulator that uses Traffic Control Interface

(TraCI) to communicate simulation commands.

5.4.2 CVGuard Effectiveness

One of the most challenging aspects of using simulator data is fidelity. Unfortunately,

no repository of sufficient real-world driving data from various driving scenarios is available.

To address this issue, we monitored the vehicles data over time coming from the road traffic

simulator (SUMO) and compared it with the HighD dataset [66] that provides trajectory data

corresponding to actual vehicles driving on German highways. We validated that the SUMO

data distribution is consistent with HighD with several metrics. We carried out the following
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experiments to demonstrate how we built and configured the state estimation component of

CVGuard. Different vehicular dynamics characteristics can be used to create the IMM algorithm.

However, using a large number of models impacts performance negatively. Thus, we wanted to

build an IMM algorithm with the best-suited and most efficient configurations under different

trajectory segments while driving over time to improve the tracking accuracy and model switching

speed of maneuvering target tracking. In the simulation, we tested different vehicles and measured

metrics such as velocities and steering behaviors, as shown in Figures 5.4, 5.5, and 5.6. These

three selected dynamics characteristics show that the vehicle switches mostly its dynamics

between constant velocity, constant acceleration, and turning right or left to reach its destination.

As a result, three Kalman filter models have been selected to create and test the IMM algorithm

based on the analysis of the dynamics characteristics evaluation. These models are a constant

velocity (CV), a constant acceleration (CA), and a three-dimensional turn with a kinematic

constraint (TURN) Kalman filters. Adding additional models to IMM can lead to overfitting

problems and degrade detection performance.

To evaluate this phase, we made the malicious vehicle manipulate its parameters and

broadcast its forged or fake messages to the nearest connected vehicles. These BSM messages

can contain false synthetic variables such as velocity and acceleration. Thus, the state estimator

filter produces noticeably significant prediction errors. Therefore, it can accurately predict the

Figure 5.4: A constant acceleration (CA) example
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Figure 5.5: A constant velocity (CV) example

Figure 5.6: Turning with a kinematic constraint (TURN) example

Figure 5.7: Improved tracking performance using IMM filter

surrounding connected vehicles’ states, as shown in Fig. 5.9 and Fig. 5.10. To detect the presence

of the cyber-attacks and filter out the transient errors caused by physical disturbances (e.g.,

winds), we use a change detector component that is based on the non-parametric cumulative sum

(CUSUM) anomaly detector to uncover the false data injection attacks, as shown in Fig. 5.11.

From Fig. 5.7, we can see that tracking a connected vehicle based on the IMM filter is highly

maneuverable while predicting the future location of the connected vehicle, and it outperforms

the single filter model. The single constant acceleration filter model has the more significant
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Figure 5.8: Two trajectories samples where the blue one for a normal vehicle and the red one is
produced by the attacker

position and rate errors, and it is slow to recover non-maneuvering error levels after the maneuver

ends. Even though the IMM tracker in the state estimator phase has superior performance in

detecting trajectories anomalies than a single model tracker, it cannot catch all kinds of attacks.

For example, two vehicles in an intersection can enter the same lane or road and collide if

they have replayed trajectories messages or produced stealthy attack messages, thus fooling the

IMM tracker since the RMS errors will be minor. Therefore, the collision identifier phase uses

Time-to-Collision(TTC) metric as an action that can assist in detecting such scenarios, as shown

in Fig. 5.8.

To build an efficient collision identifier, we generated all possible scenarios that an ego

vehicle can interact with other remote CVs, which are defined as different RL states as described

in Section 5.3. These RL states were utilized in the learning process to update and finalize

the reinforcement learning Q-table in the collision identifier so that CVGuard uses collision

identifier at each time step to detect Replay or Stealthy attacks. Stealthy attack is challenging to

be detected since it is based on the physics of the vehicular system, and it is used to maximize

the damage to the system while avoiding detection. Thus, we consider the worst-case scenario

for CVGuard in which an attacker is undetected while injecting falsified information into the

system continuously. For example, Fig. 5.12 shows that the next state estimator filter failed to
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detect any malicious activity due to the normal values of the measured position prediction errors.

