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Abstract  We present a new method for constructing multiresolution representa-
tions of data sets that contain material interfaces. Material interfaces
embedded in the meshes of computational data sets are often a source of
error for simplification algorithms because they represent discontinuities
in the scalar or vector field over mesh elements. By representing material
interfaces explicitly, we are able to provide separate field representations
for each material over a single cell. Multiresolution representations uti-
lizing separate field representations can accurately approximate datasets
that contain discontinuities without placing a large percentage of cells
around the discontinuous regions. Our algorithm uses a multiresolution
tetrahedral mesh supporting fast coarsening and refinement capabilities;
error bounds for feature preservation; explicit representation of disconti-
nuities within cells; and separate field representations for each material
within a cell.

Keywords: Material Interfaces, Data Simplification, Multiresolution Tetrahedral
Meshes, Multiresolution Frameworks, Function Approximation
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1. Introduction

Computational physics simulations are generating larger and larger
amounts of data. They operate on a wide variety of input meshes, for
example rectilinear meshes, adaptively refined meshes for Fulerian hy-
drodynamics, unstructured meshes for Lagrangian hydrodynamics and
arbitrary Lagrange-Eulerian meshes. Often, these data sets contain spe-
cial physical features such as material interfaces, physical boundaries, or
thin slices of material that must be preserved when the field is simplified.
In order to ensure that these features are preserved, the simplified ver-
sion of the data set needs to be constructed using strict L* error bounds
that prevent small yet important features from being eliminated.

Data sets of this type require a simplification algorithm to approxi-
mate data sets with respect to several simplification criteria. The cells in
the approximation must satisfy error bounds with respect to the depen-
dent field variables over each mesh cell, and to the representation of the
discontinuities within each cell. In addition, the simplification algorithm
must be able to deal with a wide range of possible input meshes.

We present an algorithm for generating an approximation of a compu-
tational data set that can be used in place of the original high-resolution
data set generated by the simulation. Our approximation is a resampling
of the original data set that preserves user-specified as well as charac-
teristic features in the data set and approximates the dependent field
values to within a specified tolerance.

2. Related Work

Hierarchical approximation techniques for triangle meshes, scattered
data, and tetrahedral meshes have matured substantially over recent
years. A large amount of research has been done in the field of surface
simplification. In [1] an iterative triangle mesh decimation method is in-
troduced. Triangles in nearly linear regions are identified and collapsed
to a point that is computed in a locally optimal fashion. In [2], Hoppe
describes a progressive mesh simplification method for triangle meshes.
An arbitrary mesh is simplified through a series of edge collapse opera-
tions to yield a very simple base mesh. Heckbert and Garland present
a comprehensive survey of these techniques in [7]. In more recent work,
Heckbert and Garland [4] use a quadric error metric for surface simpli-
fication. They use vertex pair collapse operations to simplify triangle
meshes and they use quadric matrices that define a quadric object at
each vertex to control the error of the simplified surfaces. In [8], they
use the same technique to simplify meshes that have associated colors
and textures. Hoppe [9] uses a modified quadric metric for simplify-
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Figure 1.  Density field using explicit interface representations and separate field
representations. The left picture shows the field along with the approximating tetra-
hedral mesh. (interface error = 0.15).

ing polygonal meshes while preserving surface attributes such as normal
vectors, creases, and colors. The ROAM system, described in [6], uses
priority queue-driven split and merge operations to provide optimal real-
time display of triangle meshes for terrain rendering applications. The
tetrahedral mesh structure used in our framework is an extension of
the original ROAM data structure for triangle meshes. Multiresolution
methods for reconstruction and simplification have also been explored
using subdivision techniques and wavelets.

The approximation of material interfaces is similar to the approxi-
mation or simplification of large polygonal meshes. The approximating
mesh represents the large mesh to within a certain error tolerance using
a substantially smaller number of triangles. Mesh approximation and
simplification algorithms can be divided into decimation techniques and
remeshing techniques.



Our approximation of material interfaces falls into the category of
remeshing techniques. As described in Section 5, the material interfaces
are given as triangle meshes. Within each of our cells we construct
a piecewise linear approximation of the material interfaces to within a
specified error tolerance based on the distance between the original mesh
and our approximation.

