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Abstract

Sum-Frequency Generation from Chiral Media and Interfaces

by

Na Ji

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Yuen-Ron Shen, Co-chair

Professor Richard J. Saykally, Co-chair

Sum frequency generation (SFG), a second-order nonlinear optical process, is

electric-dipole forbidden in systems with inversion symmetry. As a result, it has been

used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry.

This thesis describes recent progresses in the applications of and new insights into SFG

from chiral media and interfaces.

SFG from solutions of chiral amino acids is investigated, and a theoretical model

explaining the origin and the strength of the chiral signal in electronic-resonance SFG

spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers

by measuring both the magnitude and the phase of the chiral SFG response is described,

as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron
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resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is

also used to solve the Ozma problems.

Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior

of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model sys-

tem, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-

containing polymers.

Professor Yuen-Ron Shen
Dissertation Committee Co-chair

Professor Richard J. Saykally
Dissertation Committee Co-chair
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Chapter 1

Introduction

Sum-frequency generation (SFG) is a second-order nonlinear optical process, in

which electromagnetic radiation with frequency ωs = ω1 + ω2 is generated when two input

electromagnetic waves with frequencies ω1 and ω2 interact in a medium. Quantum me-

chanically, SFG can be described by second-order perturbation theory with the interaction

Hamiltonian being

Hint = −e~r · ~E (1.1)

in the electric dipole approximation [1]. Within this approximation, only in systems without

inversion symmetry is SFG allowed. The applications of this property transformed SFG

from a laboratory novelty to a powerful analytical technique capable of providing molecular

level information that is otherwise inaccessible. In this thesis, we describe some recent

developments in the applications as well as theoretical understanding of SFG from chiral

media and interfaces, systems that naturally lack inversion symmetry.
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1.1 Sum-frequency generation as a probe of chirality

The property that a 3-dimensional (3D) object cannot overlap with its mirror

image was named “chirality” by Lord Kelvin [2]:

“I call any geometrical figure, or group of points, chiral, and say it has chirality
if its image in a plane mirror, ideally realized, cannot be brought to coincide
with itself.”

In terms of symmetry, chirality is the absence of symmetry under improper rotations. In

other words, a chiral object should not have a symmetry plane or inversion center. Our

hands are chiral - left hand is the mirror image of right hand, but does not superpose the

right hand. An enantiomer is one of a pair of chiral compounds (crystals or molecules) that

are mirror images of each other. A pair of enantiomers are said to have opposite handedness.

Chirality is a ubiquitous property in our biological world. The function of the

fundamental components of life - proteins, nucleic acids, and sugar - relies on their being

chiral. The handedness of a molecule affects its odor, taste, and toxicity. Therefore, the

ability to distinguish enantiomers is crucial in developing new compounds for food and

pharmaceutical applications.

Techniques most commonly used to detect chirality are optical techniques, such as

circular dichroism (CD), optical rotatory dispersion (ORD), vibrational circular dichroism

(VCD), and Raman optical activity (ROA) [3]. These techniques measure the differences

in the response functions of the sample towards left and right circularly polarized light,

with the differences being of opposite signs for enantiomers. Because these responses are

enhanced when the probing beam is in resonance with a molecular transition, besides being
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able to distinguish enantiomers, these techniques can provide spectroscopic information,

which makes them extremely useful for molecular characterization.

The differences detected by the conventional techniques are only nonzero, however,

due to the higher order interactions of molecules and light. To describe them, the interaction

Hamiltonian in Eq. (1.1) has to include extra coupling terms of the molecular magnetic

dipole and electric quadrupole moments with the electromagnetic wave [4]. As a result, the

differences are in the order of 102 to 105 times smaller than usual responses arising from

the electric dipole term in Eq. (1.1). Consequently, the sensitivity of these techniques is

limited, and it is difficult to use them to detect chirality from systems such as monolayers

or thin films.

The advent of new technologies, such as combinatorial chemistry [5] or lab-on-

a-chip technologies [6], requires rapid screening and testing of chemicals of often small

quantities, sometimes down to the monolayer level. Moreover, many biological processes

involve molecules that either function only when imbedded in a membrane, such as mem-

brane proteins, or accumulate and interact mainly at interfaces [7]. A sensitive probe that

allows in situ studies of molecular chirality of such systems would open up new research

opportunities and provide new understanding of molecular chirality.

In our laboratory, SFG has been developed as an alternative spectroscopic tool to

probe molecular chirality. Unlike the conventional methods, SFG is allowed in the electric

dipole approximation in chiral materials. Thus, it can have higher sensitivity than the con-

ventional techniques in detecting chirality. Because SFG is also enhanced when resonance

condition is satisfied, by using tunable inputs, one can obtain vibrational and electronic
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spectra of the chiral materials.

Second harmonic generation (SHG), a special case of SFG with the two input waves

of the same frequency, is forbidden in chiral liquids. However, it can probe the chirality of

anisotropic systems such as chiral surfaces, as first demonstrated by Hicks group [8, 9, 10, 11,

12]. Reviews on SHG as a probe for surface chirality can be found in references [13, 14, 15].

Although SFG in chiral liquids was theoretically investigated as early as 1965 [16],

it was only in 2000 that our group demonstrated this effect conclusively [17]. Since then, we

have obtained chiroptical electronic and vibrational spectra from chiral liquids [18, 19, 20,

21], thin films [22], and monolayers of chiral molecules [19, 23]. Using a double-resonance

scheme, we have obtained an optically active vibrational spectrum from a molecular mono-

layer for the first time [19].

It is our goal to develop SFG as a novel spectroscopic method for probing molecular

chirality that can satisfy the sensitivity requirement of modern science and technology, and

to provide basic understanding of its underlying principles. In this thesis, our recent efforts

toward this goal are described. In particular, we expanded the application of SFG to the

study of chiral biological molecules, starting with amino acids; we also developed a technique

that allows us to obtain both the phase and the amplitude of the chiral SFG response

coefficients; we implemented chirality-sensitive SFG in a microscopic configuration with the

goal of imaging cells with chiral contrast. We investigated theoretically the mechanism of

SFG from chiral liquids made of molecules with an achiral chromophore and a chiral side

chain. Together with parity nonconservation, SFG was used to solve the Ozma problem.
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1.2 Sum-frequency generation as a probe of interfaces

SFG can be used as a probe of interfaces between materials that have inversion

symmetry in bulk. Because inversion symmetry is always broken at the interfaces, for these

systems SFG is surface-sensitive within electric-dipole approximation. In 1987, Our group

first demonstrated SFG as a surface sensitive spectroscopic technique with sub-monolayer

sensitivity [24, 25, 26]. Compared with traditional techniques in surface science, such as

those utilizing the limited penetration depths of probe particles (X-ray photons, electrons,

atoms, ions, or neutrons) to probe structures close to the surfaces, SFG does not need

ultrahigh vacuum, is more surface specific, and through resonant enhancement, can provide

chemical information. As an optical method, SFG can be used to study any interfaces that

are accessible to light, including buried interfaces and liquid surfaces, which are difficult to

study using other techniques. As a result, since 1987, there have been around two thousand

papers using SFG to study various interfaces important for fundamental understanding as

well as technical applications.

This thesis gives two examples of using sum-frequency generation to obtain the

vibrational spectra of surface species. One study is on the adsorption behavior of leucine

molecules as well as the structure of surface water molecules perturbed by leucine adsorp-

tion. In the other study, we expanded the application of SFG to C-F vibrational modes and

studied the surface structure of shear-aligned poly(tetrafluoroethylene) films.
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1.3 Thesis highlights

This thesis is organized as follows.

In Chapter 2, we describe the basic theory of SFG and show how it can be used

to measure chirality of liquids and to obtain surface vibrational spectra.

In Chapter 3, we present optically active sum-frequency generation (OA-SFG)

spectra of a series of amino acids near the electronic resonance of their intrinsically achi-

ral carboxyl group. Adapting an electron correlation model of linear optical activity, we

present a dynamic coupling model for OA-SFG near the electronic resonance of the achiral

chromophore. Our model shows that the nonlinear chiroptical response comes about by

the through-space correlative electronic interactions between the chiral side chain and the

achiral chromophore, and its magnitude is determined by the position and orientation of

the bonds that make up the chiral side chain. Using the bond polarizability values in the

literature and the conformations of amino acids obtained from calculation, we can reproduce

the relative OA-SFG strength of a series of amino acids.

In Chapter 4, a novel chiral sum-frequency spectroscopy with both magnitude and

phase information is described. Chiral spectra of both real and imaginary components of the

nonlinear chiroptical response over the first exciton-split transitions of enantiomers of 1,1’-

bi-2-naphthol were obtained through interferences with a dispersionless background. The

availability of phase information should allow us to determine the absolute configuration

and conformation of chiral molecules.

In Chapter 5, we describe the first sum-frequency generation microscope that is
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sensitive toward molecular chirality. Optically active images of chiral 1,1’-bi-2-naphthol

solutions were obtained with sub-micron spatial resolution. Three dimensional sectioning

capability of our microscope was also demonstrated. This optically active SFG microscopy

can potentially become a powerful imaging technique for biological samples.

In Chapter 6, we define two Ozma problems, which have to do with how to com-

municate a chiral reference system through an achiral channel. Parity nonconservation is

necessary for their solutions. Although both problems may be solved by the formalisms of

β-decay or atomic optical activity, atomic and molecular sum-frequency generation is cho-

sen, as it supplies rich methods of effecting gedanken solutions to the Ozma problems. A

new method of measuring a parameter manifesting molecular parity violations is advanced.

In Chapter 7, sum-frequency vibrational spectroscopy is used to study adsorption

of leucine molecules at air-water interface from solutions with different concentrations and

pH values. The surface density and the orientation of the isopropyl head group of the

adsorbed leucine molecules could be deduced from the measurements. We find that the

orientation depends on the surface density, but only weakly on bulk pH at the saturated

surface density. The vibrational spectra of the interfacial water molecules are strongly

affected by the charge state of the adsorbed leucine molecules. Enhancement and inversion

of polar orientation of interfacial water molecules by surface charges or field controllable by

the bulk pH value are observed.

In Chapter 8, sum-frequency vibrational spectroscopy is used to obtain the first

surface vibrational spectra of shear-deposited highly-oriented poly(tetrafluorothylene) thin

films. The surface poly(tetrafluorothylene) chains appear to lie along the shearing direction.
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Vibrational modes observed at 1142 and 1204 cm−1 are found to have the E1 symmetry, in

support of some earlier analysis in the long-lasting controversy over the assignment of these

modes.
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Chapter 2

Sum-frequency generation

spectroscopy of surfaces and chiral

materials

2.1 Sum-frequency generation

When two electromagnetic waves with frequencies ω1 and ω2 interact in a macro-

scopic medium, a nonlinear polarization ~P (2)(ωs = ω1 + ω2) can be induced. Coherent

radiation at frequency ωs resulting from this nonlinear polarization obeys the wave equa-

tion

∇×∇× ~Es +
ε

c2

∂2 ~Es

∂t2
= −4π

c2

∂2 ~P (2)(ωs)
∂t2

. (2.1)
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If we only consider the electric-dipole interaction between the light and the medium, the

value of this polarization is determined by the medium’s second-order nonlinear suscepti-

bility
↔
χ (2) and the electric fields of the input waves ~E1, ~E2 with

~P (2)(ωs) =
↔
χ (2)(ωs) : ~E1

~E2. (2.2)

If the medium has inversion symmetry, it can be shown that all components of
↔
χ (2) become

zero. Thus under the electric-dipole approximation, SFG is only allowed in media without

inversion symmetry, such as surfaces and chiral media.

With Eq. (2.2), Eq. (2.1) can be solved. Solutions have been worked out and will

not be reproduced here [1, 27]. Some computational details are presented in Appendix A,

which have to do with practical considerations in experiments. Here, only equations bearing

direct relationship to experimental results are shown.

If we direct two input waves from air to a medium and approximate the input waves

as plane waves, the output sum-frequency wave is also a plane wave with the intensity

I(ωs) =
ω2

s

8ε0c3 cos2 βs
|χ(2)

eff |2I(ω1)I(ω2), (2.3)

where I(ω1) and I(ω2) are the intensities of the input fields, βs is the exit angle of the

sum-frequency wave in air relative to surface normal, and χ
(2)
eff is the effective second-order

nonlinear susceptibility defined as [28]

χ
(2)
eff = [

↔
L (ωs) · ês]·

↔
χ (2) : [

↔
L (ω1) · ê1][

↔
L (ω2) · ê2], (2.4)

where
↔
L (ωi) and êi are the tensorial Fresnel factor and the unit polarization vector of the

optical field at ωi, respectively.
↔
L (ωi) describes the relationship between field components
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in the air and in the medium [29]. For isotropic media, only the diagonal elements of
↔
L (ωi)

need to be considered, which are

LXX =
2n1 cosα2

n1 cosα2 + n2 cosα1
(2.5)

LYY =
2n1 cosα1

n1 cosα1 + n2 cosα2
(2.6)

LZZ =
2n2 cosα1

n1 cosα2 + n2 cosα1

(n1

n′
)2

, (2.7)

where n1, n2 and α1, α2 are the refractive indices and incident angles in the air and in the

medium, respectively. For the case of an interfacial medium, n′ is the effective refractive

index of the surface; for the case of a bulk sample, n′ equals to the bulk refractive index

n2. X, Y, Z are the laboratory coordinate axes with Z defined to be normal to the surface

of the medium and X-Z plane the incidence plane.

For an interfacial system,
↔
χ (2) in Eq. (2.4) is the surface second-order nonlinear

susceptibility tensor
↔
χ (2)

S ; for a bulk system,
↔
χ (2) is

↔
χ (2)

B /∆kZ, with
↔
χ (2)

B being the

bulk second-order nonlinear susceptibility tensor [1]. ∆kZ = k1,Z + k2,Z − ks,Z describes

the wavevector mismatch along Z direction, the inverse of which is the effective coherence

length lc with

lc =
1

|k1,Z + k2,Z − ks,Z| =
1

|∆kZ| . (2.8)

Physically, coherence length lc can be considered as the interaction length within which the

sum-frequency waves generated at different positions interfere constructively.
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2.2 Sum-frequency generation spectroscopy

Microscopically, the second-order nonlinear susceptibility
↔
χ (2) is related to the

second-order nonlinear polarizability
↔
α (2) (first hyperpolarizability) by the expression [1]

χ
(2)
ijk =

1
ε0

Nlii(ωs)ljj(ω1)lkk(ω2)
∑

i′j′k′
α

(2)
i′j′k′〈(̂i · î′)(ĵ · ĵ′)(k̂ · k̂′)〉. (2.9)

Here N is the number density of molecules,
↔
l (ωi) is the microscopic local field correction

factor tensor of field ωi [30], î, ĵ, k̂ refer to the laboratory coordinates (X,Y,Z), î′, ĵ′, k̂′

refer to the molecular coordinates (x,y,z), and the angular brackets denote an average over

the molecular orientations.

The quantum mechanical expression of
↔
α (2) is

α
(2)
ijk =

1
~2

∑

n,n′

(µi)gn(µj)nn′(µk)n′g

(ωs − ωng + iΓng)(ω2 − ωn′g + iΓn′g)
+

(µi)gn(µj)n′g(µk)nn′

(ωs − ωng + iΓng)(ω1 − ωn′g + iΓn′g)
+

+
(µi)ng(µj)n′n(µk)gn′

(ωs + ωng + iΓng)(ω2 + ωn′g + iΓn′g)
+

(µi)ng(µj)gn′(µk)n′n

(ωs + ωng + iΓng)(ω1 + ωn′g + iΓn′g)
−

−(µi)n′n(µj)ng(µk)gn′

(ωs − ωnn′ + iΓnn′)
·
(

1
ω2 + ωn′g + iΓn′g

+
1

ω1 − ωng + iΓng

)
−

−(µi)n′n(µj)gn′(µk)ng

(ωs − ωnn′ + iΓnn′)
·
(

1
ω2 − ωng + iΓng

+
1

ω1 + ωn′g + iΓn′g

)
, (2.10)

where n, n′ denote the eigenstates of the molecule other than the ground state |g〉, i, j, and

k refer to the molecular coordinates, (~µ)ab, ωab and Γab are the electric-dipole transition

moment, the transition frequency, and the damping constant of the transition |a〉 → |b〉,

respectively. Here all the molecules are assumed to be initially in the ground state |g〉.

From Eqs. (2.9) and (2.10), one sees that SFG can be used to obtain spectroscopic

information, because when one of the three waves is in resonance with a molecular transition,
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components of
↔
χ (2) are enhanced. A general expression describing such a resonance behavior

is

↔
χ (2) =

↔
χ (2)

NR+
↔
χ (2)

R =
↔
χ (2)

NR +
∑

q

↔
A q

ωi − ωq + iΓq
, (2.11)

where
↔
χ NR is the nonresonant part of

↔
χ (2) while

↔
A q, ωq, and Γq are the amplitude, the

resonant frequency, and the damping constant of the transition q, respectively.

Experimentally, the frequency of one input wave is tuned so that this wave or

the sum-frequency wave is in resonance with a vibrational or electronic transition, and the

resonant enhancement of the sum-frequency output gives us the vibrational or electronic

spectra of the medium.

2.3 Sum-frequency generation in chiral liquids

Liquids made of chiral molecules of the same handedness do not have inversion

symmetry, thus SFG is allowed in chiral liquids. Due to the isotropy of liquids, the nonva-

nishing
↔
χ (2) elements have the same amplitude and are related by

χ
(2)
B,XYZ = −χ

(2)
B,XZY = χ

(2)
B,YZX = −χ

(2)
B,YXZ = χ

(2)
B,ZXY = −χ

(2)
B,ZYX = χ

(2)
chiral. (2.12)

They are of opposite signs for the two enantiomers and zero for a racemic mixture.

For chiral liquids, χ
(2)
chiral is related to the first molecular hyperpolarizability by [1]

χ
(2)
chiral =

1
ε0

NBlB(ωs)lB(ω1)lB(ω2)α
(2)
chiral, (2.13)
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Figure 2.1: (a) Schematic view of the beam geometry at sample position and (b) energy

level diagrams for typical electronic resonance optically active sum-frequency generation

(OA-SFG) experiments. The beams at ωs, ω1 and ω2 have the same incidence plane defined

by X and Z laboratory coordinate axes. Beam polarization is defined as P if the electric

field vector ~Ei is parallel to the incidence plane, and S if ~Ei is perpendicular to the incidence

plane. Here, electric fields are depicted in SPP polarization combination.

where

α
(2)
chiral ≡

∑

i,j,k

α
(2)
ijk〈(X̂ · î)(Ŷ · ĵ)(Ẑ · k̂)〉iso

=
1
6
[α(2)

xyz − α(2)
yxz + α(2)

yzx − α(2)
zyx + α(2)

zxy − α(2)
xzy]. (2.14)

Here NB is the number density of chiral molecules, X, Y, and Z are the laboratory coor-

dinates, lB(ωi) is the bulk microscopic local field factor with lB(ωi) = [ε(ωi) + 2]/3 (ε(ωi)

being the dielectric constant of the liquid at ωi), i, j, and k are the labels for molecular

coordinates x, y, and z, and the orientational average 〈 〉iso is carried out for isotropic

distribution. Experimentally, by using polarization combinations SPP (S-polarized ωs, P-

polarized ω1, and P-polarized ω2 waves), PSP, and PPS, one can probe the value of χ
(2)
chiral.
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(For the definition of S and P polarization, see Fig. 2.1(a).)

However, since in SFG we always measure |χ(2)
eff |2, for a simple experiment where

|χ(2)
chiral|2 is measured, one only measures the amplitude of χ

(2)
chiral. As a result, we can only

determine whether the liquid is chiral, but cannot distinguish the enantiomers. We name

this kind of measurement optically-active SFG (OA-SFG). Nevertheless, it is possible to

distinguish the enantiomers. As shown in Chapter 4, we can distinguish the enantiomers

and achieve chiral SFG measurement by deducing χ
(2)
chiral from interference measurements.

In Chapter 6, by utilizing parity nonconservation, we are able to further devise a scheme

using SFG to transmit chiral information via an achiral channel.