However, the collision identifier was able to detect this attack through observing the low values

of ”Q-value” of the RL algorithm, which represent the action outputs of a connected vehicle’s

states during this attack, as shown in Fig. 5.13.

Moreover, we tested CVGuard against application-level attacks presented in [17].

These attacks include: 1) merging over large distances attack where the attacker is located

Figure 5.9: Measured position residuals for a malicious vehicle

Figure 5.10: Measured position residuals for another malicious vehicle

Figure 5.11: The detection statistic of the change detector component in CVGuard
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Figure 5.12: Measured position residuals (stealthy attack)

Figure 5.13: The Q-value of the reinforcement learning algorithm used in the collision detector
component

between two platoons such that it can communicate with both platoons simultaneously and

deceive ranging sensor by pretending that it is a member of the front platoon; 2) merging across

different lanes attack where a malicious vehicle is in front of the rear platoon and sends messages

pretending to be a part of the other platoon (in another lane); 3) platoon takeover attack where

an attacker transmits fake messages of a fake platoon so that the rear platoon merges with

the attacker. Thus, this platoon becomes under the attackers’ control and can be manipulated

dangerously. As shown in Fig. ??, the space gap values are too large during the attack so that the

logic identifier component in CVGuard is able to detect such attacks.

Finally, we conducted a series of experiments to compare our CVGuard accuracy with

the other anomaly detector such as in [27] in terms of false positive and true positive rates. In

general, the accuracy of the classifier is critical to make a security-based decision since the longer

we wait, the less valuable an anomaly alert will be. The anomaly detector in [27] targets CVs’
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Figure 5.14: Gap between two platoons under Merge over distances attack

Figure 5.15: Gap between two platoons under Platoon takeover

security only in CACC applications, and it is based on machine learning. Fig. 5.16 shows that the

Receiver Operating Characteristic (ROC) curve for our CVGuard detection system outperforms

the other scheme by 3%. In particular, CVGuard can detect attacks with a probability close to 1

while having a low false alarm rate (less than 3%). In practice, we can lower the false positive

rate by requiring multiple anomalous detection before raising an alarm, although this could delay

detection.

Figure 5.16: ROC curve for detection strategy.
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Chapter 6

Secure Ramp Merging using

Blockchain

6.1 Background

Blockchain (BC) technology is a distributed ledger technology, enabling participants

of the system to agree on a transaction and log it in an unforgeable shared ledger that can be used

as a record of the agreement. We propose to leverage BC to support managing and maintaining

historical transactions in a Connected Vehicle (CV) environment. This allows any node in the

system (i.e., vehicle or roadside infrastructure) to access past event list and its related information

in the blockchain, and use that for example, to establish trust in vehicles based on past behavior.

In our scheme, we use BC to ensure data immutability and automated information exchanges

between different trusted nodes in a safe manner. Moreover, we rely on a credit based consensus

protocol which can be seen as a credit score system to estimate the trust level in a vehicle: the

higher the node’s credit score is, the higher the trust level of this node would be. Using these

credit scores, it is possible to separate trusted from untrusted nodes, and take that information
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into account in critical maneuvers in the system. This ability is important for cooperative CV

applications such as ramp merging [126] and intersection management [87], since they are

time critical maneuvers for road safety and traffic efficiency where a malicious participant can

substantially interfere with the system.

6.1.1 Consensus Protocols

BC [67] is a distributed ledger spreading across nodes which can be used to verify

transactions on a P2P network. This is the key feature of BC that enables its unique decentralized

property. It is important for BC to ensure agreement on which information is added or discarded.

These processes or rules, are essentially known as a consensus protocols in the distributed

computing community which ensure that a group of participants can reach consensus on a value

even in the presence of malicious participants. Consensus is used to verify transactions and help

keep the network safe.

