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Abstract 

We have developed a new algorithm for computing optical flow in a differential framework. The image 
sequence is first convolved with a set of linear, separable spatiotemporal filters similar to those that have 
been used in other early vision problems such as texture and stereopsis. Our analysis of the measurement 
errors leads us to develop an algorithm based on a robust version of total least squares. Each optical flow 
vector computed has an associated reliability measure which can be used in subsequent processing. The 
performance of the algorithm on the data set used by Barron et al. (CVPR 1992) compares favorably 
with other techniques. In addition to being separable, the filters used are also causal, incorporating only 
past time frames. The algorithm is fully parallel and has been implemented on a multiple processor 
machine. 

By being fully parallel, the algorithm can be performed by an array of processors in real time. In 
addition, the differential method is computationally less expensive than matching methods for computing 
visual motion. The output of the linear filters can also be used in other visual tasks such as stereo and 
recognition. Thus, this approach to motion detection can be part of a real time vision application 
system in which linear filters provide a basis for visual tasks such as passive ranging and moving object 
detection. For vehicle surveillance, the system provides individual vehicle speeds and directions. For 
autonomous vehicles, the system would provide both stereo correspondence for range information and 
optical flow for collision avoidance in a single computational framework. 

Keywords: optical flow, differential approach, brightness constancy assumption, total least squares, 
multi-channel filtering, robust statistics, real time vision 
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1 Introduction 

A number of different approaches to recovering optical flow have been proposed: those based on correlation, 
energy and differential considerations. A recent survey is due to Barron et al. [l, 21 where the different 
approaches were compared on a series of synthetic and real images. They found that a phase-based 
approach by Fleet and Jepson [3] performed the best numerically. 

We have developed a new algorithm for computing optical flow in the differential framework which 
performs comparably to the Fleet and Jepson approach but with less computational cost and a higher 
density of estimates. We start with a multi-channel filtering of the intensity response, thus producing an 
overconstrained system of equations in the motion parameters. The convolution with a series of filters 
is a common starting point for a number of early vision tasks such as edge detection, stereo and texture 
discrimination [4, 5, 6, 71. In Section 2 we analyze the sources of error in the differential method as falling 
into 3 categories: (a) stochastic error due to sensor noise, (b) systematic error due to large displacements 
and (c) model error where the underlying model is violated. This analysis leads to an algorithm based on 
a robust version of total least squares. This algorithm is outlined in Section 3. 

The implementation is described in Section 4. In Section 5 the algorithm is run on the series of synthetic 
and real sequences used by Barron et al. Thus a direct comparison between our work and others can be 
made. A high density of estimates was found for all sequences, implying that the "aperture problem" 
occurs rarely in most images. A confidence measure is available as a byproduct of the total least squares 
formulation. Through a simple experiment we demonstrate that this measure is related to the estimated 
accuracy of the motion vector. We also look at a scale pyramid implementation of the filter responses in 
this section to demonstrate that this more efficient method of computing multiple scale responses does not 
degrade the performance significantly. 

Finally, in Section 6 we describe a parallel implementation on a multiple processor and examine the 
speedup of the algorithm. This demonstrates that a real-time parallel version of the algorithm may be 
possible. 

2 The Differential Constraint Equation 

A single constraint equation for the components of the optical flow is derived from the constancy assump- 
tion. The constancy assumption assumes that some function of the brightness is constant between time 
frames. 

I ( z ,  y, t )  = I (5  + ust, y + wst, t + st) (1) 

where I ( z ,  y, t )  is the brightness or some function of the brightness at location (5, y) and time t. The vector 
field v' = (u, w) is the optical flow and is a function of image coordinates (z, y). We assume a differentiable 
brightness function and make a Taylor expansion of the right hand side of equation (1): 

Ixu6t -+ 1,wst + Itst = O(v'2dt2) (2) 

where Ix,Iy and It are partial derivatives with respect to space and time, evaluated at the point (2, y, t ) .  
The right hand side represents the remaining terms of the Taylor expansion. This term contains products 
of higher spatial and temporal derivatives of the brightness function as well as higher powers of the 
displacements. By assuming a unit temporal delay, st, this equation can be written in a more compact 
form: 

V I  v' + It = O(S2) (3) 
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The right hand side is usually assumed small and set to zero. The validity of ignoring the right hand side 
of equation (2) is dependent on the spatial frequency content of the intensity pattern and the magnitude 
of the displacement. 

