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ABSTRACT OF THE THESIS

Dynamic Matching Market with

Agent-Dependent Compatible Probabilities

by

Lan Tao

Master of Science in Statistics

University of California, Los Angeles, 2023

Professor Xiaowu Dai, Chair

Numerous dynamic matching market models pursuing different objectives have been devel-

oped for kidney exchange studies. These objectives range from minimizing waiting time and

maximizing welfare to reducing the fraction of unmatched agents. Motivated by the medical

observation that better matching outcomes are often achieved when donors and recipients

share the same race, we extend the dynamic matching model by Akbarpour et al. (2020) to

a matching market with two types of agents, in which the compatible probability depends on

agent types. In this study, we examine the performance of two matching algorithms, namely

Greedy algorithm and Patient algorithm, from both theoretical and empirical perspectives.

Our aim is to investigate whether delaying the matching process to thicken the market can

effectively decrease the fraction of unmatched agents within the market.
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CHAPTER 1

Introduction

1.1 Background

The dynamic matching market problem has received considerable attention over the past

decade and has found applications in various domains, such as kidney exchange, sharing

economy and online marketplaces, housing market, child adoption, and college admission.

In a dynamic matching market, agents enter and leave the market stochastically, and only

certain pairs of agents can be matched feasibly. Market planners face the challenge of

determining which agent pairs to match and when to match them, taking into account their

compatibility, with the ultimate goals of minimizing waiting time, maximizing welfare, or

reducing the fraction of unmatched agents.

In this paper, we propose a dynamic matching market model where the probability of

compatibility is influenced by the types of the agents involved. This restriction on com-

patibility is motivated by the observations and patterns observed in kidney transplantation

markets, where the compatibility between donors and recipients plays a crucial role in the

success of transplant procedures.

Kidney transplantation is considered to be the best remedy for renal disease, and the

biological compatibility between patients and donors includes blood-type compatibility and

tissue-type compatibility. Blood type compatibility, also known as ABO compatibility, means

that the patient cannot receive a kidney from a donor who has a blood antigen (A or B)

that the patient does not have (Ashlagi, Roth 2021)[AR21]. For example, an O patient is
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ABO-compatible to only O donor, while an O donor is ABO-compatible to any patient. An

AB patient is ABO-compatible to any donor, while an AB donor is ABO-compatible to only

AB patient. Beside blood-type antigens, the donor has human leukocyte antigens (HLA),

which influence the compatibility success of kidney transplantation. A patient is said to be

tissue-type compatible to the donor if the patient does not have antibodies to the donor’s

HLA. A patient’s immune system will reject the kidney if the patient have antibodies to the

donor’s HLA. In the operation process, A virtual match could be determined with the given

data on patient and donor ABOs, the donor HLA, and the patient antibodies, and then a

cross matching test would be conducted to verify whether the patient will reject the donor’s

kidney.

Most kidney transplants today come from deceased donors, but this source of transplants

is limited. Kidney exchange arose as a way of increasing the availability of transplants from

compatible living donors without violating the ban on compensation donors. Two or more

incompatible patient-donor pairs might be able to exchange kidneys, so that each patient

gets a kidney that is compatible with him/her, from another patient’s donor (Ashlagi, Roth

2021)[AR21]. It overcame the barrier of biological incompatibility through a swap between

two pairs of donors and patients who are each biologically incompatible but compatible to

the other. Since 2013, over 10% of the live kidney donor transplants in the U.S. each year

were accomplished through exchange. Over 1, 000 of the U.S. living donor kidney trans-

plants in 2019 resulted from kidney exchange, and many of them were conducted through

kidney exchange platforms that organize these exchanges among multiple hospitals (Ashlagi,

Roth 2021)[AR21]. Consequently, it is crucial to study and design a matching mechanism

between pairs of donors and patients to alleviate this dilemma and decrease the number of

death caused by shortage of transplantable organs. Numerous studies have been conducted

to investigate the incentive, the efficiency, the welfare of matching market under kidney

exchange problem context.

Medical researchers in the field of organ sharing have recognized the significance of race

2



as a crucial factor for achieving HLA compatibility between donors and patients. It has

been observed that better cross-matching outcomes are attained when both the donors and

recipients are of the same race. In particular, a study by Lazda (1992) [Laz92] revealed that

kidneys from non-black donors, which are well-matched for HLA phenotypes more commonly

found in black patients, were rarely allocated to black patients. Building upon this obser-

vation, we incorporate a matching market model in our study, involving two distinct agent

types. In this model, the compatibility between agents of the same type is assigned a higher

probability, while the compatibility between agents of different types is assigned a lower

probability. We investigate the performance of two algorithms, namely Greedy algorithm

and Patient algorithm, both theoretically and empirically, with the aim of demonstrating

that delaying the matching process to allow for a larger participant pool can effectively

reduce the proportion of unmatched agents in the market.

The paper is structured as follows: In the subsequent section, we review literature fo-

cusing on matching market models pertaining to the kidney exchange problem and sharing

economy problem. Chapter 2 formulates the dynamic matching market model, including the

model settings, compatibility and description of the two matching algorithms. Chapter 3

evaluates the loss of Greedy algorithm and Patient algorithm from a theoretical perspective,

in which we derive the theoretical bounds of loss of both algorithms. Chapter 4 presents

simulation studies that compare the performance of the two algorithms, analyze the effects of

different parameters, and assess the effectiveness of the derived loss bounds. Finally, Chapter

5 concludes the study by discussing the limitations of the proposed model and suggesting

potential directions for future research.

1.2 Related literature

Many studies about matching market within various context and settings with different

objectives of stability, welfare or quality have been discussed during the past decade. Re-
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searchers have developed various models for problems in kidney exchange, sharing economy

and online marketplaces, housing market, child adoption, and college admission.

Under the context of kidney exchange problem, it is significant to study and design a

matching mechanism between pairs of donors and patients to alleviate this dilemma and

decrease the number of death caused by shortage of transplantable organs. This problem

was originally studied by Roth, Sönmez, and Ünver (2004, 2005) [RSU04][RSU05a][RSU05b].

Ünver(2010)[Unv10] firstly considers dynamic model with multiple types of agents and agents

never perish. His model reveals that waiting to thicken the market is not helpful when

only bilateral exchanges are allowed. However, when agents depart stochastically, waiting

is worthwhile according to the study by Akbarpour et al. (2020)[ALG20]. Their results

show that waiting to thicken the market can yield large gains if the planner can forecast

departures accurately and information about departures is highly valuable if it is feasible to

wait. Anderson et al. (2015)[AAG15] raise a model with the main objective to minimize the

average waiting time under the setting that agents never perish. Sönmez et al. (2020)[SUY20]

analyze the efficiency and equity implications of incentivized exchange in an analytically

tractable dynamic large-market model of kidney transplantation. They show that compared

with primary technologies, incentivized exchange increases both overall access and equity in

access to transplants. Baccara et al. (2020)[BLY20] studied the trade-off between waiting

time for a thicker market allowing for higher quality matches, and minimizing agents’ waiting

costs. Ashlagi and Roth (2021)[AR21] reviewed some of the key operational issues in the

design of successful kidney exchange programs, and pointed out several research directions,

including international exchanges, improvements on greedy matching, and dynamics with

frictions etc. They concluded that a thick inter-hospital kidney exchange network should be

built, which means assembling a sufficiently large, constantly renewed pool of patient-donor

pair.

With the development of sharing economy, studies into matching market sharing econ-

omy and online marketplaces have received more attention in recent years. Ashlagi et al.
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(2019)[ABD19] study the problem of matching two passengers in the context of an on-

demand ride-sharing platform, in which matching agents leave after some time periods and

each pair of agents can yield a different match value. They investigate the total match

value over a finite time horizon, and compare several algorithms under different settings

of deterministic or stochastic departures, and adversarial or random arriving order. Liu et

al. (2019)[LWY19] develop a model for two-sided dynamic matching market and estimate

it using data to show that Patient algorithm outperforms Greedy algorithm if drivers are

not too heterogeneous. Varma et al. (2020)[MBT20] study optimal pricing and matching

control in a two-sided queueing system in sharing economy and online marketplaces, where

heterogeneous customers and servers arrive to the system with price-dependent arrival rates,

with the objective to maximize the long-run average profits of the system while minimiz-

ing average waiting time. Aouad and Saban (2022) [AS23] focus on the online assortment

optimization problem faced by a two-sided matching platform that hosts a set of suppliers

waiting to match with a customer, and investigate assortment algorithms to maximize the

expected number of matches.

