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ABSTRACT OF THE DISSERTATION

Understanding Human Behavior Using Language and BOLD Variability

By

Garren Gaut

Doctor of Philosophy in Psychology

University of California, Irvine, 2018

Professor Mark Steyvers, Chair

This work consists of four projects that explore human behavior from two perspectives:

language use and neural patterns.

In my first and second projects, I focused on language, which can be used to categorize human

behavior. In the first project, I used topic models to categorize the subjects and symptoms a

patient discussed during psychotherapy treatment. The model functions by identifying topics

that are representative of each subject or symptom. The model can predict the subjects

and symptoms discussed in new therapy sessions with higher accuracy than discriminative

techniques. Furthermore, the model can identify specific passages of text representative of

a given subject or symptom.

My second project developed an automated system for routing citizen requests to federal

agencies within the Mexican government. The automated system functions by linking pat-

terns in language and the appropriate federal agency. The automated system routes requests

more efficiently than the current routing system.

The third and fourth projects focused on neuroimaging, which is used to understand the

underlying neural processes associated with human behavior. My neuroimaging work related

xii



blood-oxygen-level-dependent (BOLD) variability (BV) to experimental condition, behavior,

and subject identity. The first phase of the neural work built on previous analyses showing

that functional connectivity (FC) is predictive of the task a subject is performing and the

identity of the subject performing a task. We extended these analyses to BV and compared

its predictive accuracy with that of FC to assess whether some of the predictive power of

FC is due to changes in BV. BV performed well compared to FC, suggesting that some of

the predictive performance based on FC might be attributed to independent region-specific

fluctuations.

Given the predictive relationship between BV and task/subject, the second phase of my neu-

ral work developed the Variance Design General Linear Model (VDGLM), a novel framework

to facilitate the detection of BV effects. The framework models the mean and variance in the

BOLD time course as functions of experimental design. This allows the VDGLM to i) simul-

taneously make inferences about a mean or variance effect while controlling for the other and

ii) test for variance effects that could be associated with multiple conditions and/or noise

regressors. We demonstrated the use of the VDGLM in a working memory application and

showed that engagement in a working memory task is associated with whole-brain decreases

in BOLD variance.
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Chapter 1

Content Coding of Psychotherapy

Transcripts Using Labeled Topic

Models

1.1 Introduction

Across medical specialties, the basic medium of information gathering and intervention be-

tween the provider (i.e., MD, psychologist, nurse) and patient is a conversation. The patient

describes problems and the provider listens, asks questions, and recommends solutions and

specific treatment strategies. The content of this conversation can be useful across a broad

variety of contexts, such as helping a primary care provider to detect and prevent suicide

[33], promoting patient adherence to treatment recommendations [54], reducing cold severity

and duration [112], and predicting a surgeon’s history of malpractice lawsuits [2].
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Psychotherapy (sometimes called counseling or behavioral treatment) represents a particular

class of interventions that has a special focus on the provider-patient interaction. With

psychotherapy, the interaction contains the treatment’s active ingredients rather than simply

being a means of developing rapport and forming a diagnosis. Psychotherapy ranges from

brief, single session interventions [94] to multi-session interventions over weeks or months

[17] and research suggests that psychotherapy is effective for a broad range of mental health

disorders [100].

The typical method of summarizing the content of this conversation is based on the provider’s

recollection and self-report of what happened as they record it in the medical record. Many

methods exist for obtaining summary measures from transcribed text–e.g., by separating

a transcript into broad semantic topics [110, 29, 64, 118, 3, 68, 95], detailed behavioral

features (such as requests for clarification [111]) or syntactic parts of speech [133], among

others. These summary measures can be used as context to extract and evaluate treatment

information, including patient diagnosis, analysis of client communication, and evaluation of

suicide risk [105, 89, 119, 98, 14, 108].

At present the evaluation of psychotherapy sessions and other types of patient provider com-

munication relies on human raters who summarize sessions by attaching codes (also called

labeling or annotating) in order to quantify the information in treatment encounters [67].

The process of attaching these codes, called observational coding, provides theory-driven

organizational systems through which complex linguistic data can be structured for fur-

ther analysis. Codes can represent the subject of conversation (e.g., medications, spousal

relationships), symptoms expressed (e.g., depression, anxiety, anger), or specific verbal be-

haviors in individual utterances or talk-turns for providers (e.g., open or closed questions by

the therapist, degree of empathy) or patients (e.g., signaling intent to change or maintain

behavior).
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Observational coding has critical shortcomings, including intensive labor requirements, coder

error, non-standardized coding systems (new codes require new training), and inability to

scale up to larger coding projects [3]. Each hour of therapy takes roughly 10 hours to code

and the number of alcohol and drug abuse sessions in the U.S. healthcare system alone

runs into the hundreds of thousands per year. The burden of human coding leads typical

psychotherapy research studies to be small, which contributes to the incredible heterogeneity

across studies investigating the relationships between therapist behavior and patient outcome

[141]. Accordingly, human-based coding is not a feasible method for evaluating the content

of treatment encounters on a large scale. An objective, scalable method for summarizing the

content of actual treatment encounters is needed.

We can describe the implementation of coding systems for text as multiple-label classifica-

tion problems where multiple codes are attached to each document [44]. Machine learning

approaches for automatic multiple-label document classification have been successfully used

in various domains [122, 20, 103, 31, 8], including medical applications for disease diagnosis

and medical error detection [82, 150, 86]. One such class of tools called topic models [83]

has been used to assess the fidelity of therapist treatment [3] through prediction of behav-

ioral codes, compare type of psychotherapy treatment [68], and predict therapy outcomes in

schizophrenic patients [66, 65].

In this paper, we illustrate the ability of one specific type of topic model, Labeled Latent

Dirichlet Allocation (L-LDA) [113, 118], to semi-automatically infer subject and symptom

codes from a large heterogeneous psychotherapy corpus; i.e., what topics and symptoms

were discussed during treatment. Every session in the corpus was manually annotated with

general discussion content and patient symptom codes such that the observable outcomes of

the manual annotation process are codes for the session as a whole. However, implicit in the

coding process is a fine-grained, or local, evidence-accumulation process where each word,

3



utterance or talk-turn in a session affects the decision to attach a given code. Establishing a

link between specific within-session passages of text and overall codes for the session (session-

level codes) is fundamental to understanding the coding procedure. We implement a model

that, in addition to learning session-level coding systems, can localize specific passages of

text representative of a session code. In other words, the model is able to infer codes at a

local (talk-turn) level from codes that were provided at the global (session) level.

Previous work on computational analysis of psychotherapy transcripts used topic models

to summarize therapy corpora and extract features for use in predictive models for therapy

type [68] or as a stand-alone model to predict behavioral codes [3]. Our current work

expands upon past research by using topic models to predict session content, by providing

a detailed quantitative evaluation of predictive performance that includes comparisons to

baseline models, and by developing methodology for talk-turn annotation using session-level

metadata.

The model is evaluated and compared against a baseline discriminative model (lasso logistic

regression) using standard performance measure–the receiver operating curve (ROC) and

area under the curve (AUC). Additionally, we provide R-precision [84] scores for talk-turn

prediction. Session-level R-precision scores can be found in the supplementary files. For all

performance evaluation, we use 10-fold cross-validation at the session level to emphasize the

models’ ability to predict novel data.

As we will discuss in the experimental results section, the accuracy of the proposed tech-

niques, in terms of code prediction, are not yet at the level of human annotators. Thus,

these approaches are not yet ready to be used for fully automated annotation of therapy

transcripts in an off-the-shelf manner. Nonetheless, as we outline in the discussion section

later in the paper, the current techniques could potentially be used as components within
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a semi-automated approach, for example to assist in therapist training, using the model to

rank and present to a supervising therapist specific talk-turns within a trainee session in

terms of the talk-turn’s likelihood of containing specific codes. There are multiple publicly-

available L-LDA software packages [24, 101, 126] that could be used to support such efforts.

More broadly, the work described in this paper represents the next step towards a long-term

goal of fully automatic code prediction for psychotherapy transcripts.

1.2 Data

The primary source of data comes from a psychotherapy corpus maintained by Alexander

Street Press and made available via library subscription. At the time of the present analyses,

the corpus contained 1,181 therapy sessions with approximately 8 million words. Each session

was conducted with a unique therapist and client. On average each session contains 250 talk-

turns, which are defined as uninterrupted passages of time during which either the patient or

therapist speaks. Talk turn length ranges from several words to several sentences. Sessions

were conducted by prominent psychotherapists and serve as exemplars of different treatment

approaches. Each session includes meta-data such as patient age, patient gender, type of

psychotherapy, and two types of nominal content codes (i.e. labels) referring to subjects

discussed in the session (161 possible codes) and patient symptoms discussed in the session

(48 possible codes). We use subject and symptom codes because we are interested in the

relationship between language and the codes’ semantic meanings (as opposed to codes for

type of therapy, client gender, etc). The list of symptom and subject codes was derived from

the DSM-IV manual and other primary psychology/psychiatry texts. All codes annotated

in the psychotherapy corpus are session-level codes, meaning that a single label is applied

(as a binary present/absent label) to the entire session, and the original corpus did not
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include any labels for specific subunits such as sentences, talk-turns or paragraphs. Each

session is annotated with multiple codes (min = 1 code, max = 17 codes) and the average

session is annotated with approximately 5 codes. Prior to analysis we applied a number

of preprocessing steps, including stopword removal and n-gram extraction to convert the

original corpus into a form suitable for text analysis. We chose stop words from standard

lists used in natural language processing and augmented these lists with words from the

corpus that were not on standard stop word lists, but that contain little semantic content

(e.g., “mm-hmm”) (see Models section for details on preprocessing and supplementary files

for full stop word lists). Stop words were removed from both patient and therapist speech.

In the case of a talk-turn comprised completely of stopwords, we removed the talk-turn from

the data. The resulting representation of the text consisted of sparse vector counts of terms

for each document, including unigrams (single words such as “medicine”, “anger”), bigrams

(e.g. “side effect”), and trigrams (“it sounds like”).

In order to evaluate the ability of the model to find representative talk-turns we conducted

additional coding to generate labels for talk-turns within selected sessions. The aim of the

additional coding was to generate data for specific within-session sections of text (in this

case talk turns) against which to test our model. These coded talk-turns were only used for

model evaluation, not for model training. We focused on five symptom codes: anger, anxiety,

depression, low self-esteem and suicide. These codes were chosen firstly for their therapeutic

importance and secondly for their high frequency of annotation in order to provide a sufficient

amount of additional data. We restricted the number of symptom codes to limit the amount

of human coding required for talk-turn annotation. For each of these symptoms, we randomly

selected 200 client talk-turns of at least 50 characters in length (before stop word removal)

from sessions that had the symptom code attached. On average, the selected talk turns

were approximately 277 characters in length before stop word removal. The process led to
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a total of 993 talk-turns. Each talk-turn was rated in terms of the representativeness of the

symptom on a scale of 1 (atypical) to 7 (very typical) by each of 6 graduate students or

post-doctoral fellows with training in clinical/counseling psychology.

1.3 Models

We approach the problems of session coding and identifying representative talk-turns through

the use of Labeled Latent Dirichlet Allocation (L-LDA) [113] [118], a semi-supervised ex-

tension of Latent Dirichlet Allocation (LDA). We first present the LDA model and then the

L-LDA model. The model presentation is aimed at readers who have some experience with

topic models. For readers new to topic modeling, we recommend reading a tutorial intro-

duction [129]. Then, we show how these models can be used for document classification and

how to apply the models to predicting codes and talk-turns in the general psychotherapy

corpus. Finally, we present lasso logistic regression (LLR) as a baseline model against which

to compare L-LDA.

1.3.1 Latent Dirichlet Allocation

LDA is an unsupervised modeling approach that learns a set of latent topics across a corpus

of text. As opposed to L-LDA, there are no labels that are part of the data to learn from.

The only data provided to LDA are a set of documents, where documents are treated as a

“bag-of-words”; i.e., sparse vectors of word counts for each document. Thus, the order of

words is not relevant for the model. We use both individual words and multi-word terms

(n-grams) in the vocabulary for our model—but for simplicity will refer to both as “words.”
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Standard applications of topic models assume that the text corpus can be naturally divided

into documents. For example, a corpus of scientific articles is naturally divided into docu-

ments according to article. In the case of spoken dialogue, choosing a rule for partitioning

a corpus into documents is less straightforward. Documents can be defined as sentences,

paragraphs, entire sessions or through any type of feasible partitioning. As in past research

[68, 3], for the General Psychotherapy Corpus we define documents to be individual talk-

turns (although other definitions are possible as well). Using talk-turns to define documents

yields a larger set of documents with more localized word co-occurrences compared to defin-

ing documents at the session level. We have found in our experiments that these localized

word co-occurrences tend to result in more specific topic-word distributions and improve

classification performance.

LDA specifies a generative process for the creation of text documents. From this generative

process we learn a predictive model by reverse-engineering the process–i.e., learning the

parameters most likely to have generated the data. In LDA, each document (in this case

talk-turn) is represented as a mixture of topics, where each topic is defined as a multinomial

distributions over words. The creation of each document begins by sampling a document-

specific distribution over topics. To generate each word in the document, a topic is sampled

from the document specific-distribution over topics and a word is sampled from that topic.

Formally, let T be the total number of topics in the model and V be the size of the vocabulary

(number of unique words in the corpus). Then we can specify the marginal distribution over

words for a document d as:

P (w) =
T∑

t=1

P (w|zw = t)P (zw = t|d).

where zw indicates the topic from which word w was drawn, P (w|zw = t) is a V -dimensional

distribution over words for topic t, and P (zw|d) is a T -dimensional distribution over topics for
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document d. To simplify notation, we will let φ(t) = P (w|zw = t) represent the distribution

over words for topic t and θ(d) = P (zw|d) represent the distribution over topics for each

document d.

LDA incorporates a priori knowledge about topics likely to occur in a document by placing

a Dirichlet prior on the distribution over topics, θ(d), for each document. The Dirichlet

prior is the conjugate prior of the multinomial distribution and is used to express the prior

probability of observing a topic in a given document before observing any data. The Dirichlet

distribution is parameterized by the vector (α1, ..., αT ), where αt can be interpreted as the

prior observation count for the number of times topic t is sampled in a document before

having observed any actual words from that document. Thus, we can view the distribution

over topics for a document d as a sample from this group-level prior distribution over topics.

In a similar manner, LDA also incorporates prior information about which words are likely to

occur in a given topic. LDA does this by placing another Dirichlet prior on the distribution

over words, φ(t), for each topic t. This second Dirichlet distribution is parametrized by

the vector (β1, ..., βV ) where βw represents the prior observation counts of word w before

observing any documents. Here we can interpret each topic as a sample from this group-

level prior distribution over words. We follow the common practice of setting the Dirichlet

parameters uniformly (i.e., (β1, ..., βV ) = (β, ..., β)) which corresponds to the assumption

that each word is equally likely a priori.

1.3.2 Labeled LDA Model

L-LDA is a semi-supervised variant of LDA in which some topics are placed in correspondence

with labels that can be associated with a document. Documents in the training phase are

assumed to have been pre-assigned to a subset of labels from a larger lexicon of possible
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labels. In the context of the psychotherapy corpus, possible labels include symptom and

content codes and L-LDA model infers a unique topic for each code. These topics are

learned by restricting inference to only the word tokens in documents annotated with the

topic’s corresponding label. We use a separate unsupervised set of topics, called background

topics, to account for words not associated with the known codes. These background topics

allow the model to capture some of the linguistic variability in the data that is not directly

related to subject and symptom codes. Without these background topics many words would

have to be explained by the topics associated with the symptom and content codes, which

would decrease the generalizability of those topics. During training of the L-LDA model,

when sampling the topic for a word token in a document (as describe below), only topics that

belong to labels associated with a document (including background labels) can be sampled.

All other topics have zero probability of being expressed in the document.

Formally, let T = Tc + Tb be the total number of topics. A subset of Tc topics are in one-

to-one correspondence with the labels associated with documents. The remaining Tb topics

capture background information. During the generative process, for each document d, we

restrict the space of possible document mixtures by restricting the hyperparameters of the

Dirichlet prior on θ according to a binary topic assignment vector Λ(d) = (Λ
(d)
1 , ...Λ

(d)
T ). We

define:

Λ
(d)
t =





1 : (code t is attached to document d) or (t > Tc)

0 : otherwise

We then define the hyperparameters for document d as αd = (αd1, ..., αdT ) = Λ(d)×α. Note

that the only topics that can be expressed for a particular document are topics corresponding
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to a code associated with the document or background topics.

Letting D be the number of documents in the collection, the generative process of the L-LDA

model can be described as follows:

1. For topic t ∈ 1, ..., T

a) Sample a multinomial distribution over words φ(t) ∼ Dirichlet(β1, ..., βV )

2. For document d ∈ 1, ..., D

a) Use the labels associated with document d to set the hyperparameters αd = Λ(d) ×α.

b) Sample a multinomial distribution over topics θ(d) ∼ Dirichlet(αd = (αd1, ..., αdT )).

c) For each term i ∈ 1, ..., Nd

(i) Sample a topic indicator zi ∼ Categorical(θ(d)).

(ii) Sample a word token wi ∼ Categorical(φ(t=zi)).

where Nd is the number of word tokens in document d. Note that α and β are hyper-

parameters for the model. The graphical model for L-LDA is presented in Figure 1.

1.3.3 Training the L-LDA Model

The variables we would like to infer are the topic assignment variables zw for each word

w, the document mixtures θ(d), and the topic distributions φ(t). For sampling we use a

collapsed Gibbs sampler [59] which integrates out φ(t) and θ(d) so that we only sample the

topic assignments zw. The topic assignments zw are then used to generate point estimates

of φ(t) and θ(d).

The Gibbs sampling procedure considers each word token in the text collection in turn, and

estimates the probability of assigning the current word token to each topic, conditioned on
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Figure 1.1: Graphical Model of L-LDA.

the current topic assignments to all other word tokens. From this conditional distribution we

sample a topic assignment for the current word token. We write the conditional distribution

as P (zi = t|z−i, wi, d, ·) where zi = t represents the topic assignment of token i to topic t,

z−i refers to the topic assignments of all other word tokens, and “·” refers to all other known

or observed information such as all other word indices w−i , distributions over topics for

all other documents, and hyperparameters α, and β. The conditional distribution can be

calculated as follows [59]:

P (zi = t|z−i,wi, d, ·) ∝
CV T
wit

+ βwi∑V
w=1 (CV T

wt + βw)
· CDT

dt + αdt∑T
j=1 (CDT

dj + αdj)

(1.1)

where t is restricted to the set of topics defined by the union of (a) codes t attached to

document d, and (b) background topics t > Tc. All other topics have probability 0 for
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document d (as specified by the generative model) and are not eligible to be sampled. In

the equation above CV T and CDT are matrices of counts with dimensions V × T and D× T

respectively; CV T
wit

contains the number of times word i occurred in a document with topic t

and CDT
dt contains the number of times a word token in document d was assigned to topic t.

These matrices are incremented using the sampled topic assignment variables at each step

of the Gibb’s sampler for every word w.

The Gibbs sampling algorithm is initialized by assigning each word token in document d

randomly to one of the set of eligible topics for document d (i.e., the codes t attached to

document d or the background topics t > Tc). For each word token, the count matrices CV T

and CDT are first decremented by one for the entries that correspond to the current topic

assignment. Then, a new topic is sampled from the distribution in Equation 1 and the count

matrices CV T and CDT are incremented with the new topic assignment. Each Gibbs sample

consists of the set of topic assignments for all N word tokens in the corpus, achieved by a

single pass through all documents.

The sampling algorithm gives us samples for the topic assignment variables zw for each

word w. However, we are interested in estimating the word-topic distributions φ(t) and

topic-document distributions θ(d). We can approximate the probability of choosing the k-th

word from the distribution over words for topic t, φ(t), using the word-topic count matrix

(computed from the sampled topic assignment variables) as follows:

φ̂
(t)
k =

CV T
wkt

+ βwk∑V
w=1 (CV T

wt + βw)
.