This constraint equation has been used in motion detection for some time [8]. It consists of a single 
equation in the two unknowns which forms a single constraint line in velocity space. Any velocity on this 
line is valid for this single equation. This was called the “aperture problem’’ since for special cases the 
velocity could not be determined uniquely. Horn and Schunck [9] introduced a smoothness constraint in 
order to solve uniquely for displacement. A number of other authors [lo, 11, 12, 13, 141 produced two 
or more linear equations in u and v by assuming constancy of partial derivatives and other functions of 
the intensity. A third approach [15, 161 is to assume the velocity field is locally constant and to combine 
constraint equations from neighboring pixels. A review of these and other approaches such as correlation 
and energy models can be found in [l]. 

In our approach, we first convolve the image sequence with a set of linear spatio-temporal filters, 
f;(z, y, t ) .  These are Gaussian derivatives of first or second order at a number of orientations and scales. 
These are the same filters used in some other approaches to early vision, such as in stereo and texture 
discrimination [5, 6, 71. Each convolved image, I; = I* fi, has its own constraint equation of the form (2). 
This results in an overconstrained system of equations in the unknowns u and o. 

The spatio-temporal partial derivatives, Iiz, lip, l i t ,  can be considered to be the result of convolution of the 
image sequence I with linear, spatio-temporal filters since Ii, = (I * fi)= = I * fiZ. Defining the matrix A 
and vector ft the system of equations can be written as: 

The spatial extent of the filters brings in information from neighboring pixels so the aperture problem 
exists only for degenerate cases. 

The fundamental problem now is to solve the overconstrained system of equations (5) so as to obtain 
as accurate an estimate of v’ as possible. We begin by analyzing the sources of error. 

1. 

2. 

3. 

Stochastic error. In the presence of sensor noise, we expect that the measurements of I;,,I+,,Iit, 
the spatiotemporal derivatives of I * f;, would be corrupted with noise. We will make the standard 
convenient assumption that sensor noise is independent from pixel to pixel and has a Gaussian 
distribution. This is analyzed further in subsection 2.1. 

Systematic error for large displacements. The system of equations ( 5 )  is derived by neglecting second 
order terms, so we expect systematic errors whenever the local velocity is large. The magnitude of 
the error is dependent on a number of factors including the scale of the filter f; being used and the 
local spatial frequencies present in the image neighborhood. This is analyzed further in subsection 
2.2. 

Errors dole to model failure. In subsection 2.3 we group together the errors that arise due to violation 
of certain key assumptions of the differential approach: (a) Constancy of image brightness which is 
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not strictly true whenever there is a significant specular component, and (b) that the optical flow 
field is locally constant over the support of the filters, which is not true if the filter support straddles 
a depth discontinuity or when there is a significant rotational or dilational component in the flow 
field. 

2.1 Stochastic Error and Total Least Squares 

If we knew that the errors were confined to the measurements of It;, i.e. the right hand side of the system 
(5 ) ,  then the correct approach is well known from estimation theory. We find the classical weighted least 
squares solution which from the Gauss-Markov theorem is the best one can do. The weight matrix can 
be determined by examining the covariance matrix of the filters ft;. 

However, the classical least squares method makes the implicit assumption that the measurements on 
the left hand side Iz;,Iari are error-free and that the errors are confined to the measurements on the right 
hand side It;. This assumption is not true, impelling us to use the total Zeast squares method. Total least 
squares is also known as orthogonal regression or errors-in-variables regression [17]. 

The essential difference between classical least squares and total least squares can be made clear by a 
simple l -D example. Suppose we wish to fit a line to a group of points, (zi, y;). In classical least squares 
we wish to find the values of the slope and intercept, (m,  b) which minimizes the sum squared difference 
between the y; and the predicted y. 

min C ( y ;  - mzi - b)' 
b,m . 

