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a b s t r a c t

Advances in the treatment of myocardial infarction (MI) have improved survival after

ischemic cardiac injury. Post-infarct structural and functional remodeling results in elec-

trophysiologic substrates at risk for monomorphic ventricular tachycardia (MMVT). Char-

acterization of this substrate using a variety of clinical and investigative tools has

improved our understanding of MMVT circuits, and has accelerated the development of

device and catheter-based therapies aimed at identification and elimination of this

arrhythmia.

This review will discuss the central role of the ischemic heart disease substrate in the

development MMVT. Electrophysiologic characterization of the post-infarct myocardium

using bipolar electrogram amplitudes to delineate scar border zones will be reviewed.

Functional electrogram determinants of reentrant circuits such as isolated late potentials

will be discussed. Strategies for catheter ablation of reentrant ventricular tachycardia,

including structural and functional targets will also be examined, as will the role of the

epicardial mapping and ablation in the management of recurrent MMVT.

Copyright ª 2013, Cardiological Society of India. All rights reserved.
1. Introduction

Significant improvements in the prevention, diagnosis, and

treatment of coronary artery disease have resulted in higher

rates of survival following acutemyocardial infarctions (MIs).1

As a result of rapid reperfusion, increased implementation of

hemodynamic support devices, and adherence to antiplatelet

and neurohormonal therapies, an increasing number of pa-

tients with healed myocardial infarcts require electrophysio-

logic management for the treatment and prevention of

ventricular arrhythmias.2
3; fax: þ1 310 794 6492.
(O.A. Ajijola).

2013, Cardiological Socie
This review will concentrate on the structural and func-

tional features of ischemic myocardial substrates in the gen-

esis of ventricular arrhythmias after healed MI. Polymorphic

ventricular tachycardia and ventricular fibrillation, which are

more prevalent in the acute to sub-acute ischemic period, will

not be discussed. Components of the ischemic car-

diomyopathic substrate, which facilitate the reentrant path-

ways characteristic of monomorphic ventricular tachycardia

(MMVT) will be discussed, along with implications for

catheter-basedmanagement of these arrhythmias. Automatic

ventricular tachycardia, which may appear monomorphic,

will not be discussed in this review.
ty of India. All rights reserved.
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2. Post-infarct myocardial remodeling

2.1. Structural remodeling

The healing phase of infarcted myocardium is characterized

by infiltration of the infarcted myocardial tissue by inflam-

matory cells. Necrotic myocytes are cleared by macrophages,

and replacement fibrous tissue, consisting of collagen, is

deposited by fibroblasts over the next days, weeks, and

months. The ischemic wavefront of necrosis proceeds from

the subendocardium to epicardium during myocardial

ischemia,3 and scar deposition parallels this sequence. Critical

elements arise during this process, which permit the reen-

trant circuits that characterize MMVT. The heterogeneous

process of myocyte resorption and collagen deposition results

in islands of surviving myocardial cells within healed infarct

scars as shown in Fig. 1.4 These preservedmyocardial bundles

exist as a “labyrinth” in three dimensions, involving the

endocardium, mid-myocardium, and epicardium. The func-

tional electrophysiologic characteristics of these channelswill

be discussed in detail later in this review.

Channels that facilitate or sustain MMVT, consist of an

entry site, a protected isthmus, and a breakthrough exit site

that activates the ventricles.5 Functional or fixed conduction

slowing and block in a channel can result in an excitable gap

for reentry. These localized regions of slow conduction within

scar exhibit “zig-zag” conduction during normal sinus rhythm

through heterogeneously connected myocytes traversing

dense unexcitable scar6 (Fig. 1). Post-infarct structural
Fig. 1 eHistologic characterization of ischemic heart disease

substrates. Masson trichrome stain of infarcted

myocardium with “islands” of preserved myocardium

surrounded by scar tissue (blue). A schematized

representation of a possible ventricular tachycardia circuit is

depicted with the while lines. Slowed “zig-zag” conduction

through the “isthmus” of the circuit is represented by the

broken white lines. Adapted from Tung R, Boyle NG,

Shivkumar K. Circulation. 2011; 123(20):2284e2288.
remodeling may also involve deposition of adipose tissue in

the infarcted bed. A recent report showed that electrophysi-

ologic consequences of post-infarct myocardial fatty

replacement in ovine MI included decreased conduction

velocity, and reduced bipolar electrogram amplitude.7 The

presence of inducible VT in MI animals was associated with

greater adipose content and slower conduction velocity in the

border zones of infarcts.

