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RESEARCH ARTICLE
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Abstract
Patients with treated HIV-1-infection experience earlier occurrence of aging-associated dis-

eases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate

aging. We recently described an age-related co-methylation module comprised of hundreds

of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health ef-

fects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection

would induce age-associated methylation changes. We evaluated DNA methylation levels

at>450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and

older (36-56) adults in two separate groups of participants. Each age group for each data

set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a

total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG re-

vealed a strong correlation of 0.49, p<1 x10-200 and 0.47, p<1x10-200. Weighted gene cor-

relation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3)

was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+

individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a

multivariate model, ME3 was significantly associated with age and HIV status (Data set 1:

βage= 0.007088, p=2.08 x 10-9; βHIV= 0.099574, p=0.0011; Data set 2: βage= 0.008762,

p=1.27x 10-5; βHIV= 0.128649, p= 0.0001). Using this model, we estimate that HIV-1 infec-

tion accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7

years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group tar-

get genes known to be involved in cell renewal and aging. The overlap between ME3 and

an aging methylation module found in solid tissues is also highly significant (Fisher-exact

p=5.6 x 10-6, odds ratio=1.91). These data demonstrate that HIV-1 infection is associated

with methylation patterns that are similar to age-associated patterns and suggest that
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general aging and HIV-1 related aging work through some common cellular and molecular

mechanisms. These results are an important first step for finding potential therapeutic tar-

gets and novel clinical approaches to mitigate the detrimental effects of both HIV-1-infection

and aging.

Introduction
Aging is associated with an increasing incidence of chronic, debilitating, diseases. While car-
diovascular, skeletal, and neurodegenerative diseases are widely known and discussed in the
general population, there is virtually no organ or tissue system that is not at risk. The mecha-
nisms underlying aging and its deleterious effects are poorly understood, but thought to be
multifactorial and to involve epigenetic changes [1]. Epigenetics is the alteration of DNA
through modifications that do not change the underlying nucleotide sequence [2], yet are im-
portant in controlling gene expression. There are many types of epigenetic regulation, includ-
ing small RNAs, acetylation of histones and the methylation of cytosine residues [3]. Currently
available array and sequencing technology has allowed genome-wide examination of methyla-
tion levels, and there now exists a body of literature showing both global and site-specific
changes in methylation patterns in relation to age [4–14].

There are several lines of evidence to suggest that HIV-1-infection accelerates at least some
aspects of the aging process [15–16]. Perhaps the most dramatic piece of evidence is that suc-
cessfully treated HIV-1-infection is associated with a greater susceptibility to morbidities more
commonly observed in older, uninfected, individuals such as frailty [17], non-Hodgkin's lym-
phoma [18], anal and cervical carcinomas [19–20], osteoporosis [21–22], liver [23–25] and
renal impairment [26], cardiovascular disease [27–28], diabetes [29] and hypertension [29–30].
There is also evidence of faster disease progression in older HIV-1-infected adults [31].

As we have documented, HIV-1-infection is also associated with aging-related changes in
the CD4+ T-cell compartment [32]. There is a significant decrease in the number of CD31+

naïve CD4+ T-cells and shortening of telomeres in the overall naïve CD4+ T-cell subpopula-
tion, rendering this cellular compartment more phenotypically similar to that of an uninfected
adult 20–30 years older [32]. There is also evidence of telomere shortening within CD8+ T-cells
and a significant increase in senescent CD8+ T-cells in HIV-1-infected individuals, similar to
that observed in older seronegative individuals [33–34]. Together, these findings have led to
the suggestion that HIV-1-infection and aging may interact in a mechanistic manner.

To date, the vast majority of data examining the interrelationship between HIV-1-infection
and aging have been obtained at the cellular and organismal level. Much of these data measure
outcomes and are unable to address mechanisms or pathways. For example, the finding that
HIV-1-infection renders individuals more likely to develop frailty 10 years earlier than their
uninfected peers [17] is an outcome. What is missing are data regarding the mechanism(s) by
which HIV-1-infection contributes to the earlier manifestation of age-inappropriate clinical
outcomes and how those mechanisms overlap with, or are disparate from, the mechanisms re-
sponsible for aging-associated comorbidities in the absence of HIV-1-infection.