Here φ̂
(t)
k can be interpreted as the estimated probability of choosing word wk from topic t.

We can also estimate the probability of choosing the t-th topic from the distribution over

topics for document d, θ(d), using the count matrix CDT (also computed from the sampled
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topic assignment variables) as follows:

θ̂
(d)
t =

CDT
dt + αdt∑T

j=1 (CDT
dj + αdj)

.

Here θ̂
(d)
t can be interpreted as the estimated probability of expressing topic t in document

d. We later use φ̂(t) to qualitatively examine topics corresponding to session codes and θ̂(d)

to estimate the topics (and therefore symptom and content codes) expressed in document d.

1.3.4 Prediction with the L-LDA Model

We evaluate the model by predicting labels for documents unseen by the model during

training using the word-topic counts (CWT ) learned during training. The goal for prediction

is to infer a document-topic count vector CDT
d′t for each new document d′ , where the inferred

count vector contains information about the likely topics (and associated codes) for d′.

For a new document d′, we set Λ
(d′)
t = 1 ∀ t ∈ {1, ..., T} so that any topic can be part of the

document mixture. We run a Gibbs sampling procedure where we compute the posterior

distribution over topic assignments:

P (zi = t|z−i,wi, d′, ·) =

CWT
wit

+ βwi∑W
w=1 (CWT

wt + βw)
· CDT

d′t + αt∑T
j=1 (CDT

d′j + αj)
.

(1.2)

where αt = α. The posterior for this sampling procedure is similar to the posterior used in

the sampling procedure during training except that the word-topic count matrix CWT is not

14



updated. Holding CWT constant formalizes the assumption that the word-topic counts are

learned and that prediction consists of learning just the document-topic counts. Another

difference from the sampling procedure used during training is that we sample the posterior

probabilities P (zi = t|z−i, wi, di, ·) at each iteration (after burn-in) instead of the word-topic

count assignments (that were sampled during training). While either word-topic counts

or posterior probabilities can be used to compute prediction scores, we found that using

posterior probabilities provided more accurate code predictions and required less samples

for accurate prediction. We use the posterior samples to compute topic scores that represent

the likelihood that a document should be annotated with the code corresponding to each

topic. We compute a score ηt,d for each topic t and test document d as follows:

ηt,d =
1

Nd

Nd∑

i=1

γt,d,i

where the variable γt,d,i estimates the probability in Equation 2 that the tth topic was

assigned to the ith word token in document d. Thus ηt,d can be interpreted as the average

probability of assigning a word from document d to topic t. To calculate each word’s posterior

estimate of topic assignment (γt,d,i) we average over the posterior samples of the probability

of assigning word i to topic t. We compute γt,d,i as follows:

γt,d,i =
1

K

K∑

k=1

p(zt,d,i)
k

where p(zt,d,i)
k is the k-th sample of the posterior probability expressed in Equation 2 and

K is the total number of samples.
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1.4 Learning Topics from Labeled Sessions with L-LDA

1.4.1 Text Preprocessing

The original corpus contained 8 million word tokens and 40,000 unique words. Before fitting

the L-LDA model, we applied a number of preprocessing steps on the corpus. We first

removed any words that occur 5 or fewer times in the entire corpus on the assumption

that these words are unlikely to be useful in general for categorization. This step reduced

the number of unique words from 40,000 to 27,000 unique words. After removing infrequent

words, we removed words that we thought contained little semantic content. We performed a

preliminary filtering using a common stop word lists to remove words (see unigram stop word

list in supplementary files) Next, we applied a part-of-speech tagger [134] that we used to

remove determiners, adverbs, pronouns, interjections, particles, modal words, punctuation,

and numbers. We used part-of-speech tags to create additional stop word lists for bigrams

and trigrams, and performed a second stop word filtering using these lists. A final stop word

filtering was done for interjections that are common in psychotherapy, but weren’t identified

by the part-of-speech tagger. See supplementary files for a full list of stop words. The final

corpus contained 28,000 unique words (including generated bigrams and trigrams) and 1.4

million word tokens.

1.4.2 Model Parameters for Training L-LDA

The L-LDA model requires a number of decisions to be made and parameters to be selected

before training the model, including the number of background topics Tb, the settings for

the priors α and β, the number of iterations and the number of burn-in samples.
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For the number of background topics Tb, we chose Tb = 50 for the results reported in this

paper, and found that the model was not particularly sensitive to the number of background

topics as long as Tb was at least 20. We used uniform α and β where each element was set

to 1/50 and 1/100, respectively. These are typical values used in training LDA models and

we found that that the method was reasonably robust to small perturbations in these values.

Our results are from a model using 100 training iterations, and 20 iterations for prediction,

where the last S = 10 iterations are used for generating prediction scores. We ran several

models that varied the number of iterations and burn-in samples and found results similar

to the model we report.

1.4.3 Inferred Topics

Prior to assessing predictive performance measures, we qualitatively examined the topics

generated by the L-LDA model (Table 1.1). We examined three types of topics correspond-

ing to subjects, symptoms, and background content. For the subject and symptom labels,

we illustrate the topics learned by the model for the five most common labels. For the back-

ground topics, we picked an illustrative set of five topics. Qualitatively, subject and symptom

topics are very interpretable–e.g., the medications topic consists of examples of medications,

words used to describe administration of medication, and words used to describe the effects

of medication. The background topics shown in Table 1.1 also have intuitive interpretations

and contain words that are not covered by the content codes in the psychotherapy corpus.

For example, there are background topics that explain word usage related to people, jobs,

and sleeping (background topics 9, 36, and 39 respectively). Without these background top-

ics, the high probability words associated with them would have to be redistributed over the

content topics for subjects and symptoms, potentially decreasing their interpretability and

predictive power.
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Table 1.1: The most likely terms inferred for the topics associated with the five most common
subject and symptoms and an illustrative set of background topics. For each topic, the 10
most likely n-grams are shown.

Subject Inferred Topic Distribution

medications medicine, mg, dose, wellbutrin, medicines, lamictal, prescription,
effects, side effects, ability

relationships relationship, women, feels, friend, relationships, boyfriend, date,
position, example, react

parent-child relations mother, father, love, remember, relationship, parents, brother, emo-
tional, loved, needed

depressive disorder depression, medication, doctor, medicine, prozac, depressed, zoloft,
generic, wellbutrin, add

spousal relationships wife, marriage, married, husband, relationship, mhm, children, at-
titude, divorce, got married

Symptom Inferred Topic Distribution

anxiety anxiety, anxious, panic, nervous, depression, worried, worst, fine,
experience, helps

depression depressed, depression, doctor, pain, die, needed, drugs, low, xanax,
mg

anger angry, feelings, anger, express, get angry, be angry, reaction, feels,
pissed, ’m feeling

low self-esteem love, teaching, boyfriend, positive, stupid, attractive, fit, negative,
sorta, criticism

irritability annoyed, irritable, message, safe, dishes, cause, wife, skin, irritated,
cats

Background Inferred Topic Distribution

background 9 friends, family, mom, dad, close, sister, brother, daughter, men,
lives

background 13 care, stop, took, weight, takes, ready, lose, take care, amount, body
background 23 house, room, walk, bed, door, walking, rid, front, throw, clean
background 36 job, wants, work, business, works, office, busy, baby, buy, paper
background 39 morning, sleep, hours, friday, sleeping, monday, tomorrow, satur-

day, wake, bed
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Figure 1.2: Session-level AUC scores for the labeled topic model, the lasso logistic regression
model, and chance performance. Codes are reported along the y axis and are ordered by
labeled topic model performance. For subject codes, one in every 4 codes names is shown.

1.5 Session-Level Prediction

1.5.1 Cross-Validation and Scoring

To test generalizability of the model to new data, we use 10-fold cross-validation where for

each fold the sessions are partitioned into two disjoint sets: (a) a training set with 90% of

the sessions used to train an L-LDA model and (b) a validation set with the other 10% of

sessions used to evaluate the trained model. We compute an AUC score for each validation

set (for each code) and report the average of the AUCs across the 10 validation sets.
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To compute an AUC score for a topic corresponding to a particular code and a particular

validation set we proceed as follows. For each session in a validation set, we predict scores

at the talk-turn level (as described earlier) and then aggregate scores for all talk-turns in a

session. We define the session likelihood score for session s and topic t as:

ηt,s =
1

Ds

∑

d∈d(s)
ηt,d

where Ds is the number of talk-turns in session s and d(s) is the set of all talk-turns (docu-

ments) in session s. For each topic t, using these scores, we rank the sessions in the validation

set and compute the area under the curve (AUC) using the known subject and symptom

codes attached to each session.

1.5.2 Results for Session-Level Predictions

For each subject and symptom code we computed the AUC for each cross-validation fold

and took the average across folds to measure classification performance. Values of the AUC

range in theory from .5 (chance level performance, e.g., randomly generated rankings) to 1

(perfect predictive accuracy). In practice, performance that is above the level of chance can

occur even from models where the scores are randomly distributed (and unrelated to the

content of the sessions). This is especially the case with codes that occur infrequently. In

order to assess the significance of the predictive accuracy of our model relative to chance

performance, we calculated a set of AUC scores for each code using 1000 randomly generated

rankings and computed the corresponding 90% confidence intervals.

Additionally, we compare the L-LDA model to a standard machine learning classifier, lasso

logistic regression (LLR). LLR is often used in classification settings where the number of
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features is larger than the number of observations because of it’s ability to force feature

weights to zero for uninformative features. For more details about LLR see Supplementary

Files.

The results of the AUC analysis are shown in Figure 1.2. The widths of the 90% chance

confidence intervals for each code correspond closely with the inverse of the code frequencies

(lower frequencies are associated with larger chance confidence intervals). The L-LDA model

showed higher predictive accuracy than the LLR model and both models performed signif-

icantly better than the chance model for a large number of codes. For the L-LDA model,

the average AUC score over all codes is .789 (SD=.137) and average AUC for subject and

symptom codes are .800 (SD=.131) and .753 (SD=.150), respectively.

All but 10 of 209 codes had AUC scores above .5. The 5 codes with lowest AUC scores

are gender roles, withdrawn, recollections, general pain, and self-fulfilling prophecy. The

language associated with each of these codes contains a broad spectrum of variation that

may have contributed to poor model performance. The 5 codes with highest AUC are

hallucinogen abuse, drug addiction, alcohol dependence, passiveness, and attraction.

For the LLR model, average AUC score over all codes is .702 (SD=.145) and average AUC

for subject and symptom codes are .713 (SD=.146) and .667 (SD=.137), respectively. There

were 29 codes with AUC scores below 0.5. Overall, the LLR model performed significantly

worse on average than L-LDA (p<.001 in a Wilcoxon sign test).

A common goal of document classification is to identify the relationships between specific

classifiers and characteristics of data that lead to high classification performance. Previous

comparisons between L-LDA and discriminative models have shown that the L-LDA model

can outperform discriminative models on low-frequency codes [118]. We analyzed this rela-

tionship on the general psychotherapy corpus and found only a weak correlation (R=0.22)
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between the AUC difference for the two models and code frequency. This correlation showed

that L-LDA model performs slightly better in comparison to LLR at predicting low fre-

quency codes than high frequency codes. Post-hoc qualitative analysis suggests that highly

predictable codes contain unique language that facilitate prediction. For example, sessions

that discuss hallucinogen abuse and drug addiction contain a range of drug-specific terms

that are highly specific. Conversely, we expect that hard to predict codes, such as gender

roles, are attached to sessions containing a broad spectrum of language.

1.6 Talk-Turn Prediction

1.6.1 L-LDA Talk-Turn Prediction

As a second test of performance, we assessed the ability of the L-LDA model to find talk-

turns that are representative of a session-level code. This comparison is novel in that the

L-LDA model is trained using only session-level codes, but can then generalize the topics

learned to identify representative talk-turns within each session. The evaluation procedure

tests the models’ abilities to distinguish the most representative talk-turns (as judged by

human raters) from all other talk-turns.

We had 6 human coders generate ratings at the talk-turn level for 993 talk-turns using 5

symptom codes chosen from the set of general psychotherapy codes. The codes used were

anger, anxiety, depression, low self-esteem, suicidal behavior. Each talk-turn was assigned

a continuous rating from 1 (atypical) to 7 (very typical) by each of the 6 coders. To keep

model performance measures on the same scale as the session-level performance measures,

we converted the continuous human ratings to binary scores (thus allowing us to compute

classification performance measures). To binarize ratings, we chose a rating threshold and
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considered any ratings above the threshold to be representative of a symptom and any ratings

below to be not representative. While there are many ways of choosing this threshold, we

chose the threshold such that the top c% of ratings would be considered representative. We

computed performance for c = {5, 10, and 20}% to emphasize the model’s ability to predict

highly representative talk-turns.

Since raters did not rate talk-turns for the other symptom codes in the psychotherapy corpus,

we created a mapping from the more detailed labels in the psychotherapy corpus to the five

selected symptom codes. The motivation behind creating these code mappings is that a

single symptom code (e.g., depression) might be aptly described by multiple codes in the

psychotherapy corpus (e.g., depression, depressive disorder, hopelessness, ...). To create the

mappings, we had a clinical psychologist mark which codes from the general psychotherapy

corpus are related to each of the five symptom codes. See Appendix A.1 for more detail.

In addition to AUC scores we report the R-precision. R-precision is a measurement of

precision at the threshold at which precision is equal to recall. To generate model predictions,

AUC scores, and R -precisions at the talk-turn level we proceeded as follows:

• An L-LDA model was trained on each of the 10 training data sets used for session-level

cross-validation. For each training set any session that contained any of the coded

talk-turns was removed (making the prediction problem somewhat more difficult by

not allowing the model access to the coded talk-turn nor any other talk-turns from

the same session). We remove these talk-turns to avoid optimistic performance results

since in application the model would be identifying codes for talk-turns from novel

sessions.

• Each of the 10 trained models made predictions on the 993 labeled talk-turns. The

ηt,d scores were computed for each general psychotherapy code t and each talk-turn
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(document) d as described earlier, using each model’s word-topic count matrix. To

compute a score for a symptom code, we averaged the model scores from each of the

related general psychotherapy codes (as defined by the code mapping described above).

The 10 scores for each code and each talk-turn were then averaged across the 10 trained

models.

• For each code, AUC scores were generated as follows. The 993 talk-turns were ranked

by their averaged model-based scores. These rankings were then compared to the

ratings from each individual rater, where the ratings were binarized by using the highest

5%, 10%, top 20% of that individual’s ratings, leading to 3 different AUC scores, one

for each percentile cutoff. Overall AUC scores for the model, for each of the 3 cutoffs

and each of the 5 codes, were then computed by averaging across the model’s AUCs

computed relative to each individual rater.

• For each code, R-precisions were generated as follows. The 993 talk-turns were ranked

by their averaged model-based scores. These rankings were then compared to the

ratings from each individual rater, where the ratings were binarized by using the highest

5%, 10%, and 20% of that individual’s ratings. For each rater and rating cutoff c ∈

{5, 10, 20}, we compute the R-precision as the number of true positives in the top c% of

ratings divided by the number of talk-turns in the top c% of ratings. The R-precision

ranges from 0 to 1 and it can be shown that the R-precision is equal to recall for the

top c % of ratings. We compute overall R-precision scores as the average of model

R-precision scores computed relative to each individual rater.
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1.6.2 Results for Talk-Turn Predictions

Table 1.2 shows example talk-turns for all 5 symptoms tested. Talk-turns are ordered by

model representativeness score. We also report the human representativeness rating (1-

7 scale) averaged across raters. Several talk-turns illustrate that the model learns words

associated with a symptom and not just the symptom keyword itself. For example, the first

example talk-turn for depression in Table 1.2 is rated by the model as most representative and

is also judged by humans as highly representative. This talk-turn does not contain the word

depression but only expressions related to depression (i.e. “I’m crying”). The first talk-turn

for anxiety presents another interesting example. It is given the highest representativeness

score by the model but only received a low human rating. The model may have learned to

associate the word “roommate” with anxiety (through the other sessions in the training set),

resulting in a high likelihood.

Table 1.2: Model predictions for most representative talk-turns for each symptom code.
Talk-turns are ordered by model score Average human Likert rating (1-7) is reported to
compare model scoring vs. human scoring.

Symptom Average

Rating

Talk-Turn

Anger 6.2 Nobody every got angry; they never got angry. I don’t ever remem-

ber my parents screaming at each other, ever. I mean throughout

all my childhood I can’t remember them having a yelling fight. it

was never that way. and I just never knew how to scream at any-

body.
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7 I have occasionally felt bad about the things I’ve told you about,

I have. but it’s interesting that this is the first time that a lot of

anger has come out. you know, there’s another side that I really

affirm here, that there’s a lot of anger that I have toward her that

she’s always been able to seem to get out and express at me.

6.8 I don’t know. but I didn’t get mad at Harold when he gave me

genital warts. I felt mad, I mean, I felt betrayed and lied to and

cheated on, but I didn’t - I just dealt with it, I just deal with

things, and I’ve always thought that that was a positive quality, I

mean, I just-i don’t think that anger is necessarily productive. but

I guess in some ways it can be. I just-i work through things, I talk

through things, I’m calm, I don’t get mad or yell and scream. if

i-you know, I can argue with people if I don’t - you know, it’s not

like I won’t express my opinions or, you know, talk about something

that bothers me. but I don’t yell and scream and I don’t get angry.

7 At night, and then I take my zyprexa and I fall asleep in two hours.

the one thing I’d say I notice about her is she will be talking like this

and then all of a sudden I don’t what happens, something happens

and she just gets real angry, real fast, like that. we will be talking

and all of sudden she will think of something that got her angry

and it will be like boom.

3.6 Even just now, when you ask me that, I don’t know, it just feels

like, why are you asking me these questions? I don’t understand

them. I feel like ... it’s just really uncomfortable.
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Anxiety 2 The only-the only thing I can-like I thought back to this. when

I was a senior in college I met a girl who was a roommate of my

roo-well, my roommate’s - my roommate and i-my roommate had

his fiance and she had a roommate. and this, anyhow, to make it

all work ....

3.2 When I got there, he said that I needed to go to the hospital. so I

went, he sent me to ... when I got to ..., they did another ekg. they

told me I had a heart attack 2 weeks before that.

7 And, um, had a little anxiety about it. I go 2 nights a week, monday

and wednesday from 6 to 10, and yeah, had a little anxiety attack

about it ’cause just the whole like possible failure, and like oh god,

I’m like I really want, ’cause I really want it and I’m really, you

know, I’m good at it, but it’s like oh god, it’s pressure, you know,

that type of thing. well, I ended up calling ... remember I was

seeing him?

5 I don’t really know. I’ve always been kind of just like - I’m always

just really scared of - I don’t really have like a lot of, in my family

there’s not really a lot of people that would help me if something

like that was to happen. so I think that just kind of like fuels this

like fear in me with like employment in general. it’s just kind of

like, ‘ well what if there is a cutback or what if somebody buys us

out or ... ’ just kind of like, I just want to be okay if that happened.
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2.2 Yeah. I think I just ... I never ... I don’t know. since probably

before I came to shimer was the last time I actually like really

either showed interest in a guy. like even if I was interested, I

haven’t within the past three years, like done anything about it

really. brendan, close, like we’ve actually kissed and ... but like ...

that was.

Depression6 As like two to three months ago, I was crying and this was more or

less yknow I didn’t want to be doing this but now I’m crying, I’m

like, I don’t care that I’m crying, yknow.