In addition to these two most popular application problems, dynamic matching models

are developed for other matching market mechanism design problems in real life. Leshno

(2021)[Les22] studies waiting list allocation mechanisms in public housing problem, where

waiting times serve a similar role to that of monetary prices in directing agents’ choices. The

study shows that waiting time fluctuations lead to misallocation and welfare loss. Inspired by

children-adoption problem, Baccara et al. (2020)[BLY20] consider a market model in which

one type agent is more desirable than the other, and they evaluate the effect of waiting cost

on expected welfare.

Ashlagi et al. (2019)[ABJ19] study the efficiency and thickness in heterogeneous match-

ing market where agents arrive stochastically over time. They considered two types of agents

in the model, hard-to-match agents and easy-to-match agents, and investigated the scenar-

ios and corresponding efficient matching algorithms (involving agents’ priorities) to improve
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agents’ waiting times. Akbarpour et al. (2020)[ALG20] considered model of dynamic match-

ing in networked markets where agents arrive and depart stochastically, and the composition

of the trade network depends endogeneously on the matching algorithm. They found that

waiting to thicken the market substantially reduces the fraction of unmatched agents if the

planner is able to identify critical agents who are about to depart. In their model, any two

agents are compatible with probability p = d/m, where d is the density parameter of the

model, and m is the Poisson rate at which new agents arrive in the market. They showed

that the Greedy algorithm’s loss is at least 1/(2d+ 1), while the Patient algorithm’s loss is

at most e−d/2/2.
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CHAPTER 2

Problem Formulation

2.1 Dynamic matching market

We construct a continuous-time model for a dynamic matching market with network con-

straints which runs in time interval [0, T ]. New agents arrive at the market at Poisson rate

m, in other words, m new agents are expected to arrive at the market during each time

period [t, t + 1], and we assume m ≥ 1. Let Ct be the set of agents in the market at time

t, which is referred as pool, and Zt = |Ct| is called the pool size. Suppose all agents can be

classified as two types, type-A agent and type-B agent, according to some characteristics,

which are denoted by vA and vB respectively. CA
t denotes the set of type-A agent in the

market at time t, and ZA
t = |CA

t | is the number of type-A agent in the pool, and called the

pool size of A. Similarly, CB
t and ZB

t = |CB
t | can be defined in this way. Let Cn

t denote the

set of agents arriving at the market at time t, and Cn
t0,t1

denote the set of agents arriving at

the market in time interval [t0, t1]. Note that |Cn
t | ≤ 1 with probability 1, since we assume

that no agents will arrive at the market at the exactly same time.

Each agent in the pool will become critical, a state that the agent will leave the pool

immediately if not matched, at an independent Poisson rate λ, which can be normalized to 1

without loss of generality. An agent is said to perish from the market if it leaves the market

unmatched. Suppose an agent v arrives at the market at time t0, and it will become critical

at time t0 + tc, where tc ∼ Exp(1). If the agent v doesn’t get matched during time interval

[t0, t0+tc], then v will perish from the market immediately at time t0+tc. It is apparent that
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the agent v can be matched and leave the market at any time point t1 during [t0, t0+ tc], and

the length of time which an agent v is in the market is referred as sojourn, which is defined

as s(v) = t1 − t0. Let C
c
t be the set of agents who become critical at time t, and we assume

that |Cc
t | ≤ 1 with probability 1.

2.2 Compatibility

Now there are two types of agents in the market, vA and vB, and the probability of being

compatible between any pair of agents are independent across pairs, but dependent on the

type of agents. For any pair of agents of the same type, that is vA − vA or vB − vB, they are

compatible with probability p1, while any pair of agents of different types, that is vA − vB,

are compatible with probability p2, where 0 ≤ p2 ≤ p1 ≤ 1.

We can regard this matching problem from the perspective of graph. At any time point

t > 0, each agent in the market can be seen as a vertex, and all agents in the pool form

a vertex set, which is just Ct. For any two distinct vertices v1, v2 in Ct, there exist an

edge between them if and only if these two agents are compatible in the market. Note that

compatible pairs persist over time. Thus, the edge set Et ⊆ Ct ×Ct represents the set of all

compatible pairs of agents in the market at time t, and Gt = (At, Et) is the network graph at

time t. For any agent v ∈ Ct, its neighbor is defined as the set of agents who are compatible

with it, denoted by Nt(v) ⊆ Ct.

Let C = ∪t≤TC
n
t be the set of agents who enter the market by time T , E ⊂ C×C be the

set of possible transactions between agents in C, G = (C,E). It is clear that any realization

of the above stochastic process is uniquely defined, given Cn
t , C

c
t for all t ≥ 0.

8



2.3 Matching algorithms

A matching Mt ⊆ Et is a set of edges where no two edges share the same end points. A

matching algorithm aims to select a matching Mt in the graph Gt and the end points of edges

in the matching will leave the market immediately. Note that Ct, Et, Zt are all functions of

the underlying matching algorithm.

An ideal matching algorithm is to maximize the number of matched agents and minimize

the number of perished agents. Thus, we introduce the following notation to define and

measure the loss of a matching algorithm.

We use ALG(T ) to denote the set of agents matched by time T under the matching

algorithm ALG, that is

ALG(T ) := {v ∈ C : v is matched by ALG by time T}.

The loss of a matching algorithm is defined to be the ratio of expected total number of

perished agents to expected number of agents by time T , which can be expressed as follows:

L(ALG) =
E[|C − ALG(T )− CT |]

E[|C|]

=
E[|C − ALG(T )− CT |]

mT
.

We introduce the following two matching algorithms, Greedy algorithm and Patient algo-

rithm. The Greedy algorithm matches agents as soon as possible. For any new agent v enters

the market at time t, match it with a random agent in its neighbors Nt(v) if Nt(v) ̸= ∅. The

Patient algorithm matches only critical agents. If an agent v becomes critical at time t, then

match it with a random agent in its neighbors Nt(v) if Nt(v) ̸= ∅.

Compared with Greedy algorithm, Patient algorithm extends each agent’s waiting time in

order to thicken the market and make better matching choices. We study the performance of

these two algorithms to investigate whether the sacrifice of longer waiting time can effectively

reduce the fraction of perished agents.

9



Algorithm 1 Greedy Algorithm for dynamic matching

for a new agent v arrives at the market at time t do

if Nt(v) ̸= ∅ then

randomly choose v′ ∈ Nt(v) at uniform, and match v with v′, Zt = Zt − 1.

else

agent v stays at the pool, Zt = Zt + 1.

end if

end for

Algorithm 2 Patient Algorithm for dynamic matching

for an agent v at the pool becomes critical at time t do

if Nt(v) ̸= ∅ then

randomly choose v′ ∈ Nt(v) at uniform, and match v with v′, Zt = Zt − 2.

else

agent v perishes from the market, Zt = Zt − 1.

end if

end for

10



CHAPTER 3

Evaluation of Loss of Two Algorithms

Let zt(·) be the distribution of pool size Zt at time t and µ(·) be the stationary distribution

of Markov Chain on Zt. The mixing time of the Markov chain on Zt is defined as τmix(ϵ) =

inf{t :
∑∞

k=0 |µ(k) − zt(k)| ≤ ϵ}. Since there are two types of agents in the market, we

consider the 2-dim Markov Chain on (ZA
t , Z

B
t ) as well, whose stationary distribution is

denoted by π(·, ·).

Let nt = max{ZA
t , Z

B
t } denote the maximum number of type-A agent or type-B agent

for each (ZA
t , Z

B
t ) at time t, and n′

t = min{ZA
t , Z

B
t } denote the minimum number of type-

A agent or type-B agent for each (ZA
t , Z

B
t ) at time t. π̃(·) is defined as the stationary

distribution of nt. We define the proportion s =
n′
t

nt
= min{ZA

t

ZB
t
,
ZB
t

ZA
t
} (0 < s ≤ 1), which is

not a fixed value but a random variable when the Markov chain on Zt is under steady state.

We assume the distribution of s as a Beta distribution, that is s ∼ B(α, β), where the hyper

parameters α and β are related to model parameters m, p1, p2, λ and matching algorithm,

but independent of ZA
t and ZB

t at each time period. Let u = s·p1+p2
s+1

denote the average

compatible probability of this matching market, and d = m · u stands for the density in this

matching model. In the following, conditional on the proportion s, we study the bound of

loss of Greedy algorithm and Patient algorithm.
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3.1 Bound of loss of Greedy algorithm

The Greedy algorithm matches agents as soon as possible. Let ξ := EZ∼µ[Z] is the expected

pool size under stationary distribution of the Markov chain Zt. If the Markov chain on Zt is

mixed, then agents perish at the rate of ξ, since the pool is almost always an empty graph

under Greedy algorithm. According to the definition of the loss of a matching algorithm,

L(Greedy) =
E[
∫ T

0
Ztdt]

mT

=
1

mT

∫ T

0

E[Zt]dt.