Using a systems biologic analysis approach we recently revealed a robustly defined age-
related co-methylation module that is present in multiple human tissues, including saliva [35],
blood, and brain [12]. These studies demonstrate that blood is a promising surrogate for other
tissues when studying the effects of age on DNA methylation profiles [12,14] and that the
aging module could be an important biomarker for detecting accelerated aging effects.
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We used two unique data sets to carry out a weighted correlation network analysis
(WGCNA) of DNA methylation data and identified an age related co-methylation module, or
aging module, that contains CpG sites that are hypermethylated with age. This is the first study
that shows that an age-related co-module, a new biomarker of aging, detects accelerated aging
epigenetic effects due to HIV infection. We also show that our systems biologic analysis based
onWGCNA leads to more pronounced biological insights than a standard differential methyl-
ation analysis that only considers marginal relationships between CpG sites and HIV infection.
Comparison of this module to our previously found aging module [12] revealed that it can also
be found in other solid tissues, notably human brain tissue, and may thus also measure organis-
mal aging effects. These unique tools may aid in the elucidation of novel therapeutic targets for
aging-related clinical diagnoses in HIV-infected and uninfected individuals.

Methods

Ethics Statement
This study was approved by the University of California, Los Angeles Medical Institutional Re-
view Board and each participant was provided written, informed consent per the approved pro-
tocol-IRB# 10–001677.

Participants
We selected participants from the Multicenter AIDS Cohort Study (MACS), a study of the nat-
ural and treated history of HIV-1 infection in men who have sex with men [36]. There were
two groups of participants in data set one: 24 of the samples were from individuals 20–24 years
of age and 24 were from individuals 48–56 years of age. In each group, 12 of the samples were
from HIV-1 seropositive (SP) men and 12 were from HIV-1 seronegative (SN) men. There
were two groups of participants in data set two: 24 of the samples were from individuals 27–35
years of age and 24 were from individuals 36–56 years of age. In each group, 12 of the samples
were from HIV-1 SP men and 12 were from HIV-1 SN men. Selection criteria included the fol-
lowing characteristics: age, visit date, anti-retroviral treatment (ART) naïve (self-reported dur-
ing the semi-annual MACS study visits), history of smoking, and ethnicity. Each HIV-1
seropositive sample was individually matched to a seronegative control using the
selection criteria.

We examined BMI data on our participants and we do not find any significant difference in
BMI for our HIV-1 seronegative and HIV-infected participants. The seronegative participants
had an average BMI of 23.9 and a median BMI of 23.8. The seropositive participants had an av-
erage BMI of 22.4 and a median BMI of 22.2. We also examined chronic co-infection with
Hepatitis B and C, two common viruses that are known to cause chronic infection. In our first
group of samples, two of the HIV-1-infected participants had chronic Hepatitis C and two of
the HIV-1-infected participants had chronic Hepatitis B infection (none of the seronegatives in
either group had a chronic infection).

DNA Isolation
Human peripheral blood mononuclear cell (PBMC) samples were isolated from fresh blood
samples and either stained for flow cytometry analysis or used for genomic DNA isolation.
DNA was isolated from 1x106 PBMC using Qiagen DNeasy blood and tissue mini spin col-
umns. Quality of DNA samples was assessed using nanodrop measurements and accurate
DNA concentrations were measured using a Qubit assay kit (Life Technology).
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Flow Cytometry
Cryopreserved PBMC obtained from the Multi-Center AIDS Cohort Study (MACS) repository
were thawed and assayed for viability using trypan blue. The mean viability of the samples was
88%. Samples were stained for 30 minutes at 4°C with the following antibody combinations of
fluorescently conjugated monoclonal antibodies using the manufacturers recommended
amounts for 1 million cells: tube 1) CD57 FITC (clone HNK-1), CD28 phycoerythrin (PE,
L293), CD3 peridinin chlorophyll protein (PerCP,SK7), CD45RA phycoerythrin cyanine dye
Cy7 tandem (PE-Cy7, L48), CCR7 Alexa Fluor 647 (AF647, 150503), CD8 allophycocyanin
H7- tandem (APC-H7, SK1) and CD4 horizon V450 (V450, RPA-T4), tube 2) HLA-DR FITC
(L243), CD38 PE (HB7), CD3 PercP, CD45RO PE-Cy7 (UCHL-1), CD95-APC(DXZ), CD8
APC-H7, and CD4 V450), tube 3) CD38 FITC (HB7), IgD PE (1A6–2), CD3 PerCP, CD10 PE-
Cy7 (HI10a), CD27 APC (eBioscience, clone 0323, San Diego, CA), CD19 APC-H7 (SJ25C1)
and CD20 V450 (L27). Antibodies were purchased from BD Biosciences, San Jose, CA (BD) ex-
cept as noted. Stained samples were washed twice with staining buffer and run immediately on
an LSR2 cytometer equipped with a UV laser (BD, San Jose, CA) for the detection of 4’,6-diami-
dino-2-phenylindole dihydrochloride (DAPI) which was used as a viability markers at a final
concentration 0.1 ug/ml. Lineage gated isotype controls to measure non-specific binding were
run and used CD3, CD4 and CD8 for T-cells or CD19 for B-cells. Fluorescence minus one con-
trols (FMO) were also utilized to assist gating and cursor setting. 20,000 to 100,000 lymphocytes
were acquired and analyzed per sample using the FACSDiva software package (BD, San Jose).