A consensus protocol needs to be set up before the blockchain is created and it is the

heart of a BC network. It provides a method of reviewing and confirming what data should be

added to the blockchain’s record. Because a BC network typically has no centralized authority

to oversee consensus, all nodes on a BC must agree on the state of the network, following the

predefined rules or protocols. Many consensus protocols have been introduced in BC technology,

such as Proof of Work, Proof of Stake, Proof of Time, Proof of Authority, etc. However, we will

focus on the two most widely used protocols in this paper, i.e., Proof of Work, and Proof of Stake.

Proof of Work (PoW) [125] is the first consensus protocol for BC that allows the

participants to reach consensus in Bitcoin. The protocol is primarily based on a costly computation

involving Hashing (SHA-256), Merkle Tree and P2P networking for creating, broadcasting and

verifying blocks in the network [125]. PoW introduces the concept of mining which involves

validation of a set of transactions (block) in the network by means of showing computational
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proof of the completed work. When a transaction is initiated, all the miners on the network race

against each other to be the first to solve a cryptographic puzzle and to create the block. The

miner who successfully solves the puzzle, will broadcast his/her solution (in the form of the

block) over the network to other peers. After verification of the solution, the new block will

be created and accepted on the chain. Proof of work is a protocol that has the main goal of

deterring cyber attacks such as distributed denial-of-service (DDoS) attack which has the purpose

of exhausting the resources of a computer system by sending multiple fake requests since there is

a cost (mining) to each valid request.

Proof of Stake (PoS) [125] is another consensus protocol that chooses the validator to

mine the next block on the basis of its stake in the network (amount of coins a validator owns) and

the age of that stake. PoS comes in many variants from minimal to significant changes in their

base protocol. The most important difference among the variants is the strategy each implements

to minimize the double spending and centralization issue in the protocol. Under PoS, the attacker

needs to obtain 51% of participating nodes to carry out a 51% attack. Unlike PoW, an attacker in

a PoS system is highly discouraged from launching 51% attack because the attacker would have

to risk of loss of the entire stake if they are determined to have acted maliciously. The PoS based

ledger keeps track of all the validators (equivalent to miners in PoW) and their respective stake

(cryptocurrency) in the network. In PoS, all the validators invest stake in the system to earn the

chances to mine the next block: the higher the stake, the higher the chances. However, it does

not guarantee that the validator with the highest stake will be selected. The system chooses the

validator stochastically for block creation holding a lottery with the validators with higher stakes

having a higher chance of winning. If a participant tries to cheat the system, they lose their stake

in the system. In our work, we use PoS because it does not require any significant computational

power and provides a safer network due to the overwhelming attack costs (since the attacker has

to acquire 51% of a network’s stake tokens).

95



6.1.2 Blockchain Application for Connected Vehicles

Blockchain (BC) is an exciting and versatile technology that has been studied in

different application domains. However, few studies have explored using BC in a Connected

Vehicle (CV) environment. In this section, we highlight some studies on the deployment of

efficient incentive mechanisms and privacy-preservation based on BC technology for CVs. Li

et al. [69] introduced CreditCoin, an incentive mechanism aiming to improve robustness of

crowd-sourcing systems while preserving users’ privacy. In this system, when a vehicle detects

an abnormal situation, it asks surrounding vehicles to confirm certain information about this

abnormal event. Once validated, this information is transmitted to distant vehicles, allowing

them to adjust their behaviors based on current road conditions. If a vehicle planned to acquire

traffic conditions in certain area, it would provide a reward for any information transmitted

by vehicles located in this area. Their proposed system was composed of three main parts:

announcement protocol, privacy-preservation and incentive mechanism. To deal with information

verification, they considered that designing a new BC ledger was required. However, the

implementation complexity, overheads, and security properties of this system are unclear. Singh

and Kim [107, 106] explore trust establishment and incentive mechanisms for CV using BC.