Proposition 20 [ALG20] holds under this setting, and by that we have

E[Zt] ≤ E[Z̃t0 ] = m(1− e−t0) ≤ m.

Lemma 11 [ALG20] also holds under this setting, so we have

L(Greedy) ≤ τmix(ϵ)

T
+ 6ϵ+

1

m
2−6m +

EZ∼µ[Z]

m
.

Here, the term τmix(ϵ)
T

is related to the time the Markov Chain costs to transit to stationary

distribution; while the other terms are loss approximation after the Markov Chain mixes.

To upper-bound EZ∼µ[Z], we find out the balance equation and combine it with transition

rates to investigate the stationary distribution µ(·).

Lemma 3.1.1. Let u = s·p1+p2
s+1

. For any integer k ≥ k∗,

µ(k + 1)

µ(k)
≤ e−u·(k∗−k).

And, for any k ≤ k∗, µ(k−1)
µ(k)

≤ e−u·(k∗−k+1).

Proof. The pool size Zt = k goes to either k+1 or k−1. The former situation happens only

when a new agent comes to the market and the market-maker cannot match it. Since the
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compatible probability is related to the type of agents, we define k0 as the number of agents

in the pool which are of the same type of this new agent, obviously k0 ≤ k. Then we have

rk→k+1 = m · (1− p1)
k0 · (1− p2)

(k−k0).

The latter situation happens when a new agent comes and market-maker can match it

or an agent currently in the pool gets critical, thus

rk→k−1 = k +m · [1− (1− p1)
k0 · (1− p2)

(k−k0)].

According to the balance equation of a Markov chain, ∀S ⊆ N ,

∑
i∈S,j /∈S

µ(i) · ri→j =
∑

i∈S,j /∈S

µ(j) · rj→i.

The stationary distribution should satisfy

µ(k − 1) · rk−1→k = µ(k) · rk→k−1.

If the newly coming agent is type-A, then the transition probability operator will be:

rk→k+1 = m · (1− p1)
kA · (1− p2)

kB ,

rk→k−1 = k +m · [1− (1− p1)
kA · (1− p2)

kB ];

otherwise, the newly coming agent is type-B, then we have

rk→k+1 = m · (1− p1)
kB · (1− p2)

kA ,

rk→k−1 = k +m · [1− (1− p1)
kB · (1− p2)

kA ].

Under stationary distribution, the ratio of type-A agents to type-B agents in the pool is

fixed, which satisfies kA
kB

= α(0 < α < +∞). In other words, kA = α
α+1

k and kB = 1
α+1

k.

Notice that α could be either s or 1
s
.
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Case 1. If the newly coming agent is vA, then it should be satisfied that

µ(k−1)·m·(1−p1)
α

α+1
(k−1)·(1−p2)

1
α+1

(k−1) = µ(k)·{k+m·[1−(1−p1)
α

α+1
(k−1)·(1−p2)

1
α+1

(k−1)]}.

Let’s define a function f(k) as follows:

f(k) = rk→k+1 − rk→k−1

= m · (1− p1)
α

α+1
k(1− p2)

1
α+1

k − [k +m · (1− (1− p1)
α

α+1
k(1− p2)

1
α+1

k)]

= 2m · [(1− p1)
α(1− p2)]

k
α+1 − k −m

Since f ′(k) = 2
α+1

m · [(1 − p1)
α(1 − p2)]

k
α+1 · (α · log(1 − p1) + log(1 − p2)) − 1 < 0 and

f ′′(k) = 2
α+1

m · [(1 − p1)
α(1 − p2)]

k
α+1 · (α · log(1 − p1) + log(1 − p2))

2 > 0, f(k) is a

convex decreasing function. Suppose k∗ is the unique root for equation f(k) = 0, then

it can be proved that m
2m(α·p1+p2)

α+1
+1

≤ k∗ ≤ log2 · α+1
α·p1+p2

. Let k∗
min = m

2m(α·p1+p2)
α+1

+1
and

k∗
max = log2 · α+1

α·p1+p2
,

f(k∗
min) = 2m · [(1− p1)

α(1− p2)]
k∗min
α+1 − k∗

min −m

≥ 2m · [(1− p1 ·
α

α + 1
· k∗

min)(1− p2 ·
1

α + 1
· k∗

min)]− k∗
min −m

= m− k∗
min(

2m · (α · p1 + p2)

α + 1
+ 1) + k∗

min
2 · 2m · α · p1 · p2

(α + 1)2

≥ 0

f(k∗
max) = 2m · [(1− p1)

α(1− p2)]
k∗max
α+1 − k∗

max −m

≤ 2m · [e−
α

α+1
k∗max·p1− 1

α+1
k∗max·p2 ]− k∗

max −m

≤ 2m · e−
α·p1+p2

α+1
·k∗max − k∗

max −m

≤ 0

For now, we have shown that k∗
min ≤ k∗ ≤ k∗

max, and it remains to show that µ is highly

concentrated around k∗.
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For k ≥ k∗, consider

µ(k)

µ(k + 1)
=

rk+1→k

rk→k+1

=
k + 1 +m · [1− (1− p1)

α(k+1)
α+1 · (1− p2)

k+1
α+1 ]

m · (1− p1)
α·k
α+1 · (1− p2)

k
α+1

,

due to f(k∗) = 0, we have

µ(k)

µ(k + 1)
=

k + 1 +m · [1− (1− p1)
α(k+1)
α+1 · (1− p2)

k+1
α+1 ]

m · (1− p1)
α·k
α+1 · (1− p2)

k
α+1

=
k − k∗ + 1−m · (1− p1)

α(k+1)
α+1 (1− p2)

k+1
α+1 + 2m · [(1− p1)

α·k∗
α+1 (1− p2)

k∗
α+1 ]

m · (1− p1)
α·k
α+1 (1− p2)

k
α+1

≥ −(1− p1)
α

α+1 (1− p2)
1

α+1 +
2

((1− p1)
α

α+1 (1− p2)
1

α+1 )k−k∗

≥ 1

((1− p1)
α

α+1 (1− p2)
1

α+1 )k−k∗

≥ 1

(e−p1· α
α+1 · e−p2· 1

α+1 )k−k∗

= e−
α·p1+p2

α+1
·(k∗−k).

It reveals that ∀k ≥ k∗, µ(k+1)
µ(k)

≤ e−
α·p1+p2

α+1
·(k−k∗). Similarly, it can be obtained that ∀k ≤

k∗, µ(k−1)
µ(k)

≤ (1− α·p1+p2
α+1

)k
∗−k+1 ≤ e−

α·p1+p2
α+1

·(k∗−k+1).

Case 2. If the newly coming agent is vB, then it should be satisfied that

µ(k−1)·m·(1−p1)
1

α+1
(k−1)·(1−p2)

α
α+1

(k−1) = µ(k)·{k+m·[1−(1−p1)
1

α+1
(k−1)·(1−p2)

α
α+1

(k−1)]}.

By comparing this equation with the equation in Case 1, we realize that we can replicate

the proof in Case 1 by replacing α with 1
α
. Similarly, the function f(k) in this case can be

defined as f(k) = rk→k+1− rk→k−1 = 2m · [(1− p1)(1− p2)
α]

k
α+1 − k−m. Following the steps

in Case 1, we obtain 
µ(k + 1)

µ(k)
≤ e−

p1+α·p2
α+1

·(k−k∗), ∀k ≥ k∗

µ(k − 1)

µ(k)
≤ e−

p1+α·p2
α+1

·(k∗−k+1), ∀k ≤ k∗
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Considering these two cases together, no matter what kind of new agents arriving in the

market, we always have µ(k+1)
µ(k)

≤ e−u·(k∗−k) for any integer k ≥ k∗; and µ(k−1)
µ(k)

≤ e−u·(k∗−k+1)

for any k ≤ k∗, where u = min{α·p1+p2
α+1

, p1+α·p2
α+1

} = s·p1+p2
s+1

.

By repeated application of the Lemma 3.1.1, we can derive the following Greedy Con-

centration Proposition.

Proposition 3.1.2 (Greedy Concentration). Let u = s·p1+p2
s+1

, there exists m
2m·u+1

≤ k∗ ≤
1
u
· log2, such that for any σ > 1,

Pπ[k
∗ − σ ·

√
2

u
≤ Z ≤ k∗ + σ ·

√
2

u
] ≥ 1−O(

√
2

u
)e−σ2

.