3. Multiresolution Tetrahedral Mesh

The first basis for our simplification algorithm is the subdivision of
a tetrahedral mesh as presented by Zhou et al. [3]. This subdivision
scheme has an important advantage over other multiresolution spatial
data structures such as an octree as it makes it easy to avoid introduc-
ing spurious discontinuities into representations of fields. The way we
perform the binary subdivision ensures that the tetrahedral mesh will
always be a conformant mesh, i.e, a mesh where all edges in the mesh
end at the endpoints of other edges and not in the interior of edges.
The simplest representation for a field within a tetrahedral cell is given
by the unique linear function that interpolates field values specified at
the cell’s vertices. In the case of a conformant mesh, this natural field
representation will be continuous across cell boundaries, resulting in a
globally C° representation.

We have generalized the implementation presented by Zhou et al. by
removing the restriction that the input data needs to be given on a
regular rectilinear mesh consisting of (2 + 1)x(2V + 1)x(2" + 1) cells.
A variety of input meshes can be supported by interpolating field values
to the vertices of the multiresolution tetrahedral mesh. In general, any
interpolation procedure may be used. In some cases, the procedure
may be deduced from the physics models underlying the simulation that
produced the data set. In other cases, a general-purpose interpolation
algorithm will be appropriate.

We construct our data structure as a binary tree in a top-down fash-
ion. Data from the input data set, including grid points and interface
polygons, are assigned to child cells when their parent is split.

The second basis for our algorithm is the ROAM system, described
in [6]. ROAM uses priority queue-driven split and merge operations to
provide optimal real-time display of triangle meshes for terrain rendering
applications. The tetrahedral mesh structure used in our framework can
be regarded as an extension to tetrahedral meshes of the original ROAM
data structure for triangle meshes.

Since our data structure is defined recursively as a binary tree, a
representation of the original data can be pre-computed. We can utilize
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the methods developed in ROAM to efficiently select a representation
that satisfies an error bound or a desired cell count. This makes the
framework ideal for interactive display. Given a data set and polygonal
representations for the material interfaces, our algorithm constructs an
approximation as follows:

1 Our algorithm starts with a base mesh of six tetrahedra and asso-
ciates with each one the interface polygons that intersect it.

2 The initial tetrahedral mesh is first subdivided so that the polygo-
nal surface meshes describing the material interfaces are approxi-
mated within a certain tolerance. At each subdivision, the material
interface polygons lying partially or entirely in a cell are associated
with the cell’s children; approximations for the polygons in each
child cell are constructed, and interface approximation errors are
computed for the two new child cells.

3 The mesh is further refined to approximate the field of interest, for
example density or pressure, within a specified tolerance.

For the cells containing material interfaces, our algorithm computes
a field representation for each material. This is done by extrapolating
ghost values for each material at the vertices of the tetrahedron where
the material does not exist. A ghost value is an educated guess of a
field value at a point where the field does not exist. When material
interfaces are present, field values for a given material do not exist at
all of the tetrahedron’s vertices. Since tri-linear approximation over a
tetrahedron requires four field values at the vertices, extra field values
are needed to perform the interpolation. Thus for a given field and
material, the ghost values and the existing values are used to form the
tri-linear approximation within the tetrahedron.

This is illustrated in Figure 2 for a field sampled over a triangular
domain containing two materials. For the field sampled at Vy and Vi,
a ghost value at vertex V5 is needed to compute a linear approximation
of the field over the triangle. The approximation is used only for those
sample points that belong to this material. Given a function sampled
over a particular domain, the ghost value computation extrapolates a
function value at a point outside of this domain. When the field approx-
imation error for the cell is computed, the separate field representations,
built using these ghost values, are used to calculate an error for each
distinct material in the cell. The decomposition process of a cell that
contains multiple materials consists of these steps:

1 The signed distance values and ghost values for the new vertex are
computed when the vertex is created during a split or subdivision
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operation. This is done by examining those cells that share the
edge being split.

2 The interface representations, i.e., triangle meshes, are associated
with the child cells, and the approximating representations of in-
terfaces and their associated errors are computed.

3 The field error for each of the materials is computed, and the max-
imum value of these errors is defined as the overall error associated
with a cell containing multiple materials.

4, General Multiresolution Framework

A multiresolution framework for approximating numerically simulated
data needs to be a robust and extensible. The framework must be ca-
pable of supporting the wide range of possible input structures used in
the simulations and the wide range of output data generated by these
simulations. The following properties and operations are desirable for
such a framework:

1 Interactive transition between levels of detail. The ability
to quickly move between different levels of detail allows a user to
select a desired approximation at which to perform a calculation
(for a visualization application).

2 Strict L*° error bounds. Strict error bounds prevent small yet
important features from being averaged or smoothed out by the
approximation process.
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3 Local and adaptive mesh refinement and local error com-
putations. Local mesh refinement allows the representation to
be refined only in the areas of interest. The error calculations for
datasets consisting of millions or billions of cells should not involve
a large amount of original data.