The objective is to define a framework enabling secure communications in the CV environment

without a central authority. They present a new BC ledger that allowed each vehicle to generate a

unique identifier called Bit Trust. Moreover, BC was used to store the communication history of

each vehicle. To get a reward and improve its Bit Trust, a vehicle should contribute to the proper

functioning of the network. For example, if a vehicle was involved in the management of an

intersection, it would get a reward and increase its Trust Bit by computing the crossing order of

this intersection. However,whether their system could guarantee the security of the information

exchanges using this BC technology was not fully explored.
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Our work addresses challenges in applying BC consensus mechanisms, such as PoS

protocol, to sustain and securely distribute trustworthy scores of CVs. We use a novel design

that utilizes a data-driven methodology to detect malicious behavior with decentralized secure

infrastructure to track it.

6.2 Threat Model

The threat model describes our assumptions on the attacker and their capabilities. We

consider malicious vehicles that can generate falsified messages and broadcast them to other

vehicles. These vehicles are insider attackers with previously obtained valid authentication

from the Security Credential Management System (SCMS)[30]. SCMS is a message security

solution for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. It

uses a Public Key Infrastructure (PKI)-based approach that employs highly innovative methods of

encryption and certificate management to facilitate trusted communication. SCMS utilizes short

term security credentials known as pseudonyms generated and updated by each vehicle to reduce

its trackability (i.e., to make it difficult for eavesdroppers to tell whether BSMs transmitted at the

two distinct locations are originated from the same vehicle).

Our attack model considers that an insider may have access to a vehicle with an on-

board unit (OBU). This malicious vehicle is assumed to have the required credentials like a

legitimate user, actively participating and sending fake data [18]. In addition, the attacker is

assumed to have the capability to modify any fields in the BSM elements but not to spoof the

identities in the messages since this is prevented by the SCMS certificates. In a message spoofing

attack, the attacker can send out falsified position and velocity data of itself, which may induce

the victim vehicles to accelerate or decelerate. This may degrade the traffic efficiency and even

put vehicles near the on-ramp at risk of collisions [18]. The attacker is assumed to have the
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capability of controlling the transmission rate of its OBU using a malicious unit/software. Further,

the attacker is supposed to have the capability to use desired pseudonyms certificates since it can

manage its own OBU. We consider only these network based attacks; we do not consider other

attacks such as sensor manipulation attacks or physical attacks.

6.3 Proposed System Architecture

Our proposed scheme includes three phases: system initialization, trust value calcula-

tion, and distributed ledger construction and maintenance, as shown in Figure 6.1. The first phase

represents the stage that the connected vehicles gets enrolled and obtains certificates from the

Security Credential Management System (SCMS). The second phase is the trust value calculation

for each vehicle to measure its reliability. And the last phase refers to the distributed ledger

which is shared and consistent via consensus and synchronized to show the recorded vehicular

transaction data. The details of all phases are presented in the remainder of this section.

6.3.1 System Initialization

A connected vehicle has to obtain a valid certificate before participating in the system.

The certificate binds the owner’s identity to a pair of encryption keys (i.e., public and private)

which are used to encrypt and sign information. Only nodes with valid security certificates and

credentials are able to send authenticated messages that will be trusted by the receiving nodes,

and participate and contribute to any platform used by the CV system. To obtain certificates, a

System initialization

Vehicles’ trust value calculation

Distributed ledger

Figure 6.1: Flowchart of the proposed system
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vehicle has to get enrolled into SCMS by submitting an enrollment request to U.S. Department of

Transportation. Once a vehicle is authenticated, it can obtain information such as Vehicle Trust

Values about other vehicles in the same region through the distributed ledger. Vehicle trust value

of the requesting vehicle is updated continuously and can be shared among authenticated entities

within the system.

6.3.2 Vehicle Trust Value Calculation

This phase is needed to create the vehicle trust estimates based on a data-driven ap-

proach to identifying falsified vehicular data. The overview of this phase is shown in Fig.6.2. This

method includes trajectory acquisition, feature extraction, and abnormal behavior determination

which is based on an artificial neural network (ANN) model and hierarchical clustering. The

details of each step are presented next.