Proof. For any integer k ≥ k∗, we have

µ(k) ≤ µ(k)

µ(⌈k∗⌉)
≤ exp[−u ·

k−1∑
i=⌈k∗⌉

(i− k∗)] ≤ exp[−(k − k∗ − 1)2 · u
2

].

∀σ > 0,

∞∑
k=k∗+1+σ

√
2
u

µ(k) ≤
∞∑

k=k∗+1+σ
√

2
u

exp[−(k − k∗ − 1)2 · u
2

]

=
∞∑
k=0

exp(−
(k + σ

√
2
u
)2 · u

2
)

≤ e−σ2

min{1
2
, σ

√
u
2
}
.

On the other side,
∑k∗−σ

√
2
u

k=0 can be upper-bounded in a similar way, this completes the

proof.

Furthermore, With this Greedy Concentration Proposition, EZ∼µ[Z] can be upper bounded

by k∗ +O(
√

1
u
· log 1

u
), and then the loss of Greedy algorithm can be furthermore derived as

in Theorem 3.1.4.
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Lemma 3.1.3. For k∗ and u as in Proposition 3.1.2,

EZ∼π[Z] ≤ k∗ +O(

√
1

u
· log 1

u
).

Proof. EZ∼π[Z] ≤ k∗ +∆+
∑+∞

i=k∗+∆+1 i · π(i).

+∞∑
i=k∗+∆+1

i · π(i) ≤
+∞∑

i=∆+1

e−
u
2
·(i−1)2 · (i+ k∗)

=
+∞∑
i=∆

e−
u
2
·i2 · (i− 1) +

+∞∑
i=∆

e−
u
2
·i2 · (k∗ + 2)

≤ e−
u
2
·(∆−1)2

u
+ (k∗ + 2) · e−

u∆2

2

min{1
2
, u·∆

2
}

Let ∆ = 1 + 2 ·
√

1
u
· log

√
1
u
, then the right hand side in the above equation is at most

1. Thus, we have EZ∼π[Z] ≤ k∗ + 2 + 2 ·
√

1
u
· log

√
1
u
= k∗ +O(

√
1
u
· log 1

u
).

Theorem 3.1.4. For any ϵ ≥ 0 and T > 0,

L(Greedy) ≤ 1

m
· log2 · 1

u
+

τmix(ϵ)

T
+ 6ϵ+

1

m
2−6m

+
1

m
·O(

√
1

u
· log 1

u
),

where u = s·p1+p2
s+1

.

Here u = s·p1+p2
s+1

stands for the average compatible probability of this matching market.

When s goes to 0, which implies the pool is almost full of agents vB (or vA), then u goes to

p2, the upper bound of L(Greedy) is identical to the result in the paper [ALG20].

We also investigate the lower bound of loss of Greedy algorithm, which is shown as the

following Theorem.

Theorem 3.1.5. As T goes to ∞,

L(Greedy) ≥ 1

2m · u+ 1
.
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Proof. Under Greedy algorithm, the pool is almost an empty graph without edges, since end

points of each edge leave the pool immediately once there forms an edge. In empty graph,

critical agents perish with probability 1, therefore, agents in the pool becomes critical at the

rate Zt, which is just the pool size. In steady state, T → ∞, L(Greedy) ≈ E[Zt]
m

, where the

numerator is the expected rate of agents perishing and the denominator is the expected rate

of agents arriving.

During time interval [t, t + 1], m agents come to the market. For a newly coming agent

v of type-A, the probability of an existing agent of type-A in pool to be compatible with

it is p1, and the probability of an existing agent of type-B in pool to be compatible with

it is p2. Then the probability for this newly coming agent v to have no compatible match

equals to (1− p1)
kA · (1− p2)

kB , and thus the probability for v to have a compatible match

is 1 − (1 − p1)
kA · (1 − p2)

kB . Similarly, for a newly coming agent v of type-B, it has no

compatible match with agents in the pool with probability (1− p2)
kA · (1− p1)

kB , and has a

compatible match with an agent in the pool with probability 1− (1− p2)
kA · (1− p1)

kB .

Suppose a newly coming agent is of type-A with probability p, and is of type-B with

probability 1− p, where 0 ≤ p ≤ 1. At a balance point z∗, for all 0 ≤ p ≤ 1, it should satisfy

that

m · p · (1− p1)
kA · (1− p2)

kB +m · (1− p) · (1− p2)
kA · (1− p1)

kB

=z∗ +m · p · [1− (1− p1)
kA · (1− p2)

kB ] +m · (1− p) · [1− (1− p2)
kA · (1− p1)

kB ],

where kA = α
α+1

z∗, and kB = 1
α+1

z∗.

According to proof of Proposition 3.1.2, the solution to the above equation is located in

this interval m
2m·u+1

≤ z∗ ≤ 1
u
· log2, where u = min{α·p1+p2

α+1
, p1+α·p2

α+1
} = s·p1+p2

s+1
. Based on

Proposition 3.1.2, under stationary distribution, Zt → k∗. Therefore, E[Zt] ≈ k∗ ≥ m
2m·u+1

,

and L(Greedy) ≈ E[Zt]
m

≥ 1
2m·u+1

.
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3.2 Bound of loss of Patient algorithm

Patient algorithm matches an agent only when it becomes critical. Once an agent a becomes

critical, it has no acceptable transactions with probability(1− p1)
(ZA

t −1)(1− p2)
ZB
t if a is type-A,

(1− p1)
(ZB

t −1)(1− p2)
ZA
t if a is type-B.

By definition of loss of a matching algorithm, the loss of Patient algorithm is:

L(Patient) =
1

mT
· E[

∫ T

t=0

ZA
t · (1− p1)

(ZA
t −1)(1− p2)

ZB
t + ZB

t · (1− p1)
(ZB

t −1)(1− p2)
ZA
t dt].

By involving the stationary distribution of the Markov Chain on (ZA
t , Z

B
t ) and nt, the

loss of Patient algorithm can be derived as follows:

Lemma 3.2.1. For any ϵ > 0 and T > 0,

L(Patient) ≤ τmix(ϵ)

T
+

2ϵ

m · (1− p2) · p21
+

1

m

[
1

(1− p1)
Ent∼π̃[nt((1− p1)(1− p2)

s))nt ]

+
s

(1− p1)
Ent∼π̃[nt((1− p1)

s(1− p2)))
nt ]

]
.

Proof.

L(Patient) =
1

mT
· E[

∫ T

t=0

ZA
t · (1− p1)

(ZA
t −1)(1− p2)

ZB
t + ZB

t · (1− p1)
(ZB

t −1)(1− p2)
ZA
t dt]

=
1

mT
·
∫ τmix(ϵ)

t=0

E[ZA
t · (1− p1)

(ZA
t −1)(1− p2)

ZB
t ] + E[ZB

t · (1− p1)
(ZB

t −1)(1− p2)
ZA
t ]dt

+
1

mT
·
∫ T

t=τmix(ϵ)

E[ZA
t · (1− p1)

(ZA
t −1)(1− p2)

ZB
t ] + E[ZB

t · (1− p1)
(ZB

t −1)(1− p2)
ZA
t ]dt

≤ 1

mT
·
∫ τmix(ϵ)

t=0

E[ZA
t + ZB

t ]dt

+
1

mT
·
∫ T

t=τmix(ϵ)

E[ZA
t · (1− p1)

(ZA
t −1)(1− p2)

ZB
t ] + E[ZB

t · (1− p1)
(ZB

t −1)(1− p2)
ZA
t ]dt

≤ τmix(ϵ)

T
+

1

mT
·
∫ T

t=τmix(ϵ)

E[ZA
t · (1− p1)

(ZA
t −1)(1− p2)

ZB
t ]

+ E[ZB
t · (1− p1)

(ZB
t −1)(1− p2)

ZA
t ]dt
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Let π( , ) denote the stationary distribution of Markov chain on (ZA
t , Z

B
t ). Then we can

write

L(Patient) ≤ τmix(ϵ)

T
+

1

mT
·
∫ T

t=τmix(ϵ)

∞∑
i=0

∞∑
j=0

(π(i, j) + ϵ) · [i · (1− p1)
i−1(1− p2)

j]

+
∞∑
i=0

∞∑
j=0

(π(i, j) + ϵ) · [j · (1− p1)
j−1(1− p2)

i]dt

≤ τmix(ϵ)

T
+

2ϵ

m

∞∑
i=0

∞∑
j=0

i(1− p1)
i−1(1− p2)

j +
1

m

[
E[ZA

t · (1− p1)
(ZA

t −1)(1− p2)
ZB
t ]

+ E[ZB
t · (1− p1)

(ZB
t −1)(1− p2)

ZA
t ]

]
=

τmix(ϵ)

T
+

2ϵ

m · (1− p2) · p21
+

1

m

[
E(ZA

t ,ZB
t )∼π[Z

A
t (1− p1)

ZA
t −1(1− p2)

ZB
t ]

+ E(ZA
t ,ZB

t )∼π[Z
B
t (1− p1)

ZB
t −1(1− p2)

ZA
t ]

]
.