These structural changes alter local “sourceesink”

mismatch (in favor of the “source”), given the diminution in

electrotonic forces that minimize membrane voltage de-

viations in one (or a few) myocytes exerted via gap junctions.

Reductions in source-sink mismatch facilitate the genesis of

premature ventricular depolarizations, which trigger VTs.

2.2. Functional cellular remodeling

Remodeling of other important elements within and beyond

the infarcted myocardial bed also occur, and add further

complexity to the post-MI substrate. These include remodel-

ing of myocyte ionic currents and gap junctions, direction of

activation propagation, and intra-myocardial nerve fibers.

Although human data are lacking, studies in animal models

have provided insight into how ventricular myocyte action

potential (AP) remodel in cardiomyocytes adjacent to a healed

MI. These include reduction in the duration, upstroke ampli-

tude, and velocity of border zone myocyte AP.8 Reductions

have also been reported in peak calcium currents in surviving

border zone cells. In addition, refractoriness in the infarcted

animal heart is known to be more nonuniform compared to

normal hearts, with varying degrees of AP prolongation

exhibited by individual surviving myocytes adjacent to and

remote from the infarctedmyocardium. In the border zones of

infarcts, this worsens heterogeneity in refractorinesss, and

facilitates the development of unidirectional block, critical to

genesis and perpetuation of VT.

The distribution of connexin 43 gap junctions in the border

zone of the infarcted human heart is also aberrant. Fewer gap

junctions are organized into transverse (side-to-side) con-

nections, rather the gap junctions are redistributed in a lon-

gitudinal fashion.9 Detailed animal studies support light

microscopy findings in humans, with altered anisotropic

conduction in the healed infarct heart. In addition, interstitial

fibrosis results in displacement of myocytes from each other,

and a significant decrease in the syncytial connection of

myocytes in the infarct border zone.10

Another component of post-MI functional change is neural

remodeling. Nerve endings in the infarcted bed are resorbed,

however, since the neuronal cell body from which these

nerves originate is removed from the infarcted territory,

plastic growth is driven at the most distal intact endings

adjacent to the infarcted tissue. This nerve sprouting in the

border zone is heterogeneous, and is unable to penetrate scar

tissue. The presence of these sprouts has been associatedwith

ventricular arrhythmias and sudden death in humans,11 likely

related to local heterogeneity in myocyte electrophysiological

properties. We have demonstrated that the border zone of

infarcts exhibits variable responses to autonomic stress

(Fig. 2).12 Remodeling within stellate ganglia, which partly

control myocardial excitability, has also been reported, and

http://dx.doi.org/10.1016/j.ihj.2013.12.039
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Fig. 2 e Heterogeneous responses to direct and reflex sympathetic nerve stimulation in scar, border zone, and preserved

myocardium. Image on the left depicts an electroanatomic map of a patient with a large anterior wall infarction (with dense

scar in gray, preserved myocardium in purple, and border zone in other colors) and the location of a multi-electrode

catheter. The image on the right shows the activation recovery interval (ARI) at baseline and in response to reflex

(nitroprusside) and direct (isoproterenol) sympathetic stimulation. In preserved myocardium, direct activation via

adrenergic receptors is fairly uniform, however in the border zone and scar regions, this response is heterogeneous,

reflecting varying degree of adrenergic receptor responses in adjacent myocardium. In response to reflex sympathetic

stimulation induced by cardiac sympathetic nerves, significant heterogeneity is seen across the entire spectrum of scar,

border zone, and even “preserved” myocardium. Adapted from Vaseghi M, Lux RL, Mahajan A et al. Am J Physiol Heart Circ

Physiol 2012, 302(9):H1838e46.
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likely contributes to enhanced sympathetic tone and electrical

heterogeneity seen after MI.13

In summary, the healed infarct heart exhibits changes in

the structural and functional characteristics of themyocardial

substrate. These alterations facilitate the conditions required

for initiation and maintenance of sustained reentrant ven-

tricular arrhythmias.
3. Characterization of ischemic heart disease
substrates

3.1. Role of imaging

Myocardial imaging has an increasing role in the diagnosis and

treatment of VT in the ischemic heart disease substrate.