5 Well I think one of the things I wanted to ask you about was what

we talked about last week the matter of guilt when I touched on

that briefly. I’m a little bit confused because it seems to me that

a person has desires to kind of change their ways as it were that

one of the motives of them wanting to do that is them some feeling

of guilt or something approximating guilt about the way they’re

presently acting. and yet you said that you thought that I should

feel that way, people in general too, but in this particular case me

should not feel guilty for example about vanity because I’ve done

that. so you think that they should feel that way but it seems to me

that one of the motivating forces for me is a certain sense of guilt.

or not exactly guilt but maybe something like ... well I suppose it

is guilt the guilt of throwing away a good part of my life. I feel

guilty about that even in a moral sense as well as a practical one.

so what do you mean by that? how do you work around ... ....
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6.6 Um, the pamelor 50, I take that at night, that seems to be doing

okay. I mean I’m still a little depressed but, you know, basically

that seems to be doing okay. nr : doctor, patients are leaving.

3.6 It might be. I guess I feel the anger because it, like a given situation

turned out unhappy or sad instead of happy.

3.6 And yknow, be supportive for my nephews and my nieces and I

found myself kind of leaning with my dad in just being sad, just

being, yknow, it was just different.

Low

Self-

Esteem

5 Umm ... well certainly if I’m not being obsessive and worrying over

things. because the truth is, it’s obvious when I’m in that state,

even if I don’t tell people. you can see it all over my face. and

he notices. and so if I’m not that way, and if I’m confident and

mature.

4.2 Which probably isn’t a good thing. but I just don’t ’ do it. and

they tell me,“ you should do it. you should do it. you should do

it. ”. and I say, notes don’t work for me. I make up excuses. I tell

them that, no, that’s not me. leave me alone. let me do my own

thing. and that’s sort of me not taking criticism well.
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3.4 It’s funny, because when I talk about my relationship with my

parents with cole it’s always that I’ll say something negative and

I’ll say, “but I know they love me, but-but-but-but,” you know?

like I’ll always have an aside for “yeah, like, but it’s okay because

... ” right, I guess I feel like it’s not okay to be. I know it is okay

to be angry at times. and of course now I’m thinking, but I don’t

blame them, they’re who they are, you know? yeah, I always have

to have an excuse for them. but -.

2.6 I think I mentioned it a little bit earlier but like, I was talking to my

friend about it. I mean he - we were sort of sitting in the lunchroom

and he saw a girl that he thought was attractive walk by and he

was like, “wow, she’s a really attractive girl. ”. and I was like, “eh.

”. he’s like “what, you don’t think she is? ”. and I was like, “yeah,

but who cares? ”. that’s just sort of been my sort of feeling lately,

that it’s like yeah, she’s an attractive girl. whatever.

2.6 No.. if someone is looking yeah because well first of all one of the

answers that I think that I can’t find is like this question of what

is a man looking for?

Again, we compare the L-LDA model to lasso logistic regression. Table 1.3 shows a table

of AUC scores for the L-LDA and LLR model with 5%, 10%, and 20% cutoffs used to

create binary scores for the human representativeness ratings. For the L-LDA and LLR

models, we computed an AUC score for the model relative to each individual rater and

then averaged the AUCs across raters. To compare the models against human raters, we

also calculated a human reliability score to serve as a measure of inter-annotator agreement.
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Table 1.3: Talk-turn coding performance for the L-LDA model and Human Reliability scores.
AUC and R-precision scores are shown for the top 5%, 10%, and 20% of talk-turns as rated
by human coders. Human reliability is expressed in AUC and R-precision scores to enable
direct comparison to model performance.

AUC at 5% AUC at 10% AUC at 20%

Code No. TTs L-LDA Human L1 LR L-LDA Human L1 LR L-LDA Human L1 LR

anger 197 0.89 0.94 0.91 0.84 0.94 0.85 0.75 0.87 0.73
anxiety 200 0.76 0.80 0.77 0.72 0.78 0.72 0.66 0.72 0.64

depression 198 0.73 0.87 0.74 0.67 0.84 0.73 0.66 0.84 0.70
low self-esteem 200 0.70 0.82 0.74 0.64 0.81 0.68 0.60 0.78 0.63

suicidal behavior 198 0.78 0.96 0.77 0.70 0.87 0.70 0.67 0.82 0.67
average 0.77 0.88 0.79 0.71 0.85 0.73 0.67 0.81 0.67

R Precision at 5% R Precision at 10% R Precision at 20%

Code No. TTs L-LDA Human L1 LR L-LDA Human L1 LR L-LDA Human L1 LR

anger 197 0.57 0.58 0.67 0.56 0.72 0.59 0.44 0.68 0.41
anxiety 200 0.22 0.33 0.26 0.23 0.43 0.19 0.31 0.46 0.28

depression 198 0.10 0.39 0.26 0.23 0.53 0.24 0.31 0.56 0.30
low self-esteem 200 0.08 0.36 0.14 0.11 0.44 0.14 0.25 0.45 0.25

suicidal behavior 198 0.42 0.78 0.12 0.34 0.64 0.13 0.38 0.60 0.178

These scores give us an upper bound on performance against which to compare our model

(assuming that human raters are performing optimally). To calculate this reliability score,

we compared each individual rater against each of the other raters by computing pairwise

AUC scores. We express human-reliability as AUC scores so that L-LDA performance and

human reliability are expressed in the same units and fair comparisons can be made. For

an individual rater, we calculate AUCs using the ratings of the individual rater (analogous

to the model scores) to predict the binarized ratings (at 5%,10%, and 20% cutoffs) of each

of the other raters. We compute human reliability as the average of all AUCs calculated

from each pair of raters and report the computed scores in Table 1.3. To compute human

reliability in terms of R-precision, we perform an analogous computation using R-precision

instead of AUC.

The table shows that both L-LDA and LLR perform well at identifying representative talk-

turns relative to human reliability. On average, L-LDA AUC scores are between 10-18%

lower than average inter-rater AUC scores. The L-LDA model performs distinctly better
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at identifying talk-turns representative of anger than talk-turns representative of the other

tested symptoms. The unique lexicon of words used to express anger may influence the

model’s performance. In addition, the other 4 symptoms may be expressed in a broader

language that is more difficult to capture through uni-, bi-, and trigrams. In addition to

variation in performance by symptom, the model performs better when identifying the top

5% of representative talk-turns as compared to the top 10%. Therefore, the model is able to

identify the most relevant talk-turns in a session with reasonable precision. The comparison

between L-LDA and the baseline model shows that the LLR model performs about the same

or marginally better than the L-LDA model on each of the three cutoffs (p=0.28, p=0.11,

p=.78, respectively in pairwise t-tests).

1.7 Discussion and Conclusion

In this article, we have presented the Labeled Latent Dirichlet Allocation Model as a method

for the semi-automatic code annotation of psychotherapy sessions. L-LDA outperforms stan-

dard discriminative methods at identification of session-level codes, replicating results from

prior psychotherapy process research and general applications in multi-document classifi-

cation. In addition to session-level coding, machine-learning methods show promise for

annotation of psychotherapy transcripts at fine-grained levels of detail, such as for talk-turn

annotation. L-LDA and LLR can identify talk-turns representative of session-level codes

with accuracy close to that of trained human coders.

Machine learning methods for document classification often focus either on topic-based clas-

sification involving large documents and many topics, or sentiment classification involving

a small set of sentiment labels and often shorter documents [103]. Our work involves both

topic-based classification (for session level prediction) and analysis more similar to sentiment
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classification (talk-turn prediction for a small set of class labels). The generative nature of L-

LDA provides a natural bridge between these two types of document classification problems

by inferring labels for talk-turns based on session-level metadata. Topic-based classification

is performed by integrating topic information over constituent parts of a document (in our

case talk-turns), and sentiment classification is performed using a mapping between topic-

based class labels to sentiment labels. In this way, L-LDA provides richer information than

many sentiment classification methods and more flexibility than some topic-based classifi-

cation models. Examining the relationships between the mapping from topic-based classes

to sentiment classes is an interest for future work and we suspect that incorporating this

information will lead to improved predictive performance.

Promising results in annotation of psychotherapy transcripts suggest potential for applica-

tion to clinical settings in addition to reducing labor costs and improving the scalability of

observational coding. For example, in the process of training junior therapists, supervising

therapists review records of the junior therapist’s sessions. Supervising therapists are often

in charge of many junior therapists and are in need of tools that make the review process

more efficient. One method for making this process more efficient would be to use text-based

models that predict important topics discussed in the sessions (such as depression, suicide,

etc.). The supervisor can get a quick summary of session content and can locate specific

passages in the session by content labels. Additionally, the supervisor can provide feedback

to the model on which passages were relevant to that topic and thus improve future code

annotation.

L-LDA is a model for the semantics of language that, like all models, provides an approxima-

tion to the true underlying process of generating speech to convey meaning. L-LDA makes

several simplifying assumptions about the process of text generation that could provide

starting points for further model development. The “bag-of-words” assumption disregards
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information about temporal characteristics of language and their relation to semantics. L-

LDA also ignores syntactic dependencies. An important direction for semantic analysis of

psychotherapy sessions would be to incorporate sequential information and context into our

analysis. This would involve significant feature engineering, but could benefit from already

existing text processing techniques such as word and sentence embedding.

The work presented above analyzes the relationship between semantic information contained

in spoken language and subjects and symptoms that encompass not just semantics, but

emotion, and behavior. To gain a deeper understanding of psychotherapy, semantic language

models need to be extended to encompass behavior. Considerable information is contained

in behavioral cues such as tone, laughter, or body language that encompass the semantic

meaning of a statement. While these behavioral cues are most likely correlated with language,

we think that jointly analyzing behavior and language will lead to deeper understanding of

the psychotherapy process and its effect on patient outcome.

In conclusion, we used data from the patient provider interactions in psychotherapy to

illustrate the potential of machine learning methods to automate coding of key aspects of

clinical conversation and to understand the linguistic processes behind psychotherapy. L-

LDA is a robust automated coding method that outperforms a baseline logistic regression

discriminative method at predicting codes at the session level and that can be used to localize

information using only session-level metadata.
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Chapter 2

Improving Government Response to

Citizen Requests Online

2.1 Introduction

In 1917, the Mexican government ratified Article 8 of the Constitution [91], which gives

citizens the right to written request. Article 8 states:

Public officials and employees shall respect the exercise of the right of request,

provided it is made in writing and in a peaceful and respectful manner; but this

right may only be exercised in political matters by citizens of the Republic.

Every request shall be replied to in writing by the official to whom it is ad-

dressed, and said official is bound to inform the requester of the decision taken

within a brief period.
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The request system provides the citizens of Mexico with a crucial conduit for interfacing

with their government. The majority of requests come from poor states (at least 46% of

population below poverty line). Requests range from questions on how to enroll in social

services, assistance in accessing a pension fund, and requests for medical coverage. In some

requests, it is obvious that citizens turned to this system when they didn’t know where else to

go. One extreme request was a plea for help; the citizen had been assaulted but the charges

were dropped because the lawyer and witnesses had been physically intimidated. Given the

gravity of some of these requests, it is important that there exist a system to process and

respond to as many requests as quickly as possible. To satisfy this need, the government

of Mexico created the Sistema Atención Ciudadana (SAC), whose sole responsibility is to

receive requests and direct them to the federal agencies that ultimately provide responses.

Traditionally, citizens submitted handwritten requests to a brick-and-mortar location. How-

ever, in 2015 the Mexican government launched an online request submission portal to

respond more efficiently to citizens. The submission process consists of the following steps

(see Figure 2.1):

1. Step 1: A citizen visits the online portal and lodges his or her request (www.gob.mx/atencion/).

They receive a confirmation email and must verify their email address. Once the citizen

has verified their email address, the request enters the system. Unverified requests are

automatically rejected.

2. Step 2: After email verification, a human receptionist reads the request and decides

whether to reject it, or accept it for further processing. Requests can be rejected for

having inappropriate or disrespectful language or for being unintelligible.

3. Step 3: The receptionist decides to send the request to the SAC office or to a help

desk. The help desk provides technical support for the website, and can help citizens find
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Figure 2.1: A step by step diagram of online request submission.

information or forms. All remaining requests are sent to the SAC office.

4. Step 4: SAC analysts send requests to the appropriate federal agency via the agency’s

contact person. Requests are routed to the different federal agencies according to the

subject and the knowledge the analyst has of the federal agencies. If the agency can

handle the request, they write a response. Analysts in the SAC coordinate with the

federal agency to ensure that the request is resolved. If the federal agency cannot handle

the request, they send it back to a SAC analyst to send to a different federal agency.

Once the request is approved by the analysts, an answer is sent to the citizen.

A striking problem with the current system is that the supply of labor for processing requests

is struggling to accommodate an increasing number of requests submitted. The number of

online requests submitted daily doubled from ≈100 requests in 2015 to ≈ 200 requests in

2016, and the government anticipates further increases in request submissions as the website

is publicized. The SAC processes requests manually, and cannot afford to hire additional
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staff. To keep up with the increasing volume of requests, the SAC needs a scalable approach

to processing requests.

The goal of this project is to improve the lives of the Mexican population by increasing

the number of requests that the request system can efficiently process. We focus on 1)

increasing the number of, and speed at which, citizen requests are addressed and 2) improving

the scalability of the online request response system by developing automated methods for

request processing. This automation will enable some percentage of requests to be processed

and routed automatically while the rest will be handled manually (based on the system’s

confidence). Each step in this process has specific bottlenecks that we highlight in the

following sections.

2.2 Step 1: Email Confirmation

2.2.1 Problem

During initial data exploration, we discovered that many requesters fail to verify their contact

via the confirmation email: 32% of all incoming requests remain unconfirmed. The purpose

of this step is to filter spam, but we found that many unconfirmed requests contain legitimate

requests from citizens. Neither the email nor the web portal clearly expressed to the user

that he or she needed to take action on the confirmation email in order to have his or her

request read (See Figures 2.2 and 2.3).

The email contained a text hyperlink that was easily overlooked, an email header that

translates to ’Your request is being Processed’ (when in reality the request will only be

processed after email confirmation), an email subject that suggests that the request has been
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submitted (rather than requesting confirmation from the citizen), and an informal sender

address (sac@presidencia.gob.mx ) that does not convey the official nature of the email.

Figure 2.2: On the left is the old confirmation email. Highlighted are misleading email titles
and headers, informal sender address, and the use of a text hyperlink rather than a button.
On the right the new confirmation email. We changed misleading email titles, sender address,
and used a button rather than text hyperlink to link to confirmation page.

The website also failed to communicate that a citizen would be receiving an email that must

be responded to. The site has a misleading title (’Your request is Being Processed’ ), and only

at the bottom of the page informs the user that a confirmation email was sent and contains

a link that needs to be clicked on. Furthermore, the hyperlink text is not highlighted or

made visually distinct from other text on the page.

2.2.2 Solution

We provided a new version of the confirmation email that clearly expressed to the user that

he or she needed to take action (see figures 2.3 and 2.2). We changed the body of the email

to explain that email will be the primary form of contact between requester and respondent,

and thus must be confirmed in order to proceed. We used strategies from behavioral science

research and widely used in digital marketing to encourage citizens to confirm their email,

including providing a large red button linking to the confirmation webpage (rather than a
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hypertext link), changing the sender email account to reflect a formal sender, and changing

the email subject to indicate that action is necessary.

In the new version of the website, we changed the title to indicate that the user has not yet

finished submitting a request (’You Have One More Step’ ), updated content to inform the

user that a confirmation email was sent, and added step by step instructions for verifying

the user’s confirmation email.

Figure 2.3: On the left the old website with Original Spanish version and English translation.
On the right is the new website with Spanish version and translated version.

2.2.3 Evaluation

We used A/B testing to evaluate whether the new email and web portal would lead to an

increase in confirmation rate. For a two-week period (July 27th to August 8th, 2016), we

collected new requests (≈2500). For each new request, we randomly and uniformly gave the

requester either A) the new versions of the website and email or B) the old versions of the

website and email. We performed a two-way t-test to test the difference in confirmation

rates between the two versions.
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2.2.4 Results

We found that the new website and confirmation email resulted in a 39% (p < 1 × 10−33)

increase in the rate of confirmed requests, compared to the old website and confirmation

email. We believe that the large emphasis placed on advising the citizen that they had one

more step to complete is the driving force behind this increase.

It’s important to note here that simple behavioral science techniques and A/B testing can

have a big impact on response rates in these types of problems.

Our partners at the Office of National Digital Strategy in México [92] have implemented

the changes to the email and website changes, and the rate of unconfirmed requests has

decreased from 32% to 19%. We also provided recommendations for further improvements,

and advised them to continue running A/B tests to test the effects of minor changes to

citizen communications.

2.3 Steps 2-4: request Automation

After a requester confirms his or her email, the SAC reads the corresponding request. In-

dependent subdivisions of the SAC (2) accept or reject a request, (3) send a request to a

technical help desk or to another analyst for agency routing, and (4) route requests to the

appropriate federal agency for response. We implement an automatic routing system to

reduce man hours spent reading requests and increase the scalability of the entire request

system.

Automatic routing of requests can be viewed as a multi-label document classification problem

[45, 123, 85] where each request can have up to two classes (i.e., accepted/rejected, sent to
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helpdesk or sent to a given federal agency). Generally, there are three ways to handle a

multi-label classification: convert into a multi-class classification problem using power-sets,

converted into multiple binary problems (i.e., the Binary Relevance (BR) method), or adapt

the learning algorithm, [45]. Since each stage of our problem is performed by independent

agents, we use the BR method to mirror the independent nature of our problem domain and

allow careful control of performance at each stage. Additionally, the BR method allows for

problem scalability, reduces overfitting of infrequent labels, and allows for flexible inclusion

and exclusion of labels in a potentially changing government environment [114].

Another important modeling choice in text classification is whether to use count or vec-

tor based embeddings [26, 93, 84]. We chose to use a count embedding approach rather

than vector space encodings to easily interpret the relationship between features and model

parameters and to reduce computational demand.

Figure 2.4: Computational pipeline.

We implemented machine learning models for each step in the request process (2-4) (see

figure 2.1). We built a machine learning pipeline to run all sequential tasks: 1) Data ETL,

2) Data Analytics and Exploration, 3) Feature Generation, 4) Modeling, and 5) Evaluation

and model selection (see figure 2.4).
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2.3.1 Data

Our data comes from the SAC and contains information about each request, the citizen who

submitted the request, and how the request was routed.

The data set consists of 69,402 online submissions from October 2014 to May 2016. Each

online submission contains the text of the request, demographic information about the re-

quester, and details from each processing step performed within the SAC, including who read

the request, where the request was sent, and the final government agency that responded to

the request.

The age of requesters ranges from 17 to 67 years, but half of all requesters are under 37 years

old. The skew toward lower ages is most likely due to increased facility with computers among

younger populations, increasing their ability to submit online requests. Men submitted more

requests than women (56%, and 44% of all requests, respectively). Almost all requests (98%)

were submitted in Mexico. The states that submitted the largest percent of all requests are

also the states with the largest populations: Mexico City (19%, 8 million people), the State

of Mexico (16%, 16mil), Jalisco (7%, 7mil), Veracruz (7%, 8mil) and Guanajuato (4%, 5mil).

Out of the 47% of respondents that provided occupational status 28% were employed, 9%

unemployed, 5% students, and 5% housewives.

We also computed descriptive statistics about the text of the requests to provide insight

into feature generation for the machine learning models. Rejected requests and requests

sent to Helpdesk are shorter than those sent to SAC or federal agencies (see Figure 2.5).

Since, requests may be rejected if they contain curse words, we computed how many curse

words each request contained. Less than 1% of requests contained curse words those that

did contain an average of 1.47 curse words. A single request might mention one or more

agencies, so we computed how often each federal agency was mentioned (either its full name
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or abbreviation). From the entire corpus of requests, 44 agencies were mentioned at least

once. The top mentioned agencies were IMSS (1724), ISSSTE (1157), INFONAVIT (795),

SEP (703), and SAGARPA (380).

Figure 2.5: The length of requests for each step of the request process. Requests that were
rejected or sent to the help desk are shorter than accepted requests.