For the last equality, we use
∑∞

i=0(1− p2)
i = 1

1−p2
, and

∑∞
i=0 i(1− p1)

i−1 = 1
p21
.

Under stationary distribution and conditional on s, it could be furthermore derived as

follows,

L(Patient) ≤ τmix(ϵ)

T
+

2ϵ

m · (1− p2) · p21
+

1

m

[
1

(1− p1)
Ent∼π̃[nt((1− p1)(1− p2)

s))nt ]

+
s

(1− p1)
Ent∼π̃[nt((1− p1)

s(1− p2)))
nt ].

This lemma demonstrates that the loss of Patient algorithm can be upper-bounded by

the expectation of a function of nt under its stationary distribution plus other approximation

terms for the time before the Markov chain mixes. To investigate the stationary distribution

of nt and furthermore to bound Ent∼π̃[nt((1−p1)(1−p2)
s))nt ], we study the balance equation

and transition rates of Markov chain on (ZA
t , Z

B
t ). For any (kA, kB), the Markov chain can

transit to 7 states, including (kA+1, kB), (kA, kB+1), (kA−1, kB), (kA, kB−1), (kA−2, kB),

(kA, kB − 2), and (kA − 1, kB − 1). The transition paths are shown in the Figure 3.1.
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Figure 3.1: The transition paths around (kA, kB) of the Markov Chain on (ZA
t , Z

B
t ) under

Patient Algorithm

Suppose a newly arrival agent is of type-A with probability p, and is of type-B with

probability 1 − p. The Markov chain on (kA, kB) goes to (kA + 1, kB) when a new type-A

agent arrives at the market, then we have

r(A→A+1,B) = m · p.

Similarly, (kA, kB) goes to (kA, kB+1) when a new type-B agent arrives at the market, whose

probability is

r(A,B→B+1) = m · (1− p).

When a type-A agent becomes critical bu gets no compatible match in the market, it will

perish from the market, so we have

r(A→A−1,B) = kA · (1− p1)
kA−1(1− P2)

kB .

Then the probability that a critical type-A agent has a compatible match in the market is

1 − (1 − p1)
kA−1(1 − P2)

kB . A critical type-A agent gets matched to another type-A agent

with the probability that [1− (1− p1)
kA−1(1− P2)

kB ] · (kA−1)·p1
(kA−1)·p1+kB ·p2 , and at this time, two

type-A agents leave the market. Thus, the transition rate r(A→A−2,B) can be written as

r(A→A−2,B) = kA · [1− (1− p1)
kA−1(1− P2)

kB ] · (kA − 1) · p1
(kA − 1) · p1 + kB · p2

.
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Similarly, for a critical type-B agent, it will perish from the market without compatible

match with the probability (1− p1)
kB−1(1− P2)

kA , the transition rate r(A,B→B−1) is

r(A,B→B−1) = kB · (1− p1)
kB−1(1− P2)

kA .

Two matched type-B agents will leave the market with probability [1− (1− p1)
kB−1(1−

P2)
kA ] · (kB−1)·p1

(kB−1)·p1+kA·p2 , so the transition rate r(A,B→B−2) is

r(A,B→B−2) = kB · [1− (1− p1)
kB−1(1− P2)

kA ] · (kB − 1) · p1
(kB − 1) · p1 + kA · p2

.

The number of both type-A and type-B agents in the pool will decrease by 1 when either

a critical type-A agent is matched with a type-B agent or a critical type-B agent is matched

with a type-A agent, thus we have

r(A→A−1,B→B−1) = kA · [1− (1− p1)
kA−1(1− P2)

kB ] · kB · p2
(kA − 1) · p1 + kB · p2

+ kB · [1− (1− p1)
kB−1(1− P2)

kA ] · kA · p2
(kB − 1) · p1 + kA · p2

.

Suppose n = max(kA, kB), the balance equation can be written as

n∑
i=1

π(n, i) · r(n→n+1,i) +
n∑

i=1

π(i, n) · r(i,n→n+1)

=
n−1∑
i=1

π(n+ 1, i) · r(n+1→n−1,i) +
n−1∑
i=1

π(i, n+ 1) · r(i,n+1→n−1)

+
n∑

i=1

π(n+ 1, i) · r(n+1→n,i) +
n∑

i=1

π(n+ 2, i) · r(n+2→n,i) +
n−1∑
i=1

π(n+ 1, i+ 1) · r(n+1→n,i+1→i)

+
n∑

i=1

π(i, n+ 1) · r(i,n+1→n) +
n∑

i=1

π(i, n+ 2) · r(i,n+2→n) +
n−1∑
i=1

π(i+ 1, n+ 1) · r(i+1→i,n+1→n)

+π(n, n+ 1) · r(n,n+1→n−1) + π(n+ 1, n+ 1) · r(n+1→n,n+1→n) + π(n+ 1, n) · r(n+1→n−1,n).

We found out that the Markov chain on nt is sufficient for the balance equation. Plugging
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transition rates, the balance equation can be rewritten as follows:

m · n · π̃(n)

=π̃(n+ 1) · (n+ 1) · [(1− p1)
n(1− p2) ·

p2
np1 + p2

+
np1

np1 + p2
]

+
n∑

i=2

π̃(n+ 1) · {(n+ 1) + i · [1− (1− p1)
i−1(1− p2)

n+1]
(n+ 1)p2

(i− 1)p1 + (n+ 1)p2
}

+
n∑

i=1

π̃(n+ 2) · (n+ 2) · [1− (1− p1)
n+1(1− p2)

i]
(n+ 1)p1

(n+ 1)p1 + i · p2

+π̃(n+ 1) · [1− (1− p1)
n(1− p2)

n+1]
(n+ 1)2p2

np1 + (n+ 1)p2
.

Define a function g(n) as follows,

g(n) =m · n− (n+ 1) · [(1− p1)
n(1− p2)

p2
np1 + p2

+
np1

np1 + p2
]

−
n∑

i=2

{(n+ 1) + i · [1− (1− p1)
i−1(1− p2)

n+1]
(n+ 1)p2

(i− 1)p1 + (n+ 1)p2
}

−
n∑

i=1

·(n+ 2) · [1− (1− p1)
n+1(1− p2)

i]
(n+ 1)p1

(n+ 1)p1 + i · p2

−[1− (1− p1)
n(1− p2)

n+1]
(n+ 1)2p2

np1 + (n+ 1)p2
,

Suppose n∗ is a unique root for equation g(n) = 0, it can be proved that m
3
≤ n∗ ≤ m − 1,

when m is sufficiently large (m ≥ 24).

In the following, we will still use the balance equation and transition rates to study the

stationary distribution π̃(·).

Lemma 3.2.2. For all integers n ≤ n∗,

π̃(n)

max{π̃(n+ 1), π̃(n+ 2)}
≤ exp(−(n∗ − n)

2m
).

Similarly, for any integer n ≥ n∗, min{π̃(n+1),π̃(n+2)}
π̃(n)

≤ max{exp(− n−n∗

2m+(n−n∗)
), exp(− 1

m+1
)}.
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Proof. For any integer n ≤ n∗, according to the balance equation, we have

π̃(n)

max{π̃(n+ 1), π̃(n+ 2)}
≤ 1

mn
·
{
(n+ 1) · [(1− p1)

n(1− p2)
p2

np1 + p2
+

np1
np1 + p2

]

+
n∑

i=2

{(n+ 1) + i · [1− (1− p1)
i−1(1− p2)

n+1]
(n+ 1)p2

(i− 1)p1 + (n+ 1)p2
}

+
n∑

i=1

·(n+ 2) · [1− (1− p1)
n+1(1− p2)

i]
(n+ 1)p1

(n+ 1)p1 + i · p2

+ [1− (1− p1)
n(1− p2)

n+1]
(n+ 1)2p2

np1 + (n+ 1)p2

}
≤ 1

mn
·
{
(n∗ + 1) · [(1− p1)

n∗
(1− p2)

p2
n∗p1 + p2

+
n∗p1

n∗p1 + p2
]

+
n∗∑
i=2

{(n+ 1) + i · [1− (1− p1)
i−1(1− p2)

n∗+1]
(n∗ + 1)p2

(i− 1)p1 + (n∗ + 1)p2
}

+
n∗∑
i=1

·(n∗ + 2) · [1− (1− p1)
n∗+1(1− p2)

i]
(n∗ + 1)p1

(n∗ + 1)p1 + i · p2

+ [1− (1− p1)
n∗
(1− p2)

n∗+1]
(n∗ + 1)2p2

n∗p1 + (n∗ + 1)p2

}
=

1

mn
· [mn−

n∗∑
i=2

(n∗ + 1) +
n∗∑
i=2

(n+ 1)]

=
mn+ (n∗ − 1)(n− n∗)

mn

≤ 1− n∗ − n

2m

≤ e−
n∗−n
2m .