4 Accommodating different mesh types. Computational simu-
lations are done on a large variety of mesh structures. In order for
a framework to be useful it should be easily adaptable to a broad
class of input meshes.

5 Explicit representation of field and/or material disconti-
nuities. Discontinuities are very important in scientific datasets
and very often need to be preserved when the datasets are approx-
imated. A multiresolution framework should support the explicit
representation and approximation of these discontinuities.

Our multiresolution recursive tetrahedral framework satisfies these
design criteria. Tetrahedral cells allow us to use linear basis functions
to approximate the material interfaces and the dependent field variables
in a cell. A representation of the original data can be computed in
a pre-processing step, and we can utilize methods developed for the
ROAM system [6] to efficiently select a representation that satisfies an
error bound or a desired cell count. This makes the framework ideal for
interactive display. Strict L*° error bounds are incorporated into the
refinement process.

The framework supports various input meshes by resampling them at
the vertices of the tetrahedral mesh. The resampling error of the tetra-
hedral mesh is a user specified variable. The resampled mesh can be re-
fined to approximate the underlying field to within a specified tolerance
or until the mesh contains a specific number of tetrahedra. The resam-
pled field is a linear approximation of the input field. The boundaries
of the input mesh are represented in the same manner as the surfaces of
discontinuity. The volume of space outside of the mesh boundary is con-
sidered as a separate material with constant field values. This region of
empty space is easy to evaluate and approximate; no ghost values and no
field approximations need to be computed. This allows a non-rectilinear
input mesh to be embeded into the larger rectilinear mesh generated by
the refinement of the tetrahedral grid. Discontinuities are supported at
the cell level allowing local refinement of the representations of surfaces
of discontinuity in geometrically complex areas. The convergence of the
approximation depends upon the complexity of the input field and the
complexity of the input mesh.



The framework has several advantages over other multiresolution spa-
tial data structures such as an octree. The refinement method en-
sures that the tetrahedral mesh will always be free of cracks and T-
intersections. This makes it easy to guarantee that representations of
fields and surfaces of discontinuity are continuous across cell boundaries.

Our resampling and error bounding algorithms require that an origi-
nal data set allow the extraction of the values of the field variables at any
point and, for a given field, the maximum difference between the rep-
resentation over one of our cells and the representation in the original
dataset over the same volume.

5. Material Interfaces

A material interface defines the boundary between two distinct ma-
terials. Figure 3 shows an example of two triangles crossed by an single
interface (smooth curve). This interface specifies where the different
materials exist within a cell. Field representations across a material in-
terface are often discontinuous. Thus, an interface can introduce a large
amount of error to cells that cross it. Instead of refining an approxima-
tion substantially in the neighborhood of an interface, the discontinuity
in the field is better represented by explicitly representing the surface
of discontinuity in each cell. Once the discontinuity is represented, two
separate functions are used to describe the dependent field variables on
either side of the discontinuity. By representing the surface of disconti-
nuity exactly, our simplification algorithm does not need to refine regions
in the spatial domain with a large number of tetrahedra.

5.1 Extraction and Approximation

In the class of input datasets with which we are working, material
interfaces are represented as triangle meshes. In the case that these
triangle meshes are not known, they are extracted from volume fraction
data by a material interface reconstruction technique, see [5]. Such an
interface reconstruction technique produces a set of crack-free triangle
meshes and normal vector information that can be used to determine on
which side and in which material a point lies.

Within one of our tetrahedra, an approximate material interface is
represented as the zero set of a signed distance function. Each vertex
of a tetrahedron is assigned a signed distance value for each of the ma-
terial interfaces in the tetrahedron. The signed distance from a vertex
V to an interface mesh I is determined by first finding a triangle mesh
vertex V; in the triangle mesh describing I that has minimal distance
to V. The sign of the distance is determined by considering the normal
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Figure 8. True and approximated interfaces.

vector N; at V;. If N; points towards V, then V is considered to be
on the positive side of the interface; otherwise it is considered to be on
the negative side of the interface. The complexity of this computation is
proportional to the complexity of the material interfaces within a partic-
ular tetrahedra. In general a coarse cell in the mesh will contain a large
number of interface polygons, and a fine cell in the mesh will contain
a small number of interface polygons. The signed distance values are
computed as the mesh is subdivided. When a new vertex is introduced
via the mesh refinement, the computation of the signed distance for that
vertex only needs to look at the interfaces that exist in the tetrahedra
around the split edge. If those tetrahedra do not contain any interfaces,
no signed distance value needs to be computed.