KwInputsInput KwOutputsOutput

FnCreate Training Table Function

Trajectory collection

In our scheme, CV applications mainly rely on basic safety messages (BSMs) which

contain dynamic information such as vehicle position, speed, time stamp, acceleration, and other

state variables. A trajectory is composed of multiple data instant that reveal information about

Trajectory collection

Feature processing

Model building and representation

Hierarchical clustering

Figure 6.2: Flowchart of vehicle trust value calculation
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Algorithm 5 Creating Features Extraction Table for ANN Model
. We digitize the following parameters for each trajectory into discrete values:

acceleration rate or (A) = {0,5,10, . . .}
location value or (L) = {1,2,3, . . .}
range di f f erence or (R) = {0,1,2, . . .}
Anomaly value or (AV ) = {0,1,2, . . . ,10}

training set
S, L, R
Features← []
Index← 0
N1← length(S)
N2← length(L)
N3← length(R)

for si← 0 to N1 do

for li← 1 to N2 do

for ri← 0 to N3 do
Features[Index]← si + li + ri +AV [Index]
Index← Index+1
training set ← Features

path behavior over time. Different trajectories are reported by CVs through vehicle-to-vehicle

(V2V) or vehicle-to-infrastructure (V2I) communications, to provide richer spatial and temporal

information for better traffic management assessment. Each trajectory data contains BSM data

such as location and speed of the vehicle. The selected validator is responsible for using these

trajectories to process the Vehicle Trust Value calculation for each vehicle later on. If a vehicle

manipulates its information, the Vehicle Trust Value Calculation algorithm will label it with a

low trust score which leads to disallowing it from participating in maneuvers.

Feature Extraction

Feature extraction is used here to obtain key information from the collected trajectory

data for identifying certain patterns that indicate abnormality. In this study, we use three

parameters or features that can differentiate various trajectories and help putting them into
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distinct clusters. These parameters are: a) acceleration rate, b) location index, and c) deferential

range. The acceleration rate is a change in velocity for a vehicle through two consecutive

time instances and is calculated by dividing vehicle locations by a time difference of two time

instances. The location index includes any static position information such as road number, lane

number, etc. Finally, deferential range is the space gap between a vehicle and its front vehicle

minus the distance measured by the radar sensor. These parameters are inferred using BSMs data

to represent each trajectory to be used later on.

In our scheme, the three features are then mapped into discrete ranges, such that

defining these trajectories is less computationally demanding and easier to categorize, as shown

in algorithm. 5. The trajectory features are fed into the neural network model. The output of

the neural network model is a value that will be used in the clustering algorithm to represent a

cluster later on.

Artificial Neural Network Model

In the Artificial neural network (ANN) model, information from the input neurons are

multiplied by individual weights at the entry and fed into the body of the artificial neurons where

these weighted inputs are summed up with biases, and processed and passed through transfer

function to output. The artificial neuron can be mathematically modeled as follows:

y(k) = f (
m

∑
n=0

wi(k)∗ xi(k)+bi)

where xi(k) is the input value in the discrete time k and i ranging from 0 to m; wi(k) is the weight

value in the discrete time k; bi is the bias; f is the transfer function; and y(k) is the output value

in the discrete time k. Our goal is to train the ANN model by having the suitable weights for the

hidden layers, so that it can generate the right output based on the right trajectory features.
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We use an ANN model with one input layer (three neurons one for each trajectory

feature), two hidden layers (64 neurons each) and an output layer that includes 10 neurons for

probability distribution of 10 trust credit score values. In our evaluation, we use 80% of the data

for training, 10% for testing, and the remaining 10% for cross validation.

Trajectory Clustering

In this phase, we apply hierarchical clustering that is an unsupervised learning algorithm

that groups similar objects into clusters with similar objects. Each trajectory is treated as an

element that is defined by a group of features. These features are used to compute a distance

metric to identify the closest cluster to a given element. The falsified trajectory identification

can be recognized through having a larger distance from existing clusters of normal trajectories.