Methylation Arrays
Methylation status, at over 450,000 CpG sites, was measured to single-base resolution using
Infinium methylation 450 arrays. These arrays interrogate methylation sites covering 99% of
RefSeq genes with an average of 17 CpG sites throughout the promoter 5’ and 3’UTRs and
coding regions of each gene. In addition the arrays cover CpG islands, island shores and other
sites distributed throughout the genome. Genomic DNA was prepared as described above. For
both data sets, each SP sample had a matched SN control that was placed on the same chip.
Samples were divided so that each chip contained 3 paired samples from the younger age
group and 3 paired samples from the older age group. Within each chip the samples were ar-
ranged so that SP samples were not placed in adjacent spots with their matched SN controls,
the older and younger samples were alternated, and one of each type of sample on the chip oc-
cupied each corner.

Microarray hybridization was performed by the Southern California Genotyping Consortium
at UCLA. 500 ng of genomic DNA was bisulfate converted using the EZ-methylation kit (Zymo
Research). The chips were processed using the Illumina Infinium whole genome genotyping
protocol. Labeled samples were hybridized to the Illumina Human-Methylation450 arrays,
scanned (iScan reader, Illumina), and β (methylation) values were obtained using GenomeStudio
software. We followed the standard protocol of Illumina methylation assays, which quantifies
methylation levels by the β value using the ratio of intensities between methylated (signal B) and
unmethylated (signal A) alleles. Specifically, the β value was calculated from the intensity of the
methylated (M corresponding to signal A) and unmethylated (U corresponding to signal B) al-
leles, as the ratio of fluorescent signals β =Max(M,0)/[Max(M,0) +Max(U,0) + 100]. Thus, β val-
ues range from 0 (completely unmethylated) to 1 (completely methylated).

The Illumina 450K platform uses two different chemical assays. The Infinium I and
Infinium II assays for the assessment of the DNA methylation status of more than 480,000 cy-
tosines distributed over the whole genome. Teschendorff et. al developed a model-based intra-
array normalization strategy for the 450K platform, called BMIQ (Beta Mixture Quantile
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dilation), which adjusts beta-values of type II probes into a statistical distribution characteristic
of type I probes [37]. We used the background corrected beta value values and subsequently
the BMIQ normalization procedure. We did not filter out any CpGs since our module based
analysis is unaffected by possibly misannotated CpG sites.

Weighted correlation network analysis for finding co-methylation
modules
Correlation network methodology has been widely used for studying relationships between
gene transcripts. Recently, we and others have shown that these techniques are also useful for
studying relationships between the DNA methylation levels of CpGs [12,35]. To describe the
relationships among methylation profiles, we used a widely used approach: weighted correla-
tion network analysis (WGCNA) [38]. Since prior work had shown that CpGs with a positive
age relationships have a different biological interpretation than negatively correlated CpGs
[12], we used signed weighted correlation network analysis that leads to co-methylation mod-
ules comprised of positively related CpGs. The goal of our WGCNA analysis was i) to identify
modules, and ii) to calculate a representative of each module (module eigenvectors), iii) to cor-
relate module eigenvectors with age and HIV1 infection status, and iv) to define a continuous
measure of module membership in the consensus module (referred to as kME).

To define modules (clusters) we used average linkage hierarchical clustering with the topo-
logical overlap based dissimilarity measure because it is a highly robust measure that compares
favorably with other distance measures in the case of genomic data [39–40]. Modules, branches
of the resulting clustering tree, were subsequently identified using the dynamic hybrid branch
cutting approach implemented in the R package dynamicTreeCut [41]. Because each module
groups together highly correlated methylation profiles, it is useful to summarize the profiles in
each module using a single representative profile. Here we use the module eigenvector [42],
defined as the first principal component of the module methylation matrix. For each module,
its module eigenvector can be used to define a measure of module membership, denoted kME,
which quantifies how close a methylation profile is to the module. Specifically, for each methyl-
ation profile and each module, kME is defined as the correlation of the methylation profile
with the module eigenvector. Defining module membership as correlation allows one to easily
calculate the statistical significance (P-value) of each module membership. Module member-
ship measures allow one to efficiently annotate all 480k CpGs on the Illumina Infinium 450K
array with respect to module membership [43]. CpGs with high kME values with respect to a
particular module are informally referred to as intramodular hub CpGs.