Contrast enhanced-magnetic resonance imaging (MRI) appears

to provide the most valuable information on cardiac structure,

owing to its superior resolution (Fig. 3A) over positron emission

tomography (PET) and computed tomography (CT).14

Pre-procedurally, imaging is used to identify the location

and transmurality of scar. Patchy scars (which may support

VT) and border zones of scar (where VT exit sites are typically

located) can be identified prior to the procedure to guide

mapping. Scar transmurality has been correlated to sites of

VT termination, as are sites with late potentials.15,16 A recent

study using CT showed consistent findings with MRI data,

with regards to post infarct wall thinning.17 Regions of het-

erogeneity in contrast enhanced MRI, also known as “gray

zones”, have been related to MMVT inducibility.

The resolution of in vivo MRI still has limitations, due to

partial volume effects from cardiac motion, making de-

terminations of transmurality suboptimal. The presence of

ICDs in most patients undergoing VT ablation raises concerns
about performing MRIs. At our center we have routinely per-

formed MR imaging in this patient population (except when

abandoned leads are present, or when the patient is pacing-

dependent) without adverse outcomes. Image artifacts

created by the device can also be minimized (Fig. 3B) to

improve the quality and usefulness of images obtained in

patients with devices.18 Intra-procedural imaging in contem-

porary VT ablation can be achieved with ICE,19 although its

utility extends beyond ablation of the ischemic substrate.

Intra-procedural MRI remains under development, however

its role in real-time characterization of lesion formation, and

ischemic substrate homogenization remains promising.20

3.2. Electrophysiologic characterization

3.2.1. Development and validation of electrogram amplitude
The characteristics of bipolar electrograms recorded from

normal myocardium and scar are distinct. This difference is

the basis of voltage mapping. Electrical signals are recorded

from cardiac tissue using catheters fitted with bipolar (or

multipolar) electrodes. These signals are filtered at 30e40Hz to

400e500 Hz, and bipolar electrograms demonstrating sharp bi

or tri-phasic waveforms with amplitudes greater than 3 mV

and durations under 70 ms are consistent with normal

myocardium. Bipolar electrograms with amplitudes less than

0.5 mV, showing durations >133 ms, and showing fraction-

ations are consistent with recordings from regions of

myocardial scar.21 Current mapping cut-offs utilize bipolar

electrogramamplitudes of>1.5mVand<0.5mV22 to delineate

normalmyocardium and dense scar respectively, with regions

demonstrating intermediate amplitudes designated as border-

zone areas (Fig. 4). These voltage thresholds have been vali-

dated in multiple studies. In a porcine healed infarct model,

Callans et al showed that bipolar electrograms <1 mV in

http://dx.doi.org/10.1016/j.ihj.2013.12.039
http://dx.doi.org/10.1016/j.ihj.2013.12.039


Fig. 3 e Characterization of ischemic heart disease substrates e magnetic resonance imaging. A An ex vivo magnetic

resonance image (MRI) of an infarcted porcine heart is shown (top image), with the corresponding Masson’s trichrome stain

of the same region shown in the inset. The high resolution of this MRI image relative to the histologic image can be readily

recognized. It should be noted that artifacts created by cardiac motion and presence of thoracic structures are not present in

ex vivo MR images. B The top left and right images depict an MR image before and after application of the WIDEBAND

method of device artifact attenuation. The bottom left and right images depict the corresponding voltage map (right anterior

oblique projection of left ventricular endocardium) showing consistency between the WIDEBAND (left) and electroanatomic