We use K-means clustering because it is a popular clustering algorithms [86]. K-means tries to

partition the data set into K distinct non-overlapping subgroups (clusters) where each data point

belongs to only one group. K-means assigns data points to a cluster such that the sum of the

squared distance between the data points and the cluster’s centroid (arithmetic mean of all the

data points that belong to that cluster) is minimal. The less variation we have within clusters, the

more homogeneous (similar) the data points are within the same cluster. To implement k-means

algorithm, we do the following steps (as shown in Fig. 6.3): (1) we specify the number of clusters,

K; (2) we initialize centroids by first shuffling the dataset and then randomly selecting K data

points for the centroids without replacement; (3) we Keep iterating until there are no changes

to the centroids; (4) we compute the sum of the squared distance between data points and all

centroids; (5) we assign each data point to the closest cluster (centroid); and (6) we compute the

centroids for the clusters by averaging all the data points which belong to each cluster.

KwInputInput KwOutputOutput PoHPoH
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Specify number of clusters K

Initialize centroids by first shuffling the
dataset and then randomly selecting K data
points for the centroids without replacement

Keep iterating until there is no change
to the centroids. i.e assignment of

data points to clusters isn’t changing

Compute the sum of the squared distance
between data points and all centroids

Assign each data point to
the closest cluster (centroid)

Compute the centroids for the clus-
ters by taking the average of the all

data points that belong to each cluster

Figure 6.3: K-means clustering algorithm

Algorithm 6 Proof of History Algorithm
senderID, regionID, position Distributed block to next regions

while A CV in a regoin do senderID,regionID, position

if position = region boardern then A change of region event is created including the updated
destination trajectories for the CVs.
RSU creates and transfers PoH block to the next active regions.

6.3.3 Distributed Ledger

To increase the trustworthy of the vehicles, we propose adding long term credibility

metric for the connected vehicle over time. Thus, we rely on a Proof-of-history (PoH) for

verifying vehicles reliability of time between regions.

The Proof-of-history credit is mainly responsible of recording vehicles’ accumulated

spatial and temporal contributions into a ledger. When a vehicle moves across different regions,

it is required to update its current active region. This way, the vehicles within the same active
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region can communicate efficiently. The proof-of-history credit for vehicle i is computed by:

HSi
t =

t2

∑
t=t1

α ∗HSi
(t2−t1) (6.1)

Where HSi
(t2−t1) is the proof-of-history credit during the (t2− t1) period; α is a

discount factor; and HSi
t is the accumulated proof-of-history credit during the t2 period. This

process is shown in Algorithm 6. Note that the credit point of this vehicle in the original

region should be set to zero. Once vehicles’ trust values are calculated, a distributed ledger

can be utilized to identify and expose any abnormal behavior. This distributed ledger provides

vehicle trust awareness to other surrounding vehicles, so that the vehicle can use this information

before deciding to get enrolled in a certain maneuver or application. The distributed ledger is

generated by selected validators that produce BC blocks. Each distributed ledger records vehicles’

transaction information such as transaction ID(TID), transaction type(TT), sender ID, credit

range, and region ID. In addition, timestamp will be added automatically for each record in the

header, which makes it traceable. Then, the distributed ledger validation sender encrypts it with

its private key and broadcasts it. To distribute ledger to other vehicular nodes, validator’s election

for block generation has to be performed, whose process is shown in Fig.6.4. Firstly, a vehicle

credit is calculated through the equation:

vehicle credit = HSi +T Si +V Si (6.2)

where HSi or PoH credit is calculated based on previous credits for the vehicle and can be shared

by all the RSU nodes; T Si or trust score is calculated by the Vehicle Trust Value Calculation

algorithm; and V Si or validation score is estimated by measuring the vehicle through different

sensors. Then, each vehicle gets a credit range based on its credit value. For example, if the

vehicle has a high credit, it gets a range value of 10. If the vehicle has a low credit, it gets a range
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value as 0. Then, the credit range values of some random vehicles will be collected together in

a group or pool. However, this pool includes more vehicles with a high credit range value and

less number of vehicles with a lower credit range values which is similar to the concept of POS

validator election process. Moreover, a pseudo-random election process will be used to select

a validator based on a combination of factors such as the staking age, randomization, and the

node’s credit range value. Next, the process continues updating validator pool and selecting a

validator. A validator has to be elected periodically to manage updating the blockchain due to

the decentralized structure of BC technology. The election of a validator ensures the update of

data in BC in a timely manner. Finally, the selected validator will be responsible for creating the

distributed ledger and broadcasting it.