Module preservation statistics
An advantage of WGCNA is that it provides powerful module preservation statistics that assess
whether the density (how tight interconnections among genes in a module are) and connectivi-
ty patterns of individual modules (for example, intramodular hub gene status) are preserved
between two data sets [44]. To assess the preservation our modules from the first data set (ref-
erence network) in the test network (second HIV data sets), we used the R function ‘module-
Preservation’ in the WGCNA R package, as this quantitative measure of module preservation
enables rigorous argument that a module is not preserved [44]. By averaging the several preser-
vation statistics generated through many permutations of the original data, a Zsummary value is
calculated, which summarizes the evidence that a module is preserved and indicative of module
robustness and reproducibility. In general, modules with Zsummary scores>10 are interpreted
as strongly preserved (that is, densely connected, distinct, and reproducible modules), Zsummary
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scores between 2 and 10 are weak to moderately preserved, and Zsummary scores<2 are
not preserved.

Determination of Reproducibility of the Data Sets
Standard screening for HIV-CpG associations was conducted using unpaired two-tailed t-tests
and q-value adjustment with the significance threshold of q< 0.05. The agreement of these as-
sociations was assessed between datasets using Pearson’s correlation.

Evaluation using Reference Free EWAS
The Reference Free EWAS package developed by Houseman et al. was applied to our PBMC
datasets to assess the influence of cell subset proportions on the association of HIV-CpG meth-
ylation associations [45]. Age and HIV status were used as covariates in generating the
refFreeEWAS model, and the number of latent variables estimated by random matrix theory
was 5 and 13 for data sets 1 and 2, respectively. Pearson’s correlation was used to determine the
concordance between datasets before and after RefFreeEWAS adjustment.

Results

The effects of HIV-1 infection on changes in methylation are additive
with the effects of aging
To investigate the effects of HIV-1 infection on methylation patterns and distribution of cell
types in peripheral blood we obtained cryopreserved peripheral blood mononuclear cells
(PBMC) from the Multicenter AIDS Cohort Study (MACS) [36]. For data set one, samples ob-
tained were from younger (20–24 years) and older adults (48–56 years). Each group consisted
of 12 HIV-1-infected individuals and 12 age-matched HIV-1 uninfected controls. For data set
two, samples were obtained from a different group of younger (27–35 years) and older adults
(36–56 years), with each group containing the same number of HIV-1-infected and uninfected
samples as data set one. To avoid the confounding effects of anti-retroviral therapy (ART), all
of the HIV-1-infected participants were ART naïve.

Methylation levels were measured at over 450,000 individual sites using Infinium methyla-
tion 450K arrays. The relationship between the effects of age and HIV-1 infection on changes
in the degree of methylation at each site was assessed and revealed a strong correlation of 0.49,
p<1 x10-200 for data set one (Fig. 1) and 0.47, p<1x10-200 for data set two (data not shown).
Also, the reproducibility of the association of HIV status and methylation correlated signifi-
cantly between both data sets (S1 Fig.). Interestingly, a subset of sites that are hypermethylated
with age show a further increase in methylation in individuals infected with HIV-1, while a
subset of sites hypomethylated with age was associated with earlier hypomethylation in HIV-1-
infected individuals in both data sets.

HIV-1 infection accelerates age related changes in methylation
We used the blockwise modules function in the WCGNA R package [38] to identify co-
methylation modules in the methylation dataset. A co-methylation module is a cluster of CpGs
that are correlated with each other across the samples analyzed. To determine the module pres-
ervation between the data sets, a Zsummary score was also obtained using the R function ‘modu-
lePreservation’ in the WGCNA R package. This quantitative measure of module preservation
has been shown to be a highly effective way to determine if a module is, or is not, preserved be-
tween data sets (Table 1) [44].
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This analysis showed that the effects of HIV-1-infection and age (Fig. 2A) result in similar
clustering patterns in both data sets, suggesting that similar methylation sites are affected by
both age and HIV-1-infection. Module 3, ME3, showed the strongest positive correlation for
both age and HIV-1 status. Module 3 is also highly preserved between both data sets with
Zsummary scores of 67.8 (Table 1) [44]. Overall, the expression pattern of the module 3 eigen-
gene across participant groups shows that CpGs of the module tend to be significantly hyper-
methylated in HIV+ subjects compared to HIV- subjects. The results are more pronounced for
older subjects (Fig. 2B).

In a multivariate model examining associations between methylation, age and HIV status,
module 3 was significantly associated with both age (data set one: p = 2.08 x 10-9; data set two:
p = 1.27 x 10-5) and HIV-1 status (data set one: p = 0.0011; data set two: p = 0.0001) (Table 2).
Using this model, we estimate that HIV-1 infection accelerates age-related methylation
changes in peripheral blood mononuclear cells by an average of 13.7 years in data set one and
14.7 years in data set 2 (Table 2).