This minimizes the vertical distances between the line and the measurements yi It assumes the variables zi 
are error free and all noise is contained in the yi. Total least squares allows for errors in the zi  variables too. 
It wishes to minimize the perpendicular distance between the line and the measured points (see Figure 1). 
This was referred to as eigenvector f i t  in [MI. The idea of allowing errors in all variables when fitting data 
has been around for some time [19,20]. The concept was extended to multivariate problems about 20 years 
ago [21]. The connection to the singular value decomposition of the measurement matrix was pointed out 
by Golub and Van Loan [22] and Van Huffel and Vandewalle [17]. 

In the total least squares framework, ( 5 )  is usually written as 

[AI&] ( ) = 6 

The combined matrix A(& is referred to as the measurement matrix. This form recognizes that each 
entry in the measurement matrix is subject to noise. In total least squares, an estimate is found by making 
the smallest, in terms of its Frobenius norm, perturbation to the measurement matrix such that (7) has 
a solution [17]. This is in contrast to least squares where only the measurement vector is perturbed to 
find a solution. The estimate using total least squares is 

[ 'I 

where a3 is the smallest singular value of the measurement matrix. The Frobenius norm of the perturbation 
needed to make (7) consistent is simply u3. Equation (8) is very similar to the standard least squares 
solution. The latter is obtained by setting a3 to zero. 

'Of course, we d know that this is just a consequence of assuming that the sensor noise has a Gaussian distribution, an 
assumption rarely verified in practice. One appeals to the Central limit theorem and hopes for the best. 
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Figure 1: Difference between least squares and total least squares for fitting a line to a collection of points. 
Least squares assumes the errors are in the y variables and thus minimizes the vertical distance between 
the line and the points. Total least squares allows for errors in both z and y and thus minimizes the 
perpendicular distance between the line and the points. 

Total least squares assumes the error in each element of the measurement matrix is independent and 
identically distributed (the error matrix is white). If this is not the case, total least squares can actually 
perform worse than standard least squares. This is similar to the requirement in standard least squares that 
the errors in the measurements be normalized. We can use prior estimates of the measurement variances 
to whiten the measurement matrix. 

2.2 Systematic Errors due to large displacements 

The systematic error term in the constancy equation (2) is often ignored. However this term can easily 
be larger than the stochastic error for relatively small displacements. The constraint equations makes a 
linear approximation to the underlying intensity function and is thus invalid for large displacements. The 
assumption breaks down quadratically in the displacements. If we operate in a single spatial dimension 
we can examine the relative magnitude of this term. If the signal is a simple sinusoid, it is obvious that 
the linear approximation is valid only for a fraction of the wavelength of the sinusoid. (Figure 2). If the 
wavelength,& of the stimulus is known, we can limit the acceptable displacement between time frames to 
some fraction of the wavelength. 

lzfl < px = 2@/w (9) 

A natural limit is p = 1/2 since displacements greater than half a cycle would introduce aliasing. This 
limit on displacement as a function of stimulus frequency has a biological basis too. In random dot 
kinematograms it has been shown that the upper displacement, d,,,, for coherent motion detection falls 
off as the inverse of frequency [23, 241. The exact value of p above is in doubt however. Multiple scales 
and orientations (as in our model) may confuse the issue. An interesting debate on the exact value of p 
can be seen in [25] and [26]. From a numerical point of view, Battiti et al. [27] examined the systematic 
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Figure 2: The linear slope approximation for a sinusoid is only valid for a fraction of a wavelength. The 
range of velocity estimates that a gradient-based approach can reliably detect is limited by the spatial 
frequencies of the underlying intensity function. 

error implicit in gradient techniques which use finite differences to estimate partial derivatives. In the one 
dimensional case for a translating sinusoid of frequency w, they find that the estimated velocity, e, its a 
function of the true velocity, v, is 

6 = sin(wv)/ sin(w) (10) 

The difference between v and 6 comes from the linear approximation of finite differences. The relative 
error for this component is 

6 - V  sin(wv) I=1---- I T  v sin(w) 

Writing this as a function of /3 at the maximum velocity, 

6 - V  w sin(27rp) 
(---1=1- 

V 27rp sin(w) (12) 

For a reasonable range of frequencies, a value of /3 about 1/2n results in a fractional error of less than 10%. 
Thus we set p = 1/27r. The resulting limit on the displacements allowed is 1.1 < l /w.  