2.3.1 Electronic resonance and vibrational resonance cases

If sum frequency ωs is in resonance with a transition from the electronic ground

state |g〉 to the electronic excited state |e〉, as shown in Fig. 2.1(b), we have

χ
(2)
chiral =

1
ε0

NBlB(ωs)lB(ω1)lB(ω2)
6~2

∑
n

(ω1 − ω2)
(ωs − ωng + iΓng)

∑

n′

~µgn · (~µnn′ × ~µn′g)
(ω1 − ωn′g)(ω2 − ωn′g)

.

(2.15)

Here the two input frequencies are assumed to be far away from electronic resonances. If

ω1 = ω2, as in the case of second harmonic generation (SHG), χ
(2)
chiral vanishes, thus SHG is

not allowed in chiral liquids.

If input beam ω2 is in resonance with a vibrational transition |g, 0〉 → |g, 1〉, we

have

χ
(2)
chiral =

1
ε0

NBlB(ωs)lB(ω1)lB(ω2)
6~

~µ(g,1)(g,0)

ω2 − ω(g,1)(g,0) + iΓ(g,1)(g,0)
· ~MA, (2.16)
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with

~MA =
1
~

∑

n,δ

[
~µ(g,0)(n,δ) × ~µ(n,δ)(g,1)

ωs − ω(n,δ)(g,0) + iΓ(n,δ)(g,0)
+

~µ(g,0)(n,δ) × ~µ(n,δ)(g,1)

ωs − ω(g,1)(n,δ) + iΓ(g,1)(n,δ)

]
. (2.17)

Here |n, δ〉 denotes a vibronic state where n labels the electronic state and δ the vibrational

state. ~MA is the antisymmetric part of the anti-Stokes Raman tensor [31].

Although the forms of χ
(2)
chiral appear different in Eqs. (2.15) and (2.16), they have

some mutual features. They both show that χ
(2)
chiral, as a pseudoscalar, changes sign under

inversion. Therefore the χ
(2)
chiral’s of enantiomers have opposite signs, and racemic mixture

has its χ
(2)
chiral equal to zero. This makes it a quantity sensitive to the presence of chirality [32].

Both equations show that χ
(2)
chiral is enhanced when their respective resonance conditions are

satisfied. Thus by tuning the frequency of one of the input beams, one can obtain chirality-

sensitive electronic and vibrational spectra.

The difference between the electronic resonance and vibrational resonance cases

is that, in order for the vibrational resonance enhanced χ
(2)
chiral from chiral liquids to be

nonzero, the anti-symmetric Raman coefficient ~MA should not vanish. Corrections on

Born-Oppenheimer approximation must be made so that |n, δ〉 6= |n〉|δ〉. In other words,

only through vibronic coupling and nonadiabatic correction does the anti-symmetric Raman

coefficient ~MA become nonvanishing. When sum frequency is far from electronic resonances,

corrections on the Born-Oppenheimer approximation are small, and it was found that the

anti-symmetric Raman coefficient is two to three orders of magnitude less than its symmetric

counterpart [31]. Since electronic resonance SFG does not have this limitation, vibrational

resonance SFG from chiral liquids is generally weaker than the electronic one.
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However, if in the vibrational resonance case, sum frequency approaches an elec-

tronic transition, we have electronic-vibrational double-resonance sum-frequency genera-

tion. The double-resonance enhancement effect on chirality-sensitive SFG is more signifi-

cant than the usual double-resonance enhancement in achiral systems. This is because the

Born-Oppenheimer approximation becomes progressively worse as ωs approaches electronic

resonance. Therefore, in addition to the usual resonance enhancement, further enhance-

ment of χ
(2)
chiral comes in through the corrections to the Born-Oppenheimer approximation.

Near electronic resonances, the anti-symmetric and symmetric Raman coefficients become

comparable [31]. As a result, chirality-sensitive SFG vibrational spectrum of a monolayer

can be observed [19]. In this thesis, we focus on the electronic resonance cases. Vibra-

tional resonance and electric-vibrational double-resonance OA-SFG have been reviewed

elsewhere [33, 34].

2.3.2 Comparison of SFG with conventional techniques

One may ask why we need another technique to probe chirality when conventional

techniques probing chirality, such as circular dichroism (CD), optical rotatory dispersion

(ORD), vibrational circular dichroism (VCD), and Raman optical activity (ROA), are al-

ready well developed [3]. The reason lies in the sensitivity. The conventional techniques

rely on the higher-order responses of the molecular system to the probing light. In other

words, their responses would vanish if the interactions involved were only electric-dipole

coupling between molecules and light. They become nonvanishing through the higher order

interactions, such as the magnetic-dipole and electric-quadrupole couplings that are orders
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of magnitude weaker than the electric-dipole coupling. As a result, the sensitivity of these

techniques, as determined by the ratio of the chiral response to the achiral response (from

pure electric-dipole coupling), is usually not sufficient to detect chirality of monolayers and

thin films.

In comparison, chirality-sensitive SFG in chiral liquids is allowed within electric-

dipole approximation, and χ
(2)
chiral can be selectively probed using polarization combinations

SPP, PSP, and PPS without the electric-dipole allowed background contribution. Thus,

whereas in conventional techniques a small difference between two large quantities (for the

case of CD and ORD, nL and nR, with n being refractive index) needs to be measured, in

SFG the existence of the signal alone is sufficient to ascertain that the sample is chiral. As a

result, SFG has higher sensitivity and has been used to obtain optically active electronic and

vibrational spectra of a monolayer of chiral molecules [19, 23]. SHG, although forbidden

in chiral liquids, has been shown by Hicks et al. to be able to probe the chirality of a

monolayer [8, 9, 10, 11, 12].

2.4 Sum-frequency vibrational spectroscopy (SFVS) of achi-

ral interfaces

For a medium with inversion symmetry, at its surface the inversion symmetry

is necessarily broken. Therefore, SFG is only allowed at its surface within the electric-

dipole approximation, thus is a surface-selective probe.1 By tuning the frequency of one
1Beyond the electric-dipole approximation, SFG is allowed in centrosymmetric systems if electric

quadrupole and magnetic dipole contributions are considered. But the effect of these higher-order con-
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Figure 2.2: (a) Schematic view of the beam geometry at sample position and (b) energy level

diagrams for typical sum-frequency vibrational spectroscopy (SFVS) experiments. Beam

polarization is defined as P if the electric field vector ~Ei is parallel to the incidence plane,

and S if ~Ei is perpendicular to the incidence plane.

input wave, we can obtain spectra of surface species through resonant enhancement. In

particular, vibrational spectra of surface species are of most interest, because vibrational

frequencies are sensitive to local environment. We name this type of measurement sum-

frequency vibrational spectroscopy (SFVS). In a typical SFVS experiment, input beam ω1 is

fixed at 532nm, while the other input beam (ω2) is tuned across the vibrational resonances

of the medium. This way, the generated sum-frequency photon is in the visible region

and can be detected with high efficiency. The energy level diagram of SFVS is shown in

Fig. 2.2(b).

For SFVS, Eq. (2.11) changes into

↔
χ (2) =

↔
χ (2)

NR +
∑

q

↔
A q

ω2 − ωq + iΓq
, (2.18)

where q is the label of vibrational transitions, and the amplitude
↔
A q is related to the

tributions can be minimized by detecting the signal in the reflection direction [35].
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vibrational transition dipole moment derivative
√

~
2ωq

∂µ
∂Qq

and Raman polarizability tensor

elements
√

~
2ωq

∂
↔
α

∂Qq
by [36]

Aq,ijk = −NS

ε0~
∑

i′j′k′

~
2ωq

∂αi′j′

∂Qq

∂µk′

∂Qq
〈(i · i′)(j · j′)(k · k′)〉. (2.19)

Here NS is the surface density of molecules, i, j, and k refer to the laboratory coordinates,

i′, j′, and k′ to the molecular coordinates, Qq denotes the normal coordinate of vibrational

mode q, and the angular brackets represent an average over molecular orientations.

Eq. (2.19) indicates that only vibrational modes that are both infrared and Raman

active can be detected in SFVS. Since both the vibrational transition dipole moment and

the Raman polarizability can be measured with other methods, by measuring the nonzero

elements of
↔
χ (2), one can obtain both the density and the orientation of the surface species.

2.4.1 Polarization combinations in SFVS

In practice, to obtain the above information, one measures the SFVS spectra

using different polarization combinations of the sum-frequency and the input waves. For

an azimuthally isotropic surface, the second-order susceptibility tensor
↔
χ (2)

S has 7 nonzero

elements:

χ
(2)
S,XXZ = χ

(2)
S,YYZ

χ
(2)
S,XZX = χ

(2)
S,YZY

χ
(2)
S,ZXX = χ

(2)
S,ZYY (2.20)

χ
(2)
S,ZZZ,
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where X, Y, Z are the laboratory coordinates defined previously and shown in Fig. 2.2(a).

To deduce the value of the nonzero components, four polarization combinations are often

needed: SSP, SPS, PSS, and PPP. The effective second-order nonlinear susceptibilities under

these polarization combinations are

χ
(2)
eff,SSP = LYY(ωs)LYY(ω1)LZZ(ω2) sin α1(ω2)χ

(2)
S,YYZ

χ
(2)
eff,SPS = LYY(ωs)LZZ(ω1)LYY(ω2) sin α1(ω1)χ

(2)
S,YZY

χ
(2)
eff,PSS = LZZ(ωs)LYY(ω1)LYY(ω2) sin α1(ωs)χ

(2)
S,ZYY (2.21)

χ
(2)
eff,PPP = −LXX(ωs)LXX(ω1)LZZ(ω2) cos α1(ωs) cos α1(ω1) sin α1(ω2)χ

(2)
S,XXZ

−LXX(ωs)LZZ(ω1)LXX(ω2) cos α1(ωs) sin α1(ω1) cos α1(ω2)χ
(2)
S,XZX

+LZZ(ωs)LXX(ω1)LXX(ω2) sin α1(ωs) cos α1(ω1) cos α1(ω2)χ
(2)
S,ZXX

+LZZ(ωs)LZZ(ω1)LZZ(ω2) sin α1(ωs) sin α1(ω1) sinα1(ω2)χ
(2)
S,ZZZ,

where α1(ωi) is the incident angle of wave ωi in the air. Because the anti-symmetric part

of the Raman tensor away from electronic resonances is often small [31],

χ
(2)
S,XZX = χ

(2)
S,YZY = χ

(2)
S,ZXX = χ

(2)
S,ZYY. (2.22)

Under this condition, only SSP, SPS (or PSS), and PPP spectra are needed. For an

anisotropic surface, more measurements are needed.

In this thesis, we show how SFVS can be used to obtain the surface density and

orientation of adsorbed leucine molecules at air-water interface in Chapter 7. In Chapter 8,

we use SFVS to study shear-aligned poly(tetrafluoroethylene) film, where the selection rule

of SFVS is used to assign the symmetry of normal modes of poly(tetrafluoroethylene).
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2.5 Experimental setup

As a nonlinear optical process, SFG is a weak effect and needs the input waves to

have high intensity. In most of the work described in this thesis, a pulsed picosecond laser

system that generates coherent radiation with either fixed or tunable frequencies was used.

Briefly, we employed a high power picosecond Nd:YAG laser (Continuum Inc.)

operated at 20Hz, and a homemade laser-pumped optical parametric generator/amplifier

(OPG/OPA) system [37] generating tunable coherent output from 230 nm to 10 µm, with

a ∼20 ps pulse width. Two noncollinear beams of different frequencies were then over-

lapped spatially and temporally at the sample. Sum-frequency output is allowed in both

transmission and reflection directions as defined by photon momentum conservation [1].

For measurements of achiral surfaces, the input beams were overlapped at the surface of

interest and the sum-frequency output was detected in the reflection direction to minimize

the surface-insensitive contribution due to the electric quadrupole and magnetic dipole con-

tributions [35]. For chirality-sensitive SFG measurement from chiral liquids, sum-frequency

signals were detected in the transmission direction to take advantage of the longer coher-

ent length. The beams were overlapped at the bottom liquid-cell interface for electronic

resonance SFG, for reasons explained in Appendix A.

Being spectrally distinct and spatially directional, sum-frequency signals can be

detected without much background after proper spectral and spatial filtering. The detection

system used was a Hamamatsu photomultiplier tube in connection with a Stanford Research

SR250 gated integrator. For vibrational resonance studies, a 532nm beam (ω1) and a tunable
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IR beam (ω2) were used as inputs. The typical power of the visible beam was on the order

of a few mJ per pulse, and that of IR beam on the order of tens to hundreds of µJ. For

chirality-sensitive SFG studies of electronic transitions, a tunable UV/visible beam from

the OPG/OPA (ω1) (hundreds of µJ per pulse) and a 1064nm beam (ω2) (2 mJ per pulse)

from the Nd:YAG laser were the inputs. By varying ω1, sum frequency ωs was tuned over

the electronic transitions of the sample. The detected sum-frequency signal varied from

∼0.01 to ∼10 photons per pulse, depending on the experiment geometry, the sample, and

its concentration. Accumulation of tens of minutes is needed to obtain a spectrum with the

typical signal-to-noise ratio of the spectra shown in this thesis, whereas measurements at a

single wavelength to determine the presence of a nonzero signal take only seconds, and can

be further sped up by using lasers of higher repetition rates.
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Chapter 3

A dynamic coupling model for

sum-frequency chiral response

from liquids composed of molecules

with a chiral side chain and an

achiral chromophore

3.1 Introduction

Chirality is the property that an object cannot be superimposed by translation

and rotation on its mirror image. In terms of symmetry, a chiral object does not have sym-
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metry planes, inversion centers or improper rotation axes. Chirality is a common property

of objects in nature, with most natural biological molecules, from amino acids to hormones,

being chiral. The study on molecular chirality has a history as long as that of modern

chemistry itself. Since the early eighteenth century, optical properties have been used to

study molecular chirality [38]. The most commonly employed one is linear optical activ-

ity such as optical rotatory dispersion (ORD) and circular dichroism (CD), which result

from chiral media having different refractive indices for left- and right-circularly polarized

light [39, 40]. Rosenfeld was the first to give a quantum mechanical description for linear

optical activity [41]. He pointed out that the strength of ORD and CD near an electronic

transition |g〉 → |n〉 depends on the rotatory strength Rgn, with

Rgn = Im{~µgn · ~mng} (3.1)

where ~µ and ~m are the electric and magnetic dipole transition moments between states

|g〉 and |n〉, respectively. Because the magnitude and directions of the dipole transition

moments are determined by wave functions of the electronic states |g〉 and |n〉, the rotatory

strength Rgn is related to the structural characteristics of the molecule. It can be shown

that Rgn has opposite signs for the two enantiomers of a chiral molecule, and is zero for

achiral molecules. This ability of detecting molecular chirality has made CD an important

technique in fields ranging from organic structural chemistry to structural biology.

It was proposed by Giordmaine in 1965 that second-order nonlinear optical effects

such as sum-frequency generation (SFG) can also be used to detect chirality in optically

active liquids [16]. However, it was not until 2000 that this effect was observed unequivo-
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cally [17]. Since then, optically active sum-frequency generation (OA-SFG) spectra of vibra-

tional, electronic and vibrational-electronic double resonances of various chiral molecules in

solutions have been obtained [18, 19, 20, 21]. In OA-SFG, the chiral response is allowed in

liquids under electric dipole approximation. Consequently, it has a much higher sensitivity

than CD, where a magnetic dipole transition must be involved. Demonstrations of high

sensitivity of OA-SFG can be found in literature: optically active electronic and vibrational

spectra of monolayers of chiral molecules were observed [19, 23]. (Second harmonic gener-

ation circular dichroism, which is forbidden in liquids but allowed at interfaces, was also

observed from chiral monolayers in 1993 by Hicks et al [8].) This opens up the exciting pos-

sibility of using OA-SFG to monitor important biological and chemical processes involving

chiral molecules that cannot be observed with conventional methods such as CD.

In order to use second-order nonlinear chiral optical processes to obtain infor-

mation such as molecular configuration or conformation, we have to understand how the

chiral responses are related to the molecular structure. As intrinsically different processes,

electronically resonant OA-SFG and CD provide different information on the chiral molec-

ular structure. For molecules composed of a set of twisted dimers such as binaphthal,

a coupled-oscillator theory was proposed to describe the electronically resonant OA-SFG,

and comparison with the coupled-oscillator theory for CD was made [42]. Most biological

molecules, however, are composed of an intrinsically achiral chromophore and a chiral cen-

ter, as do many pharmaceutical compounds. Given their importance, we need to understand

the mechanism of chirality-sensitive SFG from these molecules near electronic resonances

of their achiral chromophores. In this chapter, we describe our effort in applying OA-SFG
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to this class of chiral molecules. We use amino acids as model systems and develop a

general theory for electronically resonant OA-SFG from solutions of molecules made of an

intrinsically achiral chromophore and a chiral side chain.

This chapter is organized as following: first, the general theory on OA-SFG from an

isotropic solution of chiral molecules with a chiral center is outlined, followed by an electron

correlation model first developed by Höhn and Weigang [43], from which a dynamic coupling

model for OA-SFG is presented. Using amino acids as model systems, we then describe

the formulism to evaluate the strength of the optically active second-order nonlinear optical

effect. In particular, we focus on cases where the chiral side chain is made of nonpolar bonds.

We further compare the experimental results with those predicted by our model. In the

subsequent discussion, we propose a few tentative rules on the effectiveness of the chirality-

inducing perturbations on achiral chromophores. Sum-frequency spectra from several amino

acids with polar or charged side chains are also presented and discussed.

3.2 Theoretical basis of SFG from isotropic chiral liquids

For chiral liquids, their OA-SFG signal is governed by the second order nonlinear

susceptibility χ
(2)
chiral, which is

χ
(2)
chiral ≡ χ

(2)
XYZ = −χ

(2)
XZY = χ

(2)
YZX = −χ

(2)
YXZ = χ

(2)
ZXY = −χ

(2)
ZYX, (3.2)

where X, Y and Z are the laboratory coordinate axes, and χ
(2)
chiral is of opposite signs for

the two enantiomers and zero for a racemic mixture. The OA-SFG signal is proportional

to |χ(2)
chiral|2, and can be detected when polarization combinations SPP, PSP, and PPS are
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used.

Microscopically, χ
(2)
chiral is determined by the chiral molecular structure by

χ
(2)
chiral ∝ N

1
6~2ε0

∑
n

(ω1 − ω2)
(ωs − ωng + iΓng)

∑

n′

~µgn · (~µnn′ × ~µn′g)
(ω1 − ωn′g)(ω2 − ωn′g)

, (3.3)

where N is the number density of the molecule, and ωij , Γij , and ~µij the transition frequency,

the damping constant, and the electric-dipole matrix element of the transition between

electronic states |i〉 and |j〉. Here the two input frequencies are assumed to be far away

from electronic resonances. As seen from Eq. (3.3), scanning ωs over an electronic transition

by tuning one of the input beams yields an optically active electronic spectrum.

An important conclusion from Eq. (3.3) is that in order for OA-SFG to be allowed,

the three electric-dipole transition moments ~µgn, ~µnn′ , and ~µn′g must not be coplanar.

Intrinsically achiral chromophores have either a center of inversion or at least one plane

of symmetry, so that the above condition cannot be satisfied, and hence χ
(2)
chiral is always

zero. When the extrachromophoric molecular structures are chiral, their interactions with

the chromophore lower the symmetry of its electronic states, making the above condition

satisfied. In the language of perturbation theory, the extrachromophoric perturbations

change the wavefunctions of the chromophore, and make the three transition moments

nonplanar.

In principle, the magnitude and directions of electric-dipole transition moments

could be obtained by ab initio calculation. In reality, however, it is a demanding task, for

potential energy surfaces of excited electronic states need to be calculated with high preci-

sion. Furthermore, many important chiral systems, in particular the biologically important
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ones, are in aqueous solutions with the presence of ions. With the specific interactions

between solvent and solute molecules taken into account, the calculation becomes very ex-

pensive even for molecules with moderate sizes [44]. An analytic method based on physical

pictures is often more helpful to achieve an understanding of the origin of OA-SFG.

Fortunately, the problem of calculating transition moments that are revised by

chiral perturbations is not a new one. In linear optical activity, the rotatory strength is

related to the product of electric-dipole and magnetic-dipole transition moments as shown

in Eq. (3.1). For an achiral chromophore, the two moments are either forbidden or perpen-

dicular to each other. The nonzero CD and ORD signals near an electronic transition result

from chiral perturbations, which make the transition moments nonzero and not perpendicu-

lar to each other. Many different theoretical approaches for such a perturbation calculation

were developed [39]. In the following sections, we will show that the electron correlation

model, originally proposed by Höhn and Weigang to calculate the rotatory strength of linear

optical activity [43], can be directly adapted to calculate the nonlinear optical response in

OA-SFG.