2.3.2 Feature Generation

Table 2.1: Set of all features used in all models.

Set name Features

BOW 8 BOWs
Document
Statistics

request length (words/characters), request length after processing, number of words removed during
preprocessing, number of curse words used, whether each agency was mentioned (one feature per agency),
number of times each agency was mentioned (one feature per agency)

Demographics gender, occupation, nationality, whether requesteris Mexican, time of day submitted

Our set of generated features consists of text statistics, document attributes, and demo-

graphics (see Table 2.1).

We created multiple Bags-of-words (BOWs) by varying 1) whether to apply a term frequency-

inverse document frequency (TFIDF) transformation, 2) whether to tokenize documents into

unigrams or unigrams+bigrams, and 3) whether to stem tokens. Request pre-processing

resulted in 8 different BOWs: one for each combination of parameter options. We removed
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a custom set of Spanish stopwords manually selected to have little semantic value. When

fitting our models, we consider each BOW a separate corpus representation and test which

representation leads to better performance.

We generated document attribute features by computing document level statistics such as

the number of times curse words were used in a request, the length of the request, the number

of words removed during pre-processing (as a marker of how different requesters expressed

themselves), and the number of times each federal agency was mentioned in request text.

We used demographic information to generate categorical features such age, sex, location,

and occupation. We also included the time of day when the request was sent. Since most

of the demographic fields were not mandatory, we added additional binary features to flag

whether the requester provided each demographic variable.

2.3.3 Modeling

We built machine learning models for automating steps 2-4 of the request submission process

(accept/reject, help desk/SAC, routing to federal agencies). Each model takes features

computed from one submission (request and requester) as input and returns a class label as

output.

We fit our models on different subsets of the dataset. The accept/reject model was fit on all

requests in the dataset. The help desk model was fit on all the accepted requests since its

creation in January 2016. The federal agency model was fit on all requests sent to the SAC.

By using all applicable data to train each model, we treat each step as independent. This

gives the best possible estimates of how much time we could save at each step, but may not

accurately reflect system performance across steps.
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Table 2.2: Models and parameter values iterated over in the pipeline.

Model Parameters Range

Random Forest estimators, max depth, min sample split penalty [100-3000], [10-500], [5,10] [0.001,0.1,1,10]
Logistic Regression penalty [0.00001,0.001,0.1,10]
Naive Bayes - -
Linear Support Vector penalty [0.001,0.1,10]

For all steps, we performed a grid search over model types and parameters to optimize

performance (See table 2.2 for a list of all model and parameter combinations). For step 2,

we fit binary classifiers to predict whether a request would be accepted or rejected. For step

3, we fit binary classifiers to predict whether a request would be sent to the help desk.

For step 4, we fit independent binary classifiers for sending a request to each of the top five

most solicited agencies (see Table 2.3). We focus on the top five most solicited agencies

because they make up a plurality of request submissions. Other agencies had too few sub-

missions to reliably classify. Focusing on the top five allowed us to create a classifier that

could reduce the load on the SAC by handling the more common requests while minimizing

error.

We compare two types of decision frameworks: one in which a request can be sent to one

and only one agency (multi-class classification), and another in which a request may be sent

to multiple agencies (multi-label classification). While the former approach fits more closely

with current SAC practices and is therefore easier to implement, we find significant perfor-

mance improvements in the latter, potentially allowing the SAC to process more petitions

faster.

For the single-label case (a request can be sent to only one agency), we compare our thresh-

old optimization routine and decision rule to a decision tree, and find that the threshold

optimization routine performs better.
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Table 2.3: The top five most solicited federal agencies and number of requests sent to each
agency between October 2014 and May 2016.

Agency Abbr. #Pet

Secretaŕıa de Educación Pública SEP 4,112
Dirección General de Atención Ciudadana DGAC 3,980
Secretaŕıa de la Función Pública SFP 2,197
Secretaŕıa de Salud SS 1,492
Secretaŕıa de Economı́a SE 1,315

Threshold Optimization Binary models traditionally produce classifications by defining

a score threshold; examples with scores above the threshold are classified as 1 and examples

with scores below the threshold are classified as 0. To produce a classification from a set of

scores, we must find a set of thresholds (one per agency) and a decision rule (i.e., how to

classify a request with multiple scores above the respective thresholds) that produce optimal

classifications. Our threshold optimization routine searches over all possible combinations

of score thresholds and selects the set of thresholds that gives the highest precision given a

minimum recall of 0.15 (see Algorithm 1). In order to reduce computational demands, we run

two iterations of the optimization procedure. On the first, we use larger-spaced thresholds.

In the second, we manually select high-performing threshold ranges in consultation with the

office on acceptable failure rates given the error rate of human classification.

Decision Tree We compared our threshold optimization routine to a decision tree that

selects an agency from the binary classification scores. For a single request, the tree takes

scores from the top models for each agency as input and produces a categorical label. The

label indicates which agency to send the request to or, alternatively, if the request should be

sent to another federal agency.
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input : requests (P ), class labels (C), set of classification models M , n = |M |,
integer k

output: best threshold set tmax

1 for iteration = 1:2 do
2 if iteration == 1 then
3 // evenly-spaced threshold generating set;

4 hm = [0, 1
k
, 2
k
, ..., k−1

k
] ∀m ∈ {1, 2, . . . , n}

5 end
6 // generate threshold superset, all combinations of thresholds

for each model;

7 T = {[h1(j2), h2(j2), . . . , hn(jn)] | ji ∈ {1, . . . , k} and ∀i = 1, . . . , n };
8 for threshold set t ∈ T do
9 for request p ∈ P do

10 s = [M1(p),M2(p), ...,Mn(p)] // model scores;

11 if sum(s > t) == 1 then
12 Cout(p) = c : sc(p) > tc // predict class

13 else
14 Cout(p) = −1 // send to SAC

15 end

16 end
17 PREC(t) = precision(Cout, C) ;
18 REC(t) = recall(Cout, C) ;
19 // correct prediction if the correct class or we send to SAC

and correct class is not among candidate models

20 end
21 tmax = argmaxt∈T :REC(t)>0.15 PREC(t) ;

22 // set threshold generating sets for next iteration;

23 for m ∈ {1, ..., n} do
24 hm = [am : bm−am

k
: bm] // am, bm chosen by visually inspecting

range of thresholds that gave highest precision for each

model

25 end

26 end

Algorithm 1: Threshold Optimization Routine

Multi-label Agency Classifications We also explore a decision framework that allows

a request to be sent to multiple agencies. The intuition behind this approach has two parts.

First, if a request is sent to more than one agency at the same time, this in effect parallelizes

the current process, allowing for faster processing time overall. Second, we could provide a
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list of possible classifications to analysts to reduce classification errors, and speed up the time

it takes to manually classify a request. We expect automation to allow the SAC to handle

more requests. However, if too many redundant requests are sent to federal agencies, then

any time-saving benefit will decrease as they divert energy toward handling misclassified or

duplicate requests. Whether this approach is effective will depend on emerging bottlenecks

as the system is deployed, and optimizing between the two approaches will require continued

testing of the deployed system.

As in the first decision framework, we use a score threshold for classification; however, here

we use a cost matrix to optimize the set of recommended classifications. The cost matrix

allows us to weigh the consequences of false positives differently than false negatives. A false

negative is very costly because eventually the request will have to be sent through the manual

system. A false positive is less costly. As long as the correct federal agency is among the set

of all agencies a request is sent to, that request will not have to re-enter the manual system.

The set of possible classifications and corresponding costs for a request are as follows:

Cost = 1: A request is classified as not belonging to any of the top five agencies, and we

send it through the manual system. This case does not require any additional work

over the current manual system, so we assign it a low cost.

Cost = 0.5 ×(N− 1): N classifications to agencies are produced, of which one classifica-

tion is correct. Since we sent the requests to N − 1 incorrect agencies, we penalize by

the number of incorrect agencies we send to. If we set the cost for sending a request

to the incorrect agency as 1 or higher, then this analysis is unnecessary, since it would

be less costly to send any request with more than a single classification through the

manual system. This simplifies to the case in the single classification framework that

we described above.
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Cost = 2×N: N classifications to agencies are produced, and they are all incorrect. We

penalize this case heavily because it wastes time, and we will have to send the request

through the manual system after agencies deny the request.

We then use a threshold optimization routine for classification. Given a set of score thresholds

and model scores for a request, the threshold routine classifies a request as follows:

1. If zero model scores are above their respective score thresholds, we classify the request

as belonging to an agency outside the set of agencies we are considering.

2. If two or more agency scores are above their respective score thresholds, we send the

request to all agencies with scores above threshold.

Similar to the threshold optimization routine for the single-classification framework, we

iterate over all possible threshold sets. We compute a total cost for each threshold, and find

the optimal threshold by choosing the threshold set with minimum cost that sends at least

15% of all requests to one or more federal agencies.

2.3.4 Evaluation and Model Selection

The general objective of our models (accept/reject, helpdesk, federal agency) is to automate

as many requests as possible while maintaining a low error rate, where error rate is defined

separately for each step in the request process. A key aspect of our problem scope is that

our models do not have to automate all requests, since any requests we are not confident

about can be sent through the existing manual system. Therefore, we only automate the

requests that we are most confident about, and optimize the number of requests processed

automatically at a given error rate. We worked with the National Digital Strategy office to
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decide acceptable error rates and found that the maximum error rate allowed at any step is

6%. Thus in general, the metric we will optimize is the maximum number of requests we

can classify at an error rate of 6%. We also report the number of additional man hours our

models would save.

All model evaluation for single binary models is performed in a 10-fold cross validation

routine. We use a stratified (by federal agency) 5-fold cross validation routine for training

and testing multi-class federal agency classification.

Step 2 Accept/Reject

We evaluated our accept/reject model according to the maximum number of requests we can

accept while guaranteeing that 94% of accepted requests are true positives. Specifically, we

maximize the percent of requests that we can classify with a precision of 94%. Our modeling

pipeline automates this process, and allows the SAC to choose any precision threshold.

Importantly, we only automate requests that our model is highly confident will be accepted.

This avoids the ethical problem of automatically rejecting requests, since rejecting a request

that should have been accepted denies a citizen their constitutional right to request.

Step 3 Helpdesk/SAC

We evaluated our help desk model according to the maximum number of requests we can

automate by funneling accepted requests to either the SAC or the help desk. For this model,

the cost of misclassification is not as high, since misclassified requests remain inside the

request system and are manually re-routed to the correct location. Specifically, we take the
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model that maximizes

max
m

p0.94m + 1− r0.975m ,

where p0.94m is the percentage of requests classified when help desk precision for model m is

0.94 and r0.975m is the percentage of requests classified as help desk when help desk recall is

0.975. Intuitively, maximizing p0.94m gives the most requests we can send to the help desk

with 6% error. Maximizing 1 − r0.975m gives the minimum percentile at which we attain a

recall of 0.975, representing the a high separability between help desk and SAC scores.

Step 4 Federal Agency

For each federal agency, we searched for the binary classifier that allowed us to route the

most requests with the minimum error rate. For each agency, we selected the model that

optimizes

max
m

p0.94m

where p0.94m is the percentage of requests classified as being sent to an agency when precision

for model m is 0.94.

Using the best models for each federal agency, we compute a decision rule, either by decision

tree or threshold optimization. For the framework where a request can be sent to just one

agency, we evaluate models (decision tree vs. threshold optimization) by searching for the

model with highest overall precision. For the best model, we report the precision, recall, and

the number of requests we could automate at that precision. We evaluate the multi-label

classification decision framework by comparing the total cost associated with our model to

the total cost of the current manual system.

52



2.3.5 Results

The best accept/reject model is a Random Forest with 1000 trees, 500 maximum depth, 5

minimum sample split and log2 maximum features using document statistics and bags of

words as features (See figure 2.6 for a histogram of scores and true classes). The model can

classify accepted requests with an error rate of 8.8%, but this is a small improvement upon

the baseline error rate of 9.2% obtained by classifying all requests as accepted.

If we take only the requests that we are most confident in accepting, we can automate 85%

of all requests with a 6% error rate, which would automate 170 requests and save 3.8 man

hours per day (at a rate of 200 requests in an 8 hour work day).

We looked into the data for reasons for this low performance, and found that content was

not greatly discriminative for accepted and rejected requests. We believe that incorporation

of new features and manual pruning of the dataset may lead to improved performance, but

we leave this to future work.

Figure 2.6: Density of random forest scores for accepting and rejecting requests. The thresh-
old is drawn at a 6% error rate, which allows us to automate 85% of requests.

53



The best performing help desk/SAC model is a Random Forest with 1000 trees, 100 maxi-

mum depth, 5 minimum sample split and log2 maximum features using the demographic, bag

of words, and text metric features (See figure 2.7 for a histogram of scores and true class).

The vertical lines on the figure show score cutoffs that define score ranges that correspond to

where to send requests: scores above the upper threshold are sent directly to the SAC, scores

below the lower threshold are sent directly to the help desk, and scores in between are sent

to a receptionist to process. The thresholds were chosen so that of the automated requests,

there is only a 6% error rate. We found that using these thresholds we can automate 39%

of requests at this step, saving approximately 3.12 man hours per day (at a processing rate

of 200 requests in an 8 hour workday).

Figure 2.7: Density of random forest scores for sending requests to the help desk or the SAC.
The thresholds are drawn at the positions where we can automate the most requests with
an 6% error rate, allowing 39% of all requests to be automated.

For federal agency routing, we took the models that best automate requests by looking at

the percent we could automate at an error rate of 6%, i.e., the percent of requests we could

automate with precision of 0.94 (See Table 2.4). The model for routing requests to Secretaŕıa

de Educación Pública (SEP) provided the best individual level of automation and was able to
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Table 2.4: Performance, parameters, and features used in our best performing models.
LR=Logistic Regression, RF = Random Forest. Perc. at 0.94 is the percent of all re-
quests we can classify with a precision of 0.94. This is the metric we maximize to choose the
best model.

Perc.
Agency Mod. Parameters Corpus @ .94

SEP RF max depth=100 tfidf=0 3.6
max feat=log2 1-2gram
n estim=3000 stem=0
min samp split=10

SS RF max depth=500 tfidf=0 0.09
max feat=log2 1-2gram
n estim=1000 stem = 0
min samp split=10

DGAC LR C=1 tfidf=0 0.08
norm=L1 1gram

stem = 1

SFP LR C=10 tfidf=1 0.02
norm=L1 1-2gram

stem=0

SE LR C=1 tfidf=0 0.01
norm=L1 1gram

stem=0
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automate 3.6% of requests at a 6% error rate. The next best models were for automating to

Secretaŕıa de Salud (SS,.09%), the Dirección General de Atención Ciudadana (DGAC,.06%),

Secretaŕıa de la Función Pública (SFP,.02%), and Secretaŕıa de la Economı́a (SEP, .01%).

Were we to incorporate a single model for agency routing, in this case the model for routing

to SEP, we would be able to automatically route approximately 2-3 requests per day and

save the SAC 1.14 man hours per day (3 analysts and one supervisor processing 200 total

requests per 3.53 hours, given time spent on handwritten requests).

We evaluated our threshold optimization routine for producing single classifications from all

independent models, and compared it to a decision tree in order to provide an option that

could fit into the current SAC process. We also evaluated the performance of the threshold

optimization routine in a multi-label agency classifications setting.

Threshold Optimization The threshold optimization routine performed better than the

decision tree, resulting in a precision of 0.84, recall of 0.25. The threshold optimization

routine would send 14% of all requests to one of the top five dependencies, which would save

2.03 man hours per day. However, the precision for the threshold optimization routine is

still too low to satisfy our partners requirements. We believe that this poor performance is

in part because in the available data there are relatively few requests sent to each agency.

As the online request system matures and more requests are submitted to the top agencies,

we hope that precision will increase enough for the system to be implemented. Because of

this poor performance, we also presented the multi-label classification framework.

Decision Tree For the single classification federal agency decision framework, the decision

tree resulted in a precision of 0.203, recall of 0.438, and accuracy of 0.55. The model had

trouble distinguishing requests that should be sent to DGAC from requests that should be

56



sent through the manual system; 47% of requests sent to the DGAC were classified by the

model as manual system, and 14% of requests sent through the manual system were classified

by the model as DGAC. This result is not surprising since DGAC, the office that processes

requests, is the final agency to send out a response, and most likely receives many requests

inquiring about responses to other requests. The threshold optimization routine did a better

job of distinguishing between agencies with the training data available so far.

Multi-label Classification The threshold optimization routine for multi-label classifica-

tion performed better than an all-manual baseline, on average resulting in ≈ 66% of the cost

of running the manual system (18470.5 versus 27546). A cost of 1 corresponds to sending

the request through the manual system, which is equivalent to 0.2748 man hours (three

analysts and one supervisor processed on average 51.36 online requests in 3.528 hours, given

handwritten request processing time). Thus, the multi-label classification system would have

saved the SAC 4.7987 man hours a day over the 18 month period over which the data was

collected, and to process an additional 17.46 petitions per day.

2.3.6 Technical Implementation

The pipeline is implemented using the pipeline manager tool Luigi [7] that allows the system

to be deployed at scale. Luigi helps build complex pipelines of batch jobs by automatically

handling dependency resolution. For example, for each task in our pipeline, we specify three

functions:

1. requires: returns the output that must exist for the task to run

2. run: runs the task
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3. output: returns the output of the task.

Luigi automatically checks whether the required input exists for each task, and only runs a

task if its output does not exist or if its input has changed. We avoid redundant calculations

by separating each calculation into modular tasks. This enables the SAC office to both

automatically retrain the models as new data becomes available, and avoid time-intensive

recalculations when adjusting score thresholds and other model specifications.

All computation was run using Amazon Cloud Computing, databases were hosted on Amazon

Cloud Computing servers, and output was stored on Amazon S3. All code is available on

github [99].

To have access to a larger suite of analytical tools and database resources, we migrated the

MySQL database into a PostgreSQL database. We then created a non-normalized schema

for feature generation and model building. Feature generation was done using PostgreSQL,

sci-kit learn, and gensim [115]. Modeling was implemented in sci-kit learn [104] and we used

luigi to perform a grid search over all models and parameters.

To easily deploy our system on the SAC’s servers, we wrote Docker containers to initialize

and run the pipeline. Docker containers are virtual environments that wrap software in a

complete file system that contains everything needed to run: code, runtime, system tools,

system libraries. Docker guarantees that software will run consistently, regardless of its

environment. Our Docker files contained all the necessary code for setting up a Luigi server

that runs all pipeline tasks.
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2.3.7 System Integration

To seamlessly integrate our automated system, models will be initially tested side-by-side

with the receptionist and analysts. For each model that accurately automates a step of the

process, that model may be deployed. This testing period will build trust in the system as

users (SAC employees) see how it works. It will also be an opportunity to get user feedback

and determine acceptable error rates.

To ensure that our models remain robust to changing request topics, we recommend con-

tinually generating unbiased labeled data; a percentage of requests that were confidently

classified should still be sent to the receptionist or the SAC. These labels should be used

to re-train, re-test, and re-select top models at regular time intervals to ensure that models

change over time with the data and continue to automate the maximum number of requests

possible at acceptable error rates.

It is extremely important that the accept/reject model only automates high-confidence ac-

cepted requests. If a request is rejected that should not be rejected, we are denying a citizen

access to his/her constitutional right and undermining the goals of the request system.

2.4 Future Work

A limitation of our work is that our models at each step were fit independently on perfect

data from the proceeding step. For example, we did not test the case where our accept/reject

model erroneously accepts a request and then sends that request to our help desk model.

Since the accept/reject model automates the first step in the processing system, our results

are accurate for this step and the model will still save 3.8 hours per day of manual processing
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time. However, we expect the help/desk and federal agency routing error to be slightly larger

in practice. Future work will involve integrating models into a single system, optimizing for

system-wide performance, and analyzing system-wide error propagation.