Unfortunately we do not know the spectrum of the intensity function. However in our implementation, 
the intensity function is convolved with a series of Gaussian and Gaussian derivative functions. These are 
either low or band-pass filters. Thus we know the expected frequency response of the stimulus. If we use 
a low pass filter with a cutoff frequency w, then the maximum velocity estimate which can be considered 
valid is Iv'I < l/u, from the above analysis. The filters we use consist of Gaussian functions and their 
derivatives. The n'th derivative of a Gaussian of standard deviation o has its maximum frequency response 
at w = ,/ii/n [28]. If we use this frequency in limiting the maximum displacement we find that for the 
response formed by filtering with the n'th derivative of a Gaussian, the maximum displacement we can 
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accept without knowing the stimulus spectrum is 

Iv'l < a/& 

2.3 Systematic errors due to model failure 

There are situations where the underlying assumptions of the model are violated. Constancy of image 
brightness (1) is not strictly true whenever there is a significant specular component or when occlusion 
occurs. The model also assumes that the optical flow field is locally constant over the support of the 
filters, which is not true if the filter support straddles a depth discontinuity or when there is a significant 
rotational or dilational component in the flow field. In these situations, regression is not valid and these 
measurements should be labeled as outliers. 

When calculating the total least squares solution, the singular values of the measurement matrix are 
available. The smallest singular value, u3, is equivalent to the Frobenius norm of the perturbation needed 
to make the equations consistent. We define a consistency ratio 2. This is the ratio of the norm of the 
perturbation to the smallest eigenvector of the resulting measurement matrix. When the assumptions are 
violated, a large relative perturbation will be needed to make the equations consistent. We discard scale 
groups which require a perturbation greater than a given threshold, Ct, to become consistent, assuming 
they are due to model failure. This discards the outliers before combining scales in a second total least 
squares. The ratio is scale independent and therefore can be used to compare estimates between scales. 

3 Model 
Based on the above analysis, our model for multi-scale motion analysis consists of two total least squares 
steps. The image is first convolved with a collection of filters. These filters are separated according to 
scale. Thus we may have m different filters each of the same scale but differing in orientation and frequency 
response, and n such groups of these filters. The common scales of these groups form a geometric sequence. 
If the smallest scale is of size 00, then the i'th scale is of size of-'). 

Partial derivatives are computed via finite differences and weighted according to known prior noise 
variances. 

The n scale groups each individually form an estimate for the velocity via the total least squares formula 
in (7). This velocity estimate is deemed valid if its magnitude is less than the maximum allowed for that 
scale via equation (13). The estimate is also rejected if the ratio of the two smallest singular values of the 
measurement matrix is above the consistency threshold, C,. 

The remaining valid estimates are combined again via a total least squares formulation. The weights 
in this step have been divided by the consistency estimate of that scale's equations. This was the ratio of 
the two smallest singular values of the measurement matrix. 

This two step method contains two elements which make it robust. First, the ratio threshold prevents 
scale groups with poor estimates from participating in the second stage. Secondly, those scales which do 
participate are weighted by their individual residuals. In many iterative robust techniques, the process of 
finding an estimate, weighting by updated covariances and repeating is common [29]. 

By weighting the second stage by the singular values ratio, we insure that the scale which most ac- 
curately estimates the motion has the strongest influence in the multi-scale fusion. This is in contrast to 
coarse-to-fine methods which assume larger scales have a correct but coarse estimate. 

A consistency ratio for the combined scales is also available. This serves as a useful indicator of accurate 
optical flow. If this ratio is larger than the threshold Ct that pixel location is marked as not having an 
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estimate. We feel that this may indicate the presence of motion boundaries and our future work will 
investigate this. Figure 3 outlines the method. 