3.3 Electron correlation model

In calculating the perturbed electric-dipole transition moments, a chiral molecule

composed of an achiral chromophore and a chiral molecular surrounding may be divided

in the zeroth order into two electronically independent groups with negligible interaction.

Then, for the molecular state with the chromophore (A) in its mth eigenstate and the sur-
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rounding perturber (B) in its nth eigenstate, the wave function is |AmBn) = |Am)|Bn).

In the first-order correction, with the interaction V between the chromophore and its sur-

rounding taken into account, the wavefunction becomes [43]

|AmBl〉 = |AmBl) +
∑

i

∑

j

(AiBj |V |AmBl)
EA

m + EB
l −EA

i − EB
j

|AiBj), (3.4)

within the framework of nondegenerate perturbation theory. The electric-dipole transition

moment between states |AmB0〉 and |AnB0〉 is thus

〈AnB0|~µ|AmB0〉 = (AnB0|~µ|AmB0)

+
∑

i6=m

(AiB0|V |AmB0)
EA

m −EA
i

(AnB0|~µ|AiB0)

+
∑

j 6=n

(AnB0|V |AjB0)
EA

n −EA
j

(AjB0|~µ|AmB0) (3.5)

+
∑

l 6=0

(AnBl|V |AmB0)
EA

m − EA
n − EB

l

(AnB0|~µ|AnBl)

+
∑

l 6=0

(AnB0|V |AmB0)
EA

n − EA
m −EB

l

(AmBl|~µ|AmB0).

Because

~µ = ~µA + ~µB, (3.6)
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Eq. (3.5) becomes

〈AnB0|~µ|AmB0〉 = (An|~µA|Am) (a)

+
∑

i 6=m

(AiB0|V |AmB0)
EA

m − EA
i

(An|~µA|Ai) (b)

+
∑

j 6=n

(AnB0|V |AjB0)
EA

n − EA
j

(Aj |~µA|Am) (c) (3.7)

+
∑

l 6=0

(AnBl|V |AmB0)
EA

m − EA
n −EB

l

(B0|~µB|Bl) (d)

+
∑

l 6=0

(AnB0|V |AmB0)
EA

n −EA
m − EB

l

(Bl|~µB|B0) (e)

where term (a) is the unperturbed electric-dipole transition moment of the chromophore,

terms (b) and (c) are moments ”borrowed” from the other states |Al) (l 6= m,n) of the

chromophore, terms (d) and (e) are borrowed from the states of the perturber. The strength

borrowed is related to the perturbation matrix elements of V .

The interaction potential V between the chromophore and the perturber is Coulom-

bic in nature, and can be expanded into static multipole-multipole interactions, as tabulated

in the original paper by Höhn and Weigang [43]. For an electric-dipole forbidden transition,

(An|~µA|Am) = 0. Furthermore, if the perturber is neither charged nor polar such that

(B0|V |B0) = 0, the leading interaction is the quadrupole-dipole term in V , and (d) and

(e) are the only nonvanishing terms in the correction. Only when the perturber is polar or

charged, will terms (b) and (c) contribute. Because (b) and (c) originate from the static

charges and multipolar fields of the perturber, they are historically named as the static

coupling terms, whereas (d) and (e) are referred to as the dynamic coupling terms due to

the correlative electronic interactions between the chromophore and the perturber through
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(AnBl|V |AmB0) and (AnB0|V |AmBl).

With Eq. (3.7), the perturbed electric-dipole transition moments in OA-SFG can

be evaluated. The calculation can often be simplified by symmetry arguments applied to the

chromophore and the perturber. As an example, we apply this electron correlation model

to a typical chiral system made of an achiral chromophore and a chiral perturber - amino

acids. In particular, we shall focus on amino acids with nonpolar saturated side chains, for

which only the dynamic coupling terms need to be considered in describing OA-SFG.

3.4 Dynamic coupling model with amino acids as a model

system

Naturally occurred amino acids have the carboxyl group as their achiral chro-

mophore, which is connected to an amide group, a hydrogen atom and a side chain through

a carbon atom that is the chiral center. In alkaline solutions, the carboxyl group is depro-

tonated into a carboxylate anion (-COO−) with C2v symmetry. We define the molecular

coordinate ẑ to be along the C2 axis of -COO−, x̂ perpendicular to the -COO− plane, and

the origin at the center of gravity of -COO− charge distribution.

As discussed in the previous section, an amino acid molecule can be divided into

two parts: -COO− as the achiral chromophore and the rest as the chiral perturber. In

the following, we show that the symmetry property of -COO− group allows us to obtain an

expression, from which we can have a semi-quantitative estimation on the OA-SFG response

and compare it with the experimental result. We focus on the magnitude of χ
(2)
chiral as the
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Figure 3.1: (a) Molecular orbitals of -COO−: dots are electrons arranged in the electron

configuration of the ground electronic state |g〉. (b) Energy level diagram of -COO− group:

ground state |g〉 and the first three excited states |e1〉, |e2〉, and |e3〉. The arrows denote

transitions between states, to the left of which are the allowed electric-dipole and magnetic-

dipole transition moments.

sum frequency approaches the first electronic resonances of -COO− around 200nm.

We begin with the expression of χ
(2)
chiral for the unperturbed chromophore. From

the molecular orbital theory, the ground electronic state |g〉 of -COO− has an electron

configuration with the highest occupied molecular orbitals being π+, π0, n−, and n+, and

the lowest unoccupied molecular orbital being the antibonding π∗, as shown in Fig. 3.1(a).

If the configuration interaction is neglected, the lowest excited electronic states |e1〉, |e2〉 and

|e3〉 can be constructed by promoting one electron from n+, n−, and π0 to π∗, respectively,

as schematically shown in Fig. 3.1b. (From group theory, electronic states |g〉, |e1〉, e2〉, and

e3〉 have A1, B1, A2, and B2 symmetry, respectively.) The transitions from |g〉 to e1〉 and

e2〉 are in the 180nm to 210nm region, and the |g〉 to e3〉 transition around 160nm [45].



3.4. DYNAMIC COUPLING MODEL WITH AMINO ACIDS AS A
MODEL SYSTEM 34

A more precise calculation on χ
(2)
chiral would need the inclusion of many excited

states. However, with the next higher state around 110nm (corresponding to promoting an

electron from π+ to π∗) [46], for χ
(2)
chiral near 200nm, a four-state model involving only states

|g〉, |e1〉, |e2〉, and |e3〉 should suffice to give a quantitative estimation.

Now, for this four-level system, we obtain from Eq. (3.3)

χ
(2)
chiral ∝ 1

ωs − ωe1g + iΓe1g

[
~µge1 · (~µe1e2 × ~µe2g)

(ω1 − ωe2g)(ω2 − ωe2g)
+

~µge1 · (~µe1e3 × ~µe3g)
(ω1 − ωe3g)(ω2 − ωe3g)

]

+
1

ωs − ωe2g + iΓe2g

[
~µge2 · (~µe2e1 × ~µe1g)

(ω1 − ωe1g)(ω2 − ωe1g)
+

~µge2 · (~µe2e3 × ~µe3g)
(ω1 − ωe3g)(ω2 − ωe3g)

]
,(3.8)

+
1

ωs − ωe3g + iΓe3g

[
~µge3 · (~µe3e1 × ~µe1g)

(ω1 − ωe1g)(ω2 − ωe1g)
+

~µge3 · (~µe3e2 × ~µe2g)
(ω1 − ωe2g)(ω2 − ωe2g)

]

where ~µij ≡ 〈i|~µ|j〉. As shown in Fig. 3.1(b), the -COO− chromophore has only four

nonvanishing electric-dipole transition matrix elements: ~µge1 and ~µe2e3 along x̂, and ~µe1e2

and ~µge3 along ŷ, where the -COO− plane lies in ŷ − ẑ plane and the symmetric axis of

-COO− is along ẑ. Thus for the unperturbed -COO−, we have χ
(2)
chiral = 0 as expected. The

first-order perturbation from the perturber makes ~µe2g and ~µe3e1 nonvanishing, and hence

puts χ
(2)
chiral in the form

χ
(2)
chiral ∝ f(ω)x̂ · (ŷ × ~µe2g) + g(ω)x̂ · (ŷ × ~µe3e1). (3.9)

As discussed in the previous section, because the perturber is neither charged

nor polar, only the dynamic coupling terms appear, with quadrupole (chromophore)-dipole
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(perturber) interaction as the leading interaction:

V =
3
2
R−7{[(3R2X − 5X3)µx(B) + (R2Y − 5X2Y )µy(B) + (R2Z − 5X2Z)µz(B)]Θxx(A)

+ [(R2X − 5XY 2)µx(B) + (3R2Y − 5Y 3)µy(B) + (R2Z − 5Y 2Z)µz(B)]Θyy(A)

+ [(R2X − 5XZ2)µx(B) + (R2Y − 5Y Z2)µy(B) + (3R2Z − 5Z3)µz(B)]Θzz(A)

+ 2[(R2Y − 5X2Y )µx(B) + (R2X − 5XY 2)µy(B)− 5XY Zµz(B)]Θxy(A) (3.10)

+ 2[(R2Z − 5X2Z)µx(B)− 5XY Zµy(B) + (R2X − 5XZ2)µz(B)]Θxz(A)

+ 2[−5XY Zµx(B) + (R2Z − 5Y 2Z)µy(B) + (R2Y − 5Y Z2)µz(B)]Θyz(A)}.

Here R is the magnitude of ~R that describes the position of the center of gravity of the

perturber’s charge distribution with respect to the center of gravity of the chromophore’s

charge distribution, X, Y , and Z are the components of ~R along the molecular coordinates

of the chromophore, µi(B) is the dipole operator of the perturber along the ith molecu-

lar coordinate axis of the chromophore, and Θij(A) is the (ij) tensor component of the

quadrupole transition moment operator of the chromophore. With -COO− in the ŷ − ẑ

plane being of C2v symmetry, only Θxy(A) can contribute to the generation of ~µe2g and

~µe3e1 . Equation (3.7) gives for the electric-dipole transition moments of the chromophore

~µe2g =
∑

l 6=0

6EB
l R−7

(EA
e2
− EA

g )2 − EB
l

2 [(R2Y − 5X2Y )µl0
x (B) (3.11)

+(R2X − 5XY 2)µl0
y (B)− 5XY Zµl0

z (B)]~µ0l(B)Θe2g
xy (A)

~µe3e1 =
∑

l 6=0

6EB
l R−7

(EA
e3
− EA

e1
)2 − EB

l
2 [(R2Y − 5X2Y )µl0

x (B) (3.12)

+(R2X − 5XY 2)µl0
y (B)− 5XY Zµl0

z (B)]~µ0l(B)Θe3e1
xy (A) .

It is noted from Eq. (3.9) that for OA-SFG of amino acids, the z components of perturbation-
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induced ~µe2g and ~µe3e1 are responsible for the nonvanishing χ
(2)
chiral. We therefore focus on

these components in the following derivation.

Following Höhn and Weigang’s treatment, we assume that the perturber has cylin-

drical symmetry and define its cylindrical axis as ẑ′, which is oriented at a polar angle θ and

an azimuthal angle φ with respect to the molecular coordinates ẑ and x̂ of the chromophore.

Using Kirkwood’s definition for polarizability [47]

↔
α (ν) =

2
h

∑

n 6=0

νn0~µ0n~µn0

ν2
n0 − ν2

, (3.13)

we obtain the z components of ~µe2g and ~µe3e1 as

µe2g,z =
3
2
R−7{(α‖ − α⊥)[X(5Y 2 −R2) sin 2θ sinφ + Y (5X2 −R2) sin 2θ cosφ]

+10XY Z(α⊥ sin2 θ + α‖ cos2 θ)}Θe2g
xy (A) (3.14)

µe3e1,z =
3
2
R−7{(α‖ − α⊥)[X(5Y 2 −R2) sin 2θ sinφ + Y (5X2 −R2) sin 2θ cosφ]

+10XY Z(α⊥ sin2 θ + α‖ cos2 θ)}Θe3e1
xy (A). (3.15)

Here α⊥ and α‖ are the perturber’s polarizability components perpendicular and parallel

to the cylindrical axis of the perturber, respectively. They are evaluated at ν = νe2g =

(EA
e2
− EA

g )/h and ν = νe3e1 = (EA
e3
− EA

e1
)/h for µe2g,z and µe2e1,z, respectively.

Combining the above equations with Eq. (3.9), for OA-SFG induced by the dy-

namic coupling between the achiral chromophore and the chiral side chain, we get

χ
(2)
chiral ∝ F (ω)R−7{(α‖ − α⊥)[X(5Y 2 −R2) sin 2θ sinφ + Y (5X2 −R2) sin 2θ cosφ]

+10XY Z(α⊥ sin2 θ + α‖ cos2 θ)}. (3.16)
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Equation (3.16) shows that the induced OA-SFG on the chromophore depends sensitively on

the position of the perturber, and the farther away the perturber is from the chromophore,

the weaker its ability in inducing chiral response.

Compared with the expression obtained by Höhn and Weigang for the rotatory

strength of the carbonyl n → π∗ transition [43], Eq. (3.16) has the same dependence on

the perturber position and orientation, which is not accidental. Similar to -COO−, the car-

bonyl group has C2v symmetry. Its n → π∗ transition is magnetic-dipole allowed with the

transition moment along ẑ-axis, and electric-dipole forbidden in all directions. The extra-

chromophoric perturber induces an electric-dipole transition moment along the ẑ direction

that determines the strength of CD, just as in the case of OA-SFG from -COO−.

If the nonpolar perturber has an isotropic polarizability with α‖ = α⊥ ≡ α, then

Eq. (3.16) can be simplified to the form

χ
(2)
chiral ∝ G(ω)R−7XY Zα (3.17)

The relation of χ
(2)
chiral ∝ XY Z shows that the OA-SFG response follows the same octant

rule as CD [48].

To calculate from Eqs. (3.9) and (3.16), we still need to know the values of allowed

electric-dipole and quadrupole transition moments of -COO−, which are not quantities

generally available. However, we can apply our theory to molecules with the same achiral

chromophore but different side chains, such as a series of amino acid molecules, and estimate

their relative strength of χ
(2)
chiral. In this case, the differences in χ

(2)
chiral of different amino

acids come from their different chiral perturbers. The theoretical prediction can then be
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compared with the experimental result.

Before focusing on amino acids, we need to justify the assumption that the per-

turber has cylindrical symmetry, which apparently is not true for side chains of amino acids.

Therefore, in our calculation, instead of treating the extrachromophoric part as a single

perturber, we consider each bond in the side chain an independent nonpolar cylindrically

symmetric perturber. We then have

χ
(2)
chiral ∝ Ω ≡

∑
σ

R−7
σ {(ασ‖ − ασ⊥)[Xσ(5Y 2

σ −R2
σ) sin 2θσ sinφσ (3.18)

+Yσ(5X2
σ −R2

σ) sin 2θσ cosφσ] + 10XσYσZσ(ασ⊥ sin2 θσ + ασ‖ cos2 θσ)},

with σ denoting individual bonds. Because ασ‖ and ασ⊥, the longitudinal and transverse

polarizability components of bond σ, respectively, were measured with various methods,

Ω can be calculated from Eq. (3.18), if the position and the orientation of each bond are

known, and the relative OA-SFG strength from different amino acids can be predicted.

3.5 Experimental results from amino acids with saturated

side chain

To test the validity of the theory, we measured the OA-SFG of a series of L-

amino acid molecules. A picosecond OPG/OPA system pumped by a Nd:YAG laser op-

erated at 20Hz was employed to generate tunable UV output (ω1) from 250 to 340 nm

(50 µJ/pulse), which was directed to overlap with a 1064nm beam (ω2) (2 mJ/pulse) at

the exit window of a liquid cell containing amino acids dissolved in 4M NaOH solutions.
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The two beams had their incident angles separated by 45◦. The SPP polarization com-

bination was used to selectively probe the OA-SFG in the transmission direction. The

output sum frequency (ωs) wavelength ranged from 207 to 260 nm, which is near the edge

of the first absorption band of -COO−. The obtained OA-SFG spectra in terms of the sum

frequency wavelength for L-enantiomers of alanine (CH3-CH(NH2)-COO−), valine ((CH3)2-

CH-CH(NH2)-COO−), leucine ((CH3)2-CH-CH2-CH(NH2)-COO−), isoleucine (CH3-CH2-

CH(CH3)-CH(NH2)-COO−), serine (HO-CH2-CH(NH2)-COO−), threonine (CH3-CH(OH)-

CH(NH2)-COO−) and lysine (H2N-(CH2)4-CH(NH2)-COO−) are shown in Fig. 3.2. The

spectral intensity has been normalized by the amino acid concentration. OA-SFG signals

from glycine (NH2-CH2-COO−, an achiral amino acid) and racemic mixtures of chiral amino

acids (not shown here) were below the detection limit, as expected. The χ
(2)
chiral values of all

amino acids were found to have the same sign.

Figure 3.2 shows that isoleucine has the strongest OA-SFG response, and the signal

intensity of alanine, valine, leucine and isoleucine follows the order of alanine < leucine <

valine < isoleucine, uncorrelated with the size of the side chain. Here we adopt the dynamic

coupling model to explain the observed sequence more quantitatively, but we first need to

know the conformations of these amino acids.

3.6 Conformation analysis of amino acids

Although the conformations of amino acids in their crystalline states are known

from x-ray crystallography, their conformations in solution, especially for the anionic struc-
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Figure 3.2: OA-SFG spectra, versus the sum-frequency wavelength, of L-enantiomers of

alanine, valine, leucine, isoleucine, lysine, threonine and serine, with intensities normalized

by the concentration. The OA-SFG signal from the achiral glycine is below our detection

limit as expected. Lines are guides to the eye. The polarization combination used is SPP.
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tures we measured here, are not generally known. In principle, molecular conformation

can be calculated. For flexible molecules like amino acids, there are many local minima

on their potential energy surfaces, corresponding to various possible conformers. All these

conformers should be taken into account weighted by their probability distribution in the

calculation of molecular properties.

Because amino acids are the building blocks of proteins, studies on the conformers

of amino acids have been very active. The gas phase conformations of small amino acids such

as glycine and alanine have been calculated by ab initio and density functional methods at

different levels [49, 50]. In aqueous solution, specific interactions between water molecules

and the hydrophilic groups of amino acids need to be taken into consideration [44]. Of

the most thorough approach to date is to consider a solvation shell made of explicit water

molecules, approximate the rest of the solvent molecules as a continuous dielectric environ-

ment, find all possible conformers, and calculate their energies. Tajkhorshid et al. [51] and

Frimand et al. [52] used density functional methods to obtain the conformational isomers of

alanine molecules with 4 and 9 explicit water molecules, respectively. Their results showed

that for zwitterionic alanine, the HHO conformer, where one of the oxygen atoms in the

-COO− group interacts with two hydrogen atoms in the -NH+
3 group, has the lowest energy.

Comparison between theory and experiment on infrared absorption spectra and vibrational

circular dichroism spectra confirmed that the HHO conformer is indeed the dominant species

in solution.

For our calculation, instead of attempting to treat the amino acid molecules cou-

pled with the solvent molecules quantum mechanically, we devise an approach that utilizes
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Figure 3.3: Conformation adopted by the hydrophilic -NH2 group and -COO− group on

amino acids. Here, L-alanine is presented as an example. Arrows define the molecular

coordinate system x, y, z.

results from the previous studies. We assume that the hydrophilic groups of the anionic

amino acids, similar to their zwitterionic counterparts, adopt the HHO conformation, with

an oxygen atom of -COO− group interacting with the two hydrogen atoms in the -NH2

group. We use the same structure parameters - bond lengths, bond angles and dihedral

angles - calculated by the B3LYP/6-31G∗ level theory for the zwitterionic structures in

reference [52] to construct our anionic structures, without considering the water molecules

explicitly. This is shown in Fig. 3.3 with alanine as an example. Because the hydrophilic

groups are those affected most by the specific interactions with water, these parameters

should approximate the conformation adopted by these groups in solution reasonably well,

and are taken for all the amino acids studied in this paper. Here we assume that the

conformation of the hydrophilic groups would not vary much with side chain structures.