Our evaluation framework can be improved to account for changing topics in the submitted

requests. Since the data came from a 1.5 year time period, we don’t think that this greatly

impacted results. However, as the system matures, incorporating temporal changes in the

data will become increasingly important. We plan to do this via temporal cross validation

and periodically refitting our classifiers as additional data are generated.

Another method by which the evaluation framework should be improved is to further inves-

tigate the biases in our dataset. During data exploration, we looked at the demographics

most likely to submit a request, but should expand these analyses to whether certain de-

mographics are associated with accepting/rejecting requests or to which agencies requests

are sent. In the case that systematic biases exist, further analysis should be conducted to

determine whether biases are a result of request content or the decision making process.

Together with the SAC, any decision-making biases should be addressed in incoming data

streams. Importantly, the causal mechanisms of these biases need to be studied in order

to understand how to correct them. We cannot correct artificial intelligence biases without

correcting our own biases.

2.5 Summary

The presented work improves the request processing system of the government of Mexico

by increasing the number of requests read by the government and developing automated

methods for request processing. Using our work, the SAC will be able to process and respond
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to more requests in a timely manner. The government of Mexico will be able to fulfill the

guaranteed right to request and the lives of Mexican citizens will improve.
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Chapter 3

Predicting Task and Subject

Differences with Functional

Connectivity and BOLD Variability

3.1 Introduction

Functional connectivity (FC) and BOLD variability (BV) are two metrics that focus on

changes of the BOLD signal around the mean. FC is the correlation or covariance in BOLD

activation across regions [38, 10, 40, 136] and BV is the region-specific variance in BOLD

activation [46, 47, 48]. Figure 3.1 illustrates the connections between FC and BV. FC (tradi-

tionally computed as the Pearson correlation) is based on a combination of the off-diagonal

and diagonal entries of the covariance matrix, whereas BV is based on the diagonal entries of

the covariance matrix. Unlike FC, BV can be computed independently for each region and

does not require computationally expensive pairwise comparisons or the conceptualization
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of an underlying network. Across different studies, FC and BV have both been linked to

task and individual differences but they have not been compared directly in a single study.

This paper presents an assessment of the relative diagnosticity of FC and BC in predicting

task being performed and subject identity.

Figure 3.1: Example FC and BV computation. Time series for three ROIs (A) are used to
compute the covariance matrix (B) where σ2

ij represents the covariation between ROIs i and
j and the red diagonal entries represent BV. The covariance (B) can be used to compute
the Pearson correlation matrix (C), where the ij-th entry of the matrix is σ2

ij/(σiiσjj). FC
can refer to either the covariance matrix, which explicitly includes BV, or the correlation,
which indirectly includes information about the variance. FC is traditionally computed as
the correlation and the diagonal of ones is discarded.

FC can be separated into two subcategories that have both been used to predict task: whole-

brain (computed across the entire brain) and networks (computed between subsets of brain

regions). Whole-brain FC has been used to accurately predict whether subjects are engaged

in a task or at rest [117], to discriminate between subject-driven cognitive states [125], and to

robustly track ongoing cognition. Furthermore, the ability to track states with FC has been
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associated with measures of behavioral performance [55]. FC networks have similarly been

shown to predict subject-driven cognitive states [130], have been associated with attention

[78], and to accurately track task-evoked states [73].

Despite strong links between FC and task-evoked states, recent research suggests that the

majority of the variance in FC is accounted for by “who you are and not what you are

doing” [34, 35, 131]. Subjects exhibit individual resting state network architectures that are

detectable in task-based fMRI [19]. These individual network architectures create a unique

signature that can be used to accurately identify them within a group [34] – identification

that is robust across both task and time. Individual resting state FC has also been used to

predict changes in the BOLD signal across task conditions. For example, Tavor et. al. 2016

used resting state FC and gross brain morphology to accurately predict BOLD modulation

across a range of cognitive paradigms, suggesting that individual differences in task-evoked

activity are stable trait markers of underlying individual differences in resting state FC [131].

BV presents a different approach to study BOLD fluctuations that is also associated with task

and subject. A series of neurocognitive aging experiments (for reviews see [51, 57]) showed

age-related effects on task BOLD variability that are separate from and more predictive than

the mean [46]. A follow-up study [47] identified regions that were associated with age, the

speed of response, and consistency of behavioral performance. The difference in variability of

high performance-associated regions versus low performance-associated regions was greater

for younger, high-performing subjects. In a latent variable study, BV was linked to age,

response time, and accuracy in a spatial working memory task. BV in neocortex was also

associated with task-related disengagement of the default mode network [60]. BV has also

been shown to be related to sub-optimal financial risk tasking among older adults [120].

In addition to age-related effects, individual differences in BV have been associated with

lower visual discrimination thresholds [146]. BV has been also found to vary across task
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conditions (fixation versus during task) [48] and to be associated with task-evoked activity

[90]. BV has been linked to several physiological mechanisms. Increased BV has been linked

to dopamine D1 receptor density in the caudate and DLPFC [60]. In a pharmalogical study,

administration of a cholinergic enhancing drug was associated with improved performance

during a matching task and lower FC and BV during the matching task, but not during

a control task [116]. A study of older adults showed that greater BV was associated with

better fluid abilities, better memory, and greater white matter integrity in all white matter

tracts [12].

Taken together, these research results demonstrate that FC and BV reliably relate to task

and subject differences. A key question is whether all of the changes in FC due to task

and subject differences can be uniquely attributed to changes in the underlying network

structure. Alternatively some of the effects might be related to changes in the BV (which we

will refer to as functional variability, or BV) of individual regions that affect the measured

FC. In this paper, we will apply two supervised machine learning approaches to assess

the degree to which BV and FC are predictive of task and subject differences. If similar

predictive performance can be achieved by BV relative to FC, it suggests that some of the

statistical information contained in FC is also present in BV. By examining the difference in

predictive performance between FC and BV, it is possible to assess the unique contribution

of network-related information as opposed to changes in the variability of individual regions.

65



3.2 Materials and Methods

3.2.1 Data Acquisition

MRI recording was performed using a standard 12-channel head coil on a Siemens 3T Trio

Magnetic Resonance Imaging System with TIM, housed in the Center for Cognitive and

Behavioral Brain Imaging at the Ohio State University (OSU). BOLD functional activations

for tasks were measured with a T2*-weighted EPI sequence (repetition time = 2000 msec,

echo time = 28 msec, flip angle = 72 deg, field of view = 222 x 222 mm2, in-plane resolution

= 74 x 74 pixels or 3 x 3 mm2, 38 slices with thickness of 3 mm). The resting state acquisition

had higher resolution (repetition time = 2500 msec, echo time = 28 msec, flip angle = 75 deg,

in-plane resolution = 2.5 x 2.5 mm2, 44 slices with thickness of 2.5 mm). The T1-weighted

brain volume (three-dimensional MPRAGE; 1 x 1 x 1 mm3 resolution, inversion time = 950

msec, repetition time = 1950 msec, echo time = 4.44 msec, flip angle = 12 deg, matrix size =

256 x 224, 176 sagittal slices per slab; scan time 7.5 minutes) was acquired for each subject.

Stimuli were presented to subjects on a rear projection screen through a mirror on top of the

head coil. Visual stimuli were generated on a Windows computer running Matlab programs

based on Psychtoolbox extensions (http://psychtoolbox.org/). The subjects were recruited

from the Ohio State University and the surrounding community, and gave informed consent.

The experimental protocol was approved by the institutional review board at OSU. A total

of 250 subjects participated in the study, but 174 of them (age 18 to 39, mean 21.6; 63 males

and 111 females) were included in the data analysis. The subjects were excluded if, during

any of tasks, part of the cerebral cortex was out of field of view due to head motion, or the

mean frame-wise displacement of head motion was greater than 0.15 mm.

During the 1.5-hour MRI session, each subject performed eight behavioral tasks designed
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to target basic cognitive function: emotional picture viewing [23], emotional face viewing

[25], episodic memory encoding, episodic memory retrieval [88], Go/No-go [127], monetary

incentive [77], working memory [148], and theory of mind stories/questions [28]. Only 5 of the

8 tasks had correct or incorrect responses, and thus be given a behavioral performance score.

Resting state scans were also recorded for each subject. Each functional scan lasted about

6 minutes, ranging from 4.1 minutes for the episodic memory retrieval task to 8 minutes

for the monetary incentive task. The task descriptions are presented in Table A.2 of the

Appendix. For convenience of description, the resting state is treated as one of the 9 tasks.

Of the 174 subjects, 19 subjects returned and repeated the experiment on average 2.8 years

(SD=0.4) later. We will refer to this group of subjects as the target group as all machine

learning evaluations focus on this group.

3.2.2 Data Processing

All functional brain images were corrected for motion artifacts, spatially smoothed (2-

mm FWHM Gaussian kernel), highpass temporal filtered (Gaussian-weighted least-squares

straight line fitting, with sigma of 45 seconds), co-registered to T1-weighted image, and

normalized to the standard brain and further refined using nonlinear registration in FSL

(FMRIB software library, version 5.0.8, www.fmrib.ox.ac.uk/fsl). Linear regression was per-

formed to remove task-related BOLD responses based on the design matrices of the tasks.

Removal of task-related BOLD response ensures that patterns in the data reflect variation

about the mean rather than mean BOLD activation. Due to inter-subject differences in

hemodynamic response, as well as interregional differences in hemodynamic response tim-

ing, it is possible that some task-related BOLD response remains. While removing the mean

BOLD trend may lower predictive performance, we emphasize using prediction to compare
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BV and FC rather than as a goal in itself. Images were parceled into 299 regions of interest

(ROIs) using a functional atlas derived by functional clustering of an outside dataset at the

University of Western Ontario. The clustering uses a graph-theoretical approach [22]. In

this group-level parcellation approach, resting state functional connectivity is represented as

a graph where nodes are voxels and edges are functional similarity computed as the Pearson

Correlation between voxels. The graph is locally spatially constrained so that only adjacent

voxels (those sharing an edge or vertex) have nonzero similarity. The method 1) computes

individual adjacency matrices using normalized cut spectral clustering (NCUT) [124], 2)

averages the adjacency matrices (into a coincidence matrix), and 3) performs a group level

parcellation on the group coincidence matrix using NCUT. A mask was used to remove edge

voxels to prevent the machine learning classifiers from classifying subjects on the basis of

edge-cortex misalignment artifacts created during brain co-registration. To create the mask,

we removed any voxels that had low mean intensity in any scan. We removed all ROIs with

any voxels that were removed (which is the most conservative approach for removing edge

affects, e.g., as opposed to removing ROIs based on a threshold for percentage of voxels

removed). After removal, 269 ROIs were left for analysis.

3.2.3 Feature Generation

We use the term FC to refer generally to any set of features that requires computing the co-

variance and BV to refer to any set of features that requires computing only the variance. For

the time series from each task and subject, we compute FC using three different approaches

that all depend on entries of the covariance matrix: 1) the Pearson correlation (FCP), 2)

the off diagonal entries of the covariance matrix (FCC), and 3) the full covariance matrix

(FCCV). FCP and FCC exclude direct information about the variance. However, FCP uses

the variance as a normalizing term (see Figure 3.1). We compute BV using two different
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approaches: the variance (BVV) and the standard deviation (BVSD). BOLD activation is

de-meaned before computing features.

3.2.4 Machine Learning Approach

Our analysis consists of two prediction tasks, task prediction and subject identity prediction.

The goal of task prediction is to predict which task a test subject was performing during

scanning given features computed from the scan (random performance in this task amounts

to 1/9 = 11% accuracy). The goal of subject identity prediction is to predict which subject

generated a test scan given features computed from the scan (random performance in this

task amounts to 1/174 = 0.57% accuracy). Task prediction and subject identity prediction

are evaluated in two settings: within-session and between-session. For within-session pre-

diction, all training and test data are taken from session 1. For between-session prediction,

training data are taken from session 1 and test data are taken from session 2. For task

prediction, we exclude the session 1 scans from the target group from training so that the

classifier learns from only task-related (i.e., not subject-related) information. Because fewer

subjects participated in session 2, we restrict test sets to only the target group (i.e., 19

subjects that were scanned in both sessions 1 and 2), allowing us to directly compare within-

session and between-session performance. However, note that for the subject identification

task, the models are not informed of this restriction and have to discriminate between all

174 subjects who participated in the experiment.

We use multinomial logistic regression (LR) for task prediction and a nearest neighbor (1-

NN) model for subject identity prediction to be consistent with previous analyses [34]. The

models are evaluated differently as specified in the next section.
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Multinomial Logistic Regression

Regularized multinomial logistic regression models [62, 132, 153] learn to discriminate be-

tween multiple class labels for a given data point. Feature weights are regularized using a

choice of norm (L1, L2, elastic) and a parameter λ that controls the strength of regulariza-

tion. We use an L2 penalty with regularization parameter λ = 1. Regularization usually

results in improved generalization performance and is important in our analysis because it

allows us to fit models using FC feature sets where the the number of features is larger than

the number of data points. We used LIBLINEAR [32] to fit all logistic regression models.

For each prediction task (task and subject identity prediction), we train independent models

that take a set of features as input and output a class prediction (task or subject identity).

For all within-session prediction tasks, we use 5-fold stratified nested cross validation. The

cross validation procedure is stratified in order to guarantee that a particular test subject

always had some data used for training. For the within-session prediction tasks, the training

set consists of a) all session 1 data not from the target group and b) a stratified 80% random

partition of the session 1 data from the target group. The test set consists of the session

1 data from the target group that was not included in the training data. For the between-

session task and subject identity prediction tasks, the training set consists of all session 1

data, and the test set consists of session 2 data (which only contains data from the target

group). For each prediction task and setting, we use an inner cross validation loop over the

training data to optimize the regularization parameter λ over the set [0.001, 0.01, 0.1, 1, 10].

For each training fold, we split our training data into validation-training and validation-

test sets. For each of 2 validation folds, we train a model on the validation-training set,

predict the labels of the validation-test set, and compute the validation fold accuracy. We

compute the average validation accuracy (over 2 validation folds). To calculate an estimate

of generalization accuracy, we average the average validation-test set accuracies over the 5
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training folds. We use the parameter with the highest accuracy for testing. The inner cross

validation loop is done using LIBLINEAR’s built-in cross validation [32].

Nearest Neighbor Model

In contrast to LR models that learn from information across tasks, our 1-NN models are

restricted to information from pairs of tasks where one is used for test and the other can

be thought of as a training set. In principle, the 1-NN model could be set up analogously

to the LR model, but we replicate analyses used in previous work [34] that were used to

investigate whether functional signatures indicative of subject identity are preserved across

pairs of tasks.

Each 1-NN model takes as input a test instance from task A and a set of labeled training

instances from all subjects in task B, where each instance is comprised of features computed

from a scan from a particular subject in a particular task. The predicted identity is the

identity of the subject corresponding to nearest training instance, where we define similarity

using the Pearson correlation. For between-session prediction, we iterate through all pairs of

tasks A and B. For within-session prediction, we exclude pairs consisting of the same tasks

(e.g., A-A) because each task was performed only once per session. To give a comparable

set-up to LR task prediction, the test instances are always chosen from the target group and

training instances are always chosen from session 1.

Credible Intervals on Classification Accuracy

For each model and prediction setting, we report a 95% credible interval on the classification

accuracy. We model the classification outcome of the ith test instance as a Bernoulli random
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variable xi where the probability of a correct classification equals θ (p(xi = 1) = θ). Then the

sum of classification outcomes X =
∑N

i=1 xi can be modeled as a Binomial random variable.

Since we have no prior belief on the probability of correct classification, we place a uniform

prior on θ (θ ∼ Beta(1, 1)). The posterior distribution of θ can be computed analytically

as p(θ|α̂, β̂) = Beta(θ|α̂, β̂) where α̂ = 1 + X and β̂ = 1 + N − X. We report the 95%

credible interval on probability of correct classification as the 2.5% and 97.5% percentiles of

the posterior distribution over θ.

3.3 Results

First, we examine patterns in BV organized by subjects and tasks. Next, we show classifica-

tion performance of the machine learning classifiers and contrast the relative diagnosticity

of BV and FC in the three prediction tasks.

3.3.1 Visualizing BOLD Variability

Figure 3.2 shows BV for the target group subjects in session 1 (panel A) and session 2 (panel

B). Rows are first grouped by subject and then by task. Columns are first grouped by

brain lobe then by ROI. The results show subject-specific patterns in BV that are preserved

between sessions. For example, subjects 2, 7, and 9 have relatively high BV in both sessions

regardless of task and subject 18 seems to have relatively low BV in both session regardless

of task. None of these subjects with outlying BV were outlying in demographic categories

(weight, age, height, race). Subjects 2,7, and 9 have higher mean frame displacement than

the other subjects (mean of 0.21 versus 0.09). Subject 5 has relatively low Frontal BV but

average Occipital and Parietal BV. In addition, the results show lobe-specific effects that are
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Figure 3.2: BV for 19 subjects from session 1 (A) and session 2 (B). The y-axis organizes
scans first by subject and then by task. The x-axis organizes ROIs first by lobe and then
ROI. Note that BV is computed by BVSD.

also preserved between sessions. For example, Limbic BV is on average lower than Parietal

BV. The variance in BV between regions in the Occipital lobe is higher than in other lobes.
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Figure 3.3: BV for 19 subjects from session 1 (A) and session 2 (B). On the y-axis are scans
ordered by task. Within each task, scans are ordered by subject. On the x-axis are ROIs
ordered by lobe of the brain.
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Figure 3.3 shows BV (computed by BVSD) for the target group subjects in session 1 (panel

A) and session 2 (panel B). Rows are first grouped by task and then by subject. Columns are

first grouped by brain lobe then by ROI. When ordered by task, BV shows patterns that are

preserved across session (e.g., lobe-specific or task-specific effects). For example, Occipital

activation is higher for the Theory of Mind task, and temporal activation is higher during

resting state. Aside from these two effects, based on visual inspection of Figure 3.3, the BV

patterns do not seem to be task specific. However, the machine learning models (discussed

in the next section) will demonstrate that the patterns contain diagnostic information to

separate the tasks.
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Figure 3.4: BOLD variability in a resting-state task versus non-resting cognitive tasks. Each
point represents an individual ROI (averaged over subjects) and the reference line indicates
equal BV in resting and non-resting state tasks.

Finally, we can re-examine known effects of FC through the lens of BV. For example, research

has shown a reduction of covariance in the default mode network during task compared to

rest [58]. We examine whether this result can be extended to BV. Figure 3.4 shows resting
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Table 3.1: Predictive accuracy (percentage correct) of the Logistic Regression model for task
classification for different methods of computing functional connectivity (FC) and BOLD
variability (BV) and method for assessing generalization (within or between scanning ses-
sions). The 95% credible interval is reported in parenthesis.

Type Feature # Features Within Between

BV BVSD 269 79 (72, 84) 70 (62, 76)
BV BVV 269 66 (59, 73) 60 (53, 67)
FC FCP 269∗268

2 95 (90, 97) 83 (77, 88)
FC FCC 269∗268

2 92 (87, 95) 82 (75, 87)
FC FCCV 269∗269

2 95 (91, 98) 84 (78, 89)

state BV versus non-resting state BV in each ROI averaged over all subjects and tasks.

Analogously to the effect in FC, for almost all ROIs resting state BV is higher than task

BV.

3.3.2 Task Prediction

Task out-of-sample LR prediction accuracy is reported in Table 3.1. Overall, BV and FC

accurately predict task. All models show performance well above chance (1/9=11%) for

all feature sets. However, there is a clear performance benefit when using FC versus BV (

21% within, 18% between). Within-session performance is consistently better than between-

session performance. The difference between within-session and between-session accuracy is

lower on average for BV (7.5%) versus FC (14%), suggesting that FC contains more session-

specific information than BV. Differences in accuracy do not simply reflect the number of

features (independent of the information they contain) since redundant features would be

regularized. The particular method of computing FC does not strongly affect predictive

performance. BVSD leads to more accurate predictions than BVV, but this finding is not

significant at 95% credibility.