(right) location of scar. Adapted from Stevens SM, Tung R, Rashid S et al. Heart Rhythm 2013 in press.
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amplitude correlated with regions of infarction.23 Wrobleski

et al24 similarly correlated such areas in chronic infarcted

porcine heart with bipolar electrograms <1.5 mV and under

�50 ms in duration. More detailed validation of electro-

anatomic data recorded in humans has been performed using

imaging modalities such as MRI, PET,25 and CT.17,26

3.2.2. Electroanatomic mapping
Electroanatomic mapping systems are capable of creating 3-D

myocardial geometry based on tissue contact, and superim-

pose color-coded characterization of normal, border zone, and
Fig. 4 e Bipolar electrogram morphology in ischemic heart

disease substrates. Representative examples of bipolar

electrograms (and amplitudes) recorded from regions of

“normal”, dense scar, and border zone myocardium are

shown superimposed onto a voltage map (0.5e1.5 mV). A

significant portion of the electrograms recorded in the

dense car region are “late” (i.e. occur well after the surface

QRS) and are very low in amplitude (<0.5 mV).
dense scarmyocardial regions (Fig. 4). Myocardium is sampled

point-by-point, with the corresponding bipolar voltage

amplitude binned into scar (<0.5 mV), border zone

(0.5e1.5 mV), or normal (>1.5 mV) tissue. Intra-procedural

electrical characterization of the myocardial substrate using

one of the two available platforms (magnetic-based CARTO,

Biosense Webster, Diamond Bar, CA and electrofield-based

Ensite NaVX, St Jude Medical, Minneapolis, MN) is the stan-

dard in contemporary VT ablation.

The correlation between EAM data and CE-MRI delineation

of myocardial substrates remains imperfect. In a study by

Wijnmaalen et al, although there was excellent correlation

between infarcted regions on CE-MRI and electrical infarct

localization (bipolar electrogram <1.5 mV), scar areas on MRI

were significantly larger than scar areas delineated by EAM.27

In this study, approximately 20% of points taken in MRI-

designated regions of dense transmural scar recorded

“normal” bipolar electrograms (>1.5 mV). The converse may

also account for poor correlation between EAM and other

imagingmodalities or histopathology i.e. bipolar electrograms

<1.5 mV recorded from areas with normal tissue. The latter

issuemay arise due to poor catheter tissue contact or stability,

changes in the volume loaded state of the patient (increased

during EAM relative to imaging), inadequate delineation on

CE-MRI.
4. Treatment of ventricular tachycardia in
ischemic substrates

4.1. Pharmacologic therapy

Despite decades of intense research and development, few

effective drugs with minimal side effects are available for the

http://dx.doi.org/10.1016/j.ihj.2013.12.039
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treatment of recurrent MMVT. Beta-adrenergic receptor

blockers have been studied in a variety of post-myocardial

infarction trials, demonstrating substantial reduction in the

risk of sudden death and recurrent VT28,29. The efficacy of beta

blockers in stable MMVT is however limited. Sotalol demon-

strates greater efficacy compared to beta blockers, however,

the risk of prolonged QT and PMVT restricts its use. The

proarrhythmic risk of anti-arrhythmics drugs in the post-

infarct setting have long been recognized,30,31 with amiodar-

one demonstrating a safer risk profile.32e34,23 Given the long-

term risk of side effects, amiodarone is a less favorable

choice for long-term management of VTs in ICM patients.

Newer agents such as ranolazine have shown some promise

in reducing VT and ICD shocks in ICM patients without

significantly increased risk profile.35
4.2. Defibrillator therapy

Implantable cardioverter-defibrillators have been demon-

strated in multiple trials to reduce the risk of sudden death in

patients with ischemic heart disease substrates.36 Although

defibrillators save lives, they do not prevent the initiation of

VT, and patients frequently present to medical attention with

repetitive ICD shocks. Defibrillator shocks are associated with

significant medical and psychiatric morbidity. Post hoc anal-

ysis of ICD studies demonstrate that patients who receive

appropriate ICD shocks have clinical outcomes that are less

favorable than those patients without VT and who do not

receive ICD shocks.37 While the underlying reason for this

phenomenon is not clear, it emphasizes that although de-

fibrillators have a role in preventing sudden death from ven-

tricular arrhythmias, adjunctive therapies are required to

mitigate arrhythmogenesis.
Fig. 5 e Approach to catheter mapping and ablation of ventricu

cardioverter-defibrillator; NIPS: noninvasive programmed stimu

Mathuria N, Michowitz Y et al. Circ Arrhythmia Electrophysiol 20
4.3. Surgical treatment