4 Implement at ion 
The input to the model is simply two response frames separated in time. These two inputs are created from 
a sequence of images via convolution with separable Gaussian functions. First, each frame of the sequence 
is convolved with spatial functions. The functions used were the standard normalized Gaussian function, 
edge and bar filters which consist of a derivative of a Gaussian along one spatial dimension and a standard 
Gaussian along the orthogonal spatial dimension, and the symmetric Laplacian of a Gaussian. These filters 
have been used to model receptive fields of neurons in the visual cortex [28]. It has been argued that they 
form a good basis for early vision tasks such as edge detection, stereo and texture discrimination [30,6, 71. 
The size of each Gaussian function was set so that each filter shared a common peak frequency response. 
Thus they shared a common scale, UO. Figure 4 is the spatial responses for the scale group of 00 = 16 
pixels for the first 2 Gaussian derivatives and the Laplacian of a Gaussian. This set was the one most 
often used in the experiments. Notice that each filter has a zero DC response and thus is not influenced 
by global lighting changes. 

The sizes of the scale groups followed the progression a0 = 1, u, a2,. . .,an-’ where u was 1.8 for the 
experiments. This is a natural scale space representation as used in pyramid implementations. A pyramid 
scheme can be used to decrease the computational load for the many convolutions required without a 
significant loss in performance (see Section 5.3). 

Next, the filtered responses are convolved in the time dimension with a causal standard Gaussian. This 
is non-zero only for past time frames. The standard deviation of this Gaussian was set to 3 video frames in 
order to emulate human response curves which show temporal recruitment up to about 100 milliseconds. 
Thus only the past 10 frames contribute significantly to any filter response. These numbers could change 
depending on the frame rate or known motions. 

The partial derivatives of the responses are computed through a forward finite difference cube. This is 
simply the average of 4 adjacent pixel forward finite differences. Since the stimulus was already convolved 
with Gaussian functions, we felt a more sophisticated scheme for obtaining first partials was not needed. 
The forward differences actually provide an estimate of the partial derivatives on a lattice which is offset 
one half pixel in each spatial dimension and one half of a frame in the temporal dimension. 

If a given scale group contains adequate texture such that the condition number of the measurement 
matrix was finite, a velocity estimate for that scale group is computed. It is known that it is important 
to ‘whiten’ the measurement matrix such that each element is identically distributed and independent 
[17]. We assume that the output of each filter is independent. For the zero-DC filters used, the oriented 
filters within a scale group actually are orthogonal. The Laplacian is not a linear combination of the 
elongated second order derivatives, but it is not orthogonal. When the different scale groups are combined, 
the filters are not orthogonal, but the magnitudes of the interaction terms are smaller than the diagonal 
elements and are ignored. The partial derivative within a single equation however do not have the same 
noise distribution due to the elongated Gaussian filters used (.i.e. < 1: >#< I,” >). The partial derivative 
along the orientation of the filter has a higher noise response than the one perpendicular to the orientation. 
Since the oriented filters come in rotated pairs, a simple sum and difference of the two resulting equations 
produces two equations with partials of equivalent noise variance yet remain independent. The total least 
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Figure 3: Multi-scale gradient technique for motion. A patch of the image is convolved with groups of 
linear spatio-temporal filters. Each group is tuned to the same spatial scale. Each group makes its own 
estimate for the velocity using total least squares. The estimates are combined in a second re-weighted 
total least-squares formulation. The magnitude of the velocity estimate a group may present is limited by 
the systematic error. 

Figure 4: Spatial impulse response of the filter set used for a single spatial scale. The filters are either the 
Laplacian of a Gaussian or products of Gaussians and a Gaussian derivative. These filters all have a zero 
DC response. The same set of filters is used in some approaches to early vision. 
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squares solution (7) is simply 

The summations are over the filtered responses within that scale group. The weights 4; are the expected 
variances of each measurement. This formula is very similar to the one used by many authors [31, 16, etc.] 
who attempt to  overcome the underconstrained system (2) by making an implicit smoothness assumption. 
These approaches sum over the responses from surrounding pixels, thus assuming the velocity to be the 
same within a local region. 