The numbers of activated, memory, and senescent T-cells positively
correlate with Module 3
Both aging and HIV-1-infection have been associated with similar changes within the lympho-
cyte compartment [46–47]. To assess whether these cellular changes are also associated with

Fig 1. Age effects versus HIV-1 effects onmethylation status.Methylation differences for each of the 24
pairs of samples were calculated and a paired t-test was performed for each of the CpG sites on the 450K
array. The HIV-1 effect (X-axis) was measured as the signed logarithm of the Student t-test p-value. Age
effects (Y-axis) were measured by the Pearson correlation coefficient with age. Each dot is colored according
to its module membership (See Fig. 2). This is a representative figure for both data sets.

doi:10.1371/journal.pone.0119201.g001
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age or HIV-1-specific methylation patterns, the absolute numbers of various T and B cell sub-
sets in the periphery were assessed using flow cytometry on an aliquot of cells from the same
vial that yielded cells for methylation analysis. Cell surface markers known to differentiate
naïve, memory, terminally differentiated, and activated T-cells, as well as immature/mature
B-cells, were used.

Using this flow cytometry data, we found that methylation status does correlate highly with
absolute numbers of several T-cell subsets in both data sets. Fig. 3 shows the module-trait rela-
tionships between different T-cell subsets identified by flow cytometry and each module with a
correlation value of�0.4. In addition to correlating with HIV-1 status and age, many T-cell
subsets are also strongly positively correlated (correlation coefficient� 0.34) with module 3
(Table 3). Interestingly, the absolute numbers of cells within specific T-cell subsets that were
positively correlated with module 3 were effector/memory, senescent, and activated CD4+ and
CD8+ T-cells (Fig. 3 and Table 3), all subsets known to increase during aging and HIV-1-infec-
tion. Naïve CD4+ and CD8+ T-cells showed a negative correlation (�0.34) with module 3
(Fig. 3 and Table 3) and no significant correlation with module 3 was seen for B-cell subsets.

In order to explore whether these effects are due to changes in cellular composition as a re-
sult of HIV infection or aging, we applied the RefFreeEWAS algorithm to both of our data sets
(S2 and S3 Figs.). This algorithm corrects for changes in cellular composition [45]. The
RefFreeEWAS adjusted HIV and aging coefficients were significantly correlated to the unad-
justed coefficients for both data sets (S2 Fig.). Also, the reproducibility of both RefFreeEWAS
adjusted and unadjusted HIV and aging coefficients significantly correlated between both data
sets (S3 Fig.). We also performed a multivariate regression model to determine if the effect of
HIV infection on module 3 is only due to changes in cell number of senescent cells, such as
CD57+CD28-CD8+ cells. After accounting for the methylation changes resulting from

Table 1. Module preservation between data sets.

Module Number Module Size (number of CpGs) Zsummary*

1 317,843 14.8

2 75,228 12.3

3 18,952 67.8

4 11,453 73.6

5 11,357 2.7

6 7,135 71.0

7 2,381 59.3

8 2,148 9.3

9 2,016 12.3

10 1,416 24.0

11 1,148 50.7

12 820 13.2

13 604 74.9

14 538 11.0

15 362 8.3

16 189 1.1

*Zsummary > 10: module highly preserved

Zsummary > 5: module moderately preserved

Zsummary < 2: module not preserved

doi:10.1371/journal.pone.0119201.t001
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Fig 2. Relatingmodules to HIV-status and age. Co-methylation modules for HIV-1 status and aging (A) were identified using the blockwise modules
function in WCGNA R package. The significant p values for the modules are indicated as follows: * = p�0.05, ** = p�0.01, *** = p�0.001 (B) A box plot
depicting module 3 versus age and HIV status.

doi:10.1371/journal.pone.0119201.g002
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CD57+CD28-CD8+ cells, it appears that some of the effect is due to an increase in this subset,
but there is still a significant effect of HIV infection on module 3 (S1 Table).