The first equality holds due to the definition of n∗, which satisfies g(n∗) = 0. The third

inequality holds due to n∗−1
n

≥ 1
2
, just consider either n ≤ n∗ − 1 or n∗ − 1 ≤ n ≤ n∗. The

last inequality holds with the use of 1− x ≤ e−x.
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For any integer n ≥ n∗, according to the balance equation, we have

min{π̃(n+ 1), π̃(n+ 2)}
π̃(n)

≤ mn · 1/
{
(n+ 1) · [(1− p1)

n(1− p2)
p2

np1 + p2
+

np1
np1 + p2

]

+
n∑

i=2

{(n+ 1) + i · [1− (1− p1)
i−1(1− p2)

n+1]
(n+ 1)p2

(i− 1)p1 + (n+ 1)p2
}

+
n∑

i=1

·(n+ 2) · [1− (1− p1)
n+1(1− p2)

i]
(n+ 1)p1

(n+ 1)p1 + i · p2

+ [1− (1− p1)
n(1− p2)

n+1]
(n+ 1)2p2

np1 + (n+ 1)p2

}
≤ mn · 1/

{
(n∗ + 1) · [(1− p1)

n∗
(1− p2)

p2
n∗p1 + p2

+
n∗p1

n∗p1 + p2
]

+
n∗∑
i=2

{(n+ 1) + i · [1− (1− p1)
i−1(1− p2)

n∗+1]
(n∗ + 1)p2

(i− 1)p1 + (n∗ + 1)p2
}

+
n∗∑
i=1

·(n∗ + 2) · [1− (1− p1)
n∗+1(1− p2)

i]
(n∗ + 1)p1

(n∗ + 1)p1 + i · p2

+ [1− (1− p1)
n∗
(1− p2)

n∗+1]
(n∗ + 1)2p2

n∗p1 + (n∗ + 1)p2

}
=

mn

mn−
∑n∗

i=2(n
∗ + 1) +

∑n∗

i=2(n+ 1)

=
mn

mn+ (n∗ − 1)(n− n∗)

≤ 1− (n∗ − 1)(n− n∗)

mn+ (n∗ − 1)(n− n∗)

≤ exp(− n− n∗

m · n
n∗−1

+ (n− n∗)
).

When n ≤ 2n∗ − 2, that is n
n∗−1

≤ 2, then it becomes

min{π̃(n+ 1), π̃(n+ 2)}
π̃(n)

≤ exp(− n− n∗

2m+ (n− n∗)
);

otherwise, n > 2n∗ − 2 ≥ n∗

n∗−2
, note that n∗ > 4 when m ≥ 12, we have n

n∗−1
≤ n− n∗, and

min{π̃(n+ 1), π̃(n+ 2)}
π̃(n)

≤ exp(− 1

m+ 1
).
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With the use of the above lemma, we found that nt is highly concentrated around n∗ ∈

[m
3
, m− 1] under stationary distribution, which is shown as follows in a rigorous way.

Proposition 3.2.3 (Patient Concentration). There exists m
3
≤ n∗ ≤ m − 1, such that for

any σ ≥ 1,

P [n∗ − σ
√
8m ≤ n] ≥ 1−

√
8me−σ2

,

P [n ≤ n∗ + σ
√
8m] ≥ 1− 3 ·

exp(−σ·
√
8m−1

2(m+1)
)

1− exp(− 1
2(m+1)

)
.

Proof. Suppose fixed n ≤ n∗. Let h0, h1, · · · be a sequence of integers defined by: h0 = n,

hi+1 = argmax{π(hi + 1), π(hi + 2)}, ∀i ≥ 1. Then we obtain

π(n) ≤
∏

i:hi≤n∗

π(hi)

π(hi + 1)
≤ exp(−

∑
i:hi≤n∗

(n∗ − hi)

2m
)

≤ exp(−
(n∗−n)/2∑

i=0

2i

2m
)

≤ exp(−(n∗ − n)2

8m
)

Here we use
∑(n∗−n)/2

i=0
2i
2m

≤
∑

i:hi≤n∗
(n∗−hi)

2m
, which is guaranteed by |hi − hi−1| ≤ 2.

For σ > 1, let ∆ = σ
√
8m, then

n∗−∆∑
i=0

π(i) ≤
∞∑

i=∆

e−
i2/8m ≤ e−∆2/8m

min{ ∆
8m

, 1
2
}
≤

√
8m · e−σ2

.

Now we fix n ≥ n∗ + 2, we construct the following sequence of integers, h0 = ⌊n∗ + 2⌋,

hi+1 := argmin{π(hi + 1), π(hi + 2)}, ∀i ≥ 1. Let hj be the largest number in the sequence

which is at most n. With observation, hj = n− 1 or hj = n. Then we obtain

π(n) ≤ m · (n− 1)

(n− 3) · n
π(hj) ≤

m

(n− 3)
π(hj) ≤ 3

j−1∏
i=0

π(hi+1)

π(hi)

≤ 3 · exp(−
j−1∑
i=0

1

m+ 1
)

≤ 3 · exp(− 1

m+ 1
· j)

≤ 3 · exp(−n− n∗ − 1

2(m+ 1)
).
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Here the first equality is derived by the balance equation; the fourth inequality is due

to the fact that exp(− n−n∗

2m+(n−n∗)
) < exp(− 1

m+1
) when n − n∗ > 2. The last inequality is

guaranteed by |hi − hi−1| ≤ 2.

For σ ≥ 1, ∆ = σ ·
√
8m,

∞∑
i=n∗+∆

π(i) ≤ 3 ·
∞∑

i=n∗+∆

exp(−i− n∗ − 1

2(m+ 1)
) ≤ 3 ·

∞∑
i=∆−1

exp(− i

2(m+ 1)
)

= 3 ·
exp(− ∆−1

2(m+1
)

1− exp(− 1
2(m+1

)

= 3 ·
exp(−σ·

√
8m−1

2(m+1)
)

1− exp(− 1
2(m+1

)

Lemma 3.2.4. For any 0 < p2 ≤ p1 < 1 and sufficiently large m,

Ent∼π̃[nt((1− p1)(1− p2)
s))nt ] ≤ max[m/3,m]((nt + Õ(

√
m))((1− p1)(1− p2)

s))nt) + 1.

Proof. Let ∆ = 5m · logm, v = (1− p1)(1− p2)
s, and β = max[m

3
−∆,m+∆]nt · vnt , then

Ent∼π̃[nt · vnt ] ≤ β +

m
3
−∆∑

i=0

m

3
· π̃(i) · vi +

∞∑
i=m+∆

i · π̃(i) · vm.

Firstly, we claim that β = max[m
3
−∆,m+∆]nt · vnt ≤ max[m

3
,m]nt · vnt + m

3
· vm

3 · (v−∆− 1)+

vm ·∆.

Let n̂ = argmaxnt∈[m3 −∆,m+∆]nt · vnt . If n̂ ∈ [m
3
,m], then the inequality holds naturally.

If n̂ ∈ [m,m+∆], then maxnt∈[m3 ,m]nt · vnt = m · vm, and

β = n̂ · vn̂

≤ (m+∆) · vm

= maxnt∈[m3 ,m]nt · vnt +∆ · vm

≤ max[m
3
,m]nt · vnt +

m

3
· v

m
3 · (v−∆ − 1) + vm ·∆.
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Otherwise, n̂ ∈ [m
3
−∆, m

3
], then maxnt∈[m3 −∆,m

3
]nt · vnt = m

3
· vm

3 ,

β = v−∆ · n̂ · vn̂+∆ ≤ v−∆ · (n̂+∆) · vn̂+∆ ≤ m

3
· v

m
3
−∆ = max[m

3
,m]nt · vnt +

m

3
· v

m
3 · (v−∆ − 1).

Therefore, the claim holds.