This assumption is supported by gas phase studies on amino acids, which concluded that

changing the side chain of amino acids only has a rather small effect on the conformation
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Ala-1 Val-1 Val-2 Val-3 Val-4 

Leu-1 Leu-2 Leu-3 Leu-4 Ile-1 

Ile-2 Ile-3 Ile-4 Ile-5 Ile-6 

Figure 3.4: Conformational isomers of alanine, valine, leucine and isoleucine. The bonds

highlighted with parallel lines are the most effective perturbers in each conformer.

of the hydrophilic groups [53, 54]. For the hydrophobic side chains, the semiclassical PM3

theory [55] is used to obtain the low-energy conformers without considering the effects of sol-

vation. Considering the weak interactions between hydrophobic side chains and water, the

error in neglecting the solvent effects should be small. Indeed, studies on bipeptides [56, 57]

and glycine amide [58] consistently showed that the lowest energy structures in water and

in gas phase are the same. The structures obtained from the above procedure, although

to a large extent approximate, should reflect the solvated amino acid structures reasonably

well and suffice for our semi-quantitative analysis.
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By assuming the dominant conformation for the hydrophilic groups as the one

shown in Fig. 3.3, we only need to identify the low-energy conformational isomers of the

hydrophobic side chains that should be included in our calculation. For simplicity, we

include only conformers of energies within 1.5 kcal/mol ( 2.5kBT at 300K) above that of

the lowest energy conformer identified by the PM3 method. Using the conformation search

module in Hyperchem 7 [59], we find that for the hydrophobic side chain, one conformer of

alanine, four conformers of valine, four conformers of leucine and six conformers of isoleucine

should be included. These conformers are shown in Fig. 3.4 and their coordinates are given

in Supporting Information of reference [21].

The above approach is not applicable to serine, threonine, and lysine, due to the

presence of hydrophilic groups in their side chains. As will be shown later, without knowing

the details of their conformations, we can still explain their OA-SFG intensity qualitatively

following the dynamic coupling model.

With their conformations and hence, the position and orientation of each bond in

the side chains known, we can calculate from Eq. (3.18) the chiral perturbation strength

Ω for alanine, valine, leucine, and isoleucine. We present our calculation in the following

section.
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Table 3.1: Polarizabilities of C-C and C-H bonds from literature (in units of Å3 )

Debign LeFevre et al. Allen et al. Amos et al.

α‖(C-C) 1.88 0.99 1.00 0.72
α⊥(C-C) 0.02 0.27 0.33 0.38
α‖(C-H) 0.79 0.64 0.77 0.87
α⊥(C-H) 0.58 0.64 0.70 0.49

3.7 Application of the dynamic coupling model to alanine,

valine, leucine, and isoleucine

As can be seen from the structures in Figs. 3.3 and 3.4, the C-N bond lies in

the plane of -COO− group, and the two N-H bonds of the -NH2 group situate above and

below the -COO− plane symmetrically. As a result, their contribution to the perturbation

strength Ω is zero. The only chiral perturbers in these amino acids are the C-H and C-C

bonds in their hydrophobic side chains. If their bond polarizabilities are known, we can

use Eq. (3.18) to calculate Ω. Being important parameters for organic molecules, the bond

polarizabilities of C-C and C-H bonds have been measured by various groups since the 1930s.

The values obtained are more or less consistent for C-H, but not for C-C [60]. Because it is

difficult for us to judge which one is correct, we calculate for all the conformers displayed in

Fig. 3.4 using four different sets of bond polarizability values from Debign [61], LeFevre et

al. [60], Allen et al. [62], and Amos et al. [63] listed in Table 3.1. The results are presented

in Table 3.2.

For all four sets of polarizability values, all the calculated Ω values and, hence,
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Table 3.2: Calculated perturbation strength (Ω in units of Å−1) for 15 conformers of L-

alanine, L-valine, L-leucine, and L-isoleucine using different bond polarizability valuesa

structure ∆E (kcal/mol)b Debign LeFevre et al. Allen et al. Amos et al.

Ala-1c 0.00 -0.011 -0.016 -0.018 -0.018
val-1 0.00 -0.012 -0.017 -0.020 -0.019

Val-2c 0.37 -0.030 -0.033 -0.038 -0.037
val-3 0.81 -0.021 -0.028 -0.034 -0.038
val-4 0.87 -0.019 -0.024 -0.029 -0.035

Leu-1c 0.00 -0.027 -0.031 -0.036 -0.036
Leu-2 0.71 -0.017 -0.019 -0.022 -0.021
Leu-3 1.05 -0.027 -0.029 -0.034 -0.034
Leu-4 1.17 -0.019 -0.023 -0.027 -0.027
Ile-1c 0.00 -0.033 -0.037 -0.043 -0.042
Ile-2 0.41 -0.010 -0.015 -0.017 -0.017
Ile-3 0.77 -0.015 -0.019 -0.023 -0.023
Ile-4 1.26 -0.023 -0.030 -0.036 -0.041
Ile-5 1.31 -0.022 -0.027 -0.033 -0.037
Ile-6 1.48 -0.028 -0.029 -0.033 -0.031

a The center of gravity for the charge distribution on -COO− is approximated as the mid-

point between the two oxygen atoms; the centers of gravity for C-C and C-H bonds are

assumed to be the midpoints of the bonds. b ∆E is the relative energy of individual con-

former compared to the most stable conformer of each amino acid calculated by PM3 theory.

c The structures highlighted with bold fonts are those conformers with largest Ω for each

amino acid.
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χ
(2)
chiral values for L-alanine, L-valine, L-leucine and L-isoleucine have the same sign, in agree-

ment with the experimental observation. Quantitatively, independent of the set of polariz-

abilities used, the magnitude of Ω (and hence χ
(2)
chiral) increases in the order of Ala-1, Leu-1,

Val-2 and Ile-1, which are the conformers with the largest Ω for each amino acids. All being

low energy conformers, they are the dominant species in solution. Comparison with Fig. 3.2

shows that the calculated intensity sequence agrees with our experimental result.

As seen from Table 3.2, Ω varies significantly for different molecular conformations

of the same amino acid. An internal rotation along a single C-C bond is capable of changing

Ω by three times. This is not surprising, as Eq. (3.18) shows that the chiral perturbation

is sensitive to the positions of the perturbers relative to the achiral chromophore. On

the other hand, Ω depends on the linear superposition of the polarizabilities of various

bonds and therefore is not very sensitive to the variations in polarizability values. The

disagreement in literature on bond polarizability values often originated from the different

assumptions used in deducing the values from measurements of the polarizability of whole

molecules. We also note that the semiclassical calculation with the PM3 parameter set

cannot predict the energies of conformational isomers with high precision. In addition, in

aqueous solutions, due to the large dielectric constant of water, the energy differences as

well as the inter-conversion energy barriers between different conformers are lowered by the

decreased nonbonding interactions between neighboring groups [56, 57, 64]. Considering

the uncertainty in the relative energies of the different conformers, we find it satisfying that

even if we take just a simple average of Ω over all conformers of an amino acid, the strength

of Ω still follows the order of alanine < leucine < valine < isoleucine. This strongly suggests
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the validity of our theoretical model.

3.8 Perturbers most effective in inducing chirality

Having shown that our dynamic coupling model produces results consistent with

our measurements, in the following we wish to explore further and identify the kind of bond

perturbers that are most effective in inducing chirality. This knowledge would allow us to

predict OA-SFG responses of similar molecules.

From Eq. (3.18), an effective bond perturber should have the following properties:

1. Although the bond must be tilted away from the -COO− plane (ŷ− ẑ), it should

also be away from the x̂− ẑ plane. In other words, it should be away from both symmetry

planes of -COO− to break the achiral symmetry of the chromophore effectively.

2. It should not be too far away from the chromophore, because its perturbation

strength from the dynamic coupling between perturber and chromophore decreases rapidly

with distance (∝ R−4).

3. A bond with large polarizability is a more effective perturber, with its pertur-

bation ability depending on its polarizability anisotropy according to the two rules listed

below in 4 and 5.

4. For a bond with isotropic polarizability (α⊥ = α‖), its chiral perturbation

strength depends solely on the product of its position coordinates XY Z, leading to an

octant rule for OA-SFG, similar to that for CD.

5. For a bond with large polarizability anisotropy (e.g., α‖ À α⊥), in addition
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to the dependence on its position, the perturbation strength also depends strongly on its

orientation. For -COO−, a bond with large axial polarizability would induce chirality most

effectively if the bond orients along the ẑ-axis. This is because in order to induce a transition

dipole moment along ẑ for -COO− to have a nonzero chiral response, the perturber should

have a polarizability component along the same direction.

The manifestation of the above rules in our system can be appreciated by looking

at the perturbation strength of the individual bond. The C-C and C-H bond perturbation

strength for each conformer is listed in Table 2 of Supporting Information in reference [21].

We identify in each conformer the most effective perturber and highlight the bond with

parallel lines in Fig. 3.4. Interestingly, all these bonds are C-H bonds, with almost all of

their Ω values larger than 0.010 Å−1, constituting more than 30% of the overall perturbation

strength for most conformers. These strong perturbers all have properties following the

above-mentioned rules; they are tilted sufficiently away from the two mirror planes of the

chromophore, while at the same time sufficiently close to the chromophore, with all of them

being C-H bonds attached to either β- or γ-carbon atoms. This comes as no surprise:

the tetrahedral bonding among α-, β- and γ- carbon atoms moves the C-H bonds away

from the symmetry planes, whereas keeping them close to the chromophore. Because the

polarizability of C-H bond is nearly isotropic, its orientation does not affect its perturbation

ability much.

The fact that all of these strong perturbers are C-H bonds does not mean that C-C

bond is intrinsically weaker perturber. On the contrary, if the C-H bond were replaced by

C-C bond, the perturbation strength would be larger, due to the larger axial polarizability
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of C-C bond. In reality, however, the C-C bonds at the hydrophobic end of the amino

acids are always connected to C-H bonds. As a result, steric repulsion prevents them from

occupying positions close to the chromophore. The Cα-Cβ bond is, on the other hand, too

close to the symmetry planes of the chromophore and has too large an angle with the ẑ-axis

to contribute significantly.

Now that we understand how C-H and C-C bonds induce chirality in the achiral

chromophore, we can go back to Table 3.2 and explain why certain conformers give larger

chiral responses than others. As an example, we consider valine, for which Val-2 is the

conformer with the largest Ω. As shown in Fig. 3.4, compared with the other conformers

of valine, both methyl groups on Val-2 are away from the two symmetry planes, whereas

all the other conformers have one of the methyl groups close to the x̂− ẑ symmetry plane.

For the same reason, the chiral response from Ile-1 is the strongest among conformers of

isoleucine. In fact, Ile-1 has the same structure as Val-2, except that one hydrogen atom

on Val-2 is replaced with a methyl group pointing away from the symmetry planes (instead

of towards the planes as in Ile-6). Because of the extra methyl group, Ile-1 has a larger Ω

than Val-2. The lower perturbation strength of leucine conformers can be explained by the

absence of methyl substitution at the β-carbon, resulting in larger distances between the

perturbers and the chromophore, and hence less effective chiral perturbation.
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3.9 Discussion on serine, threonine, and lysine

Serine (HO-CH2-CH(NH2)-COO−) and threonine (CH3-CH(OH)-CH(NH2)-COO−)

have hydrophilic polar O-H bonds on their side chains, therefore our dynamic coupling model

and procedure for finding favorable conformations are not applicable here. Nevertheless,

the model can explain the relative chiral responses of serine and threonine qualitatively. Be-

cause serine is transformed to threonine by replacing a hydrogen atom on the β-carbon with

a methyl group, with the assumption of the two having similar conformations in their side

chains [54], the difference in their chiral responses should come from the terminal methyl

group on threonine. This is similar to replacing one of the hydrogen atoms attached to

the α-carbon of achiral glycine (NH2-CH2-COO−) with a methyl group to form alanine

(CH3-CH(NH2)-COO−). Thus, the difference in chiral responses from threonine and ser-

ine is likely to be similar to the chiral response of alanine, as indeed confirmed by the

experimental results shown in Fig. 3.2.

Lysine (H2N-(CH2)4-CH(NH2)-COO−) is an amino acid with a -NH2 polar group

at the end of the alkyl side chain. Because there is no bulky substitution on its side chain,

lysine is very flexible and has many conformational isomers. Without knowing much about

its conformation and the role of the polar -NH2 group, based on the number of perturbers

in the vicinity of the chromophore, we estimate χ
(2)
chiral of lysine to be smaller than those

of valine, leucine and isoleucine, but comparable to that of alanine. The prediction agrees

with the experimental results in Fig. 3.2.
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Figure 3.5: OA-SFG spectra of L-tryptophan and L-tyrosine normalized to concentration.

Polarization combination is SPP.

3.10 Experimental results on other amino acids

We also measured OA-SFG spectra from L-tyrosine and L-tryptophan with the

sum frequency in resonance with the electronic transitions of their aromatic side chains.

Their concentration-normalized spectra are presented in Fig. 3.5. Similar to the -COO−

group, these intrinsically achiral aromatic groups also show induced OA-SFG from their

neighboring chiral perturbers. Tryptophan has a much larger response than tyrosine, which

can be partially explained by its more delocalized electrons and the resultant stronger

coupling with its chiral perturbers.
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3.11 Additional considerations

In our calculation, the bond polarizability values from literature were directly used

without the correction for their frequency dependence. For our semi-quantitative evaluation,

this approach suffices [65]. However, if we are interested in probing OA-SFG spectra over

a wide range, we would have to include the dispersion of the bond polarizability. This is

particularly true if the sum frequency approaches resonances of the bonds.

We have also neglected static coupling (see Eq. (3.7)) in our evaluation of amino

acids. It gives rise to the one-electron mechanism contributing to the linear optical activ-

ity [66], but for systems with saturated side chain, it has been shown to be rather small [67].

Similarly, its contribution to OA-SFG should also be small for the amino acids we have stud-

ied.

Although induced chirality in the -COO− group has been used in our discussion,

our model can be employed to predict induced chirality in achiral chromophores by chiral

environment in general. Because in this model, all interactions between the achiral chro-

mophore and its chiral perturbers are through space rather than through chemical bonds,

it can also be used to predict chirality induced in an achiral molecule by neighboring chiral

molecules. Although not yet observed, induced OA-SFG strength from intrinsically achiral

molecules could be comparable to that of an achiral chromophore in a chiral molecule.

The CD measurements on the same series of amino acids in the same spectral

range (∼210nm) gave different relative chiral strengths from those of OA-SFG. Instead

of alanine < leucine < valine < isoleucine as in OA-SFG, CD has alanine < valine <
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isoleucine < leucine [65, 68, 69, 70, 71]. In this spectral range, |g〉 → |e1〉 and |g〉 → |e2〉

are the dominant transitions in CD spectra. As shown in Fig. 3.1(b), |g〉 → |e2〉 transition

of -COO− is magnetic-dipole allowed in the ẑ direction, but electric-dipole forbidden. The

presence of nonpolar chiral side chain induces nonzero electric-dipole transition moment

between |g〉 and |e2〉 through the same dynamic coupling mechanism, with its ẑ component

determining the CD magnitude. This would make the CD signal strength depend on the side

chain structure the same way as OA-SFG signal strength, if it were not for the additional

contribution from transition |g〉 → |e1〉. For this transition, in an unperturbed -COO−,

the electric- and magnetic-dipole transition moments are allowed but orthogonal. The

expression of rotatory strength for this kind of transition has been worked out, in which the

dipole-dipole interaction terms between the chromophore and perturbers now contribute,

because of the nonzero electric transition dipole moment of the chromophore [67]. This

gives rise to a different dependence on the spatial characteristics of the perturbers from

that of transition |g〉 → |e2〉, thus an overall different relative CD signal strength from that

of OA-SFG.

Note that the model here yields a spectrum of χ
(2)
chiral with both magnitude and

phase. Because χ(2) can be obtained by interference methods [72], this model in principle

allows us to determine the absolute configuration and conformation for chiral molecules

composed of achiral chromophore and chiral side chain.
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3.12 Summary

In summary, we present here a general theory for OA-SFG from molecules made

of a chiral center and an achiral chromophore in solutions. Adapting an electron correlation

model first proposed by Höhn and Weigang for linear optical activity and using a bond-

additive model, we are able to quantitatively explain the experimentally observed OA-SFG

from amino acids near the electronic resonance of their intrinsically achiral chromophore -

COO−. The nonlinear chiroptical response is induced by the correlative electron interactions

between the achiral chromophore and the chiral side chain, and its magnitude is determined

by the spatial arrangement of the chiral perturbers. Some simple rules on the effectiveness of

the extrachromophoric structure in inducing chirality in achiral chromophores are proposed.
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Chapter 4

Towards chiral sum-frequency

spectroscopy with information on

both magnitude and phase

4.1 Introduction

In Chapter 3, we show how sum-frequency generation (SFG) can be used to detect

molecular chirality. Because it is electric-dipole allowed, SFG has higher sensitivity than

the conventional methods such as circular dichroism (CD) and optical rotatory dispersion

(ORD). However, unlike CD and ORD, which can distinguish enantiomers and produce

chiral spectra to provide information on molecular structure and conformation, the usual

optically active SFG (OA-SFG) experiment measures only the amplitude but not the phase
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of the chiral response, because |χ(2)
chiral|2 is measured instead of χ

(2)
chiral. This is equivalent

to obtaining a CD spectrum with only the absolute magnitude but not the sign of the

dichroism. As a result, the application of OA-SFG in studying molecular configuration is

limited. In this chapter, we describe a general interference scheme that can provide both

the magnitude and the phase of the nonlinear optical responses. We apply the scheme to

SFG from chiral liquids and present the first nonlinear chiral spectra.

4.2 Problem of optically active sum-frequency generation

Under the electric-dipole approximation, the second-order susceptibility
↔
χ (2) of

an isotropic chiral liquid has six nonzero elements

χ
(2)
chiral ≡ χ

(2)
XYZ = −χ

(2)
XZY = χ

(2)
YZX = −χ

(2)
YXZ = χ

(2)
ZXY = −χ

(2)
ZYX (4.1)

which have opposite signs for the two enantiomers and zero for a racemic mixture. In

conventional OA-SFG, the measured signal has intensity

I1 = C|χ(2)
chiral,eff|2 with χ

(2)
chiral,eff = F1χ

(2)
chirallc (4.2)

where C is a constant determined by the experimental geometry, and χ
(2)
chiral,eff the effective

chiral susceptibility, which is related to χ
(2)
chiral by the local field correction factor F1 and

the coherence length lc. Electronic or vibrational spectra of the system can be obtained by

scanning either one of the input frequencies or the output sum frequency over the transitions,

with χ
(2)
chiral in the form of

χ
(2)
chiral =

∑
n

An

ω − ωn + iΓn
+ χ

(2)
chiral,NR. (4.3)
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Figure 4.1: |χ(2)
chiral|2 versus sum frequency wavelength from solutions of S- and R-BN. Black

and gray curves are fits to the data points using Eqs. (4.2) and (4.3) with An’s of the two

transitions having the same and opposite signs, respectively. The polarization combination

used was SPP. The molecular structure of BN is depicted in the inset.

Here An, ωn, and Γn denote the amplitude, the resonant frequency, and the damping con-

stant for the nth transition, and χ
(2)
chiral,NR describes the nonresonant background. Equa-

tion (4.2) shows that the sum-frequency signal is independent of the sign of χ
(2)
chiral. There-

fore, unlike CD or ORD, OA-SFG can only determine whether the sample is chiral, but not

its handedness.

The lack of phase information makes it difficult to interpret the obtained OA-

SFG spectra unequivocally, as demonstrated in the following for a model system. Shown

in Fig. 4.1 are the optically active SFG spectra obtained from solutions of S-(-)-1,1’-bi-2-
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naphthol (S-BN) and R-(+)-1,1’-bi-2-naphthol (R-BN) with the sum frequency tuned across

the first two excitonic electronic transitions [73]. The spectra from S- and R-BN are identical

and can be fit well by Eqs. (4.2) and (4.3) with two different parameter sets - one having

the two transition amplitudes of the same sign, the other of opposite signs. Since the sign

of the transition amplitude is directly related to the chiral molecular configuration, the lack

of phase information here makes it difficult to have an unequivocal interpretation on the

configuration of these molecules.

4.3 Theory of chiral sum-frequency spectroscopy

Interference schemes have been introduced to generate sum-frequency spectra that

can distinguish enantiomers. By interference between chiral and achiral elements of
↔
χ (2)

[17, 11, 74], the two enantiomers exhibited different spectra. However, because the achiral

elements of
↔
χ (2)’s are often also resonantly enhanced in the same frequency region, the

deduced spectrum is not the chiral spectrum of the system, but distorted by the unknown

magnitude and phase variations of the achiral
↔
χ (2) elements over the resonances. As a

result, the magnitude and the phase, or equivalently, the real and imaginary parts of χ
(2)
chiral

could not be obtained. Chiral spectra similar to those in CD are yet to be obtained.

To obtain the spectrum of χ
(2)
chiral = Re(χ(2)

chiral) + iIm(χ(2)
chiral), one should interfere

χ
(2)
chiral with a dispersionless background with a constant phase. This background can be

supplied by a quartz crystal in contact with the chiral liquid. The idea and experimental

arrangement are similar to those in the scheme developed for phase-sensitive SFVS [72].
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The sum-frequency signal generated at the quartz-chiral liquid interface region is

given by

I = C|χ(2)
chiral,eff − χ

(2)
Quartz,eff|2 (4.4)

where χ
(2)
Quartz,eff is real and denotes contribution from quartz, and the negative sign before

χ
(2)
Quartz,eff originates from the phase difference between the sum-frequency signals of the chi-

ral liquid and the quartz (see Appendix A). Because quartz crystal is anisotropic, χ
(2)
Quartz,eff

can be adjusted by orienting the quartz crystal properly. By setting χ
(2)
Quartz,eff = 0, we have

I0 = C|χ(2)
chiral,eff|2. (4.5)

If the chiral liquid is replaced by an achiral liquid, we have

IQ = C|χ(2)
Quartz,eff|2. (4.6)

We then find

Re(χ(2)
chiral) = −I − I0 − IQ

2IQF1lc
χ

(2)
Quartz,eff (4.7)

|Im(χ(2)
chiral)|2 =

[
|χ(2)

chiral|2 − |Re(χ(2)
chiral)|2

]1/2
. (4.8)

Here, Re(χ(2)
chiral) can be obtained directly from Eq. (4.7), while only the magnitude of

Im(χ(2)
chiral) can be deduced from Eq. (4.8). For systems with simple spectral features such

as BN, the sign of Im(χ(2)
chiral) can be deduced from the resonant behavior of Re(χ(2)

chiral).

For more complicated spectra with multiple overlapping resonances, simultaneous fit on I0

and Re(χ(2)
chiral) gives the transition amplitudes, from which the sign of Im(χ(2)

chiral) could be

determined unambiguously.
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Figure 4.2: Beam geometry of the experimental setup. Input beams were overlapped at

chiral solution-quartz interface, and sum-frequency signal was detected in the transmission

direction. Polarization combination was SPP.

4.4 Experimental arrangement

As a demonstration, we measured the chiral electronic sum-frequency spectra from

S- and R-BN solutions. The experimental arrangement is schematically shown in Fig. 4.2.

The tunable visible beam was generated by a home-made picosecond OPG/OPA pumped by

a Nd:YAG laser (PY61C-20, Continuum Inc.) operated at 20 Hz. The 1064 nm beam was

the direct output of the Nd:YAG laser. The typical pulse width was around 20 picoseconds,

and the energies per pulse were 2.0 mJ for 1064 nm and 300 µJ for visible beams. The

sample solution was sandwiched between a fused quartz window and a y-cut crystalline

quartz plate, which was used as the source of the dispersionless background. The two input

beams were overlapped spatially and temporally at the solution-y-cut-quartz interface. The

incident angles are 0◦ and 45◦ for 1064 nm and visible beams, respectively. Spectra of I,
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I0, and IQ versus sum-frequency wavelength were recorded with a detector in the phase-

matched transmission direction after spatial and spectral filtering. The input beams were

P-polarized, while S-polarized sum frequency was detected.

S-BN, R-BN and tetrahydrofuran were purchased from Sigma-Aldrich. S-BN and

R-BN solutions were prepared by dissolving BN samples in tetrahydrofuran. Racemic mix-

ture was prepared by dissolving equal amount of S-BN and R-BN, and was used as the

achiral liquid in the measurement of IQ. The concentration used was 0.3M.

4.5 Results and discussion

From the measured spectra, Re(χ(2)
chiral) and Im(χ(2)

chiral) for S- and R-BN were

deduced and presented in Fig. 4.3. S-BN and R-BN have opposite signs in both their real

and imaginary components of χ
(2)
chiral, as expected. These are the first nonlinear optical

chiral spectra ever reported. The spectra were fitted by Eq. (4.3) with two resonant peaks

at 320nm and 340nm, arising from transitions between the ground state and the first pair of

exciton-split excited states of BN [23]. Unlike the conventional OA-SFG spectra in Fig. 4.1,

the chiral sum-frequency spectra in Fig. 4.3 show unequivocally that the amplitudes of the

exciton-split peaks have opposite signs.

It is known in CD that pairs of exciton-split transitions in chiral molecules con-

sisting of two identical chromophores generally give rise to bisignate CD spectra with peaks

showing consecutive positive and negative Cotton effects [3]. The locations of the peak and

the trough have been used to derive the absolute configuration and conformation of many
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Figure 4.3: Spectra of real and imaginary components of χ
(2)
chiral over the first two exciton-

split transitions of (¤) S- and (O) R-BN. The curves are fits to the data with Eq. (4.3) with

the same set of parameters that yield the gray curve in Fig. 4.1.
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organic compounds. Similarly, in SFG, a theory based on the coupled-oscillator model pre-

dicts that pairs of exciton-split peaks should also exhibit the bisignate feature in χ
(2)
chiral,

although the structural parameters that produce the linear and nonlinear chiral responses

are different [42]. As shown in Fig. 4.3, this bisignate behavior is indeed observed in χ
(2)
chiral.

In our experiment, we assume the χ
(2)
Quartz,eff in Eq. (4.7) to be positive. At first

look, this assumption seems arbitrary. However, since it is difficult to determine the sign of

χ
(2)
Quartz,eff (even for the same piece of quartz, flipping the quartz upside down would generate

a χ
(2)
Quartz,eff with opposite sign), BN molecules with the sign of χ

(2)
Quartz,eff so defined may

serve as references to calibrate the sign of χ(2) from other dispersionless background. Since

the conformations of S- and R-BN are known, for other chiral molecules with their chiral

sum-frequency spectra obtained similarly, we can now determine their configuration or

conformation.

The chiral sum-frequency spectroscopic method described here is generally appli-

cable to all chiral media, but is more convenient in the spectral region where the quartz

crystal is transparent so that the dispersion of χ
(2)
Quartz,eff is weak and smooth. Note that

analogous to the heterodyne technique, our sensitivity can also be significantly enhanced

through interference of χ
(2)
chiral with an appreciably larger χ

(2)
Quartz,eff, as can be seen by com-

paring I − I0 − IQ with I0.
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4.6 Summary

We develop a phase-sensitive SFG method that yields both real and imaginary

components of χ
(2)
chiral, equivalent in linear optics to obtaining results from both ORD and

CD. Considering also its intrinsically high sensitivity, we expect that this chiral sum-

frequency spectroscopy could become a powerful analytical tool for studying molecular

chirality.
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Chapter 5

Three-dimensional chiral imaging

by sum-frequency generation

5.1 Introduction

The majority of biologically important chemical species are chiral. Their function-

ality is often determined by their spatial arrangements, which are almost always homochiral

for each species: Proteins are made of right-handed α-helix and left-handed β-sheets; DNA

exists as right-handed double helix in stable physiological conditions [7]. The detection

and characterization of chirality on both molecular and conformational levels provide im-

portant structural and functional information of biomolecules [75]. Visualization of the

three-dimensional (3D) arrangements and placements of these molecules in cells would al-

low one to directly relate their conformational architectures to biological processes. To

achieve this goal, an imaging technique capable of probing chirality is needed.
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Many optical methods have been developed to characterize chirality [3]. Familiar

examples include those based on optical rotatory dispersion, circular dichroism, and Raman

optical activity. These techniques make use of the differential responses (e.g., refractive in-

dices, absorption coefficients, Raman scattering cross sections) that left- and right-circularly

polarized light may experience in chiral media, and have made enormous contributions to

chemical analysis and to our understanding of molecular conformations. Microscopy based

on circular dichroism contrast was developed, and has been used to obtain images of cells

and inorganic chiral crystals [76, 77, 78]. The conventional chirality probes, however, involve

higher-order interactions between molecules and light such as magnetic-dipole and electric-

quadrupole interactions. As a result, the signal tends to be orders-of-magnitude weaker

than the chirality-insensitive, electric-dipole allowed background, making them inefficient

contrast mechanisms in microscopy.

Recently, optically active sum-frequency generation (OA-SFG) processes have been

demonstrated as novel probes of chirality. It was used to obtain optically active vibrational

and electronic spectra from chiral liquids [17, 18, 19, 20, 21], thin films [22], and even

monolayers[19, 23]. Being electric-dipole allowed, it has intrinsically good contrast to image

chiral objects against an achiral background, such as water in a cell, and therefore has

the potential of affording stain-free cellular imaging. In this chapter, we report the first

3D OA-SFG microscopy. We used 1,1’-bi-2-naphthol (BN) in tetrahydrofuran as a model

system to demonstrate that optically active images with a spatial resolution close to the

diffraction limit can be obtained.

The theory of OA-SFG has been described in Chapter 2. Briefly, under the electric-
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dipole approximation, SFG is allowed in a medium without inversion symmetry, as in the

case for a chiral material. The sum-frequency signal at ωs generated by overlapping incoming

beams of frequencies ω1 and ω2 in a chiral liquid is proportional to |χ(2)
chiral|2, where χ

(2)
chiral

is the nonlinear susceptibility of the chiral liquid and the beam polarizations are taken to

be SPP, PSP, or PPS. χ
(2)
chiral is of opposite signs for enantiomers, and is zero for racemic

mixture and achiral media. With resonant enhancement, OA-SFG can provide chemical

selectivity.

5.2 Materials and sample preparation

R-BN, S-BN and tetrahydrofuran (THF) were purchased from Aldrich and used

as received. The 0.45M BN solution was prepared by dissolving 7.1 mg solid BN in 54 µL

THF, followed by vigorous shaking to ensure a complete dissolution. Racemic BN solution

was prepared by mixing equal amount of 0.45M R- and S-BN solutions. For intensity

measurements, pure BN solution was sandwiched between a glass slide and a clean fused

quartz slide. For images, silica beads were immobilized on the fused quartz slide to introduce

negative contrast. One milliliter solution of 2.4 µm diameter silica beads, purchased from

Bangs Laboratory, was cleaned using the centrifugal apparatus (Sorvall RT7) with a filter

(YM-100 centricon from Millipore) spinning at 3000 RPM for 5 minutes. The clean beads

were collected by reversing the centricon and again spinning at 3000 RPM for 2 min. By

adding 100 µL filtered water (NANOPure Diamond UV/UF, PH 5.5-6), a solution of clean

beads was formed. Beads from 5 µL of the solution were then spin-coated on a clean quartz
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Figure 5.1: Schematic of the microscope.

slide (Technical Glass) at 3500 RPM for 10 seconds. This procedure typically generated a

surface density of about 2-4 beads per 10×10 µm2. A typical sample cell had 3 µL of BN

solution sandwiched between a clean glass slide and a clean fused quartz slide, and Valap

(1:1:1 Vaseline/paraffin/ lanolin) was used to seal the cell.

5.3 Microscope setup

The optical microscope was similar to that described by Zhang et al. [79]. It is

schematically shown in Fig. 5.1. Briefly, ∼70-fs excitation pulses at 830 nm were generated

by a broad-band Ti:sapphire oscillator (Spectral Physics Tsunami) pumped by a diode laser

(Spectral Physics Millennia XsJ). The output was split into 2 beams, one of which was fre-

quency doubled by α-BBO crystal to generate pulses at 415 nm. The beams were collimated

and directed into a microscope with a center-to-center parallel displacement of 3.2 mm.

A home-made microscope was used for the two-dimensional(2D) imaging scan, whereas a
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modified commercial microscope (Olympus IX71) was used for 3D sectioning. For the for-

mer, the two beams were reflected by an Al mirror (New Focus, 5108) and focused on the

sample through a microscope objective (Olympus PlanApo, 60X, 1.4 NA, oil immersion).

The SFG output from the sample was collected in the transmission direction by a CaF2 UV

objective, sent through a short-pass filter (Chroma, UG11) and a monochromator (Jobin

Yvon-SPEX, H10 D UV), and detected by a UV-sensitive photon-counting PMT (Hama-

matsu, H6240). A piezoelectric-controlled stage (Physik Instrumente, P731) was used to

raster-scan images. For 3D sectioning, a microscope objective (Optics for Research, LMU-

40X) was used to collect the SFG output. For spectral analysis of the sum-frequency output,

a spectrograph (Acton Research, SP2155) was used. The sectioning was performed using a

3D piezo translation stage (Physik Instrumente, P573.3CL).

5.4 Results and discussion

OA-SFG from enantiomeric BN solutions is confirmed spectroscopically. With the

input beam wavelengths centered at 415 nm (ω1) and 830 nm (ω2), the sum-frequency output

(ωs) should be centered at 277nm. Since ωs is in resonance with an electronic transition

of BN [73], the OA-SFG signal was resonantly enhanced and therefore easily detectable

with the SPP polarization combination. The frequency scan in Fig. 5.2(a) shows that the

detected SFG signal indeed has a spectral distribution centered at 277 nm, as expected from

the spectral distributions of the input waves displayed in Figs. 5.2(b) and 5.2(c). Figure 5.3

shows that the signal has a linear dependence on input intensities I1 and I2, as expected.
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Figure 5.2: Spectra of (a) output sum frequency signal (ωs), (b) input wave ω1, and (c)

input wave ω2 from R-BN solutions. The polarization combination is SPP. The inset in (a)

is the structure of a R-BN molecule.

Figure 5.3: OA-SFG signal dependence on (a) I1 with I2 constant and (b) I2 with I1

constant. The polarization combination is SPP.
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Under our experimental condition, when the entire effective interaction region is

in the chiral solution, sum-frequency signal vanishes. The maximal sum-frequency signal

occurs when only half of the interaction region is in the solution. This seemingly surprising

behavior is generally true for wave mixing in tight focusing geometry and has been well

documented [80, 81, 82]. Similar to the case of third harmonic generation, for example [27,

83], the SFG output can be written as

PSF ∝ |J |2, (5.1)

with

J =
∫ ∞

−∞

χ(2)(z)ei∆kbz

1 + 2iz
dz, (5.2)

where z is the axial position with z = 0 being the focal plane, b is the depth of the focal

region, ∆~k = ~k1+~k2−~ks is the wavevector mismatch, and the denominator in the integrand

of J is a characteristic of Gaussian beam propagation through the focal region.1 For an

isotropic medium, it can be shown that J vanishes when ∆k is smaller than 0 [27, 83],

which is the case for BN. Thus when the focal region is in chiral BN solution, SFG vanishes.

When only half of the focal region is in the chiral BN solution, J is maximized [83], and

thus SFG signal is maximized.

To demonstrate the chiral sensitivity of our SFG imaging, we prepared a sample

in which an enantiomeric solution and a racemic solution of BN are separated by a 55-µm

wide spacer made of a melted glass fiber. The microscopic image in Fig. 5.4(a) is obtained
1The formulation here is for collinear sum-frequency generation. For our noncollinear scheme, there would

be an extra coefficient in the integration describing the overlapping of the two input beams. The conclusion,
however, is the same, as shown in Appendix A.
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Figure 5.4: (a) Fluorescence image of a racemic BN solution and a R-BN solution separated

by a 55-µm glass spacer. (b) OA-SFG image of the same sample measured with SPP

polarization combination. Bottom panels are signal profiles along the lines in the images.

The 100 µm×100 µm images were taken with collection times of (a) 4 ms/pixel and (b) 78

ms/pixel and power levels of 0.24 mW (ω1) and 18 mW (ω2).

by detecting fluorescence from BN at 350 nm. Since the fluorescence is not sensitive to

chirality, both enantiomeric and racemic sections appear bright, as shown in the figure.

When the same sample is imaged by OA-SFG, only the enantiomeric section generates

strong signal, as shown in Fig. 5.4(b). The achiral racemic solution does generate minimal

yet detectable output at ωs, which may be due to the resonantly enhanced parametric light

scattering from BN [84].

To characterize the spatial resolution of our microscope, we imaged enantiomeric

BN solutions sandwiched between slides decorated with 2.4 µm diameter silica beads. A

reduction in signal is observed when the achiral beads are in the focal area. Two typical

images, one with a single bead and the other with three beads, are displayed in Figs. 5.5(a)
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Figure 5.5: SFG images of (a) one and (b) three 2.4-µm diameter silica beads in R-BN

solutions. Bottom panels show signal variations along the lines in the images. The polar-

ization combination used was SPP and the collection time per image was 78 ms/pixel at

power levels 0.18 mW (ω1) and 14 mW (ω2).

and 5.5(b), respectively. From the intensity profiles and the focal profile of the objective

lens [85], we estimate that the lateral resolution of our microscopy is below 400 nm. This

sub-micron resolution makes it easy to resolve the three beads in Fig. 5.5(b).

As a nonlinear optical process where signal is generated only in regions with high

enough intensity, OA-SFG microscopy allows 3D sectional imaging. Figure 5.6 presents

three sectional images of a sample at different vertical positions, together with cartoons

illustrating the interaction regions of light with the sample. As explained previously, when

half of the interaction region is in solution, as in Fig. 5.6(b), the chiral signal is the strongest.

The signal greatly reduces if a bead appear in the interaction region, giving rise to an image

of the beads similar to those seen in Fig. 5.5. Lowering the sample decreases the interaction

region of light with solution and accordingly, the signal drops sharply. As illustrated in
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Figure 5.6: SFG images of three 2.4-µm diameter silica beads in R-BN solutions with the

sample at different vertical positions. Image (b) was obtained with the SFG signal from

solution maximized; Images (a) and (c) were obtained with the sample vertically displaced

by +2 µm and -2 µm relative to (b), respectively. At bottom are cartoons showing the

relative positions of the interaction region (black) and the sample (grey for fused silica

slides and beads, white for R-BN solutions). Black arrows denote scanning direction. The

polarization combination is SPP and the collection time is 78 ms/pixel at power 0.24 mW

(ω1) and 18 mW (ω2).
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Fig. 5.6(a), although at a much lower contrast the beads could still be resolved. Raising the

sample to have the focal region well immersed in solution also sharply decreases the chiral

signal from the solution, as shown in Fig. 5.6(c). This is because the sum-frequency signal

generated in the focal region experiences destructive interference. Scanning the focal region

over the beads now enhances the sum-frequency signal because with part of the focal region

in the bead, the total cancelation of sum-frequency signal due to destructive interference is

avoided. This allows the beads to stand out as positively contrasted objects in the image.

Second harmonic generation (SHG), a special case of SFG in which two input

photons are from the same beam, has been applied to image interfacial systems [86] or

non-centrosymmetric ordered structures (e.g., cytoskeleton) [87, 88]. Even though SHG is

not allowed in bulk chiral liquids because of the degenerate nature of the input beams,2 it

can be used to probe chirality from an interfacial layer. This effect has been demonstrated

by Petralli-Mallow et al. with a monolayer of BN molecules [8]. More recently, a chiral

SHG (C-SHG) microscope has been developed by Kriech et al., with which chiral images of

BN monolayers have been obtained [89]. This technique, however, cannot be used to probe

bulk chirality, because C-SHG is forbidden in isotropic chiral media. Our microscopic setup

actually permits simultaneous measurements of chiral SHG and SFG from a sample, and

therefore would allow both surface and bulk chiral imaging of the same chiral system. This

is important because chiral molecular arrangements and compositions at the surface and in

the bulk are expected to be very different.

Other higher-order, nonlinear optical processes that have been utilized in mi-

2Note in Eq. (2.15), if ω1 = ω2 as in the case of SHG, χ
(2)
chiral = 0.
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croscopy but are not sensitive to chirality include third harmonic generation (THG) [81]

and coherent anti-Stokes Raman scattering (CARS) [90, 91]. These approaches also pro-

duce images with sub-micron resolution, are capable of 3D sectioning, and can provide

spectroscopic information. In addition to these salient features in microscopy, our OA-SFG

microscopy probes only the optically active response of the sample and therefore has the

unique advantage that background signal from achiral species such as water is suppressed.

Just as CD is a much better tool of distinguishing protein secondary structure than simple

absorption, OA-SFG is expected to be more sensitive to 3D conformational changes in bi-

ological macromolecules. This makes it a potentially very useful technique for imaging of

biological samples.

More research efforts are clearly needed, however, to press forward chiral SFG

microscopy beyond this initial stage of development. When applied to eukaryotic cells,

for example, one expects that signals will be complicated by the anisotropic sub-cellular

structures in such a way that the polarization selection rules used to isolate the optically

active signal no longer hold rigorously. While more research on the sensitivity and selectivity

of OA-SFG to probe biological macromolecules is still needed, OA-SFG microscopy, being

free from achiral background, has the potential to become a powerful imaging technique for

biological samples.
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5.5 Summary

In summary, we describe in this chapter the first SFG microscopy that is sensitive

to molecular chirality. Using chiral BN solutions as model systems, we demonstrate that

our OA-SFG microscope can produce chirality-sensitive images with sub-micron spatial

resolution and 3D sectioning capability.
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Chapter 6

Atomic and molecular parity

nonconservation and

sum-frequency generation solutions

to the Ozma problem

6.1 Introduction

Martin Gardner coined the phrase “Ozma problem” to describe how two advanced

civilizations could agree on the definition of left and right without the ability to transmit

chiral information, and showed that this cannot be achieved in the absence of parity non-

conservation [92]. Gardner and Feynman showed how the Ozma problem could be solved
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Figure 6.1: Wizard of OZ needs to decide which side of tin woodman’s chest to put the

heart in. Image adapted from the original drawing by W. W. Denslow in “The Wizard of

Oz”.

using parity violating aspects of β-decay [92, 93]. Atomic optical rotation was proposed as

a solution to the problem by Harris [94].

In this chapter we define and solve two Ozma problems. In order to reduce imagery

to a minimum we imagine the following scenario, which is taken from the “Wizard of

Oz” [95]. A map of Oz reveals that it is surrounded and separated from Earth by the

“Deadly Desert”. This desert is assumed to be chirally opaque in that nothing chiral can

pass the desert. In the Emerald City of Oz, the Wizard of Oz is trying to place a heart

into the chest of the tin woodman. (See Fig. 6.1.) The Wizard also has a laboratory which

analyzes amino acids. We assume the Wizard of Oz is not from Earth, but from Oz. In

addition, Dorothy and Toto are not present, for the presence of creatures from earth would

violate the chiral opacity condition. On the earth side of the Deadly Desert an earthly

wizard is performing the same heart-implanting operation on a tin woodman.
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Given the above scenario, the Ozma problems are:

The first Ozma problem: Can the two wizards communicate such that the tin woodman

will have their hearts placed on the same side, for example, earth’s left side?

The second Ozma problem: Suppose both wizards have amino acids which are chem-

ically identical, and of course, chiral. How can the wizards unambiguously transmit the

handedness of their amino acid to each other?

In other words, the first Ozma problem is to communicate our definition of left

and right. The second Ozma problem is to agree upon the definition of handedness. It

is obvious that the solution to the first Ozma problem using β-decay or atomic optical

activity provides the solution to the second Ozma problem. We shall, however, answer

these questions using sum-frequency generation (SFG) and parity nonconservation (PNC).

SFG provides a new way of exhibiting the interplay of symmetry and parity nonconservation.

Indeed, the solution to the second Ozma problem points the way to obtaining, linearly, a

parameter which is a manifestation of parity violations in a chiral molecule.

The micro-device built by Skelley et al. is our inspiration for the second Ozma

problem [96]. This apparatus is designed to fit on a Martian Rover. Its purpose is to

measure net amino acid chirality on Mars. It is a simple leap of the imagination to go from

Mars to Oz!

This chapter is organized as follows: After a brief review of SFG, we describe

how PNC modifies SFG, and use PNC-modified SFG to answer the Ozma problems. In

Appendix B we show another way PNC-modified SFG can measure both chirality and

handedness and provide a positive solution to the first Ozma problem. We end the chapter
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with a “pedagogical” Feynman joke.

6.2 A brief introduction to sum-frequency generation (SFG)

That SFG in three dimensional isotropic chiral media is not zero was proposed by

Giordmaine in 1965 [16]. A general theory for SFG was described in Chapter 2. Here we

present a simplified version, with the emphasis on its chiral sensitivity.

In an isotropic, homogeneous medium consisting of N identical atoms or molecules,

two impinging linearly polarized beams of wave vectors and polarizations ~k1, ~ε1 and ~k2, ~ε2

result in an outgoing beam, ~k3, ~ε3.

In the absence of external fields, and neglecting higher multipoles, the intensity of

the outgoing beam for a coherent experiment takes the form,

I(ω3) ∝ (~ε3 · ~ε2 × ~ε1)|χ(2)
chiral(ω1, ω2)|2. (6.1)

Here χ
(2)
chiral(ω1, ω2) is a (complex) pseudoscalar and

χ
(2)
chiral(ω1, ω2) = −χ

(2)
chiral(ω2, ω1), (6.2)

and, dropping the frequency dependence,

χ
(2)
chiral(L) = −χ

(2)
chiral(R), (6.3)

where L and R correspond to left (L) and right (R) handed molecules. χ
(2)
chiral vanishes for

achiral molecules, atoms, and racemic mixtures.

The profound thing to notice is that SFG, as described, measures whether a

molecule is chiral, but not whether the molecule is L or R. Hence, unlike linear measures of



6.3. PNC AND SFG 83

chirality, SFG a priori appears useless as a way to answer Ozma problems. However, there

are a number of ways to measure the sign of χ
(2)
chiral. In particular, three experiments have

been carried out to distinguish χ
(2)
chiral(L) and χ

(2)
chiral(R). Two of the experiments involve

adding an achiral response to the chiral susceptibility. One method introduces an external

electric field [74]. The other uses polarization interferometry in order to add susceptibilities

linear in magnetic dipole and electric quadrupole matrix elements [17]. The third method

introduces a nonlinear-noncentrosymmetric crystal as a “local oscillator”, as described in

Chapter 4 [97]. All are germane to the solutions of the Ozma problems.

The knowledge of the sign of χ
(2)
chiral is a necessary but not sufficient condition

for the determination of handedness of a chiral molecule. We assume that the additional

considerations which relate the sign of χ
(2)
chiral to handedness are available.

6.3 PNC and SFG

The manifestations of PNC in atoms and chiral molecules have been reviewed many

times with the exception of SFG [98, 99, 100]. Exactly like atomic optical rotation, there

is atomic SFG. In the absence of interferometry, SFG intensity of, for example, Thallium

(Tl) atoms would be,

ITl ∼ |χ(2)
Tl |2. (6.4)

χ
(2)
Tl is the SFG response of Tl, whose explicit form is irrelevant to what follows. The

important point is that χ
(2)
Tl , for each pair of input frequencies, has a given sign. This

is just like the optical rotation angle, θTl. Because these quantities are manifestations of
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PNC, the opposite signs, −χ
(2)
Tl and −θTl, do not exist. In other words, for given pair of

frequencies, χ
(2)
Tl (ω1, ω2) is universal in sign (as long as the universe is made of matter,

instead of anti-matter). We shall use this point to solve the Ozma problems.

We now turn to chiral molecules. The presence of PNC is, crudely, akin to adding

static electric field with fixed sign. Such a weak electric field generates an achiral response

which is added to χ
(2)
chiral. PNC is manifested in SFG in the same way. An achiral, or scalar,

susceptibility due to PNC is added to the pseudoscalar χ
(2)
chiral. To be precise, we define the

overall susceptibilities of L- and R- chiral molecules as

χ(2)(L) ≡ χ
(2)
chiral + ∆ (6.5)

χ(2)(R) ≡ −χ
(2)
chiral + ∆ (6.6)

where ∆ is the scalar response due to PNC, and is the same on earth and Oz.

6.4 Solutions to the second Ozma problem

We now answer the second Ozma problem in two ways. The first way uses χ
(2)
Tl .

The second method uses ∆. That is, one way uses Tl as the source of PNC, the other

uses the PNC correction to the χ
(2)
chiral of an amino acid. In both experiments the three

polarizations are mutually perpendicular,

~ε3 · ~ε2 × ~ε1 = ±1. (6.7)

In this configuration achiral and external field contributions to SFG vanish to first order.

In the first experiment we, the wizards on earth, have a gas of Tl atoms that mixes
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with a gas of amino acid molecules and measure their SFG intensity. On earth we carry

out the experiment with χ(2)(L), say, and obtain a SFG intensity IL+Tl. We then subtract

out the amino acid SFG intensity IL in the absence of χ
(2)
Tl . The result is

IL+Tl − IL ∼ 2Reχ(2)
Tl χ

(2)∗
chiral. (6.8)

Suppose χ
(2)
Tl > 0, and Reχ(2)∗

chiral is greater than zero.

We send Oz the result of our experiment, which is that the net intensity is greater

than 0. If Oz’s net intensity is greater than zero, then their amino acid is the same as

ours, even if they define handedness differently and call it R. If the net intensity is less than

zero, then their amino acid is equivalent to our R, even if they call it L. Hence we have

determined the handedness of their amino acid and they have determined ours.

Perhaps there is no Tl available, then both amino acid enantiomers must be used.

On earth, we obtain for SFG intensities,

IL ∼ |χ(2)
chiral|2 + 2Reχ(2)∗

chiral∆ + 0(∆2) (6.9)

IR ∼ |χ(2)
chiral|2 − 2Reχ(2)∗

chiral∆ + 0(∆2). (6.10)

Depending on the relative signs of ∆ and χ
(2)
chiral, IL will either be greater or less than IR.

The same obtains on Oz, though what is defined as L and R may be reversed. The second

Ozma problem is solved.

Interestingly, SFG provides a linear measure of ∆ multiplied by a larger quantity,

Reχ(2)∗
chiral. This result is unlike other proposed measurements of PNC which are linear in

the parity violating potential [99, 100, 101, 102]. Quantitatively, we see that

IL − IR ∝ 4Reχ(2)∗
chiral∆. (6.11)
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6.5 Solutions to the first Ozma problem

Once both wizards agree on the handedness of an amino acid, many methods are

available to solve the first Ozma problem. One is to use optical activity, another is to build

a model. We, however, measure all aspects of chirality using SFG. In the absence of Tl

we will use one of the now agreed upon amino acid enantiomers. We assume that Wizard

of Oz is to place the tin woodman of Oz’s heart on earth’s definition of the left side using

χ(2)(L). With that caveat in mind, we use SFG to solve the first Ozma problem.

Both wizards construct an apparatus which we describe using the usual terminol-

ogy of SFG. The polarizations are defined relative to the plane of the wave vectors ~k1 and

~k2 (and ~k3 by phase matching). Electric field vectors parallel to the plane are defined as ~P ,

those perpendicular are defined as ~S. We shall use an external field ~E to supply an extra

vector which adds an achiral response to the SFG amplitude.

The plane of wave vectors is taken to be perpendicular to the standing bodies of

Wizards and tin woodman. ~k3 is in the direction of the tin woodman. The polarizations

are ~S1, ~P2 and ~P3 with ~E perpendicular to the plane of wave vectors and parallel to ~S1. We

shall consider two configurations on earth, as shown in Fig. 6.2.

Under each experimental configuration, sum-frequency intensity is [74]

I ∝ |~S1 · ~P2 × ~P3χ
(2)(L) + (~S1 · ~E)~P2 · ~P3χ

(3)|2, (6.12)

where χ(3) is the achiral response to the ~E field. The two configurations reflect the flipping of

wave vectors ~k1 and ~k2. Note that ~P2 and ~P3, as defined in Fig. 6.2, have different directions

in configurations 1 and 2. We may write I1 and I2 in terms of the angle θ between ~P2 and
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Figure 6.2: Experimental configurations 1 and 2. The electric field ~E is normal to the

incident plane defined by the wave vectors ~k1, ~k2, and ~k3. Polarizations for the three waves

are ~S1, ~P2 and ~P3, respectively, as defined in each configuration. Image adapted from the

original drawing by W. W. Denslow in “The Wizard of Oz”.

~P3:

I1 ∝ | sin θχ(2)(L) + E cos θχ(3)|2 (6.13)

I2 ∝ | − sin θχ(2)(L) + E cos θχ(3)|2. (6.14)

Depending on the signs of χ(2)(L) and χ(3), I1 will be greater or less than I2. Since the

amino acid used by the Wizard of Oz has been determined to be L, then the Wizard can

carry out the same two experiments. Because the wave vectors have different frequencies,

there will be an unambiguous positioning of left and right. Hence the Wizard of Oz will be

able to place a heart on the tin woodman’s left side - the same side as the tin woodman on

earth. The first Ozma problem is solved using SFG.

Earlier we described three methods for obtaining the sign of χ(2). We showed
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how one of the methods, the inclusion of an external electric field, allowed the first Ozma

problem to be solved. In Appendix B we carry a complete analysis of a second method that

provides an unambiguous solution to the first Ozma problem.

6.6 Conclusions

In this chapter we have proposed two Ozma problems using imagery from the

“Wizard of Oz”. We emphasize that there are many ways to solve the Ozma problems. We

have solved both using SFG. The second Ozma problem is, of course, meaningless in the

case of atoms. We described two ways of solving the second Ozma problem using SFG and

PNC. A byproduct of our solutions is a new way of measuring, linearly, a PNC parameter

times a larger quantity.

Our discussions on solving the first Ozma problem, at least partly, depend on

equivalent, up to a mirror image, laboratory configurations. We can well imagine experi-

ments as shown in Fig. 6.2 taking place in a spaceship. The results will be the same as long

as all relative orientations are unchanged.

Our goal is to provide new “gedanken” solutions to the Ozma problem. We believe

that we have succeeded. We have not supplied orders of magnitude of the various responses.

They are certainly tiny. As far as we know there have been no calculations of atomic SFG,

or the PNC contribution to the SFG of chiral molecules.

Everything in our analysis depends upon Oz being made of matter rather than

antimatter. Our scenario fails in the latter case, as described by a “pedagogical” version of
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a Feynman joke [93]:

Suppose two tin woodmen meet. One is the mirror image of the other.

(i) If P (parity) is conserved and they attempt to shake hands, allow them to do it. Nothing

will happen.

(ii) If P is not conserved, the two tin woodmen will not be strict mirror images.

(iii) If P and C (charge conjugation) are not conserved, but PC is conserved, and one tin

woodman puts out his left hand, run!
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Chapter 7

Sum-frequency vibrational

spectroscopy of leucine molecules

adsorbed at air-water interface

7.1 Introduction

Study of amino acid adsorption at air-water interfaces has two fold significance.

Amino acid molecules are elementary building blocks of proteins and they can appear as

anionic, cationic or zwitterionic species depending on the pH value of the solution. Un-

derstanding of their adsorption at air-water interfaces in different charge states can shed

light on how various interactions, e.g., electrostatic interaction, Van der Waals interaction,

and hydrogen bonding come into play at such interfaces. It can help in search for a better
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understanding of interfacial activities of biomolecules, such as protein folding-unfolding at

interfaces [103]. Another aspect of the study is to learn how the interfacial water structure

is affected by adsorbed amino acid molecules. Amino acid molecules are expected to adsorb

at an air-water interface with their hydrophobic side chain protruding into the air and their

hydrophilic terminal into the aqueous solution [104]. They can be considered as a primitive

model for studying water structure surrounding protein molecules in physiological condi-

tions that are in a folded configuration with their hydrophilic ends wrapping around the

hydrophobic part.

To study adsorption of amino acids at an interface from solution, sum-frequency

vibrational spectroscopy (SFVS) is an ideal tool because of its high surface specificity. Wa-

try and Richmond have reported the successful use of the technique to probe adsorption of

a number of amino acids at CCl4-water interfaces [105]. However, they have not tried to ex-

tract from the spectra detailed information about adsorption characteristics and interfacial

structures. In this chapter, we describe our work on the adsorption of amino acid molecules

at air-water interfaces, with the emphasis on extracting detailed information from a thor-

ough set of measurements. We chose leucine ((CH3)2CHCH2CH(NH2)COOH) as our model

amino acid molecules. We studied their adsorption from acidic, near-neutral, and basic solu-

tions of different concentrations, where they behave as cations ((CH3)2CHCH2CH(NH+
3 )COOH),

zwitterions ((CH3)2CHCH2CH(NH+
3 )COO−), and anions ((CH3)2CHCH2CH(NH2)COO−),

respectively, and determined their orientation and surface density in each case. We also ob-

served enhancement and suppression of polar orientation of interfacial water molecules under

different pH conditions. Flipping of the polar orientation occurred when surface charge was
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reversed.

7.2 Experiment

Our SFVS setup was described in Chapter 2. The visible input beam at ω1 was

fixed at 532 nm with an intensity of 0.8 mJ per pulse while the infrared input beam at

ω2 was tunable from 2800 to 3800 cm−1 with an energy of 120 µJ/pulse. Both beams

were generated by a picosecond mode-locked Nd:YAG laser pumping an optical parametric

system. The input angles of the ω1 and ω2 beams at air-water interfaces were 59◦ and 42◦,

respectively. The reflected SF signal was detected by a gated photo-detection system. A

z-cut crystalline quartz plate was used as the reference sample to obtain the absolute value

of χ
(2)
eff . The leucine aqueous solutions of different bulk concentrations with pH values of

0.1, 5.9 and 13.1 were prepared. High purity HCl (20 wt.% in water, double distilled PP-

B/Teflon grade, purchased from Sigma-Aldrich, used as received) and NaOH (pellets, purity

99.998% purchased from Sigma-Aldrich, used as received) were mixed with ultra-pure water

(resistivity ∼= 18.3MΩ) to adjust the pH values, and checked with SFVS to ensure negligible

presence of impurities at surfaces. Racemic leucine used was purchased from Sigma-Aldrich

(microselect with purity ≥99.5%), and used without further purification. In solutions with

pH∼0.1 (acidic), pH∼5.9 (near-neutral), and pH∼13.1 (basic), leucine molecules existed as

cations, zwitterions and anions, respectively [106]. Due to hydrophobicity of their isopropyl

end groups, they tend to adsorb at air-water interfaces with isopropyl groups pointing to-

wards the air.
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Table 7.1: Frequencies, damping constants, and assignment of modes

ωq(cm−1) Γq(cm−1) Assignment

2850 6 CH2 symmetric stretch d+

2873 5.7 CH3 symmetric stretch r+

2889 7.2 Fermi resonance of d+ or Raman active d−

2902 8.0 CH symmetric stretch
2917 7.9 CH2 asymmetric stretch d−

2938 8.3 Fermi resonance of r+

2953 12.0 CH3 asymmetric stretch r−b : out of plane
2963 7.8 CH3 asymmetric stretch r−a : in plane

7.3 Results and discussion

7.3.1 Leucine adsorption from acidic solutions

SFVS spectra of leucine molecules adsorbed at the air-water interface from acidic

solutions with different bulk concentrations are shown in Fig. 7.1 for polarization combi-

nations SSP, SPS and PPP. With the increase of bulk concentration, the signal increases.

When bulk concentration approaches the saturation value, SFG signal reaches a plateau.

We used Eqs. (2.3), (2.4) and (2.18) to fit the spectra. The solid curves in Fig. 7.1 were

obtained from the fits. Frequencies and damping constants for different modes deduced

from the fits are listed in Table 7.1. They have an accuracy of ±0.5 cm−1.

The observed resonance peaks in the 2800-3000 cm−1 region are due to the CH

stretching modes of leucine molecules. The peaks at 2850 cm−1, 2873 cm−1, 2902 cm−1,

2917 cm−1, 2938 cm−1, 2953 cm−1, and 2963 cm−1 can be assigned to the symmetric stretch

of the methylene group (d+), the symmetric stretch of the two methyl groups (r+), the CH
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Figure 7.1: SFVS spectra of leucine molecules adsorbed at air-water interface from acidic

(pH∼0.1) solutions with different concentrations. The polarization combinations used were

S(SF)S(visible)P(IR), SPS and PPP. Lines are the fitted curves using Eqs. (2.3), (2.4) and

(2.18).
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stretch of the methine group, the antisymmetric stretch of the methylene group (d−), the

Fermi resonance of the methyl symmetric stretch mode (r+FR), and the antisymmetric stretch

modes of the methyl groups (r−a and r−b ), respectively [107, 108, 109]. The small feature at

2889 cm−1 may result from either the Fermi resonance component of d+ or the methylene

antisymmetric stretch.

The antisymmetric stretch modes r−a and r−b of the methyl groups would be de-

generate if the methyl groups were freely rotating. However, in a real environment, the

degeneracy is often lifted when the rotation is hindered by interaction with the surround-

ing, and thus the symmetry of methyl groups is lowered from C3v to CS. For methyl groups

with CS symmetry, the transition dipoles for r−a and r−b should be parallel and perpendicular

to the symmetry plane, respectively, with r−a being the one with higher frequency. In IR bulk

absorption studies, the splitting of these modes has been resolved at room temperature [110].

In surface SFVS, the existence of the non-degenerate antisymmetric stretch modes has been

confirmed from fitting and reported in some SFVS studies [111, 112, 113]. The amplitude

↔
A q’s of these two modes often have opposite signs, which results in a single peak in the in-

tensity profile. For determination of orientations of molecules with a single methyl group, it

is often not necessary to analyze the polarization dependence of these antisymmetric modes

by simply assuming the methyl group is freely rotating [114, 115, 116, 117]. However, as

will be shown later, for molecules like leucine with two methyl groups, an analysis on the

antisymmetric modes is essential in determining the molecular orientation.

The orientation of the head group of leucine at a surface can be described by three

angles, θ, ψ and φ, as shown in Fig. 7.2, where θ is the angle between the surface normal ẑ
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Figure 7.2: Geometry that defines the orientational angles φ, θ and ψ of the head groups

of leucine molecules (CH3)2CHCH2CH(NH2)COOH adsorbed at air-water interfaces.

and the C2 symmetric axis of -C(CH3)2 group, φ is the azimuthal angle of the C2 axis on

the x̂ − ŷ plane, and ψ is the ”twist” angle between the plane formed by the C2 axis and

the surface normal and the plane defined by the three carbon atoms in -C(CH3)2. On water

surface the leucine monolayer is azimuthally isotropic, therefore φ is uniformly distributed

from 0 to 2π. For simplicity, we shall assume δ-function distributions for both θ and ψ,

and a bond-additive model for calculating the vibrational transition dipole moments and

Raman polarizabilities of CH stretch modes in Eq. (2.19) [1, 25, 118].

In principle, we could determine θ and ψ as well as surface density NS, using

Eq. (2.19), from the SFVS measurements of three different polarization combinations, SSP,

SPS, and PPP, on the methyl symmetric stretch mode. We found, however, that under

our assumptions, the equation for the PPP polarization obtained from Eq. (2.19) is not

independent of the equations for SSP and SPS. We need help from measurements of the an-

tisymmetric modes. In our analysis, we took Ar+(SSP), Ar+(SPS), Ar−a (SPS) and Ar−b
(SPS)
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Figure 7.3: (a) Surface density NS’s versus bulk concentration for acidic solutions. The line

is a fitted Langmuir isotherm. (b) Dependence of orientational angles θ and ψ on surface

density for the acidic solution. The surface densities are (A) 3.6 ± 0.1, (B) 3.6 ± 0.1, (C)

3.2± 0.1, (D) 2.8± 0.1, and (E) 2.5± 0.3 in units of 1014cm−2.
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derived from the experiment to determine the three variables, θ, ψ, and NS, using Eq. (2.19).

The values of the other two, Ar−a (SSP) and Ar−b
(SSP), are less reliable from the fitting and

therefore were ignored in the analysis.1 In all cases, we were able to determine first θ and ψ

consistently from the ratios of the four A’s and then NS from the absolute value of Ar+(SSP)

(normalized against crystalline quartz).

The deduced values of θ, ψ, and NS versus bulk concentration of leucine are

plotted in Fig. 7.3 for the acidic solutions (pH∼0.1). As expected, NS increases with

bulk concentration; the dependence can be fitted by a Langmuir isotherm, as shown in

Fig. 7.3(a). With increasing surface density, both the tilt angle θ and the twist angle ψ

decreases (Fig. 7.3(b)). This can be understood from consideration that at higher surface

densities, interaction between neighboring molecules would squeeze the adsorbed molecules

into more upright orientation with -COOH and -NH+
3 terminals in water. At the maximum

surface density, the molecules in their most stable conformation appear to have θ ∼ 40◦, as

seen in the experiment. An optimization that requires the molecules to occupy the smaller

surface area could orient the two methyl groups to yield ψ ∼ 25◦.
1In principle, the amplitudes of the two antisymmetric modes in the SSP spectra can also be used in

the analysis. However, due to the close proximity of r+FR to these two modes, it is difficult to deduce their
amplitudes from the spectra with good accuracy. In the SPS spectra, r+FR is weak and then the amplitudes of
the antisymmetric modes can be reliably determined. In our analysis, we used the four amplitudes that were
more reliably determined, two on the antisymmetric modes from the SPS spectra and two on the symmetric
mode from the SPS and SSP spectra.
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Figure 7.4: SFVS spectra of leucine molecules adsorbed at air-water interface from (a)

near-neutral (pH ∼ 5.9) and (b) basic (pH ∼ 13.1) solutions with different concentrations.

The polarization combinations used were SSP, SPS and PPP. Lines are fitted curves using

Eqs. (2.3), (2.4) and (2.18).
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7.3.2 Leucine adsorption from near-neutral and basic solutions, and the

comparison with acidic case

We also took SFVS spectra of leucine molecules adsorbed at air-water interfaces

from near-neutral (pH∼5.9) and basic solutions (pH∼13.1) of a few different bulk concen-

trations, shown in Fig. 7.4. Qualitatively, they are similar to those from acidic solutions,

except that in the SSP spectra around 2960 cm−1 where the two methyl asymmetric stretch

modes reside, there is a pronounced peak for the basic solution, a dip for the acidic solution,

and a flat line for the near-neutral solution.

The difference is not intrinsic, but results from interference with nonresonant back-

ground
↔
χ (2)

NR in Eq. (2.18). By choosing appropriate
↔
χ (2)

NR, we were able to fit all the spectra

well using the same set of fitting parameters listed in Table 7.1. To be more explicit, we

list in Table 7.2 values of
↔
χ (2)

NR around the methyl antisymmetric stretch modes used in our

fitting for the three solutions of different pH values, and show, as examples, in Fig. 7.5 how

the SFVS SSP spectra for the three solutions with nearly saturated leucine concentrations

appear with and without contribution from
↔
χ (2)

NR. Without contribution from
↔
χ (2)

NR, the

spectra in the 2960 cm−1 region look very much the same as expected. (We shall discuss

later that
↔
χ (2)

NR comes from the tail part of the spectral response from the water interfacial

layer and why
↔
χ (2)

NR for solutions of different pH values are different.) Using the parameters

deduced from fitting, and following the same analytic procedure described earlier, we ob-

tained the values of NS and orientational angles θ and ψ for the cases of near-neutral and

basic solutions. They are listed in Table 7.3.
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Table 7.2: Real and imaginary part (10−22m2V−1) of nonresonant background χ
(2)
NR at 2960

cm−1 obtained from fitting for SSP spectra of three near-saturated solutions with different

pH values (Both the real and imaginary part are assumed to change linearly with infrared

wavenumber in the range 2800-3000 cm−1.)

Solution Reχ(2)
NR Imχ

(2)
NR

Acidic 0.87M -7.46±0.73 -2.02±0.52
Near-neutral 0.12M -2.22±0.37 0.62±0.68
Basic 0.24M -1.17±0.32 2.43±0.27

Figure 7.5: SFVS spectra of leucine molecules adsorbed from nearly saturated (a) acidic,

(b) near-neutral and (c) basic solutions, together with the simulated SFVS spectra that are

free of the nonresonant background for (d) acidic, (e) near-neutral and (f) basic solutions.

Polarization combination used was SSP.
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Table 7.3: Deduced orientational angles θ and ψ for leucine molecules adsorbed at air-water

interfaces from near-neutral and basic solutions

pH∼5.9
C(mol/L) NS (1014 cm−2) θ (degree) ψ (degree)

0.06 1.1±0.1 40±4 26±6
0.09 1.9±0.1 43±2 26±3
0.12 2.5±0.1 39±1 21±3

pH∼13.1
C(mol/L) NS (1014 cm−2) θ (degree) ψ (degree)

0.13 1.3±0.2 53±6 43±5
0.19 1.8±0.2 43±6 22±5
0.24 2.7±0.1 39±1 17±3

Same as the acidic solution, the surface density of leucine molecules, NS, increases

with the bulk concentration for near-neutral and basic solutions. However, to yield the same

surface density, the leucine bulk concentration in the near-neutral solution is the lowest,

that is, leucine is most surface-active in near-neutral solutions in which the leucine molecules

should appear zwitterionic. This agrees with general observation for ampholytic surfactants

in aqueous solutions that they are most surface-active in the zwitterionic form and become

less so when they are converted to anionic or cationic form [119, 120]. The reason is that

in the zwitterionic form, their interaction with water compared to the interaction among

themselves is the weakest, and therefore, their solubility in water is the lowest. For acidic

and basic solutions, the additional ions from HCl and NaOH in water can screen the elec-

trostatic repulsion between anionic or cationic leucine molecules (Debye-Hückel screening),

thus increasing the solubility and stabilizing the charge accumulation both in the solution

and at the air-water interface. As a result, acidic and basic solutions have higher bulk
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and surface saturation densities. In our experiment, the acidic solution (pH∼0.1) has the

highest saturation densities because of the highest ionic strength. The adsorption behavior

we observed for the three solutions with different pH values agrees qualitatively with the

result obtained from a pH-dependent surface tension study by Wustneck et al on ampholytic

surfactants [119].

The orientational angles θ and ψ for leucine adsorbed at air-water interfaces of

near-neutral and basic solutions also seem to decrease with the increase of surface density

as in the case of acidic solutions, although our data at lower surface densities are limited

because of the poorer spectral quality. At their maximum surface density, the molecular

orientation again has θ ∼ 40◦, but the twist angle ψ for acidic, near-neutral, and basic

solutions are around 25◦, 21◦, and 17◦. This is probably the result of how the hydrophilic

terminals of the adsorbed molecules interact with water. In the near-neutral solution, the

NH+
3 and COO− terminals anchor evenly in water, and the corresponding optimal molecular

orientation supposedly is specified by θ ∼ 40◦ and ψ ∼ 21◦. In the acidic solution, the NH+
3

terminal anchors more strongly in water and the COOH terminal could be somewhat lifted

to optimize the overall molecular orientation. This would lead to a larger ψ with little

change in θ. On the other hand, in the basic solution, the COO− terminal anchors more

strongly in water and the NH2 terminal could be somewhat lifted to yield a smaller ψ. A

molecular dynamics simulation would be needed to confirm the above picture.
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Figure 7.6: SFVS spectra of water at air-water interfaces with and without adsorbed leucine

molecules. The bulk pH values of the solutions are (a) ∼ 0.1, (b) ∼ 5.9, and (c) ∼ 13.1.

Schematics on the side depict the interfacial water structure upon the adsorption of leucine

molecules. The circles stand for the hydrophilic part of leucine molecules, and the rectangles

depict the hydrophobic part. Polarization combination used was SSP. The solid lines are

guides to the eye.
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7.3.3 Interfacial water structure probed with SFVS

Adsorbed leucine monolayers could alter the interfacial water structure. To inves-

tigate such an effect, we recorded SFVS spectra of OH stretch modes in the 3000 cm−1 to

3800 cm−1 range for air-water interfaces of leucine solutions with SSP polarization combi-

nation. The spectra from near-saturated acidic, near-neutral and basic solutions of leucine

molecules are presented in Fig. 7.6, in comparison with spectra from solutions without

leucine.

Although quantitative analysis on these spectra is complicated by possible con-

tribution from NH stretching modes of the adsorbed leucine molecules in this range, a

qualitative discussion on several observations could be informing.2 For acidic and basic

leucine solutions, the spectra in the bonded OH range (3000∼3600 cm−1) are stronger than

the corresponding ones without leucine. The so-called ice-like peak around 3200 cm−1 also

appears relatively stronger. In these cases, the air-water interfaces of the acidic and basic

solutions are positively and negatively charged, respectively, by the adsorbed cationic and

anionic leucine molecules. It is known that the surface field created by the surface charges

can induce more polar ordering as well as ordering of the hydrogen-bonding network in the

interfacial water layer [122]. This is reflected by the overall stronger spectrum and stronger

ice-like peak as we have observed. For the near-neutral solution, the spectrum with leucine

is weaker than the one without leucine and can be explained by the presence of a more

disordered water interfacial layer. Since the adsorbed leucine molecules at the interface is
2SFVS results from ammonia monolayers on water and ice suggest that the NH stretch modes are several

times weaker than the OH stretch modes of water in the spectra [121].
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in the zwitterionic form, with the amino group positively charged and the carboxy group

negatively charged (shown in Fig. 7.6(b)), water molecules in close proximity orient differ-

ently according to their local charge or field conditions. This results in a more disordered

structure at the interface as compared with that of a free water surface, and hence a weaker

SFVS spectrum.

The above picture also suggests that with the surface charges being positive or

negative for the acidic or basic solutions, the interfacial water molecules must have a net

dipole orientation pointing toward or away from the interface. This allows us to answer the

earlier question why the imaginary part of the
↔
χ (2)

NR’s deduced from fitting of the spectra in

Fig. 7.5 and listed in Table 7.2 has different signs for acidic and basic leucine solutions and

very weak for the near-neutral solution.3 The nonresonant background in the CH stretch

region comes from the extended tail of the ice-like peak of water, and the imaginary part

of
↔
χ (2)

NR must change sign if the orientation of water molecules flips. Its magnitude depends

on the strength of the ice-like peak, and is larger for acidic and basic cases, due to better

polar ordering of the interfacial water molecules.

The picture that the water molecules at a charged surface have a preferred dipole

orientation toward or against the surface is also supported by the behavior of the free OH

stretching mode at 3700 cm−1. As seen in Fig. 7.6, this mode is present at all interfaces

except the one associated with the acidic leucine solution. In the latter case, the surface field

must have oriented the surface molecules with their dipoles pointing toward the solution

3The real part of
↔
χ (2)

NR comes from all nonresonant transitions, while the imaginary part of
↔
χ (2)

NR comes

dominantly from the neighboring near-resonant modes. Thus the imaginary part of
↔
χ (2)

NR better reflects the
neighboring modes.
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and therefore eliminated the free OH bonds protruding out of water. Related to the water

structure surrounding folded protein molecules on which there are both positive and negative

charges, our study here suggests that it can be quite significantly disordered depending on

the local charge distribution.

7.4 Conclusion

In conclusion, we have used SFVS to study adsorption of leucine molecules at

the air-water interface from solutions with different concentrations and pH values. The

symmetric and antisymmetric stretch modes of methyl group with their polarization depen-

dence were used to deduce the orientation of adsorbed molecules. The adsorption isotherm

of leucine from acidic solution was obtained. It was found that at the saturated surface

density, the adsorbed molecules take on an upright position, which changes only slightly for

molecules in different charge states. Interfacial water structure, however, can be strongly

perturbed by the charge state. Both the polar order and the hydrogen-bonding order of

interfacial water molecules are enhanced when the surface carries uniform charges, but sup-

pressed when both negative and positive charges are simultaneously present at the interface.

The polar orientation is inverted when the solution changes from acidic to basic.
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Chapter 8

Surface vibrational spectroscopy

on shear-aligned

poly(tetrafluoroethylene) films

8.1 Introduction

Poly(tetrafluoroethylene) (PTFE, CnF2n) is well known for its remarkable surface

properties. It is used to coat cookwares to make them nonstick and to make fabric water-

repellant. Recently it was found that highly oriented PTFE thin films could be rubbed

onto a substrate by shearing of a hot piece of PTFE. They can be used as templates to

orient biological molecules [123], organic films and crystals, as well as polymers deposited

on them [124]. Various mechanisms such as epitaxy [125], graphoepitaxy [126], and to-
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pographical induction [127] have been proposed to explain the surface-induced ordering

effect. Clearly, for basic understanding of the effect, one needs to know the surface struc-

ture of the films at the molecular level. Transmission electron microscopy, X-ray diffraction,

atomic force microscope, and high-resolution electron energy loss spectroscopy have been

used to study such films, but they are generally not sufficiently surface-specific or sensitive

to provide much detailed information about the surface structure [128].

In this context, sum-frequency vibrational spectroscopy (SFVS) is an ideal tool. It

is highly surface-specific and sensitive to a surface monolayer. The polarization-dependent

surface vibrational spectra allow deduction of information about orientations of different

functional groups. The technique has been successfully employed to probe surfaces of poly-

mers with stretch modes in the CH and CO ranges [129]. In this communication, we report

our study of surface structure of shear-deposited PTFE films using SFVS. The observed

PTFE spectra are the first surface vibrational spectra ever obtained in the CF stretch

region. From the spectra obtained with different sample orientations and input-output po-

larization combinations, we find that the PTFE chains are well aligned on the surface along

the shearing direction. With the help of selection rules, the vibrational spectra associated

with the well-aligned PTFE chains enable us to properly identify the vibrational modes of

PTFE, helping to resolve the long-standing controversy over their assignment [130, 131].
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8.2 Experimental results

The PTFE thin films were prepared by shearing a hot PTFE rod at 300◦C against

a clean fused silica substrate at 200◦C under constant pressure (∼ 5×104 Pa) and constant

speed (∼0.5 cm/s). They appeared to SFVS to have forward-backward symmetry along the

shearing direction and hence the C2V symmetry. Defining Z to be along the surface normal

and X along the shearing direction, we have the following nonvanishing surface susceptibility

elements for the films [35]:

χ
(2)
XXZ, χ

(2)
YYZ, χ

(2)
ZZZ, χ

(2)
XZX

∼= χ
(2)
ZXX, χ

(2)
YZY

∼= χ
(2)
ZYY (8.1)

The experimental arrangement was similar to the one described in Chapter 7. A

visible beam at 532 nm and an infrared beam tunable from 750 to 1300 cm−1, generated

from a picosecond Nd:YAG laser system and an optical parametric system, were overlapped

on a PTFE film exposed to air. The sum-frequency signal in reflection was detected by a

photodetector/gated integrator system after proper spatial and spectral filtering. The SFVS

spectra were taken with the film so oriented that the shearing direction was either parallel

(//) or perpendicular (⊥) to the plane of incidence. Different polarization combinations

were used: SSP to deduce χ
(2)
XXZ and χ

(2)
YYZ, SPS to deduce χ

(2)
XZX and χ

(2)
YZY, and PPP to

deduce the remaining χ
(2)
ZZZ. The spectra appeared to be remarkably simple. No spectral

features were observed in any polarization combination except SPS, in which two peaks at

ωq of 1142 and 1204 cm−1 and Γq of 5 and 12 cm−1, respectively, appeared when the sample

was in the // geometry, as shown in Fig. 8.1.

The shear-deposited films had an average thickness of ∼10 nm seen by AFM [128,



8.2. EXPERIMENTAL RESULTS 111

Figure 8.1: SFVS spectra from a shear-deposited thin film of PTFE. The polarization

combination used was S(SFG)P(Visible)S(Infrared).

130, 132]. One might wonder if the PTFE bulk or PTFE/substrate interface would con-

tribute to the observed SPS spectrum. As a test, we covered the PTFE surface by a BaF2

window with a thin layer of CCl4 in between. The CCl4 layer had no absorption in the

1100-1300 cm−1 region, and yet the SFVS spectrum disappeared completely. It reappeared

immediately after evaporation of CCl4. Apparently the CCl4 liquid must have varied the

local environment of PTFE and suppressed its SFVS spectrum. This indicates that the

sum-frequency signal originated from the air/PTFE interface.
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8.3 Discussion

To understand the SFVS spectra and deduce information about the surface struc-

ture of the PTFE films, we follow the theoretical studies of vibrational modes of PTFE in

the literature [133]. PTFE is a linear polymer of [-(CF2)-]n. Unlike polyethylene (CnH2n)

which has a planar zigzag structure, PTFE chains have a 157 helical structure under room

temperature in which 15 CF2 groups are arranged along the helical axis in seven turns.1

Coupling between CF2 groups along a chain is also stronger than CH2, leading to nor-

mal vibrational modes that cannot be identified with individual CF2 groups. Factor group

analysis [134] for such a structure shows that its normal modes must have A1, A2, E1 or

E2 symmetry; only the E1 modes are both infrared and Raman active and their infrared

transition dipole is perpendicular to the helical axis.

As shown in Eq. (2.19), SFVS requires the vibrational modes to be both infrared

and Raman active. Thus only modes with E1 symmetry can be detected. To excite the

E1 modes, one needs an infrared field component along the transition dipole. Now in our

SFVS experiment on PTFE, vibrational modes were detected only with the SPS polariza-

tion combination and the // geometry. Therefore, they must have their transition dipoles

perpendicular to the shearing direction of the film. This then strongly suggests the following

scenario. The PTFE chains must be well aligned on the surface in the shearing direction as

depicted in Fig. 8.2(knowing that the bulk PTFE chains are well oriented by shearing of the

film [128, 130, 132]), and the vibrational modes observed in SFVS are of the E1 symmetry.

No other reasonable models can explain the experimental observation equally satisfactorily.
1Although each helix is chiral, the films are racemic with equal number of right- and left-handed helices.
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Figure 8.2: Schematic showing a PTFE chain aligned along the shearing direction in the

incident plant. Electric field directions of the beams as marked are of SPS polarization

combination.

The fact that the vibrational modes only appear in the SPS and // configuration

indicates that among the five independent χ
(2)
ijk elements allowed by surface symmetry of the

PTFE film, only χ
(2)
YZY

∼= χ
(2)
ZYY are actually nonvanishing. This must result from intrinsic

symmetry of the PTFE structure. That the vibrational modes have E1 symmetry and the

chains are aligned along the shearing direction makes χ
(2)
XZX

∼= χ
(2)
ZXX vanish, but we still

need to explain why χ
(2)
XXZ, χ

(2)
YYZ, and χ

(2)
ZZZ also nearly vanish. It can be shown [133] from

group theory that for E1 modes of a PTFE chain in space with 157 symmetry, the only

allowed Raman polarizability elements are αyx = αxy and αzx = αxz, where the molecular

coordinate x is defined to be along the axis of the helical chain. Having the chain oriented

along X (such that x = X), we must conclude that χ
(2)
XXZ, χ

(2)
YYZ, χ

(2)
ZZZ, as well as χ

(2)
YZY must

all vanish. However, for surface PTFE chains, the symmetry breaking of Z versus -Z makes
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αyz = αzy allowed.2 In this case, χ
(2)
YZY appears to be the only nonvanishing

↔
χ (2) element,

as we have observed.

That we can conclude the observed PTFE vibrational modes at 1142 and 1204

cm−1 are of the E1 symmetry is interesting and meaningful. Ever since the early investi-

gation nearly 50 years ago, the assignment of PTFE’s vibrational modes has always been a

matter of debate. IR and Raman spectroscopy on bulk PTFE generally reveal three modes

around 1150, 1200, and 1240 cm−1 in the CF stretch range, but their assignment varies

among different authors [130, 131]. In our SFVS spectrum, the 1240 cm−1 mode is very

weak and hardly distinguishable from the background noise. It indicates that the mode

must be of symmetry other than E1. Our results agree with the earlier assignment of this

mode to be of A2 symmetry by Peacock et al [135] and Cutler et al [136].

8.4 Conclusion

In conclusion, we have used SFVS to obtain the first surface vibrational spectra

of PTFE films. The surprisingly simple spectra for the sheared films enable us to conclude

that the helical PTFE chains are well aligned on the surface along the shearing direction,

and the observed vibrational modes at 1142 and 1204 cm−1 are of the E1 symmetry in

agreement with some earlier analysis.

2This is similar to the differences between C2V and C2 symmetry.
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Chapter 9

Conclusion

Since sum-frequency generation (SFG) was demonstrated as an electric-dipole al-

lowed tool to detect chirality in 2000, it has been used to measure optically active vibra-

tional, electronic, and vibration-electronic double-resonance spectra. This thesis describes

our recent progresses in its development.

As a first step toward using SFG as a spectroscopic tool for biological analysis,

we demonstrated that SFG can provide optically active electronic spectra of chiral amino

acids in solution. To explain the observed chiral signal near the electronic resonances of

the intrinsically achiral chromophores, we developed a dynamic coupling model that gives

an analytical expression for χ
(2)
chiral. The chiral SFG response near the achiral chromophore

resonances was found to originate from the through-space perturbation of the chiral side

chain on the chromophore. Our model successfully explained the observed signal sequence

for a series of amino acids and can be generalized to other systems.

We also advanced chirality-sensitive SFG technically. We designed a general inter-
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ference scheme that allows us to measure both the magnitude and the phase of χ
(2)
chiral, and

for the first time obtain the true chiral SFG spectra that distinguish enantiomers. We also

incorporated SFG into a microscopic scheme and showed that SFG microscopy can produce

3D chiral images of sub-micron resolution.

Combined with parity nonconservation, we used SFG to answer the Ozma problems

- problems of how chiral information can be transmitted via an achiral channel. It can be

seen that as a coherent nonlinear optical process, SFG has a richness in its application that

is absent in linear processes, and it provides a new way to measure PNC parameters.

In the second part of the thesis, we describe further developments of sum-frequency

vibrational spectroscopy (SFVS) as a surface sensitive technique for achiral systems. We

studied the adsorption behavior of leucine molecules at air-water interface. From the

polarization-dependent SFVS spectra of the isopropyl headgroup, we deduced how sur-

face density and orientation of adsorbed molecules change with the concentration and the

pH value of the solution. We also found that interfacial water structure is strongly af-

fected by the adsorbed leucine molecules and has a polar orientation reversal when the

adsorbed leucine molecules change from anions to cations. We also extended SFVS to C-F

normal modes by obtaining the first surface spectrum of C-F modes from shear-aligned

poly(tetrafluoroethylene) (PTFE) films. We found that the PTFE polymer chains was

aligned along the shearing direction and solved a long-lasting controversy on the symmetry

of PTFE normal modes.

In conclusion, our study established SFG as a highly sensitive and powerful tool

for chirality detection. We broadened its application in surface science areas of biological
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and industrial interest.
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Appendix A

Sum-frequency generation

described by the plane wave

approximation and the focused

Gaussian wave approximation

As described in Chapter 2, coherent sum-frequency radiation obeys the wave equa-

tion

∇×∇× ~Es +
ε

c2

∂2 ~Es

∂t2
= −4π

c2

∂2 ~P
(2)
s

∂t2
, (A.1)

which can be rewritten as

∇(∇ · ~Es)−∇2 ~Es +
ε

c2

∂2 ~Es

∂t2
= −4π

c2

∂2 ~P
(2)
s

∂t2
. (A.2)
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For a source free, isotropic medium,

∇ · ~Es ∝ ∇ · ~Ds = 0, (A.3)

thus Eq. (A.2) becomes

∇2 ~Es − ε

c2

∂2 ~Es

∂t2
=

4π

c2

∂2 ~P
(2)
s

∂t2
. (A.4)

A.1 Collinear geometry

Let us first focus on the case where the input beams are collinear and propagating

along Z laboratory coordinate axis.

A.1.1 Plane wave description

Considering the input waves as plane waves, we can solve Eq. (A.4) to obtain the

sum-frequency signal strength.

For electric field ~Es(~r, t) and polarization ~P
(2)
s (~r, t) of sum-frequency wave, we can

write

~Es(~r, t) = ~Es(Z, t)

= ~As(Z)ei(ksZ−ωst) + c.c. (A.5)

~P (2)
s (~r, t) = ~P (2)

s (Z, t)

= ~Ps(Z)ei[(k1+k2)Z−ωst] + c.c.. (A.6)

Substituting Eqs. (A.5) and (A.6) into Eq. (A.4), we get

ei(ksZ−ωst) ∂
2 ~As(Z)
∂Z2 + 2ikse

i(ksZ−ωst) ∂
~As(Z)
∂Z

= −4πω2
s

c2
~Ps(Z)ei(k1Z+k2Z−ωst). (A.7)
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Defining ∆k = k1 + k2 − ks as the phase mismatch, Eq. (A.7) becomes

∂2 ~As(Z)
∂Z2 + 2iks

∂ ~As(Z)
∂Z

= −4πω2
s

c2
~Ps(Z)ei∆kZ. (A.8)

With the slowly-varying amplitude approximation, in which the transfer of energy among

waves is assumed to be only significant when the waves interact over a distance much longer

than their wavelength, we have

∣∣∣∣∣
∂2 ~As(Z)

∂Z2

∣∣∣∣∣ ¿
∣∣∣∣∣ks

∂ ~As(Z)
∂Z

∣∣∣∣∣ , (A.9)

thus obtain

∂ ~As(Z)
∂Z

=
2iπωs

cns

~Ps(Z)ei∆kZ. (A.10)

For plane incident waves ω1 and ω2, we have

~E1(~r, t) = ~A1e
i(k1Z−ω1t) + c.c.

~E2(~r, t) = ~A2e
i(k2Z−ω2t) + c.c.,

thus the nonlinear polarization induced by the input waves has

~Ps(Z) =
↔
χ (2) : ~A1

~A2 (A.11)

Substituting Eq. (A.11) into Eq. (A.10) and integrating both sides of Eq. (A.10), we get

As(Z) =
2iπωs

cns
A1A2

∫ Z

Z0

χ(2)(z)ei∆kzdz, (A.12)

where Z0 is the starting plane of the nonlinear medium.

If we consider a uniform medium, χ(2)(z) is a constant and

As(Z) =
2iπωs

cns
A1A2χ

(2)

∫ Z

Z0

ei∆kzdz. (A.13)
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Figure A.1: Curves showing the variation of sum-frequency electric field with interaction

length l for planar input waves. From left to right, the interaction length l’s are such that

∆kl equals to π/2, π, 3π/2, and 2π, respectively. The lengths of the gray arrows reflect the

amplitudes of the generated sum-frequency electric field after interaction length l.

(i) If the phase-matching is perfect, ∆k = 0, then the electric field of sum-frequency output

is proportional to the interaction length l = Z-Z0, and the intensity of sum-frequency output

is proportional to l2.

(ii) For the case where there is a finite phase mismatch, Eq. (A.13) gives

As(l) =
2πωs

cns
A1A2χ

(2)

(
ei∆kl − 1

∆k

)
, (A.14)

from which the concept of coherence length can be derived, as discussed in references [1]

and [27]. Here we plot how As(l) changes with interaction length l on a complex plane.

As shown in Fig. A.1, with the increase of l, the amplitude of sum-frequency wave first

increases, reaches the maximum when ∆kl equals to π, then starts to decrease, until totally

vanishes when ∆kl = 2π. Upon further increase of l, sum-frequency wave amplitude retraces

the circle in Fig. A.1.
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A.1.2 Focused Gaussian beam description

In reality, input beams utilized in experiments are never plane waves. They are

better described as Gaussian beams. In the following, we present the sum-frequency ampli-

tude solution with focused Gaussian beams propagating along Z axis as inputs [27].

For simplicity, input Gaussian waves with frequency ω1 and ω2 are assumed to

have the same beam waist and divergence with

~E1(~r, t) = ~A1(~r)ei(k1Z−ω1t) + c.c.

= ~A1
1

1 + iξ
e
− r2

w2
0(1+iξ) ei(k1Z−ω1t) + c.c.

~E2(~r, t) = ~A2(~r)ei(k2Z−ω2t) + c.c.

= ~A2
1

1 + iξ
e
− r2

w2
0(1+iξ) ei(k2Z−ω2t) + c.c., (A.15)

where w0 is the 1/e radius of the field distribution at focal plane Z = 0, and ξ = 2Z/b is

the normalized Z coordinate in terms of the confocal parameter

b ≡ 2πw2
0/λ, (A.16)

as schematically shown in Fig. A.2(a).

For sum frequency generated by Gaussian beams, Eq. (A.8) becomes

∂2 ~As(~r)
∂X2 +

∂2 ~As(~r)
∂Y2 + 2iks

∂ ~As(~r)
∂Z

= −4πω2
s

c2
~Ps(~r)ei∆kZ, (A.17)

with the sum-frequency electric field being

~Es(~r, t) = ~As(~r)ei(ksZ−ωst) + c.c. (A.18)
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and the nonlinear polarization as

~P (2)
s (~r, t) = ~Ps(~r)ei[(k1+k2)Z−ωst] + c.c.. (A.19)

Substituting

~Ps(~r) =
↔
χ (2) : ~A1(~r) ~A2(~r), (A.20)

into Eq. (A.17) and adopting the trial solution

As(~r) =
As(Z)
1 + iξ

e
− 2r2

w2
0(1+iξ) , (A.21)

one can find [27]

As(~r) =
2iπωs

cns
A1A2

1
1 + iξ

e
− 2r2

w2
0(1+iξ)

∫ Z

Z0

χ(2)(~r)
ei∆kz

1 + 2iz/b
dz, (A.22)

The key difference between the plane wave case (cf. Eq. (A.12)) and Gaussian beam case

is the denominator in the integral of Eq. (A.22). The integral can be rewritten as

∫ Z

Z0

χ(2)(~r)√
1 + 4z2/b2

ei∆kze−i arctan(2z/b)dz. (A.23)

We see from the above expression that the contribution from the medium located away from

the focal plane decreases in amplitude (χ(2)(~r) → χ(2)(~r)√
1+4z2/b2

), and carries an additional

phase φ = − arctan(2z/b).

Similar to the plane wave case, we can plot the change of integral (A.23) with

interaction length on a complex plane with the foci of the input waves located at Z=0. For

the case of ∆k 6= 0, instead of tracing a circle, (A.23) now traces a spiral, whose shape

depends on material susceptibility χ(2)(~r), focal parameter b, and phase mismatch ∆k.
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Figure A.2: (a) Incident waves with their focal planes at Z=0. (b) Spirals showing the

generation of sum-frequency field in the nonlinear medium from Z=−∞ to Z= 0 (upper

spiral) and Z= 0 to Z= +∞ (lower spiral). The thick black arrows indicate the relative

phase and amplitude of the electric fields in two regions.

Here we limit our discussion to a uniform nonlinear material, in which the input beams are

moderately focused with a significant phase mismatch so that b∆k À 1 [83].

The contributions to the sum-frequency field from regions on either side of the

focus are plotted separately in Fig. A.2(b). The top panel describes SFG from Z=-∞ to

Z=0 and the bottom spiral describes the generation from Z=0 to Z=+∞ with ±∞ at the

centers of the spirals. The arrows overlaying the upper and lower spirals denotes the total

fields generated from -∞ to 0 and 0 to +∞, respectively, which have a phase difference of

180◦. If the two regions on either side of the focus have same χ(2) as in Fig. A.2(b), the

fields have the same magnitude and the overall generation from -∞ to +∞ is zero. Maximal

generation is obtained when the nonlinear medium only occupy the region on one side of
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the focus. Experimentally, this corresponds to make the focal planes of the incident waves

coincide with the entrance or exit planes of the nonlinear medium.

A.2 Noncollinear geometry

In all the experiments described in this thesis, the input beams are not collinear.

There are two reasons for such a geometry. Noncollinear geometry produces sum-frequency

output that is spatially separated from the incident waves, thus facilitate its detection.

Furthermore, to use SFG for chirality detection, one has to use noncollinear geometry in

order to probe the chiral components of
↔
χ (2).

For the noncollinear scheme, the interaction region of two input beams is the

volume where the two beams overlap. In principle, one can use mathematical formulism

similar to those in the previous section to describe SFG under noncollinear geometry. In the

following, however, we present a physical argument that, similar to the collinear Gaussian

wave case, to most effectively generate sum-frequency radiation from a bulk medium, the

interaction region should be bisected by the surface of the medium.

SFG from a finite interaction region, as schematically shown in Fig. A.3(a), with

a dimension L satisfying ∆kL À 1 can be approximated to be proportional to an integral

of the form
∫ Z

−∞

χ(2)(~r)
1 + f(z)

ei∆kzeiφ(z)dz, (A.24)

where Z= 0 is plane B in Fig. A.3(a), which bisects the interaction volume, and f(z) is a

real positive function whose value monotonously increases with the increase of |z|. Sum-
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Figure A.3: (a) Interaction volume in nonlinear geometry with three planes A, B, and C

defined as its starting, bisecting, and ending planes. (b) Spirals describe the sum-frequency

electric fields generated in regions from plane A to plane B (upper spiral) and from plane

B to plane C (lower spiral).

frequency field generated in this volume can be represented by spirals similar to those in

Fig. A.2. From plane A to plane B, a sum-frequency field is generated, denoted by the black

arrow in the upper spiral of Fig. A.3(b). Further interaction in the region from plane B to-

ward plane C would first decrease the overall sum-frequency field, then ultimately annihilate

it. Therefore, experimentally, the maximal sum-frequency signal should be obtained when

the two input beams are overlapped at the surface of the bulk medium. This is indeed what

we observed. Chiral SFG signal was maximized when the input beams were overlapped at

the chiral liquid - cell window interface.
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Appendix B

Using polarization interference to

solve the first Ozma problem

One of the ways to distinguish L and R molecules in SFG is to interfere the achiral

response due to electric quadrupole matrix elements, which we call χ
(2)
Q , with the chiral

response χ
(2)
chiral. Here, one of the input beams, say ~k1, has an electric field ~E1 with both ~S

and ~P polarization components, which result in chiral and achiral responses simultaneously.

Similar to the external electric-field method, for L molecules, sum-frequency intensity is

IL ∝ |~S1 · ~P2 × ~P3χ
(2)(L) +

∑

i,j,k,l

(~Pi · ~kj)(~Pk · ~Pl)χ
(2)
Q,ijkl|2. (B.1)

As shown in Fig. 6.2, there are two possible experiment configurations with one of

the input beams to the left of the other. With the electric field method, the two different

intensities (I1 and I2 in Chapter 6) are used to communicate what we mean by ”left” to

Wizard of Oz. Similarly, we can use the polarization interferometry method to solve the
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Figure B.1: Two experimental configurations (1 and 2) for wave vectors ~k1, ~k2, and ~k3, with

the latter two waves having ~P polarizations (~P2 and ~P3). The polarization for ~k1 (thick

dotted lines) is set to be 45◦ away from ~S1, with its upper part closer to the tin woodman

than its bottom part.

first Ozma problem.

Figure B.1 shows the experimental geometry that can achieve this goal. Here, the

tin woodman stands along Ẑ direction and perpendicular to the X̂−Ŷ plane, which is chosen

to be the incidence plane. ~k2 is directed along towards the tin woodman. ~k1 is set to be

perpendicular to ~k2, and can be along either X̂ (Configuration 1) or -X̂ (Configuration 2).

The resulting sum frequency ~k3 = ~k1 + ~k2 is in X̂ − Ŷ plane. The polarization of ~k2 and

~k3 is set to be P. The polarizer for ~k1 is oriented so that the polarization axis has a 45◦

angle with Ẑ, and the upper part of the axis is closer to the tin woodman than the lower

part, as shown by the thick dotted lines in Fig. B.1. With angle θ between ~P2 and ~P3,
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sum-frequency intensities of configurations 1 and 2 are

I1 ∝
∣∣∣∣∣∣
sin θχ(2)(L) +

∑

i,j,k,l

Cijklχ
(2)
Q,ijkl

∣∣∣∣∣∣

2

(B.2)

I2 ∝
∣∣∣∣∣∣
− sin θχ(2)(L) +

∑

i,j,k,l

Cijklχ
(2)
Q,ijkl

∣∣∣∣∣∣

2

(B.3)

Here I1 does not equal to I2, and the relationship between them is the same on earth and

in Oz. This is true even for general cases where ~k1 is not perpendicular to ~k2, as long as

the polarizer for ~k1 is set at the same angle with the upper part closer to the tin woodman

in two configurations. As shown in Chapter 6, because these two configurations can be

distinguished by their differing sum-frequency intensities, the earth wizard can use this

polarization interferometry scheme to tell the Wizard of Oz our definition of “left”.