Figure 6.4: Validator election process

6.4 Cooperative Ramp Merging Algorithm

In this study, we use a cooperative ramp merging application (see Fig. 6.5) to illustrate

the proposed blockchain (BC) technology. In this application, a target connected vehicle (CV)
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can merge with other CVs from the mainline safely and smoothly through V2X communications.

A feedforward/feedback motion control algorithm is developed to obtain the recommended

longitudinal acceleration, are f , [129], which takes into account the target vehicle length l,

longitudinal position r, longitudinal speed v, longitudinal acceleration a, and dynamic states from

the involved remote vehicles.

are f (t +δ t) =−αi jki j ·
[(

ri(t)− r j
(
t− τi j(t)

)
+ l j + vi(t)

·
(
tg
i j(t)+ τi j(t)

))
+ γi ·

(
vi(t)− v j

(
t− τi j(t)

))]
(6.3)

where αi j denotes the value of adjacency matrix; ki j and γi are control gains, respectively;

τi j(t) denotes the time-varying communication delay between two vehicles; and tg
i j(t) is the

time-varying desired time gap between two vehicles. Therefore, the recommended speed can be

computed as:

vi(t +δ t) = vi(t)+are f (t +δ t) ·δ t (6.4)

where vi(t +δ t) is the suggested speed; vi(t) is the current speed of the vehicle; and δ t is the

length of each time step.

6.5 Evaluation

For our experiments, we use VEhicular NeTwork Open Simulator (VENTOS)[22], a

closed-loop VANET simulator that combines the capabilities of both communication network
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Figure 6.5: Cooperative ramp merging scenario

and vehicular traffic simulators. It is a free and open-source simulator which is designed for

traffic flow analysis and intelligent traffic control, collaborative automated driving, etc. VENTOS

allows for Vehicle-to-everything (V2X) communication via dedicated short-range communication

(DSRC) or other means. In the simulation, vehicles are generated with Poisson distribution and

spawn into a 3-mile network consisting of a 3-lane mainline segment and a single lane on-ramp.

We run CVs equipped with DSRC at a maximum speed of 70 mph. The communication range

for each vehicle is 300 meters and the roadside units (RSU) is located at the lane merging area.

We develop our blockchain (BC) scheme including Transactions to Proof of Stake Consensus in

a P2P Network of Nodes in Python as shown in Fig.6.6.

Figure 6.6: The proposed blockchain architecture

In our BC scheme, nodes/vehicles use representational state transfer(REST) API to

programmatically query and invoke transactions, and to manage BC network. Our scheme has an
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Account Balance Model to keep track of the balance of each account as a global state. Fig.6.7

shows the responding block size based on the number of vehicles in a CV region.

Figure 6.7: Block size vs. the number of vehicles.

To show the effects of our attacks, we apply different spoofing attacks to influence the

mainline traffic. We measure the total traffic flow for the mainline as shown in Fig.6.8.

Figure 6.8: Attack impact on cooperative ramp merging

While developing our mitigation scheme, we need to determine the optimal values of

system parameters such as cluster number. Thus, we sweep the values of k from 1 to 30. For

each k, we calculate the total within-cluster sum of square (wss). Then, we plot the curve of wss

according to the number of clusters, k. The location of a bend (knee) in the plot is generally

considered as an indicator of the appropriate number of clusters as shown in Fig.6.9.

Then, we use our simulation to generate normal trajectories based on Newell’s car-

following model and falsified trajectories to achieve the attacker’s goal. Figure 6.10 shows that
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Figure 6.9: Elbow method

the distance between the cluster of falsified trajectory and clusters of other normal trajectories is

so significant. This indicates that the proposed clustering method can well identify the falsified

trajectory.

Figure 6.10: Clusters’ representation for 15 trajectories

To evaluate efficiency, we measure the execution time for the Vehicle Trust Value

Calculation method in our Cooperative Ramp Merging scheme. The results show that this

method does not exceed 0.025 seconds as shown in Figure. 6.11, which indicates the real-time

applicability of the proposed method.