In Figure 3, the true material interface is given by the smooth curve
and its approximation is given by the piecewise linear curve. The min-
imum distances from the vertices of the triangles to the interface are
shown as dotted lines. The distances for vertices on one side of the in-
terface (say, above the interface) are assigned positive values and those
on the other side are assigned negative values. These signed distance
values at the vertices determine linear functions in each of the triangles,
and the approximated interface will be the zero set of these linear func-
tions. Because the mesh is conformant, the linear functions in the two
triangles will agree on their common side, and the zero set is continuous
across the boundary. The situation in three dimensions is analogous.

The signed distance function is assumed to vary linearly in the cell,
i.e., a tetrahedron. The coefficients for the linear function defining a
boundary representation are found by solving a 4x4 system of equations,
considering the requirement that the signed distance function over the
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Figure 4. Tetrahedron showing signed distance values and the corresponding bound-
ary approximation.

tetrahedron must interpolate the signed distance values at the four ver-
tices.

The three-dimensional example in Figure 4 shows a tetrahedron, a
material interface approximation, and the signed distance values d; for
each vertex V;. The approximation is shown as a plane cutting through
the tetrahedron. The normal vector N indicates the positive side of the
material boundary approximation. Thus, the distance to Vy is positive
and the distances for Vi, Vo, and V3 are negative.

We note that a vertex has at most one signed distance value for each
interface. This ensures that the interface representation is continuous
across cell boundaries. If a cell does not contain a particular interface,
the signed distance value for that interface is meaningless for that cell.
Given a point P in an interface polygon and its associated approxima-
tion B,., the error associated with P is the absolute value of the distance
between P and B,. The material interface approximation error associ-
ated with a cell is the maximum of these distances, considering all the
interfaces within the cell.

6. Discontinuous Field Representations

Cells that contain material interfaces typically also have discontinu-
ities in the fields defined over them. For example, the density field over
a cell that contains both steel and nickel is discontinuous exactly where
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the two materials meet. In these situations, it is better to represent
the density field over the cell as two separate fields, one field for the
region containing only the first material and one for the second mate-
rial. Our algorithm represents the discontinuity by constructing a field
representation for each material in the cell. Each of the vertices in a
cell must have distinct field values for each material in the cell. These
extrapolated values are the ghost values.

For a vertex V that does not reside in material M, we compute a ghost
value for the field associated with material M at vertex V. This ghost
value is an extrapolation of the field value for M at V. As described in
Section 3, the ghost value computation is performed when the vertex is
created during the tetrahedral refinement process.

6.1 Computation of Ghost Values

The ghost values for a vertex V are computed as follows:

1 For each material interface present in the cells that share the ver-
tex, find a vertex Vy,;, in a triangle mesh representing an interface
with minimal distance to V.

2 Evaluate the data set on the far side of the interface at V,,;, and
use this as the ghost value at V for the material on the opposite
side of the interface.

Only one ghost value exists for a given vertex, field and material.
This ensures that the field representations are C° continuous across cell
boundaries.

7. Error Metrics

The error metrics employed in our framework are similar to the nested
error bounds used in the ROAM system. Each cell has two associated
error values: a field error and a material interface error. In order to
calculate the field errors for a leaf cell in our tetrahedral mesh hierarchy,
we assume that the original data set can be divided into native data
elements that are grid points of zero volume. For a given field, we assume
that it is possible to bound the difference between the representation over
one of our leaf cells and the representation over each of the native data
elements with which the given cell intersects. The error for the given
field in the given cell is the maximum of the errors associated with each
of the intersecting native data elements.
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The field error er for a non-leaf cell is computed from the errors
associated with its two children according to:

er = max{ery,en } + |2(ve) — zr(ve)l, (1)

where er; and er, are the errors of the children; v, is the vertex that
splits the parent into its children; z(v.) is the field value assigned to
ve; and zp(ve) is the field value that the parent assigns to the spatial
location of v.. The approximated value at v., zr(v.), is calculated as:

2r(ve) = 5(2(00) + 2(01)), (2

where vy and v; are the vertices of the parent’s split edge. This error
is still a genuine bound on the difference between our representation
and the representation of the original data set. However, it is looser
than the bound computed directly from the data. The error computed
from the children has the advantage that the error associated with a
cell bounds not only the deviation from the original representation but
also the deviation from the representation at any intermediate resolution
level. Consequently, this error is nested or monotonic in the sense that
the error of a child is guaranteed not to be greater than the error of the
parent. Once the errors of the leaf cells are computed, the nested bound
for all cells higher in the tree can be computed in time proportional to K,
where K is the number of leaf cells in the tree. This can be accomplished
by traversing the tree in a bottom-up fashion.