Polycomb Group Target genes (PCGT) are highly represented in
Module 3
Module eigenvector 3 contains 18,952 CpGs (Table 1). In order to begin the process of identify-
ing the genes that fell within this module, we calculated the module membership value (kME)
for each CpG within module 3 using the module eigenvector based connectivity measure[43].
Specifically, for each methylation profile and each module, kME is defined as the correlation of
the methylation profile with the module eigenvector. Within the list of 990 CpGs that were
found to have a kME>0.85, the most stringent cut-off, there were 14 polycomb group target
genes (PCGT) as described by Teschendorff et al. [10] (Table 4). We used this high threshold of
0.85 in order to narrow down the list of intramodular modular hubs to roughly 1000 CpGs (990
exactly), but our results are largely unchanged if other thresholds are chosen. Polycomb group
target genes (PCGT) have been shown to be involved in cell renewal, aging and cancer [48–52].
Of note, seven of the PCGT genes in module 3 were represented by multiple different CpG sites
that have extremely high kME values. Most striking was RAB32 which was represented by seven
different probes, one of which had the kME value of 0.94, the 3rd highest value of any probe in
module 3. Both PENK and GRIA2 were represented in module 3 by three different probes, and a
further four genes were represented by two CpG sites (Table 4). The presence of multiple PCGT
genes in the module most strongly associated with aging and HIV-1 infection supports a func-
tional association between increased methylation at these sites and aging of the cell.

Discussion
These are the first data to show that HIV-1 infection is associated with methylation patterns
that are similar to those seen with aging in the general population. Examination of the effects
of aging, and the effects of HIV, showed that aging has a stronger effect on changes in methyla-
tion. Marginal analysis of the data showed that HIV-1 infection does not have a significant
global effect. However, in two separate data sets which significantly correlated with each other,
a subset of CpG sites that are hypermethylated with age showed a further increase of methyla-
tion levels in individuals infected with HIV-1 (Figs. 1 and 2B). Additionally, a group of sites
that show hypomethylation with age are further demethylated in the HIV-1 infected group
(Figs. 1 and 2B). Thus, although we have not identified a strong methylation signature associat-
ed with HIV-1 infection, our data show that the effects of HIV-1 infection at a subset of meth-
ylation sites appear to be additive with the effects of aging.

Multiple studies have shown the effects of HIV-1 infection on the aging of the immune sys-
tem [15,32–33]. Our own studies on telomere length and decreasing numbers of naïve T-cells

Table 2. Estimating accelerated aging due to HIV-1 infection using a multivariate model.

Data set 1 Coefficients (SD) Data set 1 Pr (>I t I) Data set 2 Coefficients (SD) Data set 2 Pr(>I t I)

Intercept -0.3158663 (0.041) 1.15 x 10-09 -0.387857 (0.069) 1.24 x 10-6

Age 0.0070888 (0.009) 2.08 x 10-09 0.008762 (0.002) 1.27 x 10-5

HIV Seropositive 0.0969574 (0.028) 0.0011 0.128649 (0.031) 0.00014

Estimate of accelerated aging* 13.7 years 14.7 years

*Using the output above, it is estimated that HIV status accelerates age by 13.7 and 14.7 years (defined by HIV coefficient/Age coefficient)

doi:10.1371/journal.pone.0119201.t002
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Fig 3. Heat map of module-trait relationships. This heat map shows correlations between HIV status, chronological age, and the co-methylation module
(represented by their eigenvectors) for data set one (A) and data set two (B). Included are cell subsets whose absolute numbers have an absolute correlation
with module 3 that was�0.4. Red depicts a positive correlation, blue depicts a negative correlation, as indicated by the color band on the right.

doi:10.1371/journal.pone.0119201.g003
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showed that individuals with HIV-1 infection appeared immunologically similar to uninfected
individuals twenty to thirty years older [32]. It has also been shown that HIV-1 infected indi-
viduals develop frailty ten years younger than uninfected individuals [17] and coronary artery
calcium measurements show a coronary artery “age” that is accelerated by approximately
15 years with HIV-1 infection [53]. Thus, our data showing HIV-1 acceleration of aging by
13.7 years in data set one and 14.7 years in data set 2, as measured by methylation analysis, fits
well with these other studies. As such, it would change if we used other modules or other epige-
netic biomarkers of aging [14]. We have focused on module 3 as it showed the strongest posi-
tive correlation for both age and HIV-1 status.

Interestingly, we found that absolute numbers of effector/memory, activated, and senescent
T-cells in both data sets positively correlated with module 3, the same module that correlated
significantly with aging and HIV status. Among the many changes that occur in the immune
system with aging, the accumulation of CD28-CD8+ T-cells, referred to as senescent CD8+

T-cells, is strongly correlated with age, reduced vaccine efficacy, increased autoimmunity and
the development of aging-related comorbidities such as frailty, bone loss and cardiovascular
disease [46–47,54]. Together with decreased T-cell responses to mitogen and reduced B-cell
numbers, an inverted CD4+/CD8+ T-cell ratio and the accumulation of CD28-CD8+ T-cells
was found to be associated with an increased risk of morbidities and mortalities in the OCTO/
NONA studies of elderly individuals [55]. In addition to other functional and phenotypic per-
turbations, these CD28-CD8+ T-cells secrete IL-6 and TNF-alpha, thereby directly contribut-
ing to the systemic inflammatory environment within the elderly [47]. Inflammaging, the

Table 3. T-cell subsets that correlate with module 3 with a correlation coefficient � 0.34.