In order to understand the relative performance differences between BV and FC, we compare
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the confusion matrices in Figure 3.5. Some cognitive tasks are more difficult to discriminate

on the basis of BV. For example, the Emotional Faces and Emotional Pictures tasks (both

involving emotional processing despite different visual inputs) and Encoding and Retrieval

tasks (both involving episodic memory) are occasionally confused on the basis of BV but less

so for FC, suggesting that FC contains unique information that discriminates between these

tasks. For a number of tasks (e.g., resting state or theory of mind) discrimination using

BV is comparable to FC. For only a few cells in the confusion matrix does the FC model

make more errors than the BV model (e.g., Rest-Emotional Faces, and Rest-Retrieval) and

there is only one cell for which the FC model makes an error where the BV model does not

(Rest-Retrieval). Additionally, the structure of errors is similar between BV and FC (i.e.,

the two models tend to make errors on similar pairs of tasks). The non-diagonal elements of

the confusion matrices have a Pearson correlation of 0.75, suggesting that BV and FC make

similar types of errors, but that BV makes those errors more often.

Figure 3.5: Confusion matrices for task prediction using BV (panel A) and FC (panel B).
The y-axis corresponds to true task and the x-axis to predicted task. BV and FC were
computed using the BVSD and FCP methods respectively
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3.3.3 Subject Identity Prediction

Out-of-sample subject prediction accuracy and 95% credible intervals for the 1-NN models

are reported in Table 3.2. Subject identity performance is high regardless of features used

(chance performance is 1/174 = 0.57%). There is overlap in credible intervals for overall

accuracy for all feature types except for BV computed as BVV, which performs significantly

worse than the other methods examined. There is no significant overall performance advan-

tage for any of the other methods used.

There are between-session performance differences based on whether the training and test

images were recorded from the same task, from different tasks, or from rest. For all methods

used to compute BV and FC, same task to same task accuracy is significantly higher than

different task to different task accuracy (95% credible intervals do not overlap). For all

methods but one, FC computed as the Pearson correlation (FCP), accuracy is significantly

higher for same task to same task prediction compared to rest to rest prediction. Accuracy

for different task to different task prediction is not significantly different than rest to rest

accuracy. We suspect that given more rest to rest observations this difference would become

significant; the relatively low number of rest to rest outcomes (one per subject) as compared

to different task to different task outcomes (72 per subject) or same task to same task

outcomes (8 per subject) leads to larger rest to rest credible intervals.

Pairwise Subject Identification Accuracy

The primary purpose of using nearest neighbor models is to build upon past results by Finn et

al. 2015 that investigated how subject-specific FC is preserved across tasks. Figure 3.6 shows

subject identity prediction accuracy as a function of training and test task. The x-axes show

the training task and the y-axes show the test task. Prediction accuracy is averaged over
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Table 3.2: Subject classification predictive accuracy (percentage correct) and 95% credible
intervals for the Nearest Neighbor models using different methods of computing functional
connectivity (FC) and BOLD variability (BV). For each model accuracy is testing within-
session and between-session. For between-session accuracy we report whether the training
and test image were selected from the same task, different task, or from rest.

Method # Feat Within Between
All Same Task Diff Task Rest

BVSD 269 83 (81, 85) 70 (67, 72) 93 (88, 96) 67 (65, 70) 58 (36, 77)
BVV 269 73 (70, 75) 54 (52, 57) 83 (76, 88) 51 (49, 54) 42 (23, 64)
FCP 269∗268

2 83 (81, 85) 63 (61, 66) 80 (73, 86) 62 (59, 64) 53 (32, 73)
FCC 269∗268

2 81 (79, 83) 63 (60, 65) 85 (78, 90) 60 (58, 63) 47 (27, 68)
FCCV 269∗269

2 83 (81, 85) 67 (64, 69) 86 (79, 90) 65 (62, 67) 58 (36, 77)

subjects. The top panels and the lower panels correspond to FC and BV, respectively. The

left panels and right panels correspond to between-session, and within-session, respectively.

Within-session accuracy is higher than between-session accuracy for both FC and BV, which

is consistent with classifier results in Table 3.2. For between-session prediction, performance

is best when generalizing between the same tasks.

In the previous framework, Finn et. al. compared nearest neighbor subject identity predic-

tion performance across sessions using FCP from resting state and another task and FCP

two different tasks, as training and test sets. They found that rest-to-rest prediction is most

accurate (92.9%) and that accuracy rates ranged from 54.0% to 87.3% for other database

and target pairs, including rest-to-task and task-to-different-task comparisons. Our analy-

sis includes the setting where the training and test sets from data recorded from the same

task. We find that FCP prediction performance is highest for the task-to-same-task set-

ting (80%), followed by task-to-different-task (62%), and rest-to-rest (53%). Overall, our

average accuracy is lower (65% versus 82.1%), but the performance difference could be at-

tributed to longer time between scanning session (2.8 years versus 2 days) and incorporating

non-discriminative data (data from 155 non-target group subjects) into our framework.
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Figure 3.6: Heatmaps of between and within-session average subject identification accuracy
ordered by task. The x-axis shows the task from which test scans were taken and the y-axis
shows the task used to predict subject identity.

3.4 Discussion

Using two supervised machine learning approaches, we show that both BV and FC signif-

icantly predict task and subject differences above change levels. If we simply choose the

statistic with highest predictive performance (FC), an important message gets lost: that

the diagonal elements of the connectivity matrix (BV) contain a large amount of predictive

information. Given that the off-diagonal elements consist of 36,046 data points in contrast to

the 269 data points on the diagonal, one would expect models that use off-diagonal informa-
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tion to greatly outperform models that use only diagonal information. However, this is not

the case. The network structure of functional connectivity contributes to less improvement

in performance than one might expect. Our results suggest that the theoretical connec-

tions between statistics related to the underlying network (FC) and statistics related to the

variability of individual regions or voxels (BV) should be examined in order to disentangle

the contributions of each. There are also several benefits from considering BV. BV offers a

lower-dimensional functional signature than FC, making BV easy to visualize. In addition,

the interpretation of BV results does not require network models that can complicate FC

analysis [36, 139, 140, 106, 37].

An alternative explanation for the similarity in predictive performance of FC and BV is that

our machine learning models could not adequately capture the valuable information present

in FC given the relatively small lack of training data. While a larger training set and more

advanced models would improve the performance of both FC and BV, we expect that these

changes would better leverage the high dimensionality of FC and lead to better performance

gains than BV. Since the goals of this work were to compare the information contained in

BV and FC, we focused on simple ML models. Initially, both task and subject prediction

was done using 1-NN models. However, subject effects dominate BV and FC similarity,

which caused task prediction performance to suffer. Thus, we switched to using LR in order

to allow our models to learn across task so that prediction was not based on BV or FC

similarity alone, but could also incorporate differences between tasks.

Our nearest neighbor prediction framework mirrors past analyses [34] that investigated the

persistence of subject-specific FC signatures across pairs of tasks, but extends the framework.

Previous analyses did not include task-to-same-task prediction and found that rest-to-rest

prediction performed best. Our analysis found that, for both FV and BV, task-to-same-

task prediction performs best and that rest-to-rest prediction performs worst. These results
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suggest that task engagement modulates subject fingerprints in a way that increases subject

discriminability. The lack of this modulatory task effect in the Finn et. al. study could be

due to the use of a different parcellation scheme; the parcellation method used by Finn et.

al. focuses on preserving individual connectivity, whereas the graph-based method we used

smooths more across individuals.

When we directly contrast performance in subject identity prediction and task prediction,

we find that out-of-sample subject identity prediction is more accurate than task prediction,

even though a priori the subject identity task is a more challenging task (identifying 1/174

versus 1/9). This provides further evidence that “the majority of the variance in [functional

signature] is accounted for by who you are and not what you are doing” [35]. A recent study

of task and subject FC expanded upon this idea by showing not only that FC individuality

is a predominant factor in group-level FC variability, but that task sensitivity could be

improved by removing subject connectivity [147].

There is debate in the field about whether subject-specific functional signatures are persistent

across time. One long term study found that FC within a single individual changed over

time and is paralleled by ongoing fluctuations in behavior, although many brain networks

are largely stable [107]. Other studies found that parcellation of subject FC is stable over

the span of a year [79], and that resting state FC in a single individual, and especially the

executive resting state network, was stable over a three year period [16]. Our results show

that FC and BV can be used to predict subject identity across time periods on the order of

3 years and suggest that subject-specific functional signatures are persistent across time.

One potential concern is that past research showed that vascular effects are present in motor

tasks and to a much lesser extent cognitive tasks [71]. This research suggest a potential con-

found for our results: that vascular effects, rather than neural effects, lead to high predictive
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performance. For two reasons, we believe that this is not the case. First, there were only

moderate motor components to the cognitive tasks used in our experiment; the components

involved reporting answers using button presses. We can expect the vascular effects due

to motor control to be less for this task compared to the finger tapping task used in the

Kannurpatti et al. study. Second, the similarity between motor components of each task

(infrequent button pressing), suggests that even if large vascular effects were present, these

effects alone would not be sufficient to discriminate between 9 separate tasks.

Another potential concern is that structural information separate from functional informa-

tion contributes to the predictive performance. It is possible that differences in gross brain

morphology create artifacts in functional signatures during the registration process [69] that

affect both FC and BV measures. For the goal of predicting what cognitive task a subject is

engaged in, only functional information can be used to distinguish between cognitive tasks.

Therefore, the ability of the model to identify cognitive tasks demonstrates that both BV

and FC contain diagnostic functional information and that these functional signatures per-

sist over time. For the subject identity prediction task however, care has to be taken in

interpreting the results. The identification of a person based on structural information is

not an impressive outcome compared to the identification of a person based on functional

connectivity or functional variability. For this reason, we did not use LR models for subject

identification because they could easily overfit to a structural confound. The 1-NN classifier

does not make use of any free parameters that can be tuned to particular ROIs and therefore

the identification occurs on the basis of overall similarity between functional signatures and

not any particular ROI. We also performed several during preprocessing to ensure that high

subject identification performance was not due to structural confounds: we removed edge

voxels (those most likely to be misaligned) from our analysis, used non-linear registration,

and performed separate registration for each scanning session. Furthermore, brain parcella-
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tion was performed using a dataset from a separate population, which reduces the probability

that voxels were grouped into regions that a priori differentiate subject identity (i.e., that

ROIs reflect subject specific rather than task specific functional differences). Therefore, even

if structural information affects particular ROIs, it is unlikely that the classification results in

the subject identification task are driven entirely by structural information. However, future

research will have to investigate how structural information might contribute to classification

performance.

3.5 Conclusions

Our results establish that BOLD variability, a much simpler approach than functional con-

nectivity for investigating BOLD fluctuations is diagnostic of subject and task differences.

We confirm the persistence of subject traits across task and session using BV and show

that BV captures much of the information contained in FC. Overall, our work suggests that

we should examine the theoretical connections between statistics related to the underlying

network (FC) and statistics related to the variability of individual regions or voxels (BV).

Since FC is indirectly connected to BV as a measurable BV is needed to have a measurable

FC, a more in-depth investigation is needed to understand the meaning of our findings. Fu-

ture work will examine how to disentangle effects of FC and BV using statistical modeling

approaches.
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Chapter 4

Experimental Design Modulates

Variance in BOLD Activation: The

Variance Design General Linear

Model

4.1 Introduction

At their core, neuroimaging analyses consist of relating a summary statistic of the blood-

oxygen-level-dependent (BOLD) time course to experimental condition, behavior, or indi-

vidual characteristics. The primary method for fMRI analysis, the General Linear Model

(GLM) [42, 11], focuses on mean BOLD activation. Recently, researchers have moved beyond

mean BOLD by studying functional connectivity (FC), which is calculated as the Pearson

correlation between regions. However, it is possible that other statistics of the neuroimaging
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data may contain important information. A natural candidate is BOLD variability (BV) de-

fined as the variance in the BOLD time series. BV can be thought of as intermediate to mean

BOLD and FC in terms of computational complexity; BV is based on a locally independent

computations whereas FC incorporates between-regions dependencies. Importantly, as FC

and mean BOLD have led to distinct avenues of research, BV could be a fundamentally

different channel for studying brain function.

This article introduces the Variance Design General Linear Model (VDGLM), a novel frame-

work that allows researchers to simultaneously test for effects on BV and on mean BOLD

activation. The VDGLM can be conceptualized as a GLM that explicitly incorporates the

experimental design into the model of the variance. Direct incorporation of the experimental

design allows the VDGLM to be flexible enough to be used in any fMRI experiment. This

new framework facilitates the analysis of BV effects and enables new discoveries that relate

BV to disease, individual characteristics, and human behavior.

The development of the VDGLM was motivated in part by studies in EEG and fMRI that

have demonstrated relationships between brain fluctuations and cognitive processes, behav-

ior, and age. EEG studies have shown variance effects in the form of suppression of alpha

and theta oscillatory waves (see [74] for a review). Alpha suppression is related to task

engagement [142], opening the eyes [6], and sleep [27]. Alpha suppression is positively corre-

lated with cognitive performance and memory performance, whereas the opposite holds true

for the theta band [74]. Age studies have found that alpha, delta, and theta suppression

increases with age during youth [128] and that alpha suppression decreases with age in older

populations [30]. Event-related de-synchronization suggests that alpha suppression could be

linked to inhibitory-control processes involved in attention [76, 75].

In fMRI, brain fluctuations measured by BV have been shown to vary with behavior and
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age. BV varies between task and fixation, particularly in younger adults [48]. Differences in

BV between task and fixation are associated with higher visual discrimination performance

[146] and track task difficulty [50]. Age has also been related to BV; BV was shown to

predict age with five times the explanatory power of mean BOLD [46] and was indicative of

younger, faster, and more consistently performing subjects [47]. In both studies, the spatial

distribution of BV effects was orthogonal to the distribution of mean effects. Despite these

links to behavior and age, the study of signal variance has not been widely pursued in fMRI.

Whereas the aforementioned studies focused on BV, the studies did not use a general statis-

tical framework for expressly studying these BV effects. Therefore, another key motivation

for the VDGLM framework is to introduce a unified fMRI framework to allow the anal-

ysis of BV. The framework that we develop, the VDGLM, is a parametric approach that

jointly models the mean and variance by explicitly incorporating the experimental design

into the variance formulation. The inclusion of the design in the variance allows us to: i)

jointly model mean and variance effects, ii) explicitly model the temporal dynamics be-

tween BV and experimental condition, and iii) include multiple experimental conditions in

our variance analyses. The explicit structure of mean and variance design is supplied by

the researcher, which allows for easy generalization to any experiment, and model fitting

is computationally efficient enough to run whole-brain region of interest (ROI) analyses on

large brain imaging studies. By developing this framework, we are providing an important

tool to test for variance effects that has the potential to spur new research developments in

various fields.

The plan for the rest of the paper is as follows. We first provide an overview of the GLM, and

establish the theory behind the VDGLM. Next we provide an application of the VDGLM

to Working Memory data from the Human Connectome Project Healthy Adult dataset. We

finish with a discussion of the choices made when using the VDGLM and how variance
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measured by the VDGLM compares to other measures of variance.
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Figure 1: FV for 19 subjects from session 1 (A) and session 2 (B). On the y-axis are
scans ordered by subject. Within each subject, scans are ordered by task. On the x-axis
are ROIs ordered by lobe of the brain. FV for a single scan and single ROI (Subject 3,
Theory of Mind, Session 2, ROI 72, FV = 262.10) lies outside the color range shown here.
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Figure 1: FV for 19 subjects from session 1 (A) and session 2 (B). On the y-axis are
scans ordered by subject. Within each subject, scans are ordered by task. On the x-axis
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Figure 4.1: Illustration of artificial data where the presence of a single experimental condition
(black) increases the mean but lowers the variance of the BOLD time course (blue). The
values used to create this visualization are based on Equation 4.1 with β0 = 0, β1 = 3, v0 = 2,
and v1 = −1.5

4.2 A Novel Framework for Studying BV

To motivate the VDGLM, consider a hypothetical BOLD activation time series where BV

is affected by an experimental condition that indicates fixation versus task (see Figure 4.1).

The single experimental condition is plotted in black and the BOLD time series from a single

voxel is plotted in blue. For conceptual simplicity, the experimental condition time series is

not convolved with a hemodynamic response function (HRF) model. The voxel time series

varies as a function of task condition; the variance is higher during fixation compared to
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task. We can describe these effects on the mean and variance using a simple VDGLM:

y ∼ N(β0 + xTβ1, (v0 + xTv1)I) (4.1)

where y is the BOLD time series, x represents the condition indicator, I is the identity

matrix, β0 captures the mean activation, and v0 captures the measurement variance, i.e., the

out-of-task variation. Then β1 and v1 capture the degree of change in mean and variance

due to task engagement, respectively. If the model is applied to the data from Figure 4.1,

we expect β0 ≈ 0, β1 ≈ 3, v0 to be a large positive value, and v1 to be negative, but with the

constraint that |v1| < |v0|. Here, the parameter v1 < 0 reflects the fact that BOLD variation

is lower within task compared to fixation.

For comparison, the GLM estimates a single variance parameter over the entire time series

and ignores the change in variance due to the experimental manipulation:

y ∼ N(β0 + xTβ1, v0I) (4.2)

Note that Eq. 4.2 is equivalent to Eq. 4.1 when v1 = 0, i.e., the GLM is a nested model

of the VDGLM where there is no experimental modification of the variance. The GLM is a

null model for no effect of the variance that can be compared to the VDGLM i) to explicitly

test for variance inclusion and ii) test whether the mean effects found by the VDGLM are

similar to the mean effects found by the GLM.
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4.2.1 VDGLM Analysis Pipeline

Figure 4.2: An illustration of a typical fMRI pipeline that uses either the GLM or the
VDGLM for analysis. To use the VDGLM, the only steps from a traditional pipeline
that must change are model formulation and estimation. Data acquisition, preprocessing,
prewhitening, model comparison, and methods for result dissemination can remain the same.
Some inference steps, such as effect size estimation, could remain the same. However, other
inference procedures, such as significance testing, require statistics developed expressely for
the VDGLM.

One goal of the VDGLM framework is to allow the VDGLM to be inserted into any stan-

dard fMRI analysis pipeline with minimal modifications (see Figure 4.2). The VDGLM

does not change data acquisition, preprocessing, prewhitening, model comparison, or results

dissemination. The main step that must change is model formulation and estimation. In

some cases, the inference step is not affected (e.g., computing effect sizes using Cohen’s d).

However, more sophisticated inference such as parameter significance testing will require

modification of the inference step to include statistics for testing variance parameters (see

section 4.2.2). In a BV focused analysis, we also recommend additional preprocessing steps

to remove variance confounds such as removing white matter and CSF signal and correcting

for head motion, but these additional steps are not necessary to use the VDGLM.
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4.2.2 Matrix Notation

We can write the GLM and the VDGLM in matrix notation to highlight the concept of

inserting the design matrix into the variance. The GLM models the BOLD time series y[T×1]

from a single voxel as a linear function of the experimental design [41, 11, 5, 143]. Formally,

the GLM is defined:

y = Xβ + ε (4.3)

ε ∼ N(0, Iσ2)

where X is a T × p design matrix, β is a p× 1 vector of mean parameters, σ2 is a variance

parameter, and I is the identity matrix. The columns of the design matrix X include

experimental events, experimental blocks, stimulus presentation, or mean activation. The

VDGLM has the same formulation, but extends the variance model:

y = Xmβ + η (4.4)

η ∼ N(0, diag(Xvv)I)

diag(Xvv)I > 0

where diag(x) is the matrix with the entries of x along the diagonal. To emphasize that

the mean and variance design matrices can be distinct, we use the notation Xm and Xv to

denote the mean and variance designs, respectively. The parameters, β and v, capture mean
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and variance effects, respectively. It is clear that the GLM (eq. 4.3) is a special case of the

VDGLM for which the variance design matrix Xv is a single column of ones and v = σ2.