Notice that we need only invert a 2x2 matrix whose entries are simply weighted sums of filter outputs. 
Thus only simple operations are required and can be performed in parallel. The filter responses can be 
accumulated as they are produced and need not be stored in memory. Since the measurement matrix has 
rank 3, simple explicit formulas exist for the three singular values, ai. They come from solving a cubic 
equation whose coefficients are combinations of the summations which appear in (14). Since singular values 
are always real and non-negative, a simpler form of the general solution of the cubic equation can be used. 
Testing the condition number of the matrix is then just the ratio of the two largest singular values. If the 
condition number is above 100 the estimate is discarded. This rarely occurred in our simulations. Each 
scale group now evaluates its velocity estimate. The magnitude of this velocity estimate is compared with 
the maximum magnitude allowed for this scale group and rejected if larger. The ratio of the smallest 
singular values is compared with the consistency threshold. 

The scale estimates that are not discarded are combined in a final, multi-scale total least squares 
framework. The weighting terms for this combination is modified by scaling the weight from the first 
matrix by the inverse of the relative error term. Thus the diagonal matrix elements are replaced by: 

where E is a small number to prevent division by zero. This weighting gives more credit to scale groups 
with estimates which best match the constraint equations. 

The final estimate computed by combining scales is rejected if the ratio of singular values indicates 
the equations are deemed inconsistent according to the consistency threshold. One place where this can 
happen is if different spatial scales are seeing different motions due to some kind of motion boundary. Our 
future work will look at ways of identifying and resolving these situations. For now, they are simply labeled 
as places without estimates (holes). 

5 Experimental Results 

For the experiments where the true optical flow is known, we use the angular error measure used by Barron 
et al. [2] to evaluate the results. They measure the error between the true velocity o = (v1,vz) and the 
estimate 8 = (ij1,82) as the angle between the unit vectors in 3 space, v' = ([vi2 + l)-'f2(o1, v2,l). 

?,be = arccos(v' - +) (15) 

This is calculated at every pixel value where an estimate is formulated. Also reported is the percentage of 
pixels without estimates (holes). 
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Figure 5: Systematic error due to increasing displacements with no noise, and stochastic error due to 
additive noise with k e d  dispacement. In both cases the stimulus was a Gaussian white noise pattern with 
variance 1000 units translated diagonally. The consistency threshold was set at 1 X This value keeps 
the errors to only a few degrees for the full range of allowed displacements. 

5.1 Synthetic Data 

Systematic Error. A random dot pattern with variance 1000 units is translated diagonally. Each pixel 
was uncorrelated, thus all frequencies were present. Figure 5 shows the angular error and percentage of 
holes (no estimate) as a function of diagonal displacement. As the displacement increases the average 
error increases, but remains less than two degrees. The number of estimates decreases up to the maximum 
displacement allowed, 1.84 -N 10.5 pixels. Thus, up to the maximum allowed displacement, we can keep 
errors to less that a few degrees. A higher density of estimates can be obtained by lowering the consistency 
threshold at a cost of increased errors. 

Stochastic Error. In order to examine the results of stochastic error we translated the uncorrelated 
random dot pattern diagonally 1 pixel and added uncorrelated noise to each frame. Figure 5 shows the 
results as the standard deviation of the added Gaussian noise is increased. Again, the errors remain less 
than a few degrees as the density decreases. 

Consistency Threshold. A random dot pattern of unit variance was translated diagonally 1 pixel 
and white noise of variance 5 units was added to each frame. Figure 6 displays the average error and 
percentage of holes as a function of C,, the equation consistency threshold. The number of estimates 
decreases and the accuracy of the remaining estimates increases until only a few estimates remain. This 
demonstrates that the singular values ratio is a good measure of estimate reliability. Such a statistic is 
often useful in algorithms which use optical flow as input, such as for determining ego-motion or shape 
from motion. 

Comparison Sequences. A recent report by Barron et. al. [l] and the corresponding paper in 
CVPR ’92 [a] examined the performance of a number of different optical flow techniques on a series of 
synthetic and real images. They found that the phase-based approach of Fleet & Jepson [3] was the most 
accurate. They also felt that Heeger’s energy approach [32] and other’s based on SSD minimization were 
computationally prohibitive. We examined the performance of our routine on these same images. 