Cell Subset Cell Phenotype Data Set 1 Correlation with ME3 (p value) Data Set 2 Correlation with ME3 (p value)

CD4+ T-cells:

28 negative CD57-CD28-CD4+ 0.40 (0.005) 0.34 (0.02)

CD45RA-CD28-CD4+ 0.40 (0.006) 0.36 (0.01)

Activated HLADR+CD38+CD45RO+CD4+ 0.56 (>0.001) 0.59 (>0.001)

HLADR+CD38+CD4+ 0.54 (>0.001) 0.57 (>0.001)

Naïve CD45RA+CD28+CD4+ -0.40 (0.005) -0.39 (0.007)

CD45RA+CCR7+CD4+ -0.41 (0.005) -0.38 (0.008)

CD8+ T-cells

Total CD8+ CD8+CD3+ 0.44 (0.002) 0.58 (>0.001)

Effector/Memory CD45RO+CD8+ 0.55 (>0.001) 0.69 (>0.001)

CD45RA-CCR7-CD8+ 0.54 (>0.001) 0.67 (>0.001)

CD45RA-CD28+CD8+ 0.41 (0.004) 0.60 (>0.001)

CD95+CD45RO+CD8+ 0.56 (>0.001) 0.7 (>0.001)

CD28 negative CD45RA-CD28-CD8+ 0.54 (>0.001) 0.59 (>0.001)

CD57-CD28-CD8+ 0.43 (0.003) 0.68 (>0.001)

Early Senescent CD57+CD28+CD8+ 0.42 (0.004) 0.72 (>0.001)

Senescent CD57+CD28-CD8+ 0.48 (>0.001) 0.65 (>0.001)

Activated HLADR-CD38+CD45RO+CD8+ 0.42 (0.003) 0.60 (>0.001)

HLADR+CD38+CD45RO+CD8+ 0.49 (>0.001) 0.62 (>0.001)

HLADR+CD38+CD8+ 0.52 (>0.001) 0.65 (>0.001)

Naïve CD45RA+CCR7+CD8+ -0.42 (0.004) -0.41 (0.004)

CD95-CD45RO-CD8+ -0.44 (0.002) -0.45 (0.001)

Included are subsets whose absolute counts have an absolute correlation coefficient with module 3 of � 0.34.

doi:10.1371/journal.pone.0119201.t003
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chronic inflammatory environment during aging, is itself associated with damage to organ sys-
tems and increased morbidity and mortality. In an intriguing proof-of-principal investigation
into the role of senescent T-cells in aging related morbidity, Baker, et al. [56] demonstrated
that removal of senescent cells expressing p16Ink-4a from a murine model of Progeria delayed
the onset of aging-related diseases in several tissue and organ systems.

HIV-1-infection is thought to contribute to immunosenescence by the activation and
expansion of CD8+ T-cells directed against both HIV-1 and CMV. The response elicited by
HIV-1-infection is also highly inflammatory. Indeed, inflammation during HIV-1-infection is
associated with an increased rate of progression to AIDS and mortality [47]. We recently re-
ported that HIV-1-infection was associated with premature accumulation of an immunosenes-
cent phenotype which in turn was associated with faster progression to AIDS [57] leading us to
speculate that HIV-1-infection does recapitulate some of the aspects of aging and that these are
likely through the inflammatory response and accumulation of senescent cells associated with
HIV-1-infection. Some of the changes in methylation in module 3 associated with HIV status

Table 4. Polycomb group target genes (PCGT) represented in module eigenvector 3.

Gene Name Accession Number Probe IDs kME3 of probe*

BNC1 NM_001717 cg04090392 0.88

FBN2 NM_001999 cg05209584 0.90

cg25084878 0.88

FBX039 NM_153230 cg02093112 0.87

cg20723355 0.86

GRIA2 NM_001083619 cg22597733 0.87

cg01942962 0.87

cg08475096 0.87

HS3ST2 NM_006043 cg03757784 0.88

cg16399049 0.87

IRX5 NM_005853 cg05266781 0.90

MYOD1 NM_002478 cg20289688 0.86

PENK NM_001135690 cg04598121 0.88

cg16219603 0.87

cg18742346 0.87

RAB32 NM_006834 cg23833452 0.94

cg01851450 0.89

cg26252281 0.89

cg25634742 0.88

cg01915609 0.88

cg22030890 0.86

cg15056556 0.85

SH3GL2 NM_003026 cg17977409 0.87

SIM1 NM_005068 cg04859726 0.86

SLC10A4 NM_152679 cg00967552 0.90

SOX1 NM_005986 cg00663972 0.88

cg24604013 0.86

SOX8 NM_014587 cg05933904 0.89

TBX5 NM_080717 cg03843000 0.86

*kME is defined as the correlation of the methylation profile with the module eigenvector