In contemporary management of recurrent MMVT, surgical

therapy has a limited role. Although intraoperative mapping

studies provided substantial insights into the mechanisms

underlying scar-related VT,38,39 it has fallen out of favor due to

the morbidity of surgical exposure of the heart for mapping

and ablation.40 This is especially true in the era of minimally

based access to the endocardium and epicardium, and mini-

thoracotomy for epicardial access, which is increasingly

implemented.41,42 However, it is important to note that the

advent of border zone ablation was an attempt to mimic

encircling ventriculotomy and subendocardial resection.43,44
4.4. Catheter ablation

Catheter-based management of MMVT is an increasingly

adopted strategy, with a number of studies supporting its role

over antiarrhythmic drugs.45e48 It requires careful patient

selection, pre-procedural planning and imaging, procedural

substrate characterization, inductionandmappingof tolerable

MMVTs, ablation of electrophysiologic and substrate targets,

and careful post-procedural care, while minimizing risks of

complications. Catheter ablation is often reserved for patients

with ischemicheartdiseasewhosuffer ICDshocksor recurrent

arrhythmias (including electrical storm), although a growing

trend is the early introduction of catheter ablation of VT.

4.4.1. Identification of clinical VT
Patients may be inducible for multiple VT morphologies,

however, only one, or a few, may be responsible for the pa-

tient’s presentation. Identification of clinically relevant VT by

12-lead electrocardiogram, if possible, is important, as it
lar tachycardia (VT). EGM: electrogram. ICD: implantable

lation; TCL: tachycardia cycle length. Adapted from Tung R,

12;5:264e272.

http://dx.doi.org/10.1016/j.ihj.2013.12.039
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provides a target, and meaningful endpoint for the procedure.

The ventricular site of origin of the clinical VT deduced from a

12-lead ECG may also guide procedural planning and

approach. If the 12-lead ECG suggests an epicardial exit, pre-

paratory measures for epicardial access can be performed

before the procedure.49,50

For some patients, only ICD recordings of the clinical VT

may be available. The VT cycle length may be a useful clue to

the clinically relevant VT. Patients with devices can also un-

dergo a noninvasive programmed stimulation (NIPS) in the

day(s) prior to VT ablation, or at the start of the procedure. The

morphologies of inducible VTs can be noted on the electro-

physiologic recording systems, and used as templates during

the procedure, when the patient is typically under deeper

sedation. The morphologies of induced VTs can also be

compared to ICD recordings in terms of morphology and CL

for VTs that were monitored, or for which therapies were

delivered.51

4.4.2. Procedural strategy
Themajor determinant of mapping strategy is whether the VT

is hemodynamically tolerated. An approach, used at our

center, is detailed in the chart shown in Fig. 5.52 For hemo-

dynamically tolerated VTs, activation mapping is preferable,

as the origin of the VT can be mapped in detail for exit sites

and critical isthmuses showing diastolic potentials (Fig. 6).
Fig. 6 e Entrainment and ablation of monomorphic

ventricular tachycardia (MMVT). Top panel: an MMVT with

a cycle length of 590 ms is entrained at 560 ms. The post-

pacing interval (PPI) is 590 ms, and exactly matches the

TCL. The stimulus to QRS (Stim-QRS) interval shown on the

last paced complex is 190 ms, which also exactly matches

the electrogram to QRS (EGM-QRS) interval at 190 ms. The

entrainment demonstrated here is also concealed (paced

QRS morphology is identical to MMVT QRS morphology,

i.e. no evidence of QRS fusion) These conditions

(PPI [ TCL, Stim-QRS [ EGM-QRS, and concealed

entrainment) confirm that the site is a protected and

critical isthmus for this MMVT. Lower panel: Ablation at

the site with entrainment characteristics demonstrated

above terminates MMVT immediately. Adapted from Tung

R, Boyle NG, Shivkumar K. Circulation.