Ten frames of the Yosemite Sequence were used as input to the program. The true optical flow is 
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Error vs. Consistency Threshold 
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Figure 6: Average error in degrees and percentage of holes as a function of the consistency threshold, Ct,  
the maximum of the ratio u3/u2 allowed. This ratio relates how much the measurements must be changed 
in order to fit the velocity model. 

known because this is a syntheticly generated sequence. The sequence is of a platform flying over Yosemite 
valley. Clouds in the image deform as they move. The optical flow ranged in magnitude from zero at the 
focus of expansion to over 5 pixels per frame. The Translating Tree sequence consists of a tilted plane 
with a texture mapped onto it. The motion is perpendicular to the optical axis, but since the plane is 
tilted the flow ranged in magnitude from 1.8 to 2.3 pixels per frame. The Diverging Tree consisted of 
the same tilted plane and texture, but the motion is along the optical axis. Velocities ranged from 1.4 
pixels per frame on one side to 2.0 on the other. Table 7 lists the average and standard deviation of the 
angular error. The data for the other algorithms was copied from the CVPR paper by Barron et al[2]. The 
performance was comparable, performing better for the Yosemite sequence and worse on the translating 
planes. However, our algorithm uses only 10 frames and 30 linear filters whereas the Fleet & Jepson 
algorithm used 46 3-d convolutions and 21 frames, making it computationdy more expensive, In addition, 
our algorithm consistently produced a higher density of vectors. The threshold experiments show that 
slight improvements can be made by decreasing the error threshold (fixed at for synthetic sequences) 
at a cost of fewer estimates. Ultimately, the performance must be based on how well the flow field can be 
used for calculating quantities such as motion and shape parameters. 

5.2 Real Sequences 

The algorithm was tested on a group of real video images obtained from J.L. Barron who received them 
from the database at Sarnoff Research Centre. We used 10 frames and 25 filters for each. Selected frames 
of the three sequences and the flow produced are shown in Figure 8. The first sequence is of the camera 
translating towards the soda can. In the second, the observer translates perpendicular to the line of sight. 
The tree in the foreground translates more due to perspective. The third sequence is of three independently 
moving cars. The car on the lower right is obscured by some trees. 
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Figure 7: Comparison of synthetic sequences results with those reported by Barron et. al. [2]. The Weber 
& Malik algorithm uses only 10 frames and 30 linear filters. The Fleet & Jepson algorithm used 46 3-d 
convolutions and 21 frames (15 frames for Yosemite). 

Figure 8: Three frames from real image sequences and the flow recovered. 

13 



Sequence Subsampled Filters Full Convolutions 
Avg. Error Std. Dev. 

2.72 3.30 2.50 3.18 Divereine Tree 
0.36 0.55 0.35 0.49 Translating Tree 

Std. Dev. Avg. Error 

I 

Yosemite 
~ Q "  

I 3.43 I 5.35 1 3.77 I 4.83 I 
Figure 9: Comparison of the full implementation where each filter output is computed at each pixel and a 
subsampling scheme where a filter output is calculated at every 2" pixels. 

5.3 Subsampled Filters 

The largest scales consist of filters with Gaussian responses many pixels in width. The response of such 
filters does not change significantly within a range of a few pixels. The full version of the algorithm 
computes the response of every filter at each pixel. Since the large scale filters do not vary much a more 
efficient implementation would use a pyramid scheme in which filters of larger scales are calculated at a 
subset of the full pixel lattice. We created a modified version of the algorithm in which the response of 
a filter with Gaussian response of size u is subsampled every n pixels, where n = 1.J. This reduced by 
about half the number of convolutions for each scale from the previous scale. The results of the subsampled 
version of the algorithm for the synthetic images are tabulated in Table 9. The flow field became blocky in 
this scheme. The component values remained almost constant within small sub-blocks of pixels, especially 
for large displacements, where only large scale filters could make valid estimates. Here the estimate must 
be the same for the entire sub-block of the smallest filter used. Qualitatively the flow was still very good, 
but consisted of blocks of pixels with the same flow estimate. 

6 Multiprocessor Implementation 

The algorithm described is massively parallel. Each estimate is formed from a small spatio-temporal 
window of the motion sequence. The previous results were obtained from a SUN workstation. Processing 
time was dominated by the convolutions since velocity estimates required only a few simple operations 
on the convolution results per pixel. A series of 36, 3-d separable convolutions on a 128 pixel square 
image took about 4 minutes per frame. To examine the speedup possible with a parallel implementation, 
a parallel version of the algorithm was created for the 128 processor CM5 from Thinking Machines. 