Figure 6.12 shows the scenario where traffic in the on-ramp margin is under attack.

Around the time instant of 30 seconds, the attacker starts its spoofing attacks. If we assume that

the forger is selected to start creating the transaction block within the region after one second,

then this block will be produced and distributed in less than 2 seconds. To our best knowledge,

this is by far the quickest process compared to other purposed BC technology in intelligent
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Figure 6.11: Time evaluation for vehicle trust evaluation calculation method

transportation system applications. Therefore, the design of our framework ensures that the

attack can be detected immediately and the system can return to the normal condition shortly.

Figure 6.12: Effectiveness of our framework against injected attack in the cooperative ramp
merging application.

Comparatively, in the scenario of message spoofing attack without the proposed frame-

work, the merging vehicle on ramp will be fooled to speed up so that it creates congestion causing

other mainline vehicles to decelerate. This results in degradation of over traffic performance as

shown in Table 6.1. We compare both average speed and CO emissions of the merging vehicles

under three different cases, i.e., without attack, under attack, and with our framework. The

results show that without the protection from our framework, the attack can lead to a 45.3%

decrease in average speed and an 21.3% increase in CO emission. Our proposed scheme is able

to significantly improve resilience of the system.
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Performance without attacks with attacks Using Our scheme

average speed (m/s) 6.91 3.78 6.05
CO (mg) 43.66 52.94 43.0

Table 6.1: Economic evaluation of our framework against spoofing attacks.
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Chapter 7

Concluding Remarks

To conclude, I show that Connected Vehicles (CVs) applications are a promising

subject in the field of smart transportation, which is garnering interest from the USDOT, because

they give rise to a new era where vehicles and transportation infrastructure are all interconnected

wirelessly. However, many applications are still not considering their security vulnerabilities. I

show that one of the most complete reference implementations of a CVs protocol (for Cooperative

Automatic Cruise Control) is vulnerable to attacks of many types, even under a threat model

that considers the state-of-the-art SCMS certificate-based security standard being developed for

these applications. The attacks that exploit the vulnerabilities of these communication protocols

may lead to a complete reversal of the benefits made by CVs, and as such, they have further

to go before being reliably safe from attacks. I demonstrate these attacks in simulation and

showed their impact on safety, performance, and economy of the traffic. Then, I present a new

comprehensive framework for detecting different attacks against CVs based on state estimation,

maneuvers monitoring, and reinforcement learning techniques. My evaluation of the mitigation

framework showed that my mitigation attempts can diminish the introduced attacks, making it a

promising approach to support the system resilience of CV applications.
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Moreover, I propose a new comprehensive framework for protecting autonomous

vehicles from attacks that manipulate sensor data, based on monitoring of control invariants for

the vehicles. I identify several shortcomings in recent defenses that rely on using predictions of

the state of the model to detect anomalies as a deviation from predictions and sensor data. In

particular, I show that there is a need for effectively configuring the EKF filter parameters to

enable it to more accurately model the dynamics of the system. In addition, I show that limitations

in the stepwise linear model lead to substantial errors in highly dynamic phases of operation

and do not account for external disturbances and noise. I propose a machine- learning, residual

estimation module to compensate for these effects. Finally, I use a change aware model to more

accurately detect deviations in the predicted data. Taken together, the solution substantially

improved the accuracy of the prediction, leading to substantially higher detection performance

with fewer false positives. I evaluate the scheme in both ground AVs and a quadcopter, using

both simulation and hardware testbeds, demonstrating the effectiveness and practicality of the

solution. I believe my defense makes a significant step in defending against these important

attacks, and believe that the implications are systematic and generalizable.

For future work, I hope that the lessons learned from these directions help us to extend

my defense framework to multi-agent connected drones. Moreover, I will investigate designing a

secure recovery mechanism or technique to maintain the targeted vehicles against such attacks

and take action once an attack is detected to protect the people around it. I believe this would

assure better performance for CVs environment.
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