2011;123(20):2284e2288.
Entrainment mapping during VT can be performed to confirm

critical isthmuses or exit sites, and ablation performed.

Attention can then be focused on addressing the substrate

facilitating the clinical VT.

As most VTs are poorly tolerated hemodynamically, a

substrate mapping approach is more commonly used to guide

ablation. Strategies include anatomic and electrogram-based

approaches.

4.4.3. Substrate mapping e anatomic strategies
4.4.3.1. Border zone ablation & scar homogenization. Border

zone tissue has been shown to harbor both isthmus and exit

sites for MMVT.53,54 The strategy of border zone ablation relies

upon adequate mapping and electrophysiologic characteriza-

tion of the substrate, which can be facilitated by multipolar

catheters. Strategies to achieve border zone homogenization

includecreating linear lesions,45 transecting the scarwitha “T”

shaped lesion set, in addition to encircling.46 Substrate homog-

enization involves eradicating regions of preserved voltage

within dense scar regions, which may serve as isthmuses or

exit sites, and can be guided by abnormal electrograms.55

4.4.3.2. Identification and ablation of channels. As described

previously, channels bordered by electrically unexcitable scar

tissue form the basis for the majority of MMVTs. Adjusting

voltage settings during mapping may identify macroscopic

channels. Arenal et al demonstrated 23 channels in 20 pa-

tients using a tiered voltage threshold of 0.1e0.5 mV. Twenty

of such channels were related to a VTmorphology. In another

study utilizing a tiered scar display, a mean voltage threshold

of 0.33 � 0.15 mV was found to be optimal for identifying

channels, with an average observed channel length of

32 � 21 mm (range 12e87 mm).54

Channels have been alternatively identified by electro-

anatomicmapping during hemodynamically toleratedMMVT.

Channel characteristics identified include a mean length and

width of 31 � 7 mm and 16 � 8 mm respectively. In addition,

the location of the circuit was associated with channel

orientation, with perimitral circuits demonstrating channels

parallel to the mitral annulus, while all other channels were

oriented perpendicular in 21 studied patients. Confirming the

concept, ablation lesions transecting the narrowest portion of

a common channel terminated VT in 97% of cases. In contrast

to these studies, others have failed to find strong associations

between channels and critical isthmuses of VTs. Mountanto-

nakis and colleagues demonstrated that 88% of scar maps

contained channels using tiered voltage settings, however,

only 30% were shown by entrainment to contain the

isthmus.56

As noted earlier, these channels exist as a labyrinth in 3-D,

and may be interconnected. Our group assessed the connec-

tivity between channels, such that ablation of a critical LP

reflecting the common isthmus of these channels, causes

eradication of multiple channels (Fig. 7A).57

4.4.3.3. Multiple exit sites. Akin to multiple interconnected

channels, complex scars may also contain protected isth-

muses that are provided spatially distinct exits. This phe-

nomenon results in �2 distinct QRS morphologies from a

single stable pacing site, indicating multiple exits sites (MES)

http://dx.doi.org/10.1016/j.ihj.2013.12.039
http://dx.doi.org/10.1016/j.ihj.2013.12.039


Fig. 7 e Multiple exit sites and channels. A Schematic representation of interconnected channels with a common isthmus,

and three spatially separate exits, each producing a distinct QRS morphology. B The image on the left depicts the

electroanatomic map from a patient with inferior wall low voltage areas (0.5e1.5 mV). The electrogram recorded at an

isthmus site (inset, indicated by blue circle and arrow) with two exits is shown. Pacing at this site produced two distinct QRS

morphologies and two stimulus to QRS intervals (black and red box in top right tracing). One of the paced QRSmorphologies

(black box) matches the clinical VT (shown in right lower tracing). Adapted from Tung R, Mathuria N, Michowitz Y et al. Circ

Arrhythmia Electrophysiol 2012;5:264e272.

Fig. 8 e Distribution of late potentials in ischemic heart

disease substrates. An electroanatomic map is shown in

antero-posterior view depicting an anterior myocardial

infarction, with heterogeneous islets (HIs, regions of

preserved voltage within dense scar) shown. Very late

potentials (VLPs, green tags) were recorded around HIs or

dense scar (DS) areas. Mid-late potentials (MLPs, blue tags)

were recorded at scar border SB between DS and normal

tissue. Yellow dots reflect electrogram sampling points.

Adapted from Nakahara S, Tung R, Ramirez RJ et al. Heart

Rhythm 2010;7:1817e1824.
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are available to this common isthmus (Fig. 7A and B). In a

recent report,52 our group defined an MES site as an abnormal

EGM site that produces �2 distinct QRS complexes with at

least three leads showing distinct QRS complexes qualita-

tively (Fig. 7B). When MES sites are identified and ablated, a

greater freedom from recurrent VT was seen, suggesting that

these are surrogates for critical isthmuses.52

4.4.4. Functional strategies
4.4.4.1. Late and abnormal potentials. Bipolar recording over

dense scar typically demonstrates late or absent activation,

owing to slower or absent conduction in this tissue. Local low

amplitude fractionated bipolar electrograms that have a

distinct onset after the end of the QRS complex are classified

as isolated late potentials (Fig. 8) in sinus or paced rhythm or

diastolic potentials in VT. These signals identify sites that are

activated later than the bulk of the ventricular tissue and have

been shown to have specificity as sites critical for reentry.

Ablation strategies specifically targeted at LPs have been

demonstrated to be effective in eradicating and preventing

recurrent VT.58,59

In the ischemic substrate, sites with LPs are encountered

more frequently than in the non-ischemic substrate.

Nakahara et al,60 showed that “very” late potentials (occurring

greater than 100ms after the surface QRS complex) were three

and two-fold more common in the endocardium and epicar-

dium respectively, of ischemic cardiomyopathy patients

relative to non-ischemic patients. Interestingly, when high-

density electroanatomic mapping was performed in patients

with ICM, heterogeneous islets (HI) (Fig. 8) with relatively

preserved voltage amplitudes were observed deep within

dense infarct scar.61 Fifty seven percent of sites demon-

strating vLPs were encountered within or adjacent to an HI.

This electrophysiologic finding is consistent with histologic

characterization of the healed infarct heart, as islands of

surviving myocardium are frequently encountered.
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4.4.4.2. Pace map induction. Induction of VT during pace-

mapping at a site of abnormal electrograms has been termed

pace map induction (PMI) (Fig. 9). The significance of this

finding is the identification of a functionally important site for

MMVT. The requisite for VT induction from this site is unidi-

rectional block, supporting unique characteristics of a critical

isthmus. Other features that may be observed during PMI are

concealed entrainment and longer stimulus to QRS interval,

further indications of MMVT isthmus sites. In our report,

ablation at a PMI site successfully terminated VT in 93% of

cases.52 Multiple distinct QRS morphologies may also be

observed during PMI, and PMImay identifymore relevant VTs.

Entrainment maneuvers can be performed after PMI to

confirm that a critical isthmushas been identified.5,62 Ablation

can be initiated rapidly, with the goal of terminating the VT

during energy delivery (Fig. 9, lower panel).

An often sought or important endpoint during ablation is

termination of VT early during RF delivery. Whether or not

this has any relationship to VT inducibility after RF delivery is

unclear. As most clinical MMVTs are poorly tolerated, me-

chanical hemodynamic support to permit mapping and

ablation during VT has been advocated by some. These

include intra-aortic balloon pump (IABP), TandemHeart &

Impella ventricular assist devices, and extra-corporeal mem-

brane oxygenation (ECMO). Whether clinical outcomes are

significantly improved in patients with poorly tolerated VT

who undergo substrate-based ablation compared to ventric-

ular assist devices is unclear.