Prewhitening and Noise Regressors

In GLM analyses, BOLD time serires are ’prewhitened’ to account for BOLD autocorrelation

[11, 144]. We also prewhiten before fitting the VDGLM to ensure that variance effects found

by the VDGLM are not artifacts caused by autocorrelation. In VDGLM, as with GLM

analyses, any standard autocorrelation estimator can be used [144, 39, 21]. In theory, one

could use the residuals from either the VDGLM or the GLM to estimate the autocorrelation.

We choose to use the GLM residuals for two reasons. First, the GLM is less computationally

intensive than the VDGLM, and we expect that the VDGLM leads to similar residuals since

in practice we’ve found the mean trend for the VDGLM is similar to the mean trend for

the GLM when fit to unwhitened data. Second, by using the GLM, any variance signal that

could be accounted for by either autocorrelation or the VDGLM is by default attributed

to autocorrelation. Since we remove this autocorrelation using prewhitening, the whitened

data will lead to more conservative estimation of variance effects than if we had used the

VDGLM for prewhitening (i.e., it is less likely that artifactual autocorrelation will lead to

detection of variance effects).

Other techniques for controlling noise (e.g., coloring or head motion correction) involve the

addition of noise regressors. As with GLM analyses, the VDGLM can incorporate these

techniques by including the appropriate regressors in the design matrices.
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Estimation

Univariate GLM mean parameter estimation can proceed in one of two ways: i) ordinary

or general least squares [41, 5] or ii) or ii) fully Bayesian inference [143]. Approximate

Bayesian inference has also been used, but in a single group-level analysis that combines

first and second-level models [43]. Variance estimation is usually done using by iteratively

computing OLS estimates [144, 145], but can require more advanced methods depending on

the structure of group-level models (see section 4.2.2).

There are potentially many approaches that could be used to estimate the VDGLM, including

Bayesian and maximum likelihood approaches. For simplicity, we use a maximum likelihood

approach. Estimation approaches must be computationally efficient enough to handle the

high dimensionality of fMRI data. In practice, we found that sampling techniques were too

slow to be practical for large data sets. Maximum likelihood (or maximum a posteriori) esti-

mation using mode-finding algorithms is efficient enough to estimate parameters for an ROI

analysis from a large fMRI dataset in about half a day using parallel computing techniques.

Group Level Analysis

Group-level GLM analyses typically incorporate two-stages, in which second stage analysis

is based on summary statistics from the first [63, 5, 143]. The methodology for group-level

significance testing depends on the experimental design. T-tests can be used provided that

the experiment is balanced [63]. For unbalanced data, if the variance components of the

data are known, then principled group-level inference can be done using univariate param-

eter estimates and their covariance estimates [5]. In most cases, these variance components

are not known. Second-level variance parameter estimates have been found using the EM al-

gorithm [145], approximate Bayesian inference [43] and fully Bayesian inference [143]. These
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same ideas extend to the VDGLM. For the simple balanced-experiment setting, group-level

inference can be computed using t-tests. In the unbalanced case, more work is needed due

to the difficulty in computing the covariance of variance parameters. We initially tried to

develop group-level inference procedures using asymptotic statistics (Wald test), but these

tests were ill-behaved for several subjects due to high-condition matrix inversions. We leave

development of alternative statistics and a fully Bayesian framework to future work.

Group effect sizes can be estimated using the set of parameter estimates from all subjects.

In our application, we compute Cohen’s d, which measures the standardized mean between

two populations.

Model Comparison

Model comparison also proceeds as in a traditional fMRI pipeline. Model comparison can

be done using AIC [1], BIC [121], or any other log-likelihood-based metric that is a function

of a point estimate. Model comparisons can consist of traditional in-sample comparisons

or can be generalized to new data using out-of-sample comparisons [97]. The outcomes of

univariate comparisons can be aggregated into group level results that test whether a subject

tends to prefer a certain model across the brain or whether a particular region tends to prefer

a certain model across subjects.

4.3 Example Application: BV in Working Memory

In this example application, we used the VDGLM to find brain regions that are involved

in working memory via changes in BOLD variance. We examined whether these regions

differ from regions involved via changes in mean BOLD activation, and tested whether the
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VDGLM better describes working memory data than the GLM. The goal is to illustrate how

to use the VDGLM and to showcase its utility.

We used data from the Human Connectome Project (HCP) Working Memory Experiment.

In the experiment, subjects alternated between fixation blocks and two different task blocks

during which they were presented with sequences of visual stimuli. In a 2-back task block,

subjects indicated whether the current stimulus was the same as one two presentations ago.

In a 0-back task block, subjects indicated when a target stimulus was presented.

GLM analyses of the HCP data have found that engagement in the 2-back working mem-

ory task invokes regions thought to be involved in a cognitive control network, including

bilateral dorsal and ventral prefrontal cortex, dorsal parietal cortex and dorsal anterior cin-

gulate. Task engagement leads to a deactivation in the default mode network, namely in the

medial prefrontal cortex, posterior cingulate, and the occipital parietal junction [4]. Simi-

lar activation patterns are found even when comparing 2-back versus 0-back. A 24 study

meta-analysis of N-back studies found consistent activation in frontal and parietal areas,

namely bilateral and medial posterior parietal cortex, bilateral premotor cortex, dorsal cin-

gulate/medial premotor cortex, bilateral rostral prefrontal cortex or frontal poles, bilateral

dorsolateral prefrontal cortex, and bilateral mid-ventrolateral prefrontal cortex or frontal

operculum [102].

In our VDGLM analysis, the goal was to find both mean effects that overlap with known

mean effects and also variance effects that are spatially orthogonal to known mean effects.
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4.3.1 Methods

Data Acquisition and Preprocessing

The data was collected by the Washington University Minnesota Consortium Human Con-

nectome Project (HCP, Van Essen et al., 2013). We used the Working Memory task data

from the 1200 Subjects release using the minimal pre-processing pipeline [53]. Details of task

fMRI processing can be found in [4]. Data from 875 subjects with one of the two Working

Memory tasks were included in the current study. The downloaded data were in grayornidate

system [53], and the time series for 333 surface regions of interest (ROIs) based on Gordon et

al. were extracted for further analysis [56]. We perform additional preprocessing including

scrubbing and motion correction.

Task Design

During the Working Memory experiment, subjects alternatively engaged in a 0-back and

2-back tasks that use faces, places, tools and body parts as the four categories of stimuli.

Within each run, subjects were presented with blocks of stimuli, where all stimuli within a

block were from the same category. For half of the blocks, subjects were given a “target”

stimulus and were instructed to press a button whenever that stimulus was presented (0-back

task). For the other half of blocks, subjects were instructed to respond when the stimulus

was the same as the one presented two presentations ago (2-back task). Task blocks were

interwoven with 15 second fixation blocks and instruction cues indicating the task type and

’target’ stimulus if the task was the 0-back task. Each run contained 8 task blocks. We

combined blocks from each stimuli type to create two task indicators (one for 0-back and

one for 2-back). In total, the experimental design contained four conditions: the 0-back task,
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the 2-back task, Fixation, and Instruction.

Modeling

We applied the VDGLM model (eq. 4.4) to the data. Building the VDGLM required

specifying both the mean and variance design matrix. In the mean design, we included the

0-back, 2-back, Fixation, and Instruction conditions. In the variance design we included

the the same regressors as in the mean design, but with an additional intercept regressor to

reflect the assumption that there exists some measurement noise not captured by the other

variance regressors.

We also fit a GLM (eq. 4.3) model to the data using a design matrix that is equivalent to

the mean design matrix used in the VDGLM.

Prewhitening The first step in model estimation is to prewhiten the data. We fit a

GLM model from which we computed the residuals and then used an AR(2) process to

estimate residual autocorrelation. We chose the AR(2) process because it has been shown

to outperform standard autocorrelation estimators on tests of autocorrelation present after

prewhitening [80]. An AR(2) process models the GLM residuals rt at time t as:

rt = φ1rt−1 + φ2rt−2 + ε (4.5)

where φi measure the contribution of the i-th autoregressive component and ε N(0, σ2) is

white noise. We estimated the autoregressive parameters using the Yule-Walker equation

[152, 138], from which the estimated autocovariance was generated using a simple parametric

form [80].
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Estimation After prewhitening, we estimated GLM parameters using ordinary least squares.

Since the VDGLM is analytically intractable, we estimated parameters using constrained

trust-region optimization [96] (see Appendix A.4 for optimization details, and [151] for a

review of trust-region optimization). We performed mass univariate estimation, i.e., we fit

the VDGLM and the GLM for each ROI and subject. From parameter estimates, we created

parameter contrasts for the 2-back minus Fixation, 0-back minus Fixation, and 2-back minus

0-back conditions.

Group Level Effect Sizes We estimated group-level effect sizes for each contrast using

Cohen’s d (the difference in standardized means) computed over subjects [18]. We visualized

these effect sizes for each ROI using the HCP workbench software [87]. For a single region

there exist 3 possible group-level effect patterns on BOLD: 1) both mean and variance effects

are shown, 2) either mean or variance effects are shown, or 3) neither type of effect is shown.

We plotted the whole-brain spatial distribution of each type of effect at small and medium

effect sizes (Cohen’s d of 0.2, 0.5, respectively). We compare the spatial distribution of

VDGLM mean effect sizes versus the spatial distribution of voxel-wise GLM effect sizes from

HCP analyses (see Figure 4.3) .

Model Comparison Because the VDGLM has more parameters than the GLM, it has

the potential to explain more variability of the observed data, thus any model comparison

metric should take complexity into account. We achieved this using out-of-sample log likeli-

hood (OOSLL), which penalizes overfitting by testing how well a model generalizes to new

unseen data. We used an out-of-sample metric, rather than traditional metrics of model fit

(such as goodness of fit tests, or information criteria) to balance the goals of our analysis

between prediction and explanation [149]; the model was compared to other models using

predictive performance, but also evaluated on its explanatory power. We used 10-fold cross
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validation to compute the out-of-sample log likelihood. For a single subject and region, we

split the time series into 10 folds that each contain a test and training set. For each fold,

we fit our model on the training set and computed the out-of-sample log likelihood of the

test set given the parameters computed during training. To understand the level of general

preference for the VDGLM, we compute the percent of subject/ROI time series with higher

OOSLL for the VDGLM compared to the GLM. To understand subject VDGLM preference,

we compute the percent of regions that prefer the VDGLM model for each subject.

To test that our model comparison results did not occur by chance, we compared the preva-

lence of VDGLM preference found in the real data to that found for a dataset simulated

from the GLM (i.e., data without variance effects). In this comparison, we wanted to make

explicit assurances that the VDGLM was preferred because of real effects in the data, i.e.,

that preference was not due to autocorrelation artifacts. We did this by adding autocorrela-

tion to the dataset simulated from the GLM, where we estimated the autocorrelation from

the real data. We generated a time series for each subject and ROI independently. The

generation of a sample time series from a real time series yk proceeded as follows:

1. Compute the GLM OLS solution β̂ and variance solution σ̂2. We use GLM parameters

estimated from the real data to better account for subject heterogeneity than if we

simulated the underlying GLM parameters.

2. Estimate the autocorrelation of the residuals yk −X ∗ β̂ using an AR(2) process and

generate an estimated autocovariance matrix A.

3. Generate a sample time series ysamp = Xβ̂ + εsamp, where εsamp ∼MVN(0, σ̂2A).

For each subject and region, we generate a single sample time series (we only generate one

sample to reduce the computational complexity of this test). Using the generated dataset,

99



we fit the VDGLM to each subject and region. Due to having just one sample from each

subject and ROI, we cannot make statements about whether model comparisons for a single

subject and ROI are due to chance. However, we can analyze the percent of ROIs for a given

subject that prefer the VDGLM to assess whether the amount of subject-level preference is

due to chance. We compute whether the subject-level VDGLM preference is greater in the

actual data compared to the simulated data. This test shows whether VDGLM preference

is caused by overfitting to autocorrelation or whether there is true variance-related signal in

the data.

Model fitting and model comparison for 875 subjects took approximately 1/2 a day to fit on

the UCI High Performance Cluster using in-house MATLAB code that can be found online

[52].

4.3.2 Results

The analyses we ran on the VDGLM were designed with three goals in mind. First, we wanted

to test for the existence of effects on BOLD variation during working memory engagement.

We did this by computing effects size of parameter estimates. Second, we wanted to see

whether these effects occur in regions that are spatially orthogonal to regions that exhibit

mean effects. To do this, we visually examined whether mean and variance effect sizes are

correlated and plotted whole-brain visualizations of where mean and variance effects occur.

Finally, we wanted to verify that the VDGLM provides a better account of the data than

the GLM using model comparison metrics based on out-of-sample log-likelihood.
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Cohen’s D: (-0.2, 0.2)

2-back - Fixation 0-back - Fixation 2-back - 0-back

VDGLM 
Mean

VDGLM 
Variance

HCP 
Mean

GLM 
Mean

Figure 4.3: Group-wise Cohen’s d for the 2-back minus Fixation, 0-back minus Fixation,
and 2-back minus 0-back contrasts. The top row shows VDGLM variance effects, the middle
row shows VDGLM mean effects, and the bottom row shows voxel-wise GLM results from
previous analysis. Maps are thresholded at (-0.2, 0.2).

Group Level Effect Sizes

The first goal in our analysis was to test for existence of variance effects caused by working

memory engagement. We measured effects by computing Cohen’s d over subjects. For each

parameter contrast (2-back minus Fixation, 0-back minus Fixation, and 2-back minus 0-back)

we plotted whole-brain Cohen’s d (see Figure 4.3, bottom row). We also plotted Cohen’s d

for mean parameter contrasts (top row) to verify that the VDGLM preserves known mean
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effects.

We found small and medium sized variance effects during the 2-back and 0-back tasks com-

pared to fixation across much of the entire brain. Both 2-back and 0-back engagement evoked

less BOLD variation (i.e., negative Cohen’s d) compared to Fixation across the whole brain.

For the 2-back minus 0-back contrast, variance Cohen’s d was low for some areas in the

default mode network, some areas of the dorsal/ventral attention networks, some parts of

visual cortex, and some parts of the fronto-parietal network. The 2-back task showed less

variation than the 0-back task in occipital, temporal, parietal, and ventromedial prefrontal

cortex.

The VDGLM found mean effects that overlap existing HCP GLM results [4] (see Figure

4.3). The 2-back minus Fixation and 0-back minus Fixation contrasts showed activation

in bilateral dorsal and ventral prefrontal cortex, dorsal parietal cortex and dorsal anterior

cingulate and deactivation in the default mode network, including medial prefrontal cortex,

posterior cingulate, and the occipital parietal junction. These same regions were activated,

but less intensely for the 2-back minus 0-back contrast.

In general, task engagement lead to both positive and negative mean effect sizes, but pre-

dominantly negative variance effect sizes.

Orthogonality of Mean and Variance Effects

The second goal in our analysis was to examine whether the VDGLM finds variance effects

that are orthogonal to known mean effects. To analyze the degree of orthogonality between

mean versus variance effects, we plotted regional Cohen’s d for the mean contrasts versus

variance contrasts (See figure 4.4). We grouped ROIs by effect size. ROIs with the same
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Figure 4.4: The magnitude of mean and variance effects sizes for the 2-back minus Fixation,
0-back minus Fixation, and 2-back minus 0-back contrasts. Each circle represents an ROI.
ROIs are grouped by whether they exhibit the same size effect (blue) in the mean and
variance or different sized effects (red). The black lines indicate the small (solid), medium
(dashed), and large (dotted) effect sizes.

effect size in the mean and variance are plotted in red, those with difference effect sizes in the

mean and variance are plotted in blue, ROIs with no mean nor variance effects are plotted

in gray. The small, medium, and large, effect thresholds are plotted by the solid, dashed,

and dotted black lines, respectively. ROIs exhibited mean and variance effects that span

all possible combinations of effect sizes, although there were no large variance effects for

the 0-back minus Fixation nor 2-back minus 0-back contrasts (see Figure 4.4). In general,

mean effects were larger than variance effects. Effects were also much larger for the 2-back

minus Fixation and 0-back minus Fixation contrasts compared to the 2-back minus 0-back

contrast. While there was slight negative correlation between mean Cohen’s d and variance

Cohen’s d for the 2-back minus 0-back contrast (R2 = 0.31), the other two contrasts were

uncorrelated (R2 = −0.00294 and 0.132). Hence, mean and variance effects are orthogonal

for the 2-back minus Fixation and 2-back minus 0-back contrasts.

Spatial Distribution of Effects

Given that mean and variance effects were orthogonal for the 2-back minus Fixation and

2-back minus 0-back tasks, we wanted to see where each type of effect occurs in the brain.
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Medium

2-back - Fixation 0-back - Fixation 2-back - 0-back

Effect Indicators

Small

Figure 4.5: The figure shows which types of effects occur in which regions. Regions can have
only a mean effect (blue), only a variance effect (green), or both effects (red). We plot effects
for the 2-back minus Fixation, 0-back minus Fixation, and 2-back minus 0-back contrasts.
We plot small (Cohen’s d ∈ [−0.2, 0.2]) and medium (Cohen’s d ∈ [−0.5, 0.5]) effects.

We plotted the type of small and medium effects that occur in each region (see Figure 4.5). A

region with mean effect only is plotted in blue, variance effect only in green, and both effects

in red. For the 2-back minus Fixation contrast, there are regions that exhibited all types of

effects. Variance only effects occurred primarily in the default mode network, but also in

sensorimotor mouth regions, and regions in the visual, dorsolateral attention, and cingulo-

opercular networks. Mean only effects occurred in the frontoparietal, the auditory, cingulo-

opercular, visual, and dorsolateral attention networks. Effects overlapped in some regions

of the default mode, frontoparietal, visual, dorsal attention, and cingulo-opercular networks

and in some sensorimotor regions. For the 0-back minus Fixation contrast, less regions

exhibited medium variance effects than the 2-back minus Fixation contrast, suggesting that

cognitive demand plays a role in the size of variance effects. There were, however, effects

in sensorimotor areas used in control of the mouth and hand, a region in visual cortex, and

some regions in the dorsolateral attention network. These effects were all present in the 2-

back minus Fixation contrast as well. Mean 0-back minus Fixation effects also largely mirror
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the mean effects in the 2-back minus Fixation tasks. There were no medium sized variance

2-back minus 0-back contrasts. This suggests that while there were different sized effects

between 2-back minus Fixation and 0-back minus Fixation, these differences in effect sizes

were small. The main differences in variance effects tended to be caused by task engagement

rather than cognitive load.

Model Comparison

The VDGLM inferred that engagement in a working memory task leads to less BOLD vari-

ation. In this section, we pursue a different question. Does a model with these additional

parameters give a significantly better account of the BOLD time series than a model without

them? To test this, we perform model comparisons between the VDGLM and the GLM. Since

the VDGLM has more parameters and will trivially better fit the data, we use out-of-sample

log-likelihood to check the VDGLM’s ability to describe new unseen data. We perform a

model comparison for each subject and ROI time series in a mass univariate approach.

We found significant preference for the VDGLM model; 41% of subjects/ROIs had higher

OOSLL for the VDGLM model over the GLM in the real data (7% in the simulated data).

Model preference varies by subject and region (see Figure 4.6). The figure plots the per-

centage of ROIs that prefer each model in the real data (blue) and the simulated data (red).

The figure is ordered by a subject’s proportion of ROIs that prefer the VDGLM model in

the real data. A subject’s percentage of regions that favored the VDGLM ranged from 14%

for GLM-leaning subjects to 73% for VDGLM-leaning subjects. For all 875 subjects, some

number of regions (but not all) preferred the VDGLM model. Similarly, for all 333 ROIs,

some number of subjects (but not all) preferred the VDGLM model.