Let ∆′ = 6(log2m+ 1) ·∆, if v−∆ ≤ 1 + ∆′

m
, then

β ≤ max[m
3
,m]nt · vnt +

m

3
· v

m
3 · (v−∆ − 1) + vm ·∆

≤ max[m
3
,m]nt · vnt +

∆′

3
· v

m
3 + vm ·∆

≤ max[m
3
,m](nt +∆′ +∆) · vnt + 1

otherwise, v−∆ > 1 + ∆′

m
, assuming that m is sufficiently large such that ∆′ ≤ m, this

implies v∆ ≤ 1

1+∆′
m

≤ 1− ∆′

2m
, then we have

β ≤ (m+∆) · v
m
3
−∆ ≤ 2m · (1− ∆′

2m
)

m
3∆

−1 ≤ 2m · e1−
∆′
6∆ ≤ 1.

Then we bound the second term
∑m

3
−∆

i=0
m
3
· π̃(i) · vi,

m
3
−∆∑

i=0

m

3
· π̃(i) · vi ≤ m

3
·

m
3
−∆∑

i=0

π̃(i) =
m

3
·
√
8m · e−∆2/8m ≤

√
8m

3
.

Lastly, we bound the last term as follows,
∞∑

i=m+∆

i · π̃(i) · vm ≤
∞∑

i=m+∆

i · π̃(i) =
∞∑

i=∆

(m+ i) · π̃(m+ i)

≤ m ·
∞∑

i=∆

π̃(m+ i) +
∞∑

i=∆

i · π̃(m+ i)

≤
3m · exp(− ∆−1

2(m+1)
)

1− exp(− 1
2(m+1)

)
+

3 · exp(− ∆−1
2(m+1)

· ( ∆
m+1

+ 4)

1− exp(− 1
2(m+1)

) · ( 1
2(m+1)2

)

≤ 3 · exp(− ∆− 1

2(m+ 1)
) · [ m

1− exp(− 1
2(m+1)

)

+
∆

m+1
+ 4

1− exp(− 1
2(m+1)

) · ( 1
2(m+1)2

)
]

≤ 5

3
logm ·

√
m.
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Corollary 3.2.5. Similarly, for any 0 < p2 ≤ p1 < 1 and sufficiently large m,

Ent∼π̃[nt((1− p1)
s(1− p2)))

nt ] ≤ max[m/3,m]((nt + Õ(
√
m))((1− p1)

s(1− p2)
))nt) + 1.

With this Patient concentration proposition, we find that Ent∼π̃[nt((1−p1)(1−p2)
s))nt ] ≤

max[m/3,m]((nt+Õ(
√
m))((1−p1)(1−p2)

s))nt)+1. Furthermore, the loss of Patient algorithm

can be upper-bounded as follows:

Theorem 3.2.6. For any ϵ > 0 and T > 0,

L(Patient) ≤ (s+ 1)maxnt∈[ 13 ,1]

(
(nt + Õ(

1√
m
))e−[(s+1)m·u·nt−p1]

)
+

τmix(ϵ)

T
+

2ϵ

m · (1− p2) · p21
+

1 + s

m · (1− p1)
,

where u= s·p1+p2
s+1

.

When m is sufficiently large and ϵ small enough, the loss of Patient algorithm can be

bounded as follows:

L(Patient) ≤ (s+ 1)maxnt∈[ 13 ,1]

(
nt · e−[(s+1)d·nt−p1]

)
.

Here u stands for the average compatibility probability, d = m·u is the density parameter

of our model. When d ≥ 3, it can be bounded by s+1
3

· e−
(s+1)·d

3
+p1 .
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CHAPTER 4

Simulation Studies

4.1 Loss of two algorithms with different parameter settings

Firstly, we simulate the market with different parameter settings under Greedy algorithm

and Patient algorithm. We consider situations when new agents arrive in the market at

a rate m = 30, 50, 70, 100, the compatible probability between the same type of agents

p1 ∈ [0.03, 0.8], the compatible probability between distinct types of agents p2 = 0.01, 0.1,

and the simulated results are shown in Figure 4.1-4.6.

Figure 4.1: The change of loss of two al-

gorithms (Red: Greedy algorithm; Blue:

Patient algorithm) with parameter settings:

m = 30, p2 = 0.01, p1 = 0.03/0.05/0.1/0.8.

Figure 4.2: The change of loss of two al-

gorithms (Red: Greedy algorithm; Blue:

Patient algorithm) with parameter settings:

m = 50, p2 = 0.01, p1 = 0.03/0.05/0.1/0.8.

According to plots in Figure 4.1-4.6, the loss of both Greedy algorithm and Patient algo-

rithm converges as T increases, and the loss of Greedy algorithm is always higher than that
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Figure 4.3: The change of loss of two al-

gorithms (Red: Greedy algorithm; Blue:

Patient algorithm) with parameter settings:

m = 70, p2 = 0.01,p1 = 0.03/0.05/0.1/0.8.

Figure 4.4: The change of loss of two al-

gorithms (Red: Greedy algorithm; Blue:

Patient algorithm) with parameter settings:

m = 100, p2 = 0.01, p1 = 0.03/0.05/0.1/0.8.

of Patient algorithm, which reveals that Patient algorithm outperforms Greedy algorithm.

With time period T increasing, the loss of Greedy algorithm decreases to the stationary state,

while the loss of Patient algorithm grows to the stationary state, or remain as a horizontal

line when compatible probability is large enough.

Additionally, these plots show that the rate of coming agents arriving at the market

m and compatible probabilities p1 and p2 influence the difference between the loss of two

algorithms. The loss of both algorithms decrease with larger compatible probabilities. Higher

rate of coming agents arriving at the market shortens the mixing time, and decreases the

loss as well.

Observing the difference between loss of Greedy and Patient algorithms, we found that

when both compatible probabilities p1 and p2 are quite small or when one of them are large

enough, the advantages of Patient algorithm is not significant. Except for these scenarios,

Patient algorithm has significant advantages over Greedy algorithm.
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Figure 4.5: The change of loss of two al-

gorithms (Red: Greedy algorithm; Blue:

Patient algorithm) with parameter settings:

m = 30, p2 = 0.1, p1 = 0.1/0.2/0.4/0.8.

Figure 4.6: The change of loss of two al-

gorithms (Red: Greedy algorithm; Blue:

Patient algorithm) with parameter settings:

m = 50, p2 = 0.1, p1 = 0.1/0.2/0.4/0.8.

4.2 Effects of new agents coming rate and compatible probabilities

on algorithm performance

In the following we conduct more simulations to specify the scenarios under which Patient

algorithm will have significant advantages over Greedy algorithm. We chose 0.005 as the

significance value. If the difference between Greedy algorithm and Patient algorithm is

larger than 0.005, then we believe Patient algorithm has significant advantages over Greedy

algorithm.

We consider the situation when the rate of coming agents arriving at the market m is

fixed from {10, 30, 50, 70}, the compatible probability between distinct types of agents p2

is set to be {0.01, 0.05, 0.1, 0.2}, and the compatible probability between the same type of

agents p1 is adjusted according to p1/p2 = 1, 4, 10 when p2 = 0.01 or 0.05, and p1/p2 = 1, 2, 3

when p2 = 0.1 or 0.2.

Figure 4.7 reveals how the rate of new agents arriving at the market m influences the

difference between loss of two algorithms. We found that with larger m, the difference
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Figure 4.7: The relationship between the

rate of new agents arriving at the market

m and minimum difference between loss of

Greedy algorithm and Patient algorithm

Figure 4.8: How compatible probabilities

(p1, p2) influence the minimum difference be-

tween loss of Greedy algorithm and Patient

algorithm under different values of m

between loss of two algorithms significantly decreases. When the rate m = 10, almost all

values of differences are significant, while when the rate m ≥ 50, most of values of differences

are not significant (less than 0.005).

Figure 4.8 describes how compatible probabilities p1 and p2 influence the differences

between loss of two algorithms under different values of m. When new agents arrive in the

market at the rate m = 10, almost all values of differences are significant, except for the

case when both compatible probabilities are really small (p1 = p2 = 0.01). When new agents

arrive in the market at the rate m = 30, the differences are significant when 0.05 ≤ p1 ≤ 0.3

and 0.01 ≤ p2 ≤ 0.1. Otherwise, when either compatible probability is large (p1 ≥ 0.4,

p2 ≥ 0.2) or when both of them are extremely small (around 0), the loss of both algorithms

are very close. When new agents arrive in the market at the rate m = 50, the difference is

significant only when p1 = p2 = 0.05. In other situations, differences are all less than 0.005.