4.4.5. Epicardial mapping and ablation
In patients with ischemic heart disease substrates, an

epicardial approach is often favored after previous failed

endocardial approach. This is in contrast to other substrates

such as Chagasic cardiomyopathy, arrhythmogenic right

ventricular cardiomyopathy (ARVC), or idiopathic dilated

cardiomyopathies where epicardial VT substrates are

encountered more frequently. The pericardial space is typi-

cally accessed via subxiphoid puncture using a Tuohy needle

as shown in Fig. 10, with an anterior or posterior entrance into
Fig. 9 e Pace map induction (PMI). A representative tracing

showing PMI. Low amplitude electrograms with split

potentials (solid red circle on ablation catheter, Abl)

recorded at a site from which pacing induced a

monomorphic ventricular tachycardia (MMVT). The red

box indicates the first beat of MMVT. The split potentials

become diastolic potentials during MMVT (broken red

circle).
the pericardial space selected based on whether the posterior

or anterior myocardium respectively, is the most likely origin

of VT. In most cases, use of angled sheaths and deflectable

catheters enables access to all aspects of the epicardium. In

patients who have had prior cardiac surgery, prior epicardial

access, or prior pericarditis, focal or global adhesions may be

present, restricting access to the pericardial space. Limited

surgical exposure can be utilized to gain epicardial access in

these cases.

The true incidence of epicardial VTs in ICM remains un-

known. As circuits may be transmural, termination of VT on a

given surface is an imperfect gold standard. Additionally, 12-

lead ECG localization only assists in determining the exit site,

which can be spatially remote from the critical isthmus.

Martinek et al demonstrated that traditional 12 lead criteria

lacked specificity in ICM substrates.63

Additionally, selection and referral bias are present in re-

ports from experienced tertiary centers. In patients referred

after failed endocardial ablation, epicardial substrate was

found in 71%. In our experience, where 81% of ICM patients

had failed a prior ablation, the long-term freedom from VT

was improved with combined endocardial-epicardial ablation

strategy.64 Di Biase et al55 demonstrated that a combined

endo-epicardial approach was better in ICM patients with

electrical storm, although a homogenization strategy was also

employed in this study, making it unclear whether critical

sites were on the endocardium or epicardium. The role of

combined endocardialeepicardial ablation as an initial strat-

egy requires further prospective investigation.

Risks of epicardial access include cardiac perforation and/

or tamponade, phrenic nerve palsy, hepatic laceration, bowel

perforation, pericarditis, and epicardial coronary artery
Fig. 10 e Epicardial access and mapping for ventricular

tachycardia (VT). The left panel depicts an image of

epicardial access in the left anterior oblique (LAO)

projection. The Tuohy needed is seen entering the

pericardium as indicated, small amounts of contrast are

injected during the course of the needle to identify

structures passed in its trajectory. A J-tipped wire passed

through the needle into pericardial space outlines the

lateral heart border in LAO. The right panel image depicts

an epicardial voltage map in the LAO projection. A site

with late potentials during baseline paced rhythm is

shown (broken white circle and inset), as well as the

diastolic potentials recorded during VT.
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injury. At our center, of 95 patients who underwent epicardial

access, complications were seen in 8.8% of cases (eight pa-

tients), including six (6.7%) cases of epicardial bleeding (one

confirmed RV puncture), and two patients with phrenic nerve

palsy. These complication rates are in line with multicenter

experience detailing the safety of epicardial mapping and

ablation of VT.65
5. Conclusion

After infarction, the myocardial substrate undergoes signifi-

cant structural and functional alterations, from amolecular to

macroscopic level, resulting in substrates capable of facili-

tatingMMVT. Themorbidity andmortality associated with VT

in this substrate cannot be overstated. Pharmacologic, and

catheter-based approaches to treating VT specific to this

substrate have evolved since the initial intraoperative map-

ping studies detailing critical elements of the ischemic sub-

strate. While the structural elements of the ischemic heart

disease substrate are well understood, the chronic functional

changes that permit unidirectional block and other key elec-

trophysiologic phenomena, as well as the acute functional

changes that initiate MMVT remain poorly understood.

Improving our understanding of this new frontier will un-

doubtedly improve or ability to prevent and care for patients

with ischemic heart disease substrates suffering from recur-

rent MMVT.
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