To check that the VDGLM was not just fitting autocorrelation, we performed model com-
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parisons for models fitted to data generated from the GLM plus autocorrelation. For the

simulated data, only 7% of subjects/ROIs preferred the VDGLM model. For every subject,

the percent of ROIs that preferred the VDGLM model was larger in the real data than in

the simulated data, indicating a significant preference for the VDGLM that was not just due

to fitting to autocorrelation.
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Figure 4.6: The percent of regions for each subject for which the VDGLM model better
describes the HCP data (blue) and data simulated from the mean model (red). Subjects are
ordered by percent of regions for which the VDGLM model has higher OOSLL.

4.3.3 Application Summary

The working memory application highlights the usage of the VDGLM. We used the model to

show that working memory task engagement was related to a decrease in variance compared

to fixation. Variance effects and mean effects were not spatially correlated, suggesting that

the VDGLM reveals distinct brain patterns not captured by mean-based approaches. We

found that the spatial distribution of mean effects was similar to the spatial distribution of
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voxel-wise mean effects from previous analyses [4]. Variance effects tended to occur across

the whole brain and reduce variance compared to baseline. We want to highlight that while

many of the variance effect sizes in this application were fairly small, this will not necessarily

be true in future applications. Importantly, if there exists some quantity of interest that

consistently relates to small variance effect, then these small effects are worth studying.

This is especially true in disease studies where discoveries have the potential to save human

lives.

The application focused on testing for effects of BV, so we designed our application to

reduce potential confounds. By using the HCP data we minimized the effects of noise from

CSF, large veins, and white matter. By collecting data at a high resolution (2mm) and

registering data to the cortical surface, the HCP data had less voxel-by-voxel overlap with

these noise sources than compared to other data sources [53]. We corrected for head motion

by including nuisance motion regressors and scrubbing particularly noisy volumes. We did

not account for heart beat nor respiration, which are known to affect resting state BOLD

variability [9, 70, 71, 72]. However, neither source of noise could account for the variance

effects we demonstrated. Since neither heart rate nor respiration are correlated with the

task design, presence of these sources of noise increases variance during task. Thus we

suspect that correcting for physiological noise in future studies would lead to larger variance

effect sizes. We performed several post-hoc analyses to check that VDGLM preference was

not related to to mean frame displacement, nor grand mean intensity scaling factor [135]

(adjR2 = −0.00114,−0.0011, respectively).

In this application, we fit a single VDGLM model and a single corresponding GLM model.

In practice, we could fit several VDGLM models to test hypotheses of the form: “should

condition C be be included in our model and does it affect the mean or the variance in BOLD

activation”. In this set-up, each model takes the form of eq. 4.4 and the conditions to be
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tested are defined by the entries of the mean and variance design matrices. For example, we

could test a model with only intercept effects versus a model that allows each condition to

affect the variance, but not the mean. Then model comparison indicates which experimental

conditions are necessary in the model and whether those conditions are necessary as mean

or variance regressors. This formulation allows us to define several nested models, which can

be nested in the classical sense–i.e., that the set of mean regressors in the nested model is a

subset of the regressors of the full model– or can have nested variance regressors.

To effectively develop and test the VDGLM, we chose an ROI approach to have more reliable

BOLD signal and a lower computational load. Application of the VDGLM to voxel-wise

analyses will be done in future work.

4.4 Discussion

Traditional fMRI analyses treat BOLD variation as a ‘nuisance parameter’ despite results

linking BOLD variation to age, behavioral performance, and task engagement. The VDGLM

fills this gap by providing a flexible framework for linking variance effects to experimental

design. By directly incorporating the design matrix, the VDGLM can assess the independent

contributions to BOLD variance from multiple experimental conditions while controlling for

confounding factors. The VDGLM also controls for confounding between mean and variance

effects; since both effects are modeled simultaneously, we can make inferences about one

effect while controlling for the other. The VDGLM is fit in a mass univariate approach,

which allows analysis at a more fine-grained resolution than previous empirical studies that

analyzed latent structures of large spatial patterns in BV. Under the VDGLM framework hy-

pothesis generation and comparison is easy; each hypothesis corresponds to an instantiation

of the model and can be tested using model comparison.
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In our application, we showed that the VDGLM can be used to find variance effects caused

by working memory engagement (Figure 4.3). We showed that these effects are spatially

orthogonal to mean effects (Figures 4.4, 4.5) and finally, we compared the GLM and VDGLM

and showed that VDGLM provides a better description of the data even while accounting

for model complexity (Figure 4.6).

An important feature the VDGLM is the facility for modeling mean and variance simultane-

ously while allowing for orthogonal spatial inferences. In the BV-age fMRI literature, vari-

ance effects were orthogonal to mean effects [46, 47]. This trend generalized to our working

memory application, where task engagement resulted in predominantly negative BV effects

across the brain, but a mix of positive and negative mean effects. These results constitute a

growing body of evidence that BV is a novel dimension for studying brain function.

We want to highlight that there are alternatives to the methodological choices we made in

our application. Alternative choices can be made regarding 1) the prewhitening model, 2) the

inference statistic or effect size estimate, 3) the model comparison metric and 4) the method

for assessing model comparison significance (see Figure 4.2). The prewhitening model (1)

and comparison metric (3) can easily be substituted for another model and metric, and the

additional model comparison significance test (4), while powerful, is not necessary in most

standard analyses. Using an alternative choice of inference statistic (2) may require further

work. Our choice to use effects size was motivated by the use of effect size in previous

analyses [137] and the ease of using a statistic that depends solely on parameter estimates.

In an effort to provide alternative inference statistics, we developed approximate t-tests for

variance effects. However, we found that the estimates were sensitive to the condition number

of the Hessian matrix specified by the VDGLM (a quantity required for computation of the

approximate t-test). We tested the accuracy of the approximate t-tests for mean effects by

comparing them to standard t-tests made by the GLM. While we found that while they
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were close for most subjects and ROIs, for other subjects with poorly conditioned Hessian

matrices the t-tests tended to be unrealistically large. While any individual data point

could be excluded from group-level analysis using condition number threshold, we found this

approach too cumbersome for a framework aimed at general public use. Development of

well-behaved statistics for inference is ongoing work.

Many different measures of BV have been used in past fMRI studies: empirical variance [61],

parametric variance [146], block-normalized standard deviation [46, 49], and mean squared

successive difference (MSSD) [81, 120]. The goals of mean squared successive difference and

block-normalized standard deviation are to measure the variance not accounted for by mean

trends in the data. Since the VDGLM models the variance/standard deviation in BOLD

activation after accounting for the mean trend, it’s variance parameters can be conceptualized

to measure a construct similar to mean squared successive difference or block-normalized

variance (but where blocks are convolved with the canonical HRF). The parametrized model

in Wutte et al. 2011 is similar to the VDGLM, but uses a mixing parameter to capture

shared variance between task and fixation blocks rather than modeling the variance as a

function of convolved experimental design. We expect that this approach leads to similar

results, but with the caveat that it only incorporates a single experimental condition. Lastly,

we consider the inter-quartile range, which is not used in the VDGLM and to which to our

knowledge has not been used in fMRI analysis to date. The goal of the inter-quartile-range

is to summarize the dispersion while limiting the effects of any highly outlying time points.

In our application, we used scrubbing to a similar effect by manually removing any outlying

time points and recommend this approach if large outliers are present.

The VDGLM could be improved by implementing it in a Bayesian framework. Bayesian

frameworks would allow us to make more robust inferences, incorporate prior beliefs about

regions likely (or unlikely) to exhibit BV effects, and to better quantity model comparisons.
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The main disadvantage of Bayesian methods, and the reason we did not develop a Bayesian

VDGLM, is the computational complexity of inference. Initially, we developed a Bayesian

VDGLM in STAN, but inference on our toy dataset took days, so we opted to first develop

a frequentist version. We leave the development of a Bayesian implementation for future

work.

The VDGLM could also be improved by transforming the variance so that we did not need

to enforce positivity. Log transformations have been widely used for covariance and variance

estimation [109], however in the case of the VDGLM this would lead to a drastic conceptual

change in the model. Since the VDGLM incorporates the design matrix into its variance

formulation, the exponential transformation results in a variance parameters that are raised

to the power of elements of the design matrix. We opted to keep the VDGLM as an additive

variance model that requires constraints rather than as a multiplicative variance model so

that parameters were more interpretable.

4.5 Conclusion

Studies have demonstrably shown that variance in BOLD activation is a functional construct

orthogonal to mean BOLD that should be taken into account in future imaging analyses.

This work developed the VDGLM, a coherent statistical framework for incorporating BV

into standard fMRI analyses. The VDGLM was motivated by strong evidence that variance

in BOLD activation is linked to individuals and behavior. The VDGLM can be easily applied

in any experimental setting and will allow for increased ease and flexibility in research on

BOLD variability. We expect that it will lead to exciting new discoveries relating BOLD

variability to human characteristics and behavior.
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Appendix A

Appendix

A.1 Codes Used in Talk-Turn Prediction

Several of the symptoms for which we performed additional local coding are closely associated

with more than a single code in the psychotherapy corpus (e.g., the anger symptom is closely

associated with anger and frustration). The human raters who judged the representativeness

of the 5 symptoms were unaware of the variety of content codes used in the psychotherapy

corpus and therefore, the rater’s concept of suicide might not map onto the (narrow) concept

of suicide in the psychotherapy corpus. We therefore had a clinical psychologist create

associated code sets by selecting from the list of psychotherapy symptom codes (See Table

A.1) with the constraint that the code set contain the matching code term. These meta code

sets were created prior to any evaluation of the model.

For each of the 5 symptoms in the ratings experiment, we take the set of codes from the psy-

chotherapy corpus that are closely associated with the symptom (e.g. for the anger suicide,

we take the set anger and frustration) and average the model predictions across the codes
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Table A.1: Symptom codes and sets of associated codes

Symptom
Code

Code Set

anger anger, frustration
anxiety anxiety, fear, nervousness, social anxiety,

stress, death anxiety, fearfulness, panic, para-
noia, restlessness

depression depression, grief, guilt, hopelessness, lone-
liness, shame, crying, depressive disorder,
despair, dysphoria, loss of appetite, prob-
lems concentrating, sadness, suicidal behavior,
withdrawn

low self-esteem low self-esteem, self-esteem
suicidal behav-
ior

hospitalization, suicide, cutting, dysphoria,
death

in the set. This creates a model representativeness score for each talk-turn in the ratings

experiment that can be compared to the binarized human ratings (highly representative/not

highly representative). This approach of combining predictions among closely-related labels

can be viewed as a simple implementation of the idea that labels in multi-label document

classification are often dependent and leveraging such dependencies is worthwhile and can

improve predictive performance [44].

A.2 Supplementary Files: Semi-Automated Content

Coding of Psychotherapy Transcripts Using La-

beled Topic Models

A.2.1 Session-Level R-precision

Figure A.1 shows the R-precision values calculated for each label for both Labeled Latent

Dirichlet Allocation (L-LDA) and lasso logistic regression (LLR).

The R-precision is the precision calculated at the threshold at which a classifier could score
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a precision of 1. For example, if we are trying to classify 100 sessions of which 10 have the

label, we choose the threshold to separate the top 10 and bottom 90 sessions by classifier

probability of being annotated with that label. Then we calculate the precision. The R-

precision avoids reporting precisions at each threshold and also has the nice property of

equalling the recall for the chosen threshold. We found that R-precision and AUC were

fairly correlated across labels for both models (Pearson’s coefficient = 0.64 for L-LDA and

0.62 for LLR).

Figure A.1: Session-level R-precision scores for the labeled topic model, the lasso logistic
regression model, and chance performance. Codes are reported along the y axis and are
ordered by labeled topic model performance. For subject codes, one in every 4 codes names
is shown. The number in parenthesis indicates the number of sessions to which a particular
code was assigned out of the 1181 possible sessions.
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A.2.2 Baseline Model: Lasso Logistic Regression Prediction

We compare L-LDA to a baseline discriminative model, lasso logistic regression [132]. Lasso

logistic regression is a regularized logistic regression that penalizes feature weights using

the L1 norm and a parameter λ that controls the strength of regularization. We use term

counts as features to classify each document by label, using the same vocabulary of unigrams,

bigrams, and trigrams used in the L-LDA experiments.

For each code y, let yd be a binary indicator of code attachment for document d and pd be

the estimated probability that code y is attached to document d. Then the model is fit by

minimizing the log loss plus the L1 penalty term:

min
β
− 1

D

D∑

d=1

(yd log(pd) + (1− yd) log(1− pd)) + λ
V∑

i=0

|βi|)

where β0 is an intercept, β is a V -dimensional vector of feature weights. We calculate pd as

a logistic transformation of the linear combination of feature weights and word counts.

We trained the logistic regression model separately for the task of coding at the session level

and the task of finding representative talk-turns.

For session level-prediction, we train a separate binary model for each code using session-

wide counts as features. The models are trained and evaluated using the same 10-fold cross-

validation partition as we used when evaluating L-LDA performance. The goal for each

binary model is to predict the presence/absence of a particular code for the session using

the counts observed at the session level as input. For each new session in the validation set,

we compute the probability of a given code and compute AUC scores for the logistic model

by combining the model predictions across validation sets.
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For talk-turn level-prediction, we train a logistic regression model at the talk-turn level

using the same 10-way train-test procedure as used for the L-LDA model with talk-turns.

For each of the five symptom codes in the local tagging experiment, we train a separate

logistic regression model. For each talk-turn in the training set, the logistic regression model

is trained to predict the presence or absence of the session-level code associated with the

talk-turn. For the 993 talk-turns in the local tagging experiment (that are always part of

the validation set), the logistic regression model computes the probability of a code using

as input the counts at talk-turn level. The AUC scores are then computed in a manner

equivalent to the L-LDA model.

We ran 8 logistic regression models using 8 different regularization parameters λ drawn from

the set .0001, .001, .01, 1, 10, 100, 1000. For each of the models, we computed the talk-turn

level AUC. Average AUC varied smoothly across the set of regularization parameters and

we report the model with highest average AUC.

A.3 Task Descriptions

A.4 VDGLM Optimization

We perform maximum likelihood estimation using Trust-region optimization (TRO). TRO

is an iterative procedure for minimization. At each iteration, TRO locally approximates the

negative log likelihood function using a Taylor expansion and finds a minimum within that

step’s trust-region, i.e. the region for which the local approximation accurately approxi-

mates the objective function. MATLAB restricts the local approximation to a 2-dimensional

subspace to allow for faster convergence. The algorithm locally minimizes along the two-
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Table A.2: Tasks and descriptions. Underlined tasks are those for which we can compute
behavioral performance.

Task Description

Emotional Pictures Subjects see photographs of the screen, one at a time. These photographs appear to
the left or right of the center of the screen. The task is to indicate whether the picture
is shifted to the left or right relative to green dot in the center of the screen.

Emotional Faces Subjects are presented with male and female faces, one at a time. The task is to
determine whether the faces are male or female. There are task conditions for neutral,
happy, sad, and fearful faces.

Episodic Memory Encoding Subjects see name and face pairings on a screen. The task is to decide whether the
name goes well with the face on a 1-4 (poor to well) scale. There are 4 face conditions:
young and old faces that are novel or have been repeated during the experiment.

Episodic Memory Retrieval Subjects are asked to remember which names were paired with which faces from the
episodic memory encoding task. The task is to indicate whether the face name pairs
are the same from the previous task, completely novel, or if the face is repeated, but
was not paired with the given name.

Go/No-go Subjects are presented with images of single letters. The task is to press a button
when the letter is in the set {A,B,C,D,E} and not to press the button when the
letter is in the set {X,Y, Z}.

Monetary Incentive Delay Subjects are asked to press a button as quickly as possible when a white square (cue)
appears on the screen. Participants either win or lose money based on when and how
fast they push the button.

Working Memory Subjects are presented with a sequence of letters and switch between the control task
and the 2-back memory task. In the control task, subjects are asked to indicate
whether the current letter is underlined. In the memory task, subjects are asked to
indicate whether the current letter is the same as the one that was presented two
letters ago.

Theory of Mind Subjects are presented with stories and true or false statements about the stories. The
task is to indicate whether the statement was true or false.

Resting State Subjects are asked to close eyes, relax but stay awake.

dimensional subspace spanned by the direction of steepest descent and one of either a) the

approximate newton direction, if it exists, or b) the direction of negative curvature [13]. For

a time series y from a single subject and region, we minimize the negative log likelihood

− log p(y|θ) where the likelihood is defined:

p(y, θ) =
[ T∏

t=1

p(yt|β, v,XM
t , XV

t )
]
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where XM
t is a [1 × pM ] vector: the single row of the mean design matrix at time t. XV

t is

a [1× pV ] vector: the single row of the variance design matrix at time t. For single point in

the time series, the likelihood is

p(yt|β, v,XM
t , XV

t ) =

1√
2πXV

t v
exp

( −1

2XV
t v

(yt −XM
t β)2

)
.

and we can compute the joint log-likelihood as the product of the log-likelihoods for each

point:

log p(y|(θ) =

− T

2
log 2π+

[ T∑

t

−1

2
log(XV

t v)− 1

2XV
t v

(yt − (XM
t β))2

]

subject to the inequality constraint that the variance is nonzero, i.e.:

XV
t v > 0 ∀ t ∈ {1, ..., T}

This constraint can be conceptualized in a Bayesian setting as a uniform prior over the

constrained area. Each iteration of the trust-region algorithm uses a Newton-Raphson step

to update. We supply the analytical gradients:
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∂ log p(β|•)
∂β

= (XM
t )T

[ T∑

t=1

(yt −XM
t β)

XV
t v

]

∂ log p(v|•)
∂v

= (XV
t )T

[ T∑

t=1

−1

2XV
t v

+
(yt −XM

t β)2

2(XV
t v)2

]
.

We used built-in MATLAB functions to perform optimization. We stop the optimization

routine when the magnitude of the gradient is smaller than 1e-6, the change in objective

value is smaller than 1e-6, the size of the trust region is below 1e-6, or the optimization

routine reaches 1000 iterations.

We compute the Hessian matrix H =
∑T

t Ht for use in the Wald statistic, where

Ht =




[3]
−1

Zt
(XM

t )TXM
t

−Qt
Z2
t

(XV
t )TXM

t

−Qt
Z2
t

XV
t (XM

t )T
[ 1

2Z2
t

− Q2
t

Z3
t

]
(XV

t )TXV
t


 ,

Qt = yt −XM
t β, and Zt = XV

t v.

A.4.1 VDGLM Exponential Transformation Optimization

We tried using an exponential transformation of the variance [15] to see if an unconstrained

variance showed stronger results. To fit our model on the full dataset, we find the maximum

likelihood estimate using trust region optimization. The objective function that we minimize
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is − log p(y|θ) where

p(y, θ) =
[ T∏

t=1

p(yt|β, v,XM
t , XV

t )
]

and

p(yt|β, v,XM
t , XV

t ) =

1√
2π exp(XV

t v)
exp

( −1

2 exp(XV
t v)

(yt −XM
t β)2

)
.

The joint log likelihood is:

log p(y|(θ) =

− T

2
log 2π+

[ T∑

t

−1

2
XV
t v −

1

2 exp(XV
t v)

(yt − (XM
t β))2

]
.

The gradient is:

∂ log p(β|•)
∂β

= (XM
t )T

[ T∑

t=1

(yt −XM
t β)

exp(XV
t v)

]
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∂ log p(v|•)
∂v

= (XV
t )T

[ T∑

t=1

−1

2
+

(yt −XM
t β)2

2 exp(XV
t v)

]

,

and the Hessian matrix is H =
∑T

t Ht, where

Ht =




[3]
−1

Zt
(XM

t )TXM
t

−Qt
Zt

(XV
t )TXM

t

−Qt
Zt

XV
t (XM

t )T
Q2
t

2Zt
(XV

t )TXV
t


 .

We define the variables Qt = yt −XM
t β and Zt = exp(XV

t v) to simplify computation.
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