6.1 Parallel Convolution 

Instead of the linear convolutions with filter kernels that was used on the serial machine, we used the 
interconnectivity of the processors to perform convolution in a different manner. One way of computing a 
series of convolutions with Gaussian functions of various size is to make use of the Central Limit Theorem. 
Specifically, if the processor element at each pixel were to perform a simple manipulation of its own data 
and the data of its neighboring pixel elements, the resulting distribution after a large number of iterations 
will be a Gaussian. 

For example, suppose we have a one dimensional string of processing nodes, each initially containing a 
single number. Let each processing node them perform the following operation: 

Take two times the value contained at this node and add it to the value held at the node to the 
immediate right and left. Make this sum the new stored value. 
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n 1 
i=l 1 4 1  

1 

1 

2 6 2  

1 6  1 2 6  1 

2 6 2  
i=2 

Figure 10: Simple two-dimensional connections between processing elements for computing a Gaussian 
convolution of the local image. The weights of the weighted sum are inside each processor circle. The 
result of applying this weighted sum are shown on the right for two iterations. After normalization this 
sequence converges to a Gaussian distribution. 

This operation creates a weighted sum of the form (1,2,1) centered at each node. At the next iteration, 
we have the following weighted sum (1,4,6,4,1).  Placing them in an array we have: 

1 2 1  
1 4 6 4 1  

1 6 15 20 15 6 1 

The result is the even lines of Pascal’s triangle which consists of the even binomial coefficients. It is known 
that these coefficients approximate the Gaussian distribution for large numbers. Specifically, the binomial 
coefficients of degree n can be approximated by 

Thus these coefficients are proportional to a Gaussian with standard deviation v2 = n/4. In our algorithm 
we wish to  obtain convolutions with Gaussians of increasing size. We also want derivatives of Gaussian 
functions. These can be obtained via finite differences. If a processor element takes the difference of the 
values of its neighbors, it obtains an estimate of the derivative at its location. This can be repeated for 
higher order derivatives, Other filters can be approximated by similar elementary operations [33]. 

If we normalize the example process such that after the summation the processor divides by four, we 
can preserve the sum total of the data stored at the nodes. Figure 10 shows a two-dimensional extension 
of the Gaussian kernel. The right side of the figure shows the impulse response of the resulting filter after 
one and two iterations. After normalization, this series converges to a Gaussian distribution. 
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The total number of steps required by this processes is 4u:(’-’) where 00 is the base scale and s is the 
number of different scale groups. The amount of data values which must be passed between processors on 
each iteration is 4 n / O  where the image is of size n2 using N processors. 

6.2 Implementation 

The above algorithm was implemented on a CM-5,128 processor machine. The images are divided into 128 
regions and sent to the processors. The two dimensional Gaussian operation outlined above was performed. 
At each step the processors performed the operation on the interior of their own patch. The borders of 
each patch needed to be shared with the neighboring processors in order to complete the step. For an 
image of dimension n X n,  this required 4 x n/8 elements to be passed per step per processor. 

To obtain the image convolved with a geometric series of Gaussians, (i.e. with Gaussians of standard 
deviations u = 1,2,4,8,16 pixels), the simple procedure was performed 4,16,64,256, and 1024 times. After 
the smoothing iterations, finite differences were performed in order to obtain approximations to the result 
of convolving the original image with the derivatives of Gaussians of various sizes. The final result is a 
series of numbers for each pixels. These numbers represent a series of new images which are the outcome 
of convolving the original image with a series of linear filters. 

The CM-5 is not an ideal machine to perform the convolution method outlined above because it requires 
much communication between processors. The parallel C we used on the CM-5 had a high overhead for 
communication between some processors, taking many cycles per byte of information passed. Our purpose 
however was to demonstrate the parallizabibilty of the algorithm and the speed up experienced when 
operated in parallel. Convolution of a 128 pixel squared image took about 10 seconds, including I/O. We 
believe that with specialized hardware real-time implementations are possible. 
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