The material interface error associated with a leaf node is the maxi-
mum value of the errors associated with each of the material interfaces
in the node. For each material interface, the error is the maximum value
of the errors associated with the vertices constituting the triangle mesh
defining the interface and being inside the cell. The error of a vertex is
the absolute value of the distance between the vertex and the interface
approximation. The material interface error E for a cell guarantees that
no point in the original interface polygon mesh is further from its associ-
ated approximation than a distance of E. This error metric is an upper
bound on the deviation of the original interfaces from our approximated
interfaces. A cell that does not contain a material interface is considered
to have an interface error of zero.

8. Results

We have tested our algorithm on a data set resulting from a simulation
of a hypersonic impact between a projectile and a metal block. The sim-
ulation was based on a logically rectilinear mesh of dimensions 32x32x52.
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For each cell, the average density and pressure values are available, as
well as the per-material densities and volume fractions. The physical
dimensions in x, y, and z directions are [0,12] [0,12] and [-16,4.8].
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Figure 5.  Original triangular meshes representing material interfaces.

There are three materials in the simulation: the projectile, the block,
and empty space. The interface between the projectile and the block
consists of 38 polygons, the interface between the projectile and empty
space consists of 118 polygons and the interface between empty space
and the block consists of 17574 polygons. Figure 5 shows the original
interface meshes determined from the volume fraction information. The
largest mesh is the interface between the metal block and empty space;
the next largest mesh in the top, left, front corner is the interface be-
tween the projectile and empty space; the smallest mesh is the interface
between the projectile and the block.

Figure 6 shows a cross-section view of the mesh created by a cutting
plane through the tetrahedral mesh. The darker lines are the original
interface polygons, and the lighter lines are the approximation to the
interface. The interface approximation error is 0.15. (An error of 0.15
means that all of the vertices in the original material interface meshes
are no more that a physical distance of 0.15 from their associated inter-
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face approximation. This is equivalent to an error of (0.5 - 1.5)% when
considered against the physical dimensions.) A total of 3174 tetrahedra
were required to approximate the interface within an error of 0.15. The
overall mesh contained a total of 5390 tetrahedra. A total of 11990 tetra-
hedra were required to approximate the interface to an error of 0.15 and
the density field within an error of 3. The maximum field approximation
error in the cells containing material interfaces is 2.84, and the average
field error for these cells is 0.007. These error measurements indicate
that separate field representations for the materials on either side of a
discontinuity can accurately reconstruct the field.

Figures 6 and 1 compare the density fields generated using linear inter-
polation of the density values and explicit field representations on either
side of the discontinuity. These images are generated by intersecting the
cutting plane with the tetrahedra and evaluating the density field at the
intersection points. A polygon is draw through the intersection points
to visualize the density field. In the cells where material interfaces are
present, the cutting plane is also intersected with the interface repre-
sentation to generate data points on the cutting plane that are also on
the interface. These data points are used to draw a polygon for each
material that the cutting plane intersects.

Figure 1 shows that using explicit field representations in the pres-
ence of discontinuities can improve the quality of the field approxima-
tion. This can be seen in the flat horizontal and vertical sections of the
block where the cells approximate a region that contains the block and
empty space. In these cells, the use of explicit representations of the
discontinuities leads to an exact representation of the density field. The
corresponding field representations using linear interpolation, shown in
Figure 6, capture the discontinuities poorly. Furthermore, Figure 1 cap-
tures more of the dynamics in the area where the projectile is entering
the block (upper-left corner). The linear interpolation of the density
values in the region where the projectile is impacting the block smooths
out the density field, and does not capture the distinct interface between
the block and the projectile.

9. Conclusions and Future Work

We have presented a method for constructing multiresolution repre-
sentations of scientific datasets that explicitly represents material inter-
faces. Our algorithm constructs an approximation that can be used in
place of the original data for visualization purposes. Explicitly represent-
ing material and implicit field discontinuities allows us to use multiple
field representations to better approximate the field within each cell. The
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Figure 6.  Cross section of the tetrahedral mesh. The left picture shows the original
interfaces and their approximations. The picture on the right shows density field
using linear interpolation.

use of the tetrahedral subdivision allows us to generalize our algorithm
to a wide variety of data sets and to support interactive level-of-detail
exploration and view-dependent simplification.
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