When large amounts of new agents come to the market, e.g. m = 70, there are no significant

differences between loss of two algorithms.
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4.3 Distribution of the proportion of different types of agents in

steady state and the bounds of loss conditional on proportion

Since the proportion of different types of agents in steady state s plays an important role in

our theoretical results, and we assumed that s is following Beta distribution with support

[0, 1], we conduct simulations to observe the real distribution of the proportion s. Figure 4.9

to 4.12 show the distribution of the proportion of different types of agents s in steady state

with market size m = 70, 100 under Greedy algorithm and Patient algorithm. Under Greedy

algorithm, the distribution at most cases is shown to be left-skewed, and the proportion s

is concentrated around [0.7, 1]. However, in cases where one of the compatible probabilities

becomes significantly larger, the steady-state value of the proportion s tends to fall into

specific values of 0, 0.5, or 1. The proportion of different types of agents tends to be either

0 or 1 when the compatible probability is sufficiently large, which reveals that in steady

state the market will be full of only one type of agent or both types of agents will be

evenly distributed in the market under Greedy algorithm. As for Patient algorithm, all

the proportion of of different types of agents are left-skewed distributed within [0, 1] under

various parameter settings.

We used Beta distribution to fit the distribution of s in the market with market size

m = 70, compatible probability p1 = 0.05 and p2 = 0.01, and also the market with market

size m = 100, compatible probability p1 = 0.1 and p2 = 0.01 under both algorithms. The

fitted result of both markets under Greedy algorithm is shown in Figure 4.13 and 4.15.

Observing these plots, we found that the predicted peak value or highly concentrated interval

is biased compared with the real distribution of s. Figure 4.14 and 4.16 depict the highly

concentrated interval of pool size Z∗ in steady state conditional on proportion s. Compared

with true value, the estimated interval would be more narrower than the real interval, since

the estimated concentrated interval of proportion is larger than the real one.
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Figure 4.9: The distribution of the propor-

tion of different types of agents s under

steady state with market size m = 70 un-

der Greedy algorithm.

Figure 4.10: The distribution of the pro-

portion of different types of agents s under

steady state with market size m = 100 un-

der Greedy algorithm.

Figure 4.11: The distribution of the pro-

portion of different types of agents s under

steady state with market size m = 70 under

Patient algorithm.

Figure 4.12: The distribution of the pro-

portion of different types of agents s under

steady state with market size m = 100 un-

der Patient algorithm.
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Figure 4.13: Fitting the distribution of the

proportion with the use of Beta distribution

B(3.8, 1.3).

Figure 4.14: Highly concentrated interval of

pool size Z∗ under steady state conditional

on proportion s.

Figure 4.15: Fitting the distribution of the

proportion with the use of Beta distribution

B(2.6, 1.3).

Figure 4.16: Highly concentrated interval of

pool size Z∗ under steady state conditional

on proportion s.

Figure 4.17 and 4.19 visualize the fitted result of distribution of proportion in both

markets under Patient algorithm. We found that the Beta distribution fits the distribution

of proportion s under Patient algorithm much better than that under Greedy algorithm.

The predicted highly concentrated interval of proportion is very close to the actual interval,

and the predicted peak value of s is also near the actual result. Based on the Beta fitted

result, we can draw the theoretical upper bound of the loss of Patient algorithm in steady
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state conditional on proportion s. The predicted results are shown in Figure 4.18 and 4.20.

Compared with the actual loss of these two markets in previous simulation, we found this

bound conditional on the peak value of proportion s is consistent with the actual observation.

When the market size m is larger, the upper bound is more precise; while the upper bound

would become loose when the market size is not sufficiently large.

Figure 4.17: Fitting the distribution of the

proportion with the use of Beta distribution

B(7.1, 1.5).

Figure 4.18: The upper bound of loss of

Patient algorithm under steady state condi-

tional on proportion s.

Figure 4.19: Fitting the distribution of the

proportion with the use of Beta distribution

B(7.7, 1.5).

Figure 4.20: The upper bound of loss of

Patient algorithm under steady state condi-

tional on proportion s.
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4.4 Simulation findings

Based on the simulation results, we observed that Patient algorithm more significantly out-

performs Greedy algorithm when the rate of coming agents arriving at the market is smaller

(around 30). The value of compatible probabilities (both p1, p2 with assumption that p1 ≥ p2)

will influence the performance of algorithms as well. When both of them are extremely small

or when one of them are large enough, the advantages of Patient algorithm will be less sig-

nificant. The advantages of Patient algorithm outperforms than that of Greedy algorithm

the most when 0.05 ≤ p1 ≤ 0.3 and 0.01 ≤ p2 ≤ 0.1.

These observation are reasonable and explainable. When more agents enter the matching

market each time, the market capacity becomes larger, and thus there are more compatible

choices for each agent under both algorithms, whenever we match only newly arriving agents

or critical agents. When the arriving rate of new agents is small, the number of compatible

options to match is limited. At this time, the strategy of matching algorithm matters, and

thus the advantage of Patient algorithm will be more significant under this situation when

the number of agents in the market is limited. Likewise, when the compatible probabilities

for agent matching are significantly high, there is little distinction between the outcomes of

Greedy algorithm and Patient algorithm. When both compatible probabilities p1 and p2 are

extremely small (close to 0), agents face substantial challenges in finding suitable matches

under both algorithms.

The distribution of the proportion of different types of agents s in steady state performs

slightly differently under both algorithms. The distribution of proportion s under Greedy

algorithm changes with varying market parameter settings. In most cases, it shows left-

skewed distribution, while the value of proportion tends to fall into either 0 or 1 when

compatible probabilities become larger. In other words, our assumption that the proportion s

in steady state is following Beta distribution would not be held in an easy-to-match matching

market under Greedy algorithm. On the contrary, the Beta distribution fits the distribution
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proportion s very well in the market under Patient algorithm. This implies our assumption

about the distribution of s works for Patient algorithm. Based on this, our theoretical

result of upper bound of the loss of Patient algorithm is consistent with the actual value in

simulation, and will be more precise when the market size m is larger.
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CHAPTER 5

Discussion

This paper introduces a dynamic matching market model that incorporates two agent types,

where the compatibility probability between agent pairs depends on their types. The model

builds upon the dynamic matching market model by Akbarpour et al. (2020) [ALG20],

extending it to include agent-dependent compatible probabilities. The proportion of different

types of agents in the market, denoted as s, is incorporated into the model, allowing for the

description of the average compatible probability (u) of the matching market based on s.

Theoretical investigations are conducted to determine the upper and lower bounds of

loss for both the Greedy algorithm and the Patient algorithm, given the proportion s. It is

demonstrated that the loss of Greedy algorithm can be lower bounded by 1
2m·u+1

, while the

loss of Patient algorithm can be upper bounded by s+1
3

· e−
(s+1)·m·u

3
+p1 when d = m · u ≥ 3.

Empirical analysis involves studying the distribution of the proportion s under both algo-

rithms. It is found that s can generally be modeled by a Beta distribution. By conditioning

on s, highly concentrated intervals of the pool size in steady state and the bounds of loss for

both algorithms can be determined. The fitting of the Beta distribution to the distribution

of s under the Patient algorithm is successful, and the theoretical upper bound of loss for

the Patient algorithm, based on this fitting, aligns with actual simulation results. However,

the fitting results for the market under the Greedy algorithm are not as satisfactory due to

the frequent occurrence of extreme values (e.g., 0 or 1) in the actual data. This leads to a

narrower estimated highly concentrated interval of pool size in steady state.

Furthermore, through multiple experiments with various parameter settings, it is ob-
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served that the impact of the Poisson rate m (representing the rate at which new agents

enter the market) is more significant than that of the compatible probabilities p1 and p2),

as it directly determines the market size. Based on both theoretical and empirical analyses,

it is concluded that the Patient algorithm outperforms the Greedy algorithm in terms of

maximizing the proportion of matched agents in the market. Hence, the study confirms that

waiting can effectively reduce the fraction of unmatched agents.

A limitation of our model is that the theoretical bounds of loss for both algorithms

are conditional on the proportion of different types of agents, and the assumption that the

proportion follows a Beta distribution does not fit well with the Greedy algorithm in an

easy-to-match market. In future research, it would be valuable to further investigate the re-

lationship between the proportion of different types of agents and the model parameters. By

revealing this relationship, more precise theoretical bounds for both the Greedy and Patient

algorithms can be established and compared. Additionally, other parameters that influence

the market in steady state, such as the proportions of different types of agents entering the

market at each time and the prioritization of matching agents, can be incorporated into the

model to enhance its complexity and authenticity.
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