doi:10.1371/journal.pone.0119201.t004
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can be attributed to a change in numbers of senescent CD57+CD28-CD8+ cells (S1 Table).
However, after adjusting for this subset, there was still an effect of HIV status on methylation
changes in module 3, suggesting that there are other factors, such as premature aging of naïve
T-cells [32], contributing to this effect. Together, this data supports the theory that aging with-
in the immune system plays an important role in aging of the overall organism, and our meth-
ylation data suggests that HIV-1 infection may be accelerating this process using
similar mechanisms.

We found several Polycomb Group Target Genes represented by CpG’s in module 3. The
Polycomb complexes contribute to organismal development by modifying the expression of
their targets, the PCGT genes, through epigenetic modulation [58]. Expression of PCGT genes
is repressed in stem cells through high levels of methylation as a mechanism of preventing dif-
ferentiation [58]. Hypermethylation resulting in repressed gene expression is also well estab-
lished in tumorigenesis (reviewed in [59]). The presence of multiple PCGT genes within the
module 3 kME>0.85 group suggests that decreased expression of PCGT genes and the conse-
quent return of cells to less differentiated forms contributes to the increased susceptibility to
cancer observed during aging and HIV-1-infection. Most of the PCGT genes in the module 3
kME>0.85 group were represented by more than one CpG site, and, strikingly RAB32 was rep-
resented by seven CpG sites. The fact that seven CpGs associated with RAB32 show increased
methylation strongly suggests that expression of this gene is suppressed in response to aging
and HIV-1 infection. RAB32 is a small GTPase related to the oncogene RAS, and is involved in
mitochondrial membrane dynamics and apoptosis [60]. Mitochondrial dysfunction is strongly
related to aging and cancer [61], and decreased expression of RAB32 may result in disrupted
mitochondrial dynamics and changes in apoptotic processes which would also contribute to
the development of cancer. Indeed, hypermethylation of RAB32 has been identified in gastric
and endometrial cancer [62].

We also evaluated the overlap between our module 3 and the aging module recently de-
scribed by Horvath, et al. [12]. The degree of overlap with the aging module, found in human
brain tissues and other solid tissues [12] is highly significant (Fisher-exact p-value = 5.6 x 10-6,
odds ratio = 1.91). Interestingly, one of the overlapping genes represented by both modules
(the aging module and our module 3) is RAB32, which we discussed above. These results
strongly suggest that our module 3 is not specific to blood tissue. Future research should evalu-
ate whether module 3 also reveals HIV related age acceleration effects in other solid tissues.
Taken together, these data suggest that HIV-1-infection does accelerate some aspects of aging
and that general aging and HIV-1 related aging work through at least some common mecha-
nisms. These results are an important first step for finding potential therapeutic approaches to
mitigate the effects of both HIV and aging.

Supporting Information
S1 Fig. Reproducibility of HIV and CpG-methylation Associations between Data Sets 1
and 2. CpG methylation was tested for the association with HIV-status by an unpaired t-test.
One percent of all applicable CpG probes were randomly sampled and the corresponding t-val-
ues for data set 1 and 2 were used for representative plotting. The t-values between data sets
were found to have a Pearson correlation of 0.39 (p< 10-200). The black line represents the
identity of t-values between datasets.
(EPS)

S2 Fig. Effects of RefFreeEWAS-adjustment on HIV and Age Coefficients within Data Sets.
Reference Free EWAS models were generated using HIV status and age as covariates. The un-
adjusted and adjusted coefficients were correlated and 1% of all CpGs were randomly sampled.
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The corresponding coefficients were used for representative plotting within each dataset. The
black lines represent the identity of coefficients before and after RefFreeEWAS adjustment.
(EPS)

S3 Fig. Reproducibility of HIV and Age Coefficients between Data Sets before and after
RefFreeEWAS-adjustment. Reference Free EWAS models were generated using HIV status
and age as covariates. Pearson’s correlation was computed between data sets 1 and 2 for before
and after adjustment. Representative plots were generated by randomly sampling one percent
of applicable CpGs and plotting their corresponding covariate coefficients for comparison be-
tween data sets. The black lines represent the identity of the coefficients between datasets.
(EPS)

S1 Table. Multivariate regression model determining contribution of CD57+CD28-CD8+ T
cells to differences in methylation with HIV infection.
(DOCX)
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