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Early diagnosis of Alzheimer’s disease (AD) is critical for disease prevention and cure, 

but no method to do so have yet been developed that had the required sensitivity and 

specificity. Computational methods are increasingly being applied in these efforts. One 

such method is "deep learning." We propose here a convolutional neural 

network-based AD diagnosis approach using SERS fingerprints of human 

cerebrospinal fluid to have a preliminary test of the feasibility of early diagnosis using 

the hybrid platform. To realize the testing, we further prove the reliability of a SERS 

hybrid platform from its quantification capability and orientation dependence. 

Analysis using Amyloid beta (Aβ) to prove the biological feasibility and test the 
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specificity of the platform is also done.  

We report results demonstrating the reproducibility and accuracy of this novel SERS 

data analysis platform. We have achieved 100% reproducibility in double blind 

experiments and 92% accuracy in disease diagnosis. Comparison of the SERS-neural 

network approach with single biomarker tests shows it is more accurate, thus it may 

have substantial value in the differential diagnosis of AD as well as other 

neurodegenerative disorders. 

We also show here that surface-enhanced Raman spectroscopy (SERS) coupled with 

principal component analysis (PCA) readily distinguishes small biological differences: 

Aβ40 and Aβ42. We show further, through comparison of assembly-dependent changes 

in secondary structure and morphology, that the SERS/PCA approach readily and 

unambiguously differentiates closely related assembly stages not readily differentiable 

by circular dichroism spectroscopy, electron microscopy, or other techniques. 

To test the substrate feature, we demonstrate, using a biologically relevant test analyte, 

the amyloid β-protein (Aβ), a seminal pathologic agent of Alzheimer's disease (AD), 

that linear relationships exist between (a) peak intensity and concentration at a single 

plasmonic hot spot smaller than 100 nm, and (b) frequency of hot spots with observable 

protein signals, i.e. the co-

the detection of Aβ at a concentration as low as 10-18 M after a single 20 µl aliquot of 

the analyte onto the hybrid platform. 

Orientation dependence is also proved by analyzing the standard deviation of spectral 

feature. The standard deviation in the intensity of individual Raman peaks diminishes 
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for protein size larger than 13 amino acids. Secondary structure of protein (such as 

protein-protein interaction) remains unchanged regardless of protein orientation. 

Numerical simulation studies corroborate the experimental observation in that the 

SERS spectral features of biomedically relevant protein (of larger than 13 amino acids 

in size, which represent all human protein types) are not affected by the orientation of 

amino acids randomly dispersed on SERS-active surfaces. 
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Chapter 1  

Introduction 

1.1  Motivation and Innovation of Thesis 

Alzheimer’s disease (AD), being one of the most fatal diseases in the world, has 

attracted more attention and the myth of the disease still remains unknown to researcher 

around the world. Many of the hypotheses regarding the disease contain Amyloid beta 

(Aβ) peptide, which can become toxic with its secondary structure changes. No solid 

prediction method exists, not to mention a cure for this disease.  

Surface enhanced Raman spectroscopy (SERS) has attracted a growing attention in the 

area of chemistry, biology, medicine, pharmacology and environmental sciences due to 

its fast speed, single molecule detection sensitivity and molecular specificity. However, 

while the direct SERS measurement of small molecules is simple and the results are 

easy to validate, when it comes to molecule with larger molecular weight (such as 

protein), questions on quantification, specificity and reproducibility of SERS testing 

arise. To better apply this powerful analytical technique into real medical applications, 
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a detailed analysis on the quantification capability and specificity at protein level is 

needed. 

With the protein level analysis capability, a huge number of diseases can be diagnosed 

using SERS as they are closely related to secondary folding of protein. Huntington’s, 

Parkinson’s and “mad cow” disease are all protein misfolding diseases. Hungtington, 

alpha-synuclein, and prion are proteins that may misfold and accumulate leading to 

these diseases, respectively.  

A combination of SERS-active metal nanostructure (gold pyramid structure) and 

bio-compatible material (graphene) create multiple synergies. A proven extra high 

enhancement factor and ultra-high sensitivity has been shown in previous work and by 

utilizing this platform, I present here several mechanisms to quantify protein 

concentration; validate the molecular specificity on protein level especially regarding 

orientation; monitor the Aβ peptide and mutation; distinguish AD patients from normal 

controls. Several novel and significant approaches and results will be presented in this 

work: 

Aβ differentiation using SERS: Aβ is one of the key biomarkers of AD and 

understanding the structure difference between the two types of Aβ peptides (Aβ40 and 

Aβ42) is of vital importance. A detailed analysis between the spectral feature of the two 

peptides is done. Time dependence structural change of Aβ42 is also demonstrated. 

SERS Quantification Mechanisms: The platform has reproducible quantification 
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capability with 2 quantification mechanisms and 7 orders of magnitude dynamic range. 

The outstanding quantitative characteristic is demonstrated both theoretically and 

experimentally.  

Orientation Dependent Specificity: Single molecule level orientation analysis via 

bio-analyte method is done. Specificity on protein level is proved using theoretical 

analysis, simulation and experimental data. Secondary structure stability is further 

proved by analyzing Amide peaks.  

Cerebrospinal Fluid (CSF) based AD diagnostic: CSF is used as a key body fluid to 

diagnose neuro degenerative diseases. Spectral features of 26 different individuals are 

collected and tested using machine learning algorithms and deep learning methods to 

classify AD patients vs. normal individuals at a high accuracy.  

The above highlighted points establish a solid foundation for protein level SERS 

detection and further apply the novel platform into medical fields for accurate disease 

diagnostic. 

This chapter presents an introduction on the background of the whole research. To 

better understand Alzheimer’s disease, Chapter 1.2 shows basic knowledge on the 

disease. In Chapter 1.3, information related to SERS is presented and we expand the 

technology to our special platform in Chapter 1.4. Chapter 1.5 gives a concise summary 

for all the data analysis methods used in our spectral analysis and Chapter 1.6 presents 

the outline of the dissertation.  
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1.2  Alzheimer’s disease 

Alzheimer’s disease (AD) is a disease of aging. It is characterized in part by progressive 

loss of memory and executive functions and primarily affects older adults and is the 

most common cause of dementia. The loss of functions is attributed to synaptic damage 

and neuronal loss in the hippocampus, cerebral cortex and other brain regions. The 

disease worsens as it progresses and eventually leads to death. While treatments to 

ameliorate some symptoms exist, there is currently no cure for AD.  

The disease was first described by German neuropathologist Alois Alzheimer in 1906, 

and the disease was later named after him. Early-onset AD (onset of symptom before 65 

years old) is rare and usually gene related (present before their 50s). The age of people 

with AD in 2018 is shown in Fig 1.1. As is shown in the figure, only 4% of the AD 

patients have onset of symptom before 65 and with the aged tendency of population, the 

percentage of AD patient over 85 may further increase to be larger than 75-84 regime.  

 

Fig 1.1. Ages of people with Alzheimer’s dementia in the United States, 2018 
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For most cases, the prevalence rate of AD increases exponentially after the age of 65. In 

2010, there were an estimated 454,000 new cases of AD and the number is projected to 

be 959,000 in 2015 (110% growth). And in 2050, the number of people with AD will 

grow from 5.5 M to 13.8M as is shown in the Fig 1.2. 

 

Fig 1.2. Projected number of people age 65 and older (total and by age) in the U.S. population 

with Alzheimer’s disease, 2010 to 2050. 

The cause of AD remains unknown and one of the most popular theories is amyloid 

hypothesis. It postulates that extracellular beta-amyloid (Aβ) deposits are the 

fundamental cause of AD. Facts are presented to prove the hypothesis: location of the 

gene for the amyloid precursor protein (APP) is on chromosome 21 and people with 

trisomy 21 almost universally exhibit AD by the age of 40 years of age. Aβ peptide 

plays an important role in this process as it is the main component of senile plaques. 

The ratio between the two types of Aβ peptides (Aβ40 and Aβ42) can possibly lead to 
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AD.  

Aβ belongs to a class of protein that is “natively unfolded” and preferentially form 

amyloid fibrils rather than protein crystals and the pathway of fibril assembly is 

illustrated in Fig 1.3. Aβ structures aggregate from monomer to paranucleus and 

protofibril (identified more than a decade ago) and eventually mature to fibril. The 

length of these structures is <150nm and ~5nm in diameter.  

 

Fig 1.3. The pathway of Aβ fibril assembly. 

Even though the Aβ peptides and Aβ fibril are the same protein, Aβ fibrils have a 

fiber-like structure and the peptide has a β-sheet arrangement. Whether a β-sheet 

structure transforms into a fiber structure and what the transformation speed is depend 

on whether the protein folds or misfold.  

For Aβ, protein misfolding happens when the hydrophobic section of the protein fails to 

fold into the interior and thus bonding with other water-repelling portions of other 

unfolded proteins, which eventually lead to protein aggregation and form fibril 

structure. To monitor the folding process and to better understand the pathology of AD, 

detecting the changes in the senconday folding state of Aβ peptide leads to a more 
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complete image and is vital for the process.  

1.3  Surface enhanced Raman Spectroscopy (SERS) 

Raman spectroscopy has been widely used in the area of non-destructive testing and 

molecular recognition technology. It can help to provide fingerprint information of 

chemical and biomolecular structure. However, the cross section of conventional 

Raman scattering were only 10
-6

 to 10
-14

 of that of IR and florescence process. This 

inherent low sensitivity has tremendous restriction in its application in the field of trace 

detection and surface science.  

In 1974, Fleischmann et al. roughened the smooth surface of the silver electrode, and 

for the first time, they found the high quality Raman spectra of the mono molecular 

layer pyridine molecules adsorbed on the surface of the silver electrode. In 1977, Van 

Duyne and Creighton independently discovered that the Raman signal of the pyridine 

molecules is about 106 times higher than that of single pyridine in solution. They 

pointed out that this is a surface enhancement related to surface roughness and is named 

as SERS effect (as is illustrated in Fig 1.4). And SERS effectively solve the critical 

problem of low sensitivity in Raman.  
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Fig 1.4. Conceptual illustration of SERS. 

SERS can be simply described as amplified Raman scattering by the presence of a 

plasmonic structure in the close vicinity of the target analyte. It is a valuable tool in 

multiple research fields such as biology, pharmaceutical, chemical, etc. The high 

sensitivity and specificity make SERS an incomparable technology. Moreover, the 

label free detection, non-destructive nature and minimal waste feature make SERS a 

unique analytical tool in bio-sensing. As SERS contain unique lattice vibration 

information of the analyte, more detailed and specific information can be acquired with 

high sensitivity.  

Most disease states start with a small change in cellular processes and the change 

becomes amplified along the disease progression. As a result, in bio-medical 

disciplines, sensitive enough to measure small concentration and outstanding 

specificity to distinguish minute differences are vital in diagnostic. Besides, 

non-destructive and minimal invasive make a technique even more attractive. With all 

these features, SERS has attracted a growing attention and researchers have been 
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working for over 30 years to apply the technology into bio medical applications.   

Nanoparticle has been widely used as SERS probe: Ahmed et al. used Ag nanoparticles 

(NP) and AuNP in rats’ brains to understand neurological diseases; Masson et al. 

applied functionalized AuNP for IgG protein detection. One popular substrate is called 

SERS-active substrate with self-assembled monolayer (SAM) and have been widely 

used: Zhang et al. reported the use of SAM substrate in glucose detection; Zou et al. 

have distinguished diabetes from normal individuals. Other substrates such as colloidal 

SERS substrates (Pucetaite et al. have used the substrate for cardiovascular disease), 

SERS nanowire sensor (Eom et al. have used the substrate for breast cancer diagnostic) 

and some other nano structured substrate including nano pyramids, nanocrystal, 

nanorods .etc.  

SERS detection is popular among disease diagnostic, however, many problems appear 

in this process, such as the ambiguous enhancement factor definition, the difficulties in 

quantification and the toxicity of the metal used. Even with these problems, SERS 

continue to remain at the forefront of disease diagnostic in both in vitro and in vivo 

applications. 

1.4  Graphene Hybrid Platform 

An ideal SERS platform for bio sensing needs to have a high enhancement factor (to 

reach single molecule sensitivity) and bio compatibility (to have minimal influence on 
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the features of the analytes). The hybrid platform is a combination of periodic Au 

pyramid structure and single layer graphene, which is a perfect match for these two 

requirements.  

The Au nano structure boosts strong plasmonic enhancement to provide ultra-high 

enhancement factor. The most optimized structure has a pyramid tip of 200nm, which 

provides the highest sensitivity. Single layer graphene provides bio-compatible 

environment for the analytes with the proof that cell can directly survive on graphene 

without any glial layer. Besides, graphene can increase the resistance of metal to 

oxidation and electrochemical degradation and make the substrate more stable. 

The hybrid platform is fabricated by transferring monolayer graphene on the Au 

pyramid substrates, as is shown in Fig 1.5.  

 

Fig 1.5. Schematic process showing the synthesis of the hybrid platform. The CVD monolayer 

graphene is transferred onto the Au tip substrate. 

The hybrid platform enables single molecule detection and provides a reproducible and 

uniform response. It allows a sub-10
-18 

M detection of Aβ42 with the high 

electromagnetic enhancement(EM) of the nanostructure and extra chemical 
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enhancement (CM) of graphene. It also provides a built-in hotspot marker, helping to 

define the hotness of the hotspot and locate the exact position of the hotspot.  

This platform overcomes the limitation of conventional nanoparticle SERS systems 

and makes accurate analysis of protein concentration possible. Further analysis on 

disease diagnostic is also made possible with the features of the substrate.  

1.5 Data Analysis 

The complexity of biological-analyses (such as protein, exosome and cell) has led to 

complicated and diverse Raman spectrum. To ensure the inclusion of the ever present 

statistical variation due to factors such as biological and individual variability as well as 

the many co-factors such as a patient suspected of cancer could also be suffering from 

high blood pressure or diabetes, large number (on the order of hundreds) of spectra 

from each sample must be collected with their spectral features categorized and latter 

compared with through comparison with the diagnosis rendered by the current 

laboratory practice. And thus, it is not difficult to appreciate the massive volume of data 

for the platform to render clinical usefulness. To make the mass data analysis possible, 

statistical methods needs to be applied in the analysis.  
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Fig 1.6. A diagram of standard SERS analysis work flow 

Besides, the nature of SERS spectrum itself makes the analysis complicated. To start 

with, peak intensity does not solely depend on the analyte, difference in the surface 

structure (hotness of the hotspot) will lead to different peak intensity. Furthermore, one 

of the methods to interpret Raman spectra is to take the intensity of each wavenumber 

as a dimension, each of the spectra can be taken as a ~1500 dimension data. It is relative 

inefficient to operate on a high dimension data. All these complexity makes statistical 

methods a must in SERS analysis. 

Multiple data analysis methods can be used in the spectral analysis and the performance 

of those methods varies over different applications because of their difference in factors 
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such as size of dataset and analyte composition. A detailed analysis is needed for each 

type of sample we analyze to optimize the analysis results. A detailed description of 

those methods and their application in SERS analysis will be detailed described in 

Chapter 4 and 5.   

1.6  Outline of Thesis 

The remainder of this thesis is divided into 5 chapters, which go from the theoretical 

analysis of SERS hybrid platform to the application in its disease diagnostic. As 

concisely summarized above, Chapter 1 discusses the complex field of SERS platform 

and data analysis. These two segments work together to build a diagnostic system for 

protein misfolding diseases. 

Chapter 2 shows the quantification capability of the platform. 7 orders of magnitude 

dynamic range with 2 different quantification mechanisms is presented. Such capability 

enables detailed concentration analysis using SERS with high reproducibility.  

Chapter 3 elaborates the specificity of SERS when doing protein analysis, especially 

from the orientation dependence perspective. The study simulates protein orientation 

and the change of orientation dependence as molecular weight of protein increases.  

The stability of secondary structure features is further proved, providing a solid basis 

for SERS diagnostic using protein as biomarker. 

Chapter 4 discusses the application of SERS hybrid platform protein detection. By 
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applying principal component analysis we are able to differentiate the 2 amino acid 

difference between the two types of Aβ peptides. Similar method is applied to trace the 

structural change in Aβ42 peptide as time changes. The successful application shows 

the potential of SERS in clinical applications.  

Chapter 5 details the diagnostic of Alzheimer’s disease using SERS. Multiple machine 

learning algorithms are applied to do the patient classification. Patient specificity of 

100% was reached doing double blind experiment and the prediction accuracy has 

reached over 80%. The high accuracy proves that SERS can be used in human fluid 

application and have huge potential in disease diagnostic. 

 

 



 

15 

 

 

 

 

 

 

Chapter 2  

Protein differentiation using SERS 

2.1  Introduction 

Amyloid β-protein (Aβ) assembly into neurotoxic structures appears to be a seminal 

pathogenetic event in Alzheimer’s disease (AD)
1
. For this reason, intense efforts have 

been devoted to understand the physiology of Aβ production, how the peptide 

assembles into neurotoxic structures, and the mechanism of amyloid plaque 

formation. Each of these efforts represents a potential therapeutic approach to prevent 

or treat AD. Equally important has been the search for biomarkers that would enable 

accurate diagnosis of disease state and provide metrics for evaluation of clinical trial 

efficacy. Unfortunately, thus far, no effective therapeutic agents or reliable biomarkers 

are available for clinical use. One reasonable approach to address these unmet needs 

is to develop new methods for dissecting the Aβ assembly process, methods that could 
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reveal structural details of assembly at heretofore unsurpassed resolution and 

sensitivity and enable identification of novel structural biomarkers, e.g., Aβ structural 

states that correlate with disease status. Surface enhanced Raman spectroscopy 

(SERS) is one such method, which is known to have single molecule sensitivity
2
. 

SERS has been applied to the Aβ system in the past, but no systematic studies of the 

system have been published, to our knowledge. Beier et al. used SERS to detect Congo 

Red bound to Aβ, reporting a linear detection regime of 10
-12

-10
-8

 M
3
. Benford used a 

nanofluidic device containing trapped gold colloid particles (60 nm) to physically 

restrict Aβ in an illuminated volume
4
. This allowed them to detect Aβ40 at 

concentrations as low as 11.5 pM. Bhowmik et al. used lipid bilayer-coated silver 

nanoparticles to bind Aβ40 and determine its secondary structure
5
. A number of 

nanofluidic devices have been fabricated in which Aβ can be concentrated and its 

spectra acquired at concentrations as low as 10 fM
4,6

. Voiciuk adsorbed oligomeric 

forms of Aβ42 onto self-assembled monolayers terminated by heptanethiol, 

octadecanethiol, or N-(6-mercapto)pyridinium groups in an effort to detect unique 

spectral features
7
. Changes in carboxylate stretching modes were observed upon 

binding. Most recently, Nabers et al. suggested that spectral shifts in the amide I band 

of Aβ in cerebrospinal fluid might discriminate dementia of the Alzheimer's disease 

type from other types of dementia
8
. This study used FT-IR, not Raman, spectroscopy, 

but these results illustrate the potential usefulness of SERS because both FT-IR and 
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SERS probe the vibrational modes of molecules
9
. 

Recently, Wang et al. developed a graphene-gold hybrid plasmonic SERS platform 

with intrinsic electromagnetic field enhancement normalization capabilities and 

extremely high sensitivity. The platform is capable of single molecule detection 

sensitivity
10

 and has been shown to detect Aβ42 at attomolar (10
-18

) concentration
11

. We 

present here results of studies demonstrating that this novel platform readily 

distinguishes Aβ42 from Aβ40 and reveals distinct spectral signatures for different 

conformational and assembly states. These capabilities allow monitoring of 

time-dependent conformational and assembly changes as well as the potential of 

defining new disease state biomarkers based on specific spectral signatures. 

2.2  Experimental procedures 

2.2.1  Principal component analysis 

Principal component analysis (PCA) is a statistical procedure that is primarily used 

for dimensionality reduction. It uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components (PCs).  
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Fig 2.1. A 2D example of how PCA works.  

As is shown in Fig 2.1, PCA is useful for eliminating dimensions, the two graphs 

show the exact same data, but the right panel reflects the original data transformed so 

that the axes are now the principal components.  

PCA is a method that brings together a measure of how each variable is associated 

with one another and at the same time shows the directions in which our data are 

dispersed.  

In this case, R was used to analyze and visualize the multi-dimensional SERS data 

sets by using the built in PCA function: “prcomp” and open source library “ggbiplot” 

(with extended functionality for labeling groups, drawing a correlation circle, and 

adding normal probability ellipsoids). Dimensions in the analyses were the intensities 

at five different wavenumbers determined by decision tree analysis to be necessary 
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and sufficient for differentiating among time points. PCA transforms the original 

variables into a set of linear combinations (principal components: PC), which allows 

the retention of the data variability, while examining them independently in a 

weighted fashion of decreasing order of variance. Variability in the vectors gathered 

by the PCs was calculated and the largest two PCs were plotted. Data from each time 

point was considered a separate group and PCA was done to maximize the 

between-group variation.  

2.2.2 Decision tree 

A decision tree is a decision support tool that uses a tree like model and it belongs to 

the family of supervised learning algorithms. It can be used to solve regression and 

classification problems, which is important when we choose which peak(s) are vital in 

spectral differentiation.  

For a binary classification problem, entropy measure is calculated for information 

gain, which calculates the expected reduction in entropy due to sorting on the 

attribute. 

H(X) =  𝔼𝑋[𝐼(𝑥)] =  − ∑ 𝑝(𝑥)𝑙𝑜𝑔𝑝(𝑥)

𝑥 ∈ 𝕩

 

In the formula,  

H(X) is the entropy to measure the amount of uncertainty in the data set; 
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p(x) is the proportion of the number of elements in class x to the number of elements 

in X. 

IG(A, X) = 𝐻(𝑋) − ∑ 𝑝(𝑡)𝐻(𝑡)

𝑡 ∈ 𝑇

 

In this formula, 

H(X) is the entropy of set X; 

H(t) is the entropy of subset t. 

Decision tree algorithm construct decision tree based on features that have highest 

information gain. In our case, decision trees were produced using R with the “rpart” 

package (generating classification and regression trees). The classification method in 

the “rpart” function was used to produce the tree information and the “prp” function 

in “rpart.plot” library was used to visualize the decision trees. 

2.2.3  Experimental settings 

Circular dichroism spectroscopy (CD) 

LMW Aβ was prepared at a concentration of 20 µM in sodium phosphate, pH 7.4, and 

incubated without agitation at 37 °C in a 1 mm path-length quartz cuvette (Hellma, 

Forest Hills, NY, USA). CD spectra then were acquired periodically with a J-810 

spectropolarimeter (JASCO, Tokyo, Japan). Spectra were recorded from 195-260 nm 
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at 0.2 nm resolution with a scan rate of 100 nm/min. Ten scans were acquired and 

averaged for each sample. 

Transmission electron microscopy (TEM) 

Five µL of Aβ42 (20 µM) were removed at the time of each CD measurement and 

then spotted onto carbon-coated Formvar grids (Electron Microscopy Sciences, 

Hatfield, PA, USA). After 2 min, the droplet was displaced with an equal volume of 

1% (w/v) filtered (0.2 µM) uranyl acetate in water (Electron Microscopy Sciences). 

This solution was wicked off and then the grid was air-dried. All grids were coded at 

the end of the time course so that the operator of the electron microscope did not 

know what samples were being imaged. Electron microscopy was done using a JEOL 

1200 EX transmission electron microscope with an accelerating voltage of 80 kV, 

which is typical for protein examination. Digital images were analyzed with ImageJ 

1.50d, using the "measure tool" to calculate dimensions, and unblinded after the 

analysis was complete. 

Raman Measurement 

Immediately following solubilization, 20 µL aliquots of Aβ40 or Aβ42 were applied 

to a graphene-coated, pyramidal gold hybrid platform and dried in vacuo. Spectra 

were acquired using a Renishaw inVia microscope under ambient conditions. The 

excitation wavelength was 785nm and the He-Ne laser power was 0.5 mW. The 785 
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nm laser was chosen due to the relatively lower photon energy of excitation, which 

avoids thermal degradation of biomaterials. The grating used was 1800 lines/mm, and 

the objective lens used was 50×. We scanned the entire region on the platform 

occupied by the samples (≈24 μm × ≈30 μm) using Raman mapping with a step size 

of 3 μm (i.e., independent areas of 9 µm
2
 each). Eighty spectra were acquired for each 

sample.  This process controls for acquisition of spectra unrepresentative of the 

average spatial orientation or assembly state of the peptide, two factors that can affect 

peak location and intensity, and which become problematic if spectra are acquired 

from only one or a few areas of the platform. For Raman measurements done in 

parallel with CD, 10 µL aliquots were taken from the CD cuvette at the time of each 

CD measurement, applied to the platform, and then spectra were acquired, essentially 

as described above. Raman data were analyzed using Renishaw WiRE 4.2 software, 

which automatically subtracts the baseline signal and removes noise. Peak intensities 

in each spectrum were normalized to the graphene G peak to enable spectral 

comparisons among samples. 

t-test 

Paired t-tests, as implemented in R as “t.test” and using the key parameter “p.value,” 

were done to assess the statistical significance of differences between the centroids of 

clusters in the PC1 dimension, in which the largest variances were observed. The 
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analyses were performed on centroids in the PC2 dimension if no significant 

differences were observed in PC1. Significance was defined as p<0.05.  

2.3  SERS analysis of unassembled Aβ40 and Aβ42 

Our initial experiments sought to establish the spectral characteristics of low molecular 

weight (LMW; see Methods) Aβ40 and Aβ42. To do so, these peptides were prepared at 

concentrations of 20 µM in 10 mM sodium phosphate, pH, 7.4, and applied to a unique 

hybrid SERS platform. This platform consists of a hexagonal array of gold pyramids 

overlaid with a single molecular layer of graphene
10

. SERS spectra were acquired in the 

wavenumber range of 550-1800 cm
-1

. Graphene produces two characteristic peaks, the 

D- and G-peaks, at ≈1350 and ≈1580 cm
-1

, respectively
12

. The graphene G-peak height 

depends directly on the local electromagnetic field (EM) intensity (within the area of 

illumination of a tightly focused laser beam ~1 µm in diameter), which can vary 

substantially among Raman active locations (hot spots) on the platform. Normalization 

of peak heights at a particular hot spot to the graphene G-peak height thus provides the 

means to accurately determine analyte signal intensities.  

The graphene D-peak arises from the disordered structure of graphene, including 

broken carbon-carbon bonds and folds formed from the nearly planar graphene overlaid 

on the pyramidal platform surface, both of which can be byproducts of the fabrication 

process. The presence of disorder in the sp
2
-hybridized carbon system leads to the 
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appearance of the D-peak peak
12,13

. The D-peak intensity depends on the polarization 

direction of the laser beam relative to that of the graphene fold direction
13

, thus its 

provenance differs from that of the G-peak.  Neither the D-peak nor the G-peak arise 

from the protein analyte. However, these peaks do occur in the higher wavenumber 

portion of the amide II band (1510-1580 cm
-1

) and the lower wavenumber portion of 

the amide I band (1600-1700 cm
-1

) and thus can obscure some protein vibrations related 

to secondary structure. As will be shown below, our method of data analysis does not 

depend upon these obscured signals.  

 

Fig 2.2. SERS analysis of Aβ40. SERS spectra of Aβ40 (red) and Aβ42 (turquoise) are shown. 

Wavenumbers are listed above each peak. Graphene D- and G-peaks, at 1350 and 1580 cm-1, 

respectively, are signified by letters. Peaks signified by asterisks are likely due to cosmic rays, 
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as the peak height-to-width ratios are extremely large. The data presented are representative of 

two independent experiments. 

Spectra for Aβ40 and Aβ42, which have been baseline subtracted and normalized to the 

G-peak, are shown in Fig. 2.2. Predominant peaks in the Aβ40 spectrum occurred at 

935, 1000, and 1124 cm
-1

. Less intense peaks at 559, 575, 823, 850, 982, and 1450 cm
-1

 

were observed reproducibly in the Aβ40 spectra. The Aβ42 spectrum had clearly 

observable, but smaller, peaks at 935, 1000, and 1124 cm
-1

. The 823 cm
-1

 peak observed 

in the Aβ40 spectrum was not seen in the Aβ42 spectrum and the 935 cm
-1

 peak 

shoulders at 850 and 982 cm
-1

 were substantially smaller. However, the peak at 1450 

cm
-1

 was more pronounced. 

Table 2.1. Aβ40 and Aβ42 Raman peak positions, assignments, and intensities. Peaks have 

been assigned to specific bond resonances based on published data.  

Wavenum

ber 

559 575 823 850 935 982 1087 1124 1450 

Peak 

assignme

nt 

Aliphat

ic 

C-C 

stretchi

ng 

Out-of-

plane 

ring 

breathi

ng or 

Tyr 

Amino 

acid 

single 

bond 

n(C-C) 

of 

protein 

backbo

ne or 

Gly 

C-C 

stretchi

ng 

β-sheet 

or Phe 

Lys or 

Asn 

Val or 

Ile 

CH2 

bendin

g or 

Phe 

Aβ40 

(average) 
0.218 0.163 0.021 0.156 0.445 0.176 0.032 0.142 0.003 

Aβ40 

(SD) 
0.0587 0.0734 0.0529 0.0619 0.0722 0.0338 0.0155 0.0419 0.0311 

Aβ42(ave

rage) 
0.129 0.077 0.000 0.086 0.289 0.086 0.017 0.051 0.027 

Aβ42(SD) 
0.0319 0.0392 0.0000 0.0291 0.0613 0.0233 0.0329 0.0519 0.0411 
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The observation in the Aβ40 and Aβ42 spectra of peaks at identical wavenumbers is 

expected because the primary structures of the two peptides also are identical, with the 

exception of the Ile-Ala dipeptide at the C-terminus of Aβ42. However, the 

conformational states of the peptides during oligomerization and fibril formation have 

been shown to differ
14

. In addition, different conformers may be oriented differently 

with respect to the graphene surface
15

. These factors likely explain the fact that the peak 

intensity profiles of Aβ40 and Aβ42 are distinct. To more fully understand the 

significance of the distinct patterns of spectral intensities, we performed unbiased 

multivariate analysis using principal component analysis (PCA), reasoning that PCA 

might enable the differentiation of Aβ isoforms and assembly states
16,17

. We 

parameterized the analysis using nine normalized peak intensities (Table 2.1).  

We then performed PCA with each vector having the same variance and found that 

principal components (PC) 1 and 2 accounted for 57.8% and 15.0%, respectively, of the 

variance in the data. The cumulative percentage of 72.8% means that the first two 

principal components account for the majority of the variance in the system. We note 

that other components account for no more than 5% each of the total variance, so their 

inclusion in our analyses would not alter our conclusions. PCA analysis can produce 

statistically significant results when n>5p, where n is number of nodes and p is number 

of vectors used 
1
. In our case, using 80 spectra and nine vectors, n>11p, so we are 
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confident that the first two components accurately account for ~75% of the total system 

variance. 

A graph of the results using PC1 and PC2 as axes revealed that the data from Aβ40 and 

Aβ42 clustered in two distinct regions (Fig. 2.3). The Aβ40 cluster was substantially 

smaller than the Aβ42 cluster, which suggests that its component conformers were 

more homogenous structurally than the conformers in the Aβ42 cluster. The Aβ40 

cluster displays similar variance in PC1 dimension compared to the Aβ42 one. 

However, its variance in the PC2 dimension was approximately twice that of Aβ42. The 

equations specifying PC1 ( ) and PC2 ( ) provide an explanation for the cluster 

locations and shapes.  

 

Fig 2.3. PCA analysis. Plot of principal components 1 and 2 from analysis of unassembled 

Aβ40 (salmon) and Aβ42 (turquoise). Ellipses surrounding clusters enclose 67% of the data, 

indicating the majority of the data points are in the ellipse. The brown arrows are the 

projections of the vectors in PC space. 
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PC1
⃗⃗⃗⃗⃗⃗  ⃗ = −0.27V1

⃗⃗  ⃗ − 0.31V2
⃗⃗⃗⃗ − 0.35V3

⃗⃗⃗⃗ − 0.38V4
⃗⃗⃗⃗ + 0.42V5

⃗⃗⃗⃗ − 0.33V6
⃗⃗⃗⃗ + 0.24V7

⃗⃗⃗⃗ +

0.26V8
⃗⃗⃗⃗ − 0.39V9

⃗⃗  ⃗  

𝑃𝐶2
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0.15𝑉1

⃗⃗  ⃗ + 0.21𝑉2
⃗⃗  ⃗ + 0.08𝑉3

⃗⃗  ⃗ + 0.11𝑉4
⃗⃗  ⃗ − 0.08𝑉5

⃗⃗  ⃗ + 0.23𝑉6
⃗⃗  ⃗ + 0.65𝑉7

⃗⃗  ⃗ +

0.64𝑉8
⃗⃗  ⃗ + 0.10𝑉9

⃗⃗  ⃗  

Vectors ( ) 1-9 represent the peak intensities of SERS peaks at 559, 575, 823, 850, 935, 

982, 1000, 1124 and 1450 cm
-1

, respectively. A key difference between the two 

principal component vector equations is the absolute value of the coefficients of vectors 

𝑉7
⃗⃗  ⃗  and 𝑉8

⃗⃗  ⃗  (the peak heights at 1000 and 1124 cm
-1

, respectively), which are 

substantially larger in the case of Aβ42 compared to Aβ40. This observation, which is 

not immediately apparent from analysis of peak intensities alone (Table 1), explains 

why the variance in PC2 space is twice as large for Aβ42 than it is for Aβ40. 

Resonances at 1000 cm
-1

 and 1124 cm
-1 

are produced by Lys and Asn, and by Val and 

Ile, respectively (Fig. 2.4). The presence of the additional Ile at the C-terminus of Aβ42 

likely is an explanation for at least a portion of the increased magnitude of 𝑉8
⃗⃗  ⃗ . 

Conformational effects due to the distinct conformational dynamics of Aβ42 may also 

contribute to the differences in vector magnitudes. 
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Fig 2.4. Examples of vibrational modes in Aβ42. PDB 5KK3 (amino acids 11-42) was used to 

illustrate possible locations within Aβ42 that could lead to the vibrational modes. Amino acids 

proposed to contribute to the Raman signal are indicated as follows: Phe: salmon (982 cm
-1

, 

1450 cm
-1

), Val: cornflower blue (850 cm
-1

, 1124 cm
-1

), Ile: light sea green (850 cm
-1

, 1124 

cm
-1

), Gly: sky blue (935 cm
-1

), Lys and Asn: medium purple (1000 cm
-1

). Out-of-plane ring 

breathing from Phe could contribute to the 823 cm
-1

 peak. C-C stretching in amino acids 

could give rise to the peak at 850 cm
-1

. C-C stretching of the protein backbone (935 cm
-1

) and 

CH2 bending in amino acids (1450 cm
-1

) peak. Black arrows in each inset indicate locations 

within the peptide that could give rise to these modes. 

2.4  SERS analysis of Aβ assembly 

We next sought to establish whether SERS could distinguish different stages of Aβ 

assembly. We characterized assembly stages by performing SERS in parallel with 
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circular dichroism (CD) spectroscopy and transmissions electron microscopy (TEM). 

We thus obtained CD, TEM, and SERS data from the same sample aliquots. The data 

shown are representative of four independent experiments. CD complements SERS by 

providing information in spectral regions obscured by the graphene D- and G-peaks. It 

also allows real time monitoring of secondary structure changes in assembly reactions 

in hydro. CD spectra were acquired immediately after initiation of assembly reactions 

of 20 µM Aβ42 in 10 mM sodium phosphate, pH 7.4, at 37°C. The spectra were 

consistent with statistical coil (SC) structure, as indicated by a minimum in molar 

ellipticity [Θ] at 198 nm and a gradual increase in [Θ] as wavelength increased toward 

260 nm (Fig. 2.5). A concerted time-dependent increase in [Θ]198 and decrease in [Θ]218 

were consistent with β-sheet formation. Maximal β-sheet content was observed at 120 

h.  
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Fig 2.5. Circular dichroism spectroscopy. Aβ42 was incubated at a concentration of 20 µM in 

10 mM sodium phosphate, pH 7.4, at 37°C. CD spectra then were acquired periodically. 

Overlapping spectra have not been presented so as to make visualization of the 

time-dependence of spectral changes easier. The data shown are representative of four 

independent experiments. Spectral colors represent different time points, which are specified in 

hours in the box to the right. 

These data were consistent with the SC→β-sheet secondary structure transitions that 

occur during Aβ fibril formation
19

. Negative stain EM done in parallel with the CD 

studies confirmed that fibril assembly was occurring (Fig. 2.6). The starting peptide 

solution (0 h), which displayed statistical coil secondary structure, contained only small 

globular structures of ≈8 nm diameter. Short fibrils of width ≈10 nm were observed at 6 

h, during the coil→β-sheet transition period. When maximal β-sheet was observed, 

long fibrils were present. The morphologies of these structures did not change 

substantially after 24 h.  

 

Fig 2.6. Transmission electron microscopy. Aβ42 (20 µM in 10 mM sodium phosphate, pH 7.4) 

was incubated at 37°C for a total of 192 h. Panels shown are representative of the sample 

morphologies observed at the indicated time point.  Scale bars are 100 nm.  
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Fig 2.7. SERS analysis of Aβ42. Spectra were acquired periodically from the same samples 

used for EM. Spectra from different time points are shown in a fence plot.  Axes are 

wavenumber (cm
-1

), time (h), and intensity (AU). We show spectra up to and including 24 h, 

after which all spectra were identical, within experimental error. Numbers above peaks specify 

their wavenumbers. Graphene peaks are denoted by letters. The data shown are representative 

of four independent experiments. 

SERS spectra were acquired periodically from 0-168 h. Eighty spectra were taken at 

each time point and the intensities of the peaks were normalized to the graphene G peak 

(1584 cm
-1

) and then averaged. Fig. 2.7 shows a plot of the averaged spectra from nine 

different time points. Spectra acquired after 24 h were identical to those at 24 h. The 

graphene G peaks for each spectrum have the same intensities because of normalization. 

Time-dependent spectral changes were observed for peaks produced by Aβ. At 0 h, the 
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spectrum (red) was dominated by the graphene D and G peaks, but some intensity at 

935 cm
-1

 was observed. At 1 h (orange spectrum), the intensity of the 935 cm
-1

 peak had 

increased substantially and peaks now also could be seen at 850, 1000, 1087, 1124, 

≈1175, and 1460 cm
-1

. The intensity of the 935 cm
-1

 peak relative to the other peaks was 

lower at 2 h (dark green spectrum). Relative peak intensities differed at a number of 

time points, which suggested that unique populations of assemblies were being 

detected. 

 

Fig 2.8. Decision tree. Spectral data to be included in PCA analyses of Aβ assembly were 

determined using decision trees. All of the spectral intensity data at each time point was 

considered. Recursive cost function analysis determined which nodes would be useful in 

spectral differentiation. Nodes are presented with the least costly at the top and lower ranked 

nodes below. 
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To determine whether the spectral differences observed could distinguish different 

assembly states, we performed PCA analyses to visualize the data. We employed 

decision trees to identify peaks that would be most useful in differentiating among time 

points
20

. Decision trees are particularly suitable for this purpose as they provide simple 

measures of attribute importance that can be used to rank the importance of the peaks. 

The C4.5 algorithm was used to prioritize key peaks after examination of all 

non-graphene peaks with signal-to-noise ratios greater than 10, which comprised peaks 

at wavenumbers 559, 575, 639, 650, 671, 823, 850, 935, 982, 1000, 1087, 1124, 1190, 

1474 and 1612). Nodes in the decision trees (Fig 2.8) were generated by choosing the 

attribute of the data that most effectively split the tree with the highest normalized 

information gain. These nodes comprised peak intensities at 823, 850, 935, 1000 and 

1124 cm
-1

. 

 

Fig 2.9. PCA analysis. Plot of principal components 1 and 2 from analysis of spectra acquired 

during Aβ42 assembly.  
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We performed PCA analysis using intensities observed at the five different 

wavenumbers. PC1 and PC2 contributed 77.7% and 8.5%, respectively, to the total 

variance of the data. Cluster analysis in the PC1:PC2 plane (Fig. 2.9) revealed a striking 

time-dependence, and thus assembly-stage dependence, of the locations of the data 

clusters. Each cluster comprises 67% of the data from a particular time point. Centroids 

for each cluster in the PC1 dimension was determined by averaging all data points. For 

ease of examination, the clusters have been delimited by color-coded elliptical 

boundaries, each color representing a specific time. To determine whether the 

differences in centroid positions were significant, paired Student's t-tests were 

performed among all pairs of centroids at all times (Table 2.2). With the exception of 

differences between 4 and 6 h, 6 and 8 h, and 24 and 48 h, all differences were highly 

significant (10
-39

 < p < 10
-3

). However, if we consider differences in the PC2 dimension, 

the p-values of 4h vs. 6 h and 6 vs. 8 were highly significant (p=0.002 and p=0.037, 

respectively). The centroids at 24 and 48 h were almost identical (p=0.99), as they were 

in the PC1 dimension (p=0.94). This suggests that the assembly process was complete 

by 24 h.  

Table 2.2. Significance of differences in centroid positions. Paired Student's t-tests were 

performed to determine if positions of cluster centroids in the PC1 dimension were 

significantly different (p<0.05).  The table lists the p-values obtained. Insignificant differences 

are bolded. "X" indicates positions of self-comparison. 
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Time 0 1 2 3 4 6 8 12 24 48 

0 X          

1 5.7x10-10 X         

2 5.6x10-17 5.1x10-14 X        

3 6.0x10-22 7.1x10-27 4.9x10-12 X       

4 1.5x10-28 6.7x10-34 1.1x10-25 1.5x10-16 X      

6 9.0x10-29 5.2x10-32 1.9x10-24 1.4x10-16 0.17 X     

8 4.6x10-30 3.5x10-35 6.7x10-28 6.1x10-20 0.02 0.49 X    

12 7.3x10-35 1.3x10-47 2.4x10-42 3.6x10-35 1.2x10-9 2.2 x10-5 1.6x10-4 X   

24 1.2x10-39 3.3x10-63 2.9x10-62 9.0x10-57 5.6x10-23 2.0x10-15 2.7x10-15 2.2x10-10 X  

48 1.2x10-39 2.9x10-63 2.4x10-62 7.3x10-57 4.8x10-23 1.8x10-15 2.4x10-15 1.8x10-10 0.94 X 

The fact that nine clusters were located at different positions in the PC1:PC2 plane 

shows that at least nine different assembly states were differentiated by SERS/PCA. It 

is possible that more unique states exist. These could be determined by sampling the 

assembly process at additional times prior to 24 h. We interpret the clustering as 

indicative of populations of assemblies that differ between themselves in both the types 

and relative amounts of different conformers present. Each centroid thus represents a 

population-average conformer. Overlaps among clusters indicate some 

population-average conformational similarity. The time-dependence of ellipse centroid 
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position displayed an amplitude in the PC1 dimension that was ~3-fold larger than that 

in the PC2 dimension. 

Analysis of the component vectors comprising PC1 and PC2 shows that, from 0 h to 4 h, 

the positions of ellipse centroids within PC2 space are determined primarily by 

decreases in 𝑉4
⃗⃗  ⃗, corresponding to peak intensity at 1000 cm

-1
. This suggests that Lys or 

Asn residues, which resonate at 1000 cm
-1

, are oriented with the graphene surface in a 

manner that is sub-optimal with respect to Raman signal production. This orientation 

difference likely reflects conformational changes during peptide assembly. Fig2.4 

highlights regions of the Aβ structure wherein vibrational mode intensity differences 

are noted.  Between 4-8 h, ellipse position is determined primarily by 𝑉3
⃗⃗  ⃗, indicating an 

increase in the intensity of the 935 cm
-1

 Raman peak, which is produced by 

carbon-carbon bond resonances
21

. As discussed above, this peak intensity change likely 

reflects changes in the interaction of the peptide with the graphene due to peptide 

assembly. After 8 h, the predominant contributor to ellipse position again is 𝑉4
⃗⃗  ⃗, which 

shows that the peak intensity of the 1000 cm
-1 

Raman peak decreases. After 24 h, ellipse 

position and shape do not change substantially, suggesting that the structures of the 

assemblies producing the Raman spectra are end-state products. This supposition was 

consistent with results of the EM analysis, which showed no substantial morphological 

changes after 24 h. A general feature of the time-dependence of ellipse position is that it 

increases monotonically in the PC1 dimension. This shift is primarily due to the change 
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in 𝑉1
⃗⃗  ⃗, 𝑉2

⃗⃗  ⃗, and 𝑉5
⃗⃗  ⃗ during peptide assembly. Brown arrows in Fig. 2.9 are the projections 

of vectors from the initial five-dimensional space into the PC1:PC2 plane. The ~830 

cm
-1

 (sideband at ~850 cm
-1

) and 1124 cm
-1

 vibrations are characteristic of Tyr, and of 

Val and Ile, respectively. The most likely explanation for the increased peak intensities 

observed at these wavenumbers is the orientation of peptide segments containing these 

amino acids relative to the nanopyramids. The two most important orientational factors 

are the proximity of a peptide segment to a hot spot and the conformation of the peptide 

at that location. Both factors determine peak intensities because lower EM 

enhancements occur outside the hot spots and the tertiary and quaternary structures of 

peptide monomers and higher-order assemblies affect the proximity of the resonant 

bonds to the surface of the hot spot
10

. This is critically important because of the distance 

dependence of the SERS signal
10

. Through an analysis of the peaks not traditionally 

thought to report on secondary structure per se, we were indeed able to distinguish 

changes in the structures formed by Aβ42 during aggregation. The complexity of the 

protein spectra contains a vast array of information, with individual amino acids 

contributing both within and outside of the amide I, II or III regions
22

.  

2.5 Correlation of CD, TEM, and PCA analyses 

When we compare the PCA data (Fig. 2.9) with those obtained by CD (Fig. 2.5), we 

note that from 0-4 h, the contributions to the CD spectra of their SC component 

increases monotonically from [Θ]198 = -50 to -38 deg cm
2
 dmol

-1
, consistent with a 
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peptide folding process. During this time period, no negative inflection between 

215-220 cm
-1

 (β-sheet wavenumbers) is observed and TEM images reveal that fibril 

formation is initiated. A monotonic decrease in PC2 corresponds to these events. 

During the first 3 h, the sizes of the ellipses decrease as well, which is consistent with a 

folding process that decreases the conformational space of the peptide. Taken together, 

the data suggest that the decrease in PC2 during this time period is indicative of initial 

Aβ self-association leading to small oligomers and fibril nuclei. As fibril growth occurs, 

the heterogeneity of assemblies increases, which explains why the 4 h cluster is larger 

in area than those at 1-3 h. This growth period is reflected in a modest increase in the 

rate of change in [Θ]198 (~4 deg cm
2
 dmol

-1
 h

-1
 compared to an initial rate of ~3 deg cm

2
 

dmol
-1

 h
-1

). In addition, between 6-8 h, a negative inflection at [Θ]216 appears, which 

monotonically decreases over time, consistent with the increased β-sheet secondary 

structure produced by fibril formation. Ellipse position in the PC2 dimension rises 

concurrently (Fig. 2.9). From 8-24 h, progressive increases in β-sheet (CD) and fibril 

content (TEM) correlated with decreases in cluster position in the PC2 dimension. 

Increasing 𝑉4
⃗⃗  ⃗ magnitudes were the prime contributor to the monotonic decrease in 

ellipse position in the PC2 dimension. We note that the centers of the ellipses of 24 h 

and 48 h were in essentially the same position in PC1:PC2 space, but ellipse area 

decreased markedly during this time period, which suggests increased structural 

homogeneity of the peptide assemblies. This effect may be related to fibril aggregation, 

which commonly is observed following fibril growth phases
23

.  
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2.6 Conclusion 

We show that Raman spectra obtained using a graphene-gold hybrid plasmonic 

platform, in combination with PCA analysis, enables facile distinction between Aβ40 

and Aβ42, the peptide isoforms associated with classical vascular AD (Aβ40) and 

parenchymal (Aβ42) plaques, respectively, in AD. We further show that the approach is 

capable of revealing assembly-dependent changes in peptide conformation and 

self-association. Correlation of these spectral changes with CD and TEM data allow 

regions in PCA space to be linked to specific populations of Aβ assemblies. What may 

be particularly important is the observation of a minimum of nine differentiable clusters 

within PCA space, which reflect at least nine differentiable assembly states in the fibril 

formation pathway. Because spectral changes can be linked to changes in resonances of 

specific amino acids within the Aβ peptide, future sited-directed amino acid 

substitution studies of these individual states may provide new insights into the roles of 

different amino acids in stabilizing or destabilizing these states. Thus, coupled with the 

label-free, single molecule sensitivity of SERS, the SERS/PCA approach should prove 

useful for determining structure activity relationships, suggesting target sites for drug 

development, and for testing the effects of such drugs on the assembly process. The 

approach also could be of value in other systems in which assembly-dependent changes 

in protein structure correlate with the formation of toxic peptide assemblies. 

  



 

41 

 

 

2.7 References 

1. Roychaudhuri, R., Yang, M., Hoshi, M. M., and Teplow, D. B. (2009) Amyloid β-protein 

assembly and Alzheimer disease. J Biol Chem 284, 4749-4753 

2. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R., and Feld, M. S. 

(1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Physical 

Review Letters 78, 1667-1670 

3. Beier, H. T., Cowan, C. B., Chou, I.-H., Pallikal, J., Henry, J. E., Benford, M. E., Jackson, 

J. B., Good, T. A., and Coté, G. L. (2007) Application of surface-enhanced Raman 

spectroscopy for detection of beta amyloid Using nanoshells. Plasmonics 2, 55-64 

4. Benford, M. E., Chou, I.-H., Beier, H. T., Wang, M., Kameoka, J., Good, T. A., and Cot, G. 

L. (2008) In vitro detection of β amyloid exploiting surface enhanced Raman scattering (SERS) 

using a nanofluidic biosensor. Proc. SPIE 6869, 68690W–68690W–68695 

5. Bhowmik, D., Mote, K. R., MacLaughlin, C. M., Biswas, N., Chandra, B., Basu, J. K., 

Walker, G. C., Madhu, P. K., and Maiti, S. (2015) Cell-membrane-mimicking lipid-coated 

nanoparticles confer Raman enhancement to membrane proteins and reveal 

membrane-attached amyloid-β conformation. Acs Nano 9, 9070-9077 

6. Choi, I., Huh, Y. S., and Erickson, D. (2012) Ultra-sensitive, label-free probing of the 

conformational characteristics of amyloid β aggregates with a SERS active nanofluidic device. 

Microfluidics and Nanofluidics 12, 663-669 

7. Voiciuk, V., Valincius, G., Budvytyte, R., Matijoska, A., Matulaitiene, I., and Niaura, G. 

(2012) Surface-enhanced Raman spectroscopy for detection of toxic amyloid beta oligomers 

adsorbed on self-assembled monolayers. Spectrochim Acta A Mol Biomol Spectrosc 95, 

526-532 

8. Nabers, A., Ollesch, J., Schartner, J., Kotting, C., Genius, J., Hafermann, H., Klafki, H., 

Gerwert, K., and Wiltfang, J. (2016) Amyloid-β-secondary structure distribution in 

cerebrospinal fluid and blood measured by an immuno-infrared-sensor: A biomarker candidate 

for Alzheimer's disease. Anal Chem 88, 2755-2762 

9. Larkin, P. (2011) Infrared and Raman spectroscopy: Principles and spectral interpretation, 

Elsevier, Waltham, San Diego, Oxford, Amsterdam 

10. Wang, P., Liang, O., Zhang, W., Schroeder, T., and Xie, Y. H. (2013) Ultra-sensitive 

graphene-plasmonic hybrid platform for label-free detection. Adv Mater 25, 4918-4924 

11. Yu, X., Hayden, E. Y., Wang, P., Xia, M., Liang, O., Bai, Y., Teplow, D. B., and Xie, Y.-H. 

(2017) Quantification characteristics of a graphene-gold hybrid plasmonic SERS platform and 

its use in studies of Alzheimer amyloid β-protein. submitted  



 

42 

 

 

12. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., 

Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K. (2006) Raman spectrum of graphene and 

graphene layers. Physical Review Letters 97 

13. Wang, P., Zhang, W., Liang, O., Pantoja, M., Katzer, J., Schroeder, T., and Xie, Y. H. (2012) 

Giant optical response from graphene--plasmonic system. ACS Nano 6, 6244-6249 

14. Bitan, G., Kirkitadze, M. D., Lomakin, A., Vollers, S. S., Benedek, G. B., and Teplow, D. B. 

(2003) Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct 

pathways. Proc Natl Acad Sci U S A 100, 330-335 

15. Medek, A., Hajduk, P. J., Mack, J., and Fesik, S. W. (2000) The use of differential chemical 

shifts for determining the binding site location and orientation of protein-bound ligands. J Am 

Chem Soc 122, 1241-1242 

16. Abdi, H., and Williams, L. J. (2010) Principal component analysis. Wiley interdisciplinary 

reviews: computational statistics 2, 433-459 %@ 1939-0068 

17. You, Z. H., Lei, Y. K., Zhu, L., Xia, J., and Wang, B. (2013) Prediction of protein-protein 

interactions from amino acid sequences with ensemble extreme learning machines and 

principal component analysis. BMC Bioinformatics 14 Suppl 8, S10 

18. Reynaldo, J., and Santos, A. (1999) Cronbach's alpha: A tool for assessing the reliability of 

scales. J Extension 37, 1-5 

19. Hayden, E. Y., Yamin, G., Beroukhim, S., Chen, B., Kibalchenko, M., Jiang, L., Ho, L., 

Wang, J., Pasinetti, G. M., and Teplow, D. B. (2015) Inhibiting amyloid β-protein assembly: 

Size-activity relationships among grape seed-derived polyphenols. J Neurochem 135, 416-430 

20. Quinlan, J. R. (1993) C4.5 : programs for machine learning, Morgan Kaufmann Publishers, 

San Mateo, Calif. 

21. Movasaghi, Z., Rehman, S., and Rehman, I. U. (2007) Raman spectroscopy of biological 

tissues. Appl Spectr Rev 42, 493-541 

22. Movasaghi, Z., Rehman, S., and Rehman, I. U. (2007) Raman spectroscopy of biological 

tissues. Appl Spectrosc Rev 42, 493-541 

23. Qiang, W., Yau, W. M., and Tycko, R. (2011) Structural evolution of Iowa mutant 

β-amyloid fibrils from polymorphic to homogeneous states under repeated seeded growth. J 

Am Chem Soc 133, 4018-4029 

24. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. (1997) 

Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272, 

22364-22372 



 

43 

 

 

 

 

 

 

 

Chapter 3  

Quantification Capability 

3.1  Introduction 

3.1.1 Quantification in bio-sensing 

The development of sensitive techniques for the detection and quantitative analysis of 

bio-molecules is important for trace element detection, environmental monitoring, and 

early stage diagnosis and treatment of diseases
1-4

.  

According to US Food and Drug Administration (FDA), bioanalytical method 

development involves optimizing the procedures and conditions involved with 

extracting and detecting the analytes and 10 bioanalytical parameters are listed for the 

optimization:  
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Reference standards, critical reagents, calibration curve, quality control samples 

(QCs), selectivity and specificity, sensitivity, accuracy, precision, recovery and 

stability of the analyte in the matrix.  

Accuracy, precision and recovery are vital for the procedure and are highly related to 

sample quantification. Evaluating the accuracy and precision across the quantitation 

range is essential to determine whether the method is ready for validation. Having 

good quantification capability also involves analyzing replicate QCs at multiple 

concentrations across the assay range. Quantification becomes a good screening 

criterion for bioanalytical methods.  

A wide range of methods provide quantification capability. Detection methods include 

high-performance liquid chromatography (HPLC)
5
, liquid chromatography mass 

spectrometry (LCMS)
6
, Ring Resonator biosensor and enzyme-linked immunosorbent 

assays (ELISA)
7
. A limit of detection (LOD) of 0.1 ng/mL has been achieved with these 

platforms. Table 3.1 shows limit of detection as well as the limitation for these 

popular quantification technologies.  

Table 3.1. Summary of current quantification methods 

Method Limit of detection Limitations Ref 

HPLC 0.1ng/uL for vitamin B12 Less separation efficiency. 
Luo 2016 
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LCMS 5nmol/L for 

polyglutamates 

Lack of traceability leads to 

imprecision 

E Den 

Boer 

2013 

ELISA 5ng/mL for urine sample Limited by antigen in the sample 
Dheda 

2010 

Ring 

Resonators 

112nm/RIU for Aflatoxin Output uncertainty 
Guider 

2015 

 

3.1.2 Quantification using SERS 

Surface enhanced Raman scattering (SERS) is a method that has gained increasing 

notice because of its ability to achieve single molecule detection with high molecular 

specificity
8-11

 without the use of biological labels. Recent advances in nanotechnology 

have led to many SERS-based analytical applications. For example, self-assembled 

monolayer (SAM)-coated colloidal gold platforms are able to detect Rhodamine 6G in 

the concentration range of 0.1-5 µM
7
. Metallic glassy nanowire arrays (MGNWAs) 

have a dynamic range of 1-10 nM for Rhodamine B
12

. Gold nanoparticles allow 

detection of glucose in the concentration range 0.5-32 mM
13

. A summary for some 

current SERS quantification platforms is listed in Table 3.2.  

Table 3.2. Summary for current SERS quantification platform. 

Platform type Analyte Dynamic range Ref 
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Ag nanoparticle Nicotinamide 0.1-1mM 
Castro JL. 

El al (2013) 

Au nanoparticle Glucose 0.5-32 mM 
Quyen el al 

(2013) 

Graphene oxide and AgNP R6G 1nM-10uM 
Ren el al 

(2014) 

Sandwich assay with AuNP MUC4 (protein) 0.01-10ug/mL 
Wang et al 

(2011) 

SERS tagged Ag colloidal Mouse IgG 0.1-3ng/mL 
Dou et al 

(1998) 

 

The listed quantification methods are mainly based on the linear relationship between 

SERS peak intensity with analyte concentration. However, SERS is a complicated 

method and peak intensity may change due to a wide range of parameters (include but 

not limited to concentration, incident light intensity, hotness of local 

hotspot .etc.).This means that signal intensities measured at different points on a 

surface vary even if analyte concentration is constant. SERS signal intensity per se does 

not have a one-to-one correlation with analyte concentration.  

Such correlation could be established only if the EM field intensity at an individual 

plasmonic hot spot could be determined independent of analyte concentration. Prior 

studies have employed the assembly of marker molecules as internal standards. 

However, the non-planar topology typical of plasmonic surfaces, which can create local 

inhomogeneities in marker concentration significantly confound the situation. In 
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addition, the relatively large size of typical SERS internal standards (~50 nm)
7,15 

relative to hot spot size can interfere with adsorption of the actual analyte at the hot 

spot, precluding Raman signal production by the analyte. 

Inhomogeneity of the platform together with the large internal standard size 

jeopardize the simple proportionality between intensity versus concentration and thus 

making the analysis argumentative if no reference is presented for the quantification 

platform. 

If a built-in marker of local electromagnetic (EM) field intensity, which is known to 

vary substantially from location to location on plasmonic surfaces currently in use
14

 is 

created and combined to the platform, signal intensity can solely depend on the 

analyte concentration as the local EM field intensity has been ruled out from the 

matrix. We report here for the first time, the quantification ability of an ultra-sensitive 

graphene-plasmonic hybrid platform that largely eliminates these sources of variability. 

The platform incorporates a single atomic layer of graphene overlaying a gold surface 

consisting an array of pyramids, each of which is ~200 nm in width and height. The 

periodicity and size of individual pyramids are chosen for the optimization of surface 

plasmon resonance by laser excitation at 785 nm. The novelty of this work is that the 

single layer graphene serves as an internal standard and provides Raman signal 

enhancement, which allows for accurate quantitation, not previously feasible 
2
. SERS 

enhancement results primarily through an EM mechanism (up to 10
14

)-fold. A chemical 
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mechanism may also contribute to the enhancement, but to a much lesser degree (∼10–

100-fold)
3
 . We use the amyloid β-protein (Aβ), a well-studied pathologic agent of 

Alzheimer's disease
17-19

, as an example biologically relevant analyte to assess the 

potential of the hybrid platform for quantification and subsequent study of Aβ assembly 

dynamics. We observe two complementary quantification modes. The first (high 

analyte concentration regime) relates analyte concentration to the SERS peak intensity 

at individual SERS hotspots. The second (low concentration regime) relates analyte 

concentration to the probability of observing any Raman signal at any hotspot. In 

combination, these two modes enable analyte detection in a concentration range 

spanning seven orders of magnitude (10
-18

-10
-15

M, 10
-13

-10
-11

M). 

Chapter 3.2 present the rational of choosing dried Amyloid beta 42 as sample analyte 

and experimental details. Chapter 3.3 demonstrates two different types of 

quantification mechanism using SERS hybrid platform. Chapter 3.4 details a novel 

method to statistically analyze the number of monomer in each hotspot for extremely 

detailed analysis.  

3.2  Experimental procedure 

3.2.1 Hybrid platform as a quantification media 

The graphene-gold hybrid platform fabrication is based on sphere lithography, as 

previously reported
20

. The periodic gold nano-pyramid structure with tunable size and 
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sharpness is fabricated by a wafer-scale bottom-up templating technology. Spin-coated 

on (001) silicon wafers, close-packed monolayer polystyrene balls with a diameter of 

200 nm serve as templates. Monolayer graphene is grown by chemical vapor deposition 

(CVD) and the solution transferred onto the gold tipped surface using polymethyl 

methacrylate (PMMA) backing followed by PMMA removal subsequent to the transfer. 

Platforms can be fabricated with user-determined areas. We typically use platforms of 

~1 cm
2
. The pyramids form a quasi-periodic array of hexagonal arrangement that is 

uniformly distributed across the entire sample surface of 1 cm × 1 cm area. Because of 

the way the pattern is generated (self-assembly of polystyrene balls), variations in the 

spacing between pyramids, and the sizes of the pyramids themselves, can vary. This 

variance has been estimated to be ±30 nm.  

To grow the graphene, a 25 µm thick copper foil from Alfa Aesar (catalog #13382) is 

cut into a 5 cm squares. The copper foil is loaded onto the center of a quartz CVD 

chamber, the furnace is heated to ≈1025°C under the flow of hydrogen gas (~1000 

sccm). After 30 min annealing, the CVD growth was carried out with 20 Torr total 

pressure with methane gas (~20 sccm) and hydrogen gas (~1000 sccm) for 15 minutes. 

The chamber then was cooled to room temperature. 

Scanning Electron Microscopic (SEM) analysis was performed using FEI Nova Nano 

SEM 230 instrument, an accelerating voltage of 10 kV, and a beam current of 0.14 A. 

After the production of the gold pyramids, as described above, the substrate was 
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mounted onto an SEM stub using double sided adhesive tape. Imaging was performed 

at magnifications ranging from 30,000 to 200,000. 

Fig 3.1. SEM image of the gold nano pyramids. The magnifications are 200,000 (left panel) and 

30,000 (right panel). 

We used scanning electron microscopy (SEM) to examine the surface morphology of 

the hybrid platfomrs after facrication to confirm the presence of the pyramid structures. 

We observed that the pyramids form a quasi periodic array of hexagonal arrangement 

uniformly distributed over the surface (Fig 3.1). Some variation (± 30nm) is observed 

in the spacing between pyramids and the sizes of the pyramids, as expected based on 

the fabrication process. 

3.2.2 Amyloid β as a quantification analyte 

To examine the quantification characteristics of the hybrid platform, we studied the 

42-amino acid form of Aβ, Aβ42, which is thought to be a seminal pathologic agent in 
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AD and is an important disease biomarker
24

.  

Aβ was synthesized in the UCLA Biopolymer facility and then purified and 

characterized, as described previously. Briefly, peptide synthesis was performed on an 

automated peptide synthesizer (model 433A, Applied Biosystems, Foster City, CA, 

USA) using 9-fluorenylmethoxycarbonyl-based methods on preloaded Wang resins
21

. 

Aβ was purified to >97%, using reverse-phase high-performance liquid 

chromatography (HPLC). Quantitative amino acid analysis and mass spectrometry 

yielded the expected composition and molecular weight. Purified peptides were stored 

as lyophilizates at –20°C.  

Aβ was prepared by dissolution in 10% (v/v) 60mM NaOH, 45% (v/v) Milli-Q water, 

and 45% (v/v) 22.2 mM sodium phosphate, pH 7.4, to yield a nominal Aβ concentration 

of 1 mg/mL in 10 mM sodium phosphate, pH 7.4. The Aβ solution then was sonicated 

for 1 min in a bath sonicator (Branson Model 1510, Danbury, CT, USA) and filtered 

through a prewashed 30,000 molecular weight cut-off Microcon centrifugal filter 

device (Millipore, Billerica, MA, USA) for 15 min at 16,000 × g. The concentration of 

Aβ in the eluate was determined using UV absorbance (ε280 = 1280 cm
-1

 M
-1

). The 

peptide was diluted with 10 mM sodium phosphate, pH 7.4, to a final concentration of 

20 µM before use. Serial dilutions then were done in 10 mM sodium phosphate, pH 7.4. 

All measurements were performed at 22°C. This protocol reproducibly yields 

aggregate-free Aβ monomer in rapid equilibrium with low order oligomers, which is 
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termed low molecular weight Aβ
22

. 

For all test done, a 20 µl volume of Aβ42 was pipetted onto the center of the platform 

and then immediately dried in vacuo. Raman spectra were measured using a Renishaw 

inVia microscope under ambient conditions. Excitation was accomplished using a 

GaAlAs diode laser of wavelength 785 nm. A laser power of 0.5 mW, a grating of 1800 

lines/mm, and an objective lens of 50× were used. A step size of 200 nm was used for 

Raman mapping. Raman data were analyzed using Renishaw WiRE 4.2 

software.  Strong hotspots appear in between pyramids and at their apices. 

We initially applied a 20 μM solution of freshly prepared, unaggregated, low molecular 

weight Aβ
25

 to our platforms. Aβ42 is known to aggregate into oligomers and fibrils 

over time so to ensure that our starting samples did not aggregate during preparation for 

SERS we prepared the samples rapidly (<10 min) at low temperature (4 °C). We 

acquired spectra immediately after preparation and periodically thereafter. 

Examination of these spectra showed that no observable aggregation occurred
28

 within 

10 min
27

. (spectral figure: Fig 3.2, principal component analysis: Fig 3.3).  
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Fig 3.2. SERS spectra of Aβ42. spectra were acquired periodically during a 2 h incubation of 

a 20 µM solution of Aβ42 in 10 mM sodium phosphate buffer, pH 7.4, at 37°C. 

 

Fig 3.3. Principal component analysis revealed four distinct clusters (the 0 and 10 min data 

clustered together suggesting that no significant spectral changes occurred between these 

times).  
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In addition, when experiments at Aβ concentrations in the sub-micromolar regime are 

done, rates of simple collision-induced aggregation or nucleation-dependent 

polymerization are so low that no substantial aggregation occurs. Fig 3.4 shows a 

typical SERS spectrum of Aβ42. We also acquired Raman spectra for the sodium 

phosphate buffer without Aβ42, and did not observe any Raman peaks. This indicated 

that all the peaks we observed are from graphene or Aβ42. Several characteristic 

Raman peaks were observed, including those due to Tyr (823 and 850 cm
-1

), 

carbon-carbon (C-C) stretching (935 cm
-1

), Phe (982 and 1450 cm
-1

), Lys or Asn (1087 

cm
-1

), Val or Ile (1124 cm
-1

), and graphene D (1350 cm
-1

), and G peaks (1580 cm
-1

)
29,30

. 

We note that an amide I peak (1650 cm
-1

) appears near the graphene G peak, but no 

overlap is observed. 

 

Fig 3.4. Aβ42 was prepared at a concentration of 20 μM, pH 7.4, and applied to the platform. 

Abscissa indicates wavenumber (cm
-1

). Peaks were assigned based on published result. 
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Wavenumber assignments are: 559, aliphatic; 575, C-C bond stretching mode; 823, 

out-of-plane ring breathing vibration or double Tyr (Tyr2); 850, single bond stretching for Tyr 

and Val; 935, number of carbon -carbon bonds of protein backbone or Gly; 982, C-C stretching 

in β-sheets or part of Phe; 1000, Lys or Asn; 1124, Val or Ile; 1360, graphene D peak;1450, CH2 

bending or Phe; 1580, graphene G peak. 

3.2.3 Graphene as a quantification gauge 

To establish the quantitative ability of the hybrid platform, Aβ42 at concentrations 

ranging from 10
-21

–10
-9

 M was applied to the substrate and spectra were acquired (Fig 

3.5). The spectra were normalized to the graphene G peak (1580 cm
-1

) to account for 

any variation in the local electromagnetic field intensity among the various hot spots, 

allowing us to correlate the Raman peak intensity with Aβ42 concentration.  

The graphene G peak intensity is correlated to both the graphene configuration and 

EM field intensity. Prior to graphene transfer to the pyramid substrate, two 

confirmations were carried out to ensure that it existed exclusively as a single atomic 

layer
31

. Changes in the graphene G peak intensity thus should arise solely from 

changes in the EM field and thus can be used to normalize protein peak intensities 

obtained across the substrate surface. 
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Fig 3.5. Spectra of Aβ42 at concentrations ranging from 10
-13

–10
-9

 M. Spectra from 

concentrations of 10
-15

 and 10
-14

 were obtained but they are not shown because they are 

essentially flat in this representation. 

The graphene G peaks among spectrum superimpose as a result of the normalization. 

The 1360 cm
-1

 peak is the graphene D peak, which results from the breathing modes of 

sp
2
 atoms in the carbon ring structure

32
. The D-peak is related to defects in the 

graphene, especially graphene folds formed when the nearly planar graphene is 

overlaid on the pyramids of the platform. As such, the D-peak is a function of surface 

topology and not suitable for use as a normalization signal. 
 

3.3 Quantification mechanism 

We present here two types of quantification mechanism as shown in Fig 3.6. In 

analyte concentration regimes in which essentially all hot spots contain at least one 

analyte molecules, Raman signal intensity depends on analyte number concentration. 
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Fig 3.6. (A-C) Dependence of Raman signal intensity on analyte number concentration at hot 

spots. (D-E) Hot spot occupancy versus analyte concentration. Analyte molecules within a hot 

spot are shown in red. Analytes outside of hot spots are blue. 

(A). Signal intensity thus increases with analyte concentration (B) until hot spots are 

saturated with analytes (C), at which time accurate determination of concentration is 

no longer possible because not all analytes are associated with hot spots. (D-E) Hot 

spot occupancy versus analyte concentration. As illustrated in (D), at lower 

concentrations, hot spot occupancy is <100% and peak intensities begin to correlate 

with the probability of an individual protein molecule being collocated with a hot 

spot, as opposed to the number of molecules at each hot spot (as in the high 

concentration regime). In the low concentration regime, quantification is 

accomplished by determination of occupancy frequency per se. Panel (E) illustrates a 
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concentration regime in which most or all hot spots contain at least one analyte 

molecule. Hot spot occupancy thus is ≅100% and signal intensity depends on the 

number of analyte molecules. Analyte molecules within a hot spot are shown in red. 

Analytes outside of hot spots are blue.  

3.3.1 Intensity based quantification (high concentration) 

We observed no qualitative differences among the spectra obtained at different Aβ42 

concentrations. Instead, as expected, a direct relationship between peak intensity and 

concentration was seen. At a single hot spot, at which multiple analytes can bind, 

Raman signal intensity is the sum of the individual intensities of all the Raman active 

analytes present. Increases in signal intensity with analyte concentration thus are 

observed until the limited volume of the hot spot is fully occupied by analyte 

molecules, after which increases in analyte concentration do not lead to increased peak 

intensity. This is seen clearly in Fig 3.7, in which the concentration-dependence of peak 

intensity at 935 cm
-1

 is shown. 
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Fig 3.7. Normalized peak intensity (AU) of the 935 cm
-1

 peak. All points are the averages of 

three replicates. Red bars signify standard deviations. If error bars are not visible, this indicates 

that the size of the standard deviation is less than the size of the data point.  

  

Fig 3.8. Log-log plot of the data from panel B. The blue line was produced by linear regression 

analysis (R=0.97). 

The data produce a sigmoidal curve within which a quasi-linear region is seen 

extending from ~10
-13

–10
-11

 M. The linearity within this region is more apparent from 

examination of a log-log plot (Fig 3.8), which we utilize because of the very broad 



 

60 

 

 

concentration regime studied. Linear regression analysis of these data yields a straight 

line with a correlation coefficient of 0.97.  

From the peaks emanating from protein, the 935 cm
-1

 peak has the highest relative peak 

intensity and the lowest signal/noise ratio. As such, experimental noise has less impact 

on its intensity, and thus the linear relationship between intensity of the 935 cm
-1

 peak 

and concentration provides a more accurate quantitation than the use of more isolated 

vibrational modes at 1087 cm
-1

 and 1124 cm
-1 

(Fig 3.9).  
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Fig 3.9. Concentration-dependence of Raman signal intensities at 1087 cm
-1 

and 1124 cm
-1

. 

Log-log plot of normalized peak intensity (AU) of the 1087 cm
-1

 peak (left panel) and 1124 

cm
-1

 (right panel). Data points are the average of three independent experiments, for which each 

includes >200 individual scans. Black bars signify standard deviations. The red line was 

produced by linear regression analysis for the points between 10
-13

 and 10
-11

 M (R
2
=0.85 and 

=0.76 for 1087 cm
-1

 and 1124 cm
-1

 respectively).  

We observed increasing protein concentration towards the perimeter of the applied 

droplet, induced by the surface tension of the liquid during drop casting, likely due to 

the “coffee ring” effect. We find that the concentration change is not high enough to 

influence the linear relationship between protein concentration and peak intensity (c.f. 

error bars on Fig 3.7) One explanation for the linearity of increasing SERS intensity 

with increasing concentration is that many protein molecules can fit within a single hot 

spot before it is filled, which would be difficult to observe if the hot spot size is closer to 

the size of a single analyte molecule. 
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3.3.2 Frequency based quantification (low concentration) 

As analyte concentration decreases, not all hot spots will have adsorbed analytes and a 

direct relation-ship between peak intensities and analyte concentration does not exist.  

For this reason, instead of quantifying signal intensities at individual hot spots, we 

implement a quantification method that considers instead the frequency of hot spots 

from which Raman spectra signals of the analytes are detectable. To determine this 

frequency, we scanned relatively large areas (~50 μm × 50 μm) of the hybrid platform 

using Raman mapping at a step size of 1 μm (i.e., a 1 µm2 area of pixels for each 

measurement).  

Fig 3.10. Intensity mapping of the 935 cm
-1

 peak at concentrations of 10
-13

, 10
-15

, and 10
-17

 M. 

The step size of the mappings was 1 μm and 2600 spectra were acquired at each concentration. 

This scanning encompasses the entire area of the original droplet, including the outer 

perimeter and inside of the dried ring, so that we get a representative sampling of the 

protein concentration. We performed this scanning on platforms on which we applied 

Aβ42 in concentrations ranging from 10-18–10-10 M. Fig 3.10 shows heat maps of the 

intensity data collected at concentrations of 10
-13

, 10
-15

, and 10
-17

 M. Inspection reveals 
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a substantial concentration-dependent decrease in frequency. A plot of the frequency 

distribution (Fig 3.11) shows that no signals were observed at Aβ42 concentrations of 

10-20 or 10-19 M. A direct relationship between frequency and concentration was 

observed was observed between 10
-18

–10
-15

 M (Fig 3.11, solid line).  

 

Fig 3.11. A log-log plot of concentration (M) versus hot spot signal frequency (%) determined 

in the concentration range of 10
-20

–10
-10

 M. For ease of visualization, points at 10
-20

 M and 10
-19

 

M, which had zero intensity, are plotted with frequencies of 0.0001%. Solid line shows result of 

linear regression analysis in the concentration regime 10
-18

–10
-15

 M, inclusive (correlation 

coefficient R = 0.97). 

Above 10
-15

 M, a concentration regime is encountered in which the majority of hot 

spots have at least one Aβ peptide and increasing Aβ concentration results in an 

increase in the number of peptides per pyramid but not in a substantial increase in the 

percentage of pyramids with at least one peptide (Table 3.3). Table 3.3 shows the 

frequency of observable spectrum in each of the reported concentrations, from two 
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in-dependent experiments, which is the number of detectable signals divided by the 

total number of scans across the area examined. If analyte concentration is within the 

transition region between partial and full hot spot occupancy, simple dilution will allow 

accurate quantification based solely on occupancy frequency. We note that Pérez-Ruiz 

et al., in studies determining tau concentrations 
33

, also have successfully employed a 

frequency approach (cf. Fig. 3.10 and 3.11 of this manuscript with Fig. 5 of Pérez-Ruiz 

et al.). This approach enabled attomolar limits of detection depending on whether 

samples were prepared in buffer (24 aM) or blood plasma (55 aM). Coupled with 

analogue measurements at higher concentrations, a dynamic concentration range of six 

orders of magnitude could be obtained. These capabilities compare favorably with our 

own—a dynamic range of 7 orders of magnitude and a limit of detection of 1 aM. 

Table 3.3: Hot spot signal frequency versus Aβ42 concentration. 

Concentrat

ion (log M) 

-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 

Frequency 

(Exp. #1)  

0.000 0.000 0.023 0.470 4.12 38.4 72.2 84.9 95.2 100 100 

Frequency 

(Exp. #2)  

0.000 0.000 0.011 0.102 3.85 28.7 59.2 87.2 96.0 100 100 

The frequencies (the number of hotspots with a detectable signal, divided by the total 
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number of scans) of observable signals from hot spots were determined over a 

concentration range of 10
-18

–10
-10

 M in two independent experiments. Frequency (%) = 

100 × (number of hot spots with detectable signal)/(total number of scans). 

It should be pointed out that the true detection limit is when the concentration of the 

analyte becomes so low that the probability of a single molecule existing within a 20 L 

droplet is <1. This probability is 0.37 at 10-19 M. This explains why, in practice, no 

 

that a single molecule will exist within an applied volume at any concentration and that 

a spectroscopist can spend sufficient time to find its location and signal on the platform. 

3.4  Hotspot intensities 

The signal intensities observed at 935 cm
-1

 in samples analyzed at concentrations of 

10
-17

, 10
-15

, and 10
-13

 M were incorporated into a data table (see text for rationale), each 

element of which represented the intensity from a single hot spot. The total numbers of 

hot spots at which signals were observed, 𝑛𝑖, were 14 (10
-17

 M), 100 (10
-15

 M), and 200 

(10
-13

 M). To produce a histogram of intensities, individual intensities were binned 

using a bin size of 100 µAU. Frequencies were calculated according to the formula 

𝑓𝑖 = 𝑛𝑖/𝑛𝑡 × 100; in which 𝑓𝑖 is percent frequency of occurrence of intensity i, 𝑛𝑖 is 

number of observations of intensity i, and 𝑛𝑡 is total number of intensity observations. 

The weighted average intensity for the histogram envelope observed in the 10
-17

 M 

sample was calculated according to the formula 𝐼𝑎𝑣𝑔 = ∑ 𝑖𝑎 ∗∞
𝑎=1∗10−4𝐴𝑈 𝑛𝑖/𝑛𝑡 . Plots 
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were done using Origin v8.4.  

We next sought to determine, in the frequency regime of concentration, how intensity 

was related to number of analyte molecules per hot spot. To do so, we created 

histograms of normalized spectral intensities at the same concentrations in Fig. 3.12 

(10
-17

, 10
-15

, and 10
-13

 M). We used the intensity of the 935 cm
-1

 peak (C-C bonds) for 

this purpose, as this peak had been used to quantify Aβ concentration. Our expectation 

was that the lowest observed intensity should be produced by a single analyte molecule 

and that subsequent signal intensities should be integer multiples of that lowest 

intensity. In Fig. 5, we observed a single node with an average intensity of 1.3 x 10
-4

 

AU. At a concentration of 10
-15

 M, this node also was observed, in addition to 

prominent nodes at intensities that were double or triple that intensity. This shifting of 

the overall frequency distribution to higher intensities was seen at 10
-13

 M as well, a 

concentration that produced nodes (blue arrows) at intensities that were 23-30-fold 

larger than the lowest intensity node, consistent with the conclusion that this 

distribution reflected hot spots containing 23-30 analyte molecules. When we 

compared the average signal intensities for each node envelope with those predicted 

based on multiples of 1.3 x 10
-4

 AU per monomer, we observed remarkable agreement 

(mean and standard deviation of the differences was 0.04 ± 0.09 × 10
-4

 AU; Table 3.4). 

These data support the conclusion that we are, at minimum, able to differentiate signals 

produced by 1-30 peptides per hot spot. 
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Raman intensities of proteins depend not only on analyte quantity per hot spot, but on 

the structure of the protein, its orientation relative to the hot spot surface, and the 

electromagnetic field intensity. Our normalization procedure controls for the latter 

factor. The variation in the former two factors is reflected in the widths of the overall 

intensity envelopes observed in the histograms. These increase with concentration, but 

even at a concentration of 10
-13

 M, we see that the envelopes reflect a discrete range of 

analyte numbers, as opposed to including intensities from the continuum of possible 

analyte numbers per hot spot. This likely reflects the fact that the application and 

binding of protein to the matrix of pyramids is consistent with simple laws of mass 

action.  
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Fig 3.12. Hot spot intensities. The graphene normalized signal intensities of the 935 cm-1 

Raman peak acquired at Aβ concentrations of 10-17, 10-15, and 10-13 M are presented in 

histograms. Axes are frequency (ordinate) and normalized intensity (abscissa). Numbers at blue 

arrows signify the number of monomers producing the observed intensities. 



 

69 

 

 

Table 3.4. Agreement of predicted and observed weighted average hot spot intensities. 

Leftmost column displays number of Aβ monomers per hot spot. "Predicted Intensity" is 

number of peptides times intensity per peptide (1.3). "Observed Intensity" is experimentally 

observed intensity.  
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3.5 Conclusion 

This work demonstrates the quantification ability of the graphene-gold hybrid SERS 

platform using Raman mapping. The platform exhibits a linear relation between peak 

intensity and concentration at single hot spots (high analyte concentration), as well as a 

linear relationship between detection frequency and analyte concentration when 

scanning multiple hotspots (low analyte concentration). The platform is capable of 

single-molecule detection. The useful dynamic range of the hybrid platform of seven 

orders of magnitude (3 orders of magnitude for higher concentration and 4 orders of 
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magnitude of lower concentration) offers the possibility that the platform could be 

useful in a broad range of applications such as early stage diagnosis of Alzheimer’s 

disease. 
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Chapter 4  

Orientation Dependence 

4.1  Introduction 

The detection and identification of biomarkers is vital for early diagnosis of disease
1-3

. 

Yet, for many diseases, there exists few useful biomarkers that can be identified, 

which requires a high sensitive and high specific detecting method. Surface-enhanced 

Raman Scattering (SERS) is a powerful analytical technique that is routinely used in 

identifying single molecules with high specificity
4,5

. With its extremely large 

scattering cross sections (10
-17

-10
-16

 cm
2
/molecule), SERS is often adopted in 

biological research
4
. The well-studied Raman amide peaks have been leveraged to 

infer protein secondary structure
6
, which is directly related to protein functionality. 

SERS detection is free of labels
9,10

, a feature that is important for studying proteins. 

Labels inevitably change the molecular structure
7-8

, which is vital to protein 

functionality. As a result, labels change the molecular structure and prevent the study 

of conformational state of proteins. 
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The ability of SERS to distinguish minute differences between protein types has led to 

the fundamental question of whether the differences in SERS spectral features are 

caused by difference in molecular type or an array of other parameters including 

orientation, protein-protein interaction, etc. Intuitively, one could expect that even for 

a pure sample of a specific type of biological molecules whose structure tends to be 

much more complex than small inorganic molecules, SERS spectra would vary by a 

large extent due to factors such as their random orientation on SERS surface. In this 

sense, it is important to understand whether such variation in spectral features will 

overshadow the differences between molecular species leading to degraded 

specificity. This study aims to answer this question focusing on one of the several 

variables, namely orientation dependence. 

The study of orientation of individual amino acid is made possible by the 

single-molecule sensitivity of our SERS platform
11,12

. By exploiting the extremely 

large effective cross sections of SERS, it is possible for us to obtain SERS spectra 

with good signal-to-noise ratio from individual proteins/peptides. Objective 

verification of single-molecule detection is ensured by bi-analyte approach
13,14 

commonly employed in biological research (see Method section for details).  

Here we report the orientation dependence of bio-molecules at single molecule 

sensitivity by comparing the standard deviations of relative peak intensity from 

individual molecules randomly placed over SERS substrate surface. Au nano pyramid 
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arrays with well-controlled dimensions were fabricated and used as SERS substrates 

rendering single molecule sensitivity. The capability of SERS to probe the orientation 

difference of individual molecules is demonstrated first followed by the observation 

of the variation of peak intensity from analytes consisting of multiple bio-molecules 

to show the orientation dependence. It is shown that despite of the variation of protein 

types, there is a quantitative trend of decreasing standard deviation in peak intensity 

with increasing molecule size.  It is interesting to note that the variation of the 

intensity of the peaks derived from Amide III remain low for all proteins presumably 

because the secondary structure of protein is determined by all the bonding which 

orientation counteract against one another, indicating that secondary structure of 

protein can be characterized by SERS with high specificity. Simulation results 

corroborate the experimental observation in that the features of SERS spectrum being 

completely independent (to within experimental uncertainty) of molecule orientation 

for large molecules. This last point is the most important outcome of the current study 

and is of critical importance to explaining the exceedingly high specificity of SERS of 

proteins reported by researchers worldwide.  

To our knowledge, this is the first time orientation dependence of Raman 

spectroscopy has been systematically studied at single molecule level. Considering 

the size of molecules exist in human body, the orientation dependence study sets a 

solid foundation for not only in vitro differentiation and secondary structure study 
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capability using SERS, but potential in vivo detection including disease diagnostic as 

well. 

In this chapter, a detailed analysis on the influence of orientation on protein 

differentiation is presented. In Chap 4.2, we present the method of bi-analyte analysis 

and standard deviation analysis. In Chap 4.3, we use physics method and simulation 

analysis to explain the possibility of doing differentiation with orientation difference. 

Chap 4.4 use experimental data to validate our theory and Chap 4.5 further expand the 

theory into showing the stability of secondary structure analysis using SERS.  

4.2 Experiment procedure 

4.2.1 Bi-analyte analysis 

To test the orientation dependence of SERS, we first need to make sure that the 

analyte we are testing is single molecule concentration. One of the most well accepted 

methods to validate single molecule is bi-analyte analysis. Bi-analyte analysis pin 

down unambiguous proof single-molecule sensitivity by using two analyte molecules 

at low concentration.  

The low concentration of each of the 2 analytes suggests that, statistically speaking, 

there cannot be much more than 1 molecule per colloid. If we are able to observe 

three different types of spectrum (for each analyte and for the two combined), we 

know we have not reached single molecule concentration. As we further lower the 
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concentration, only two types of spectrum appear. Statistically speaking, it is unlikely 

that each of the colloid contains more than one molecule and none of the collides has 

both types of the molecule.  

In our case, solutions containing two types of protein of similar size and concentration 

were mixed, deposited on the gold nano-pyramid substrate and let dry. Raman 

measurement was performed. The bi-analyte analysis is a contrast based spectroscopic 

technique that monitors the spectra of two types of protein at the same time. As the 

solution being progressively diluted, the frequency of both proteins exist at the same 

hotspot decreases monotonically until only one of the two protein spectra being 

present at each hotspot. In our experiments, this occurred at a concentration of 10
-9

 M. 

The bi-analyte method is by far the only reliable method of making sure that a 

spectrum is truly from one single molecule. 

As a result, we can use a mixture of the two analytes to circumvent many problems 

associate with the uncertainty of single molecule detection and further understand the 

orientation dependence of each molecule.  

4.2.2 Standard Deviation analyisis 

Standard deviation is a number used to tell how each sample in the measurement spread 

out from the mean of the group. The smaller the number is, the more close to the 

average the samples are. In our case of SERS analysis, if for one molecule, the standard 
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deviation of all the measurements is low, then we know the spectrum of the sample is 

relative stable and easy to be distinguished (from other types of molecule). 

To calculate the standard deviation, we use the standard formula: 

σ =  √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

In this formula, N means the total sample number; μ stands for the average of the entire 

sample tested. 

We try to understand the change of the standard deviation of SERS spectrum and 

especially use peak intensity as the main character tested. So we try to calculate the 

standard deviation of each characteristic peak and evaluate whether the σ is small 

enough for us to know that the protein sample is distinguishable from the other proteins.  

Simulation of standard deviation was done to understand the theoretical limitation of 

the physics model using the computer language R with the function “runif” for 

generating random numbers and function “sd” for calculating the standard deviation. 

Each of the random numbers was generated between 0 and 1 representing the cosine 

value of the angle between EM field polarizations and bonding direction. 1000 random 

numbers were created for each group to calculate the standard deviation. Potential error 

of this simulation may arise from the amino acid orientation preference. E-field vector 

of plasmon resonance being along the surface norm whereas that of the amino acids 
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might have a preference of being perpendicular to the surface norm due to 

protein-surface interaction. Multiple groups of random number were created to 

simulate the increase number of same bonding. Parameter “geom intensity” was added 

in “qplot” function of “ggplot2” package to plot the data distribution for each group. 

4.2.3 Experimental settings 

Proteins: Neurotensin (8-13) (6 amino acid) and Substance P (7-11) (5 amino acid) 

were purchased from GenScript (Piscataway, NJ). Human MANF/ARMET Protein 

(182 amino acid) and Human CD137/4-1BB Protein (225 amino acid) were purchased 

from Sino Biological (Wayne, PA). All proteins were of the highest purity available. 

Substrate Fabrication: The gold nano-pyramid platform is based on polystyrene (PS) 

sphere lithography. Readers interested in learning about the details of the substrate 

fabrication are referred to published literature 
5
. PS sphere was used to self-assembly 

and form monolayer on SiO2/Si wafer surface to create hexagonal patterns. The 

sample was then dry etched by O2 plasma (200W, 50s) to reduce PS sphere size. The 

PS spheres are used as the mask for plasma etching to remove the exposed SiO2 film. 

The substrate is then etched in KOH solution (60%) for 2min to form pyramidal 

structures on Si surface with patterned SiO2 as etch mask. 200nm Au film was 

deposited on the mode and epoxy was used to glue the Au film on another wafer. Au 

nano-pyramids with a 200nm size can be peeled off as the gold nano-pyramid 

platform.  
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Raman measurement: 20μL of protein solution was pipetted onto the center of the 

platform and dried in a fume hood. Raman spectra and mapping of molecules were 

carried out using a Thermo Fisher DXR 2xi Raman Imaging Microscope under 

ambient condition. The excitation wavelength is 785nm from a GaAlAs diode laser. 

The power of the laser was kept at 0.5mW and the spectroscope was accomplished 

with a 300 lines/mm gating. An objective lens of 50x (Long Working Distance) were 

used. A step size of 300nm was used for mapping. Raman data were analyzed using 

Renishaw WiRE 4.2 software.  

4.3  Theoretical analysis for protein orientation dependence 

4.3.1  Physical explainations 
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Fig 4.1. Schematic diagram of the polarization configuration in SERS. Red arrow indicate the 

electric-field direction, which is perpendicular to the substrate surface. Blue bonds are the same 

type for both figures. (a)  Light incidence where a single bond has θ0 solid angle with E-field 

direction. (b) Light incidence where multiple bonds interact with E-field and form multiple 

angles. 

We show the polarization configuration in Raman spectroscopy. The Raman peak 

intensity is proportional to the incident light intensity as well as the cosine of the 

angle between the polarization direction of the EM field of local plasmon resonance 

and the orientation of the Raman active bond. As normalization was done to rule out 

the impact of laser intensity variation and plasmon resonance intensity, the relation 

shown in Fig 4.1 can be obtained for the Raman peak intensity of individual Raman 

active bonds. When multiple bonds of the same type exist within one hotspot, 

multiple angles contribute additively to the observed peak intensity. As the number of 

bonds increases, the values of cosine function of different angles counteracts each 

other, leading to a convergence in standard deviation.  
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4.3.2  Simulation results 

 

Fig 4.2. Standard deviation (SD) value of the peak intensity for Tyr (850cm
-1

 and 1360 cm
-1

), 

C-N (1140 cm
-1

), CH3 (1386 cm
-1

) and Phe (1000 cm
-1

) peaks for the four types of protein. The 

SD values of different peak intensity for the two peptides (Substance 5 amino acid, Neurotensin 

6 amino acid) and two proteins (MANF 182 amino acid, CD137 255 amino acid). The SD value 

decrease from substance to MANF, and almost remain steady between MANF and CD137. 

We performed simulation (see materials and methods) to validate the physics model 

(Fig 4.2.). Amino acid number from 1 to 13 were simulated using 13 groups of random 

cosine number (each group consists of 1000 random number from 0-1) to simulate the 

random orientation of Raman active bonds on SERS substrate relative to the incident 

light direction. The simulation was repeated five times to ensure reproducibility. We 

then calculated and plotted the standard deviation to compare with experimental results. 

Relative standard deviation so obtained ranges from 0.32 to 0.07 for random angles 
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with a sharp decrease as amino acid number increases from 1 to 7 and the decrease 

becomes slower and eventually stops at 12 amino acids. From the three distributions at 

amino acid number 1, 6 and 13, we attribute the decrease in standard deviation to the 

trend of uniformity in summation of the values of cosine function with random angles.  

4.4  Orientation dependence of protein differentiation 

Our initial experiment sought to establish the spectral characteristics of multiple types 

of protein at single molecule concentration. The comparison between 

orientation-dependent protein Raman signatures is valid only after single molecule 

detection is established. Bi-analyte analysis, being the only reliable method to ensure 

that a spectrum being indeed from one single molecule, is utilized for both peptides 

(Neurotensin (8-13) and Substance P (7-11)) and proteins (Human MANF/ARMET 

Protein and Human CD137/4-1BB Protein). At around 10
-9

 M concentration, we 

observed spectral responses from over 85% of SERS hotspots to be of only one type of 

bio-molecule, firmly proving the single molecule detection capability. 100 Raman 

spectra were collected from individual molecules of each sample. All spectra were 

normalized by the highest peak to rule out the impact of incident light intensity. Figure 

1 and 2 show the average Normalized Raman intensities of peptides and proteins from 

bi-analyte analyses, respectively. Common predominant peaks in proteins occurred at 

850 (Tyr), 1000 (Phe), 1140 (C-N bonding), 1360 (Tyr) and 1386 (CH3) cm
-1

. The 

orientation difference does not affect the position of Raman peaks as evidenced by our 
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experimental results shown in fig.1 and 2. The only factor leading to the normalized 

spectral difference between individual molecules of the same protein is orientation. 

 

Fig 4.3. SERS of substance P (green) , neurotensin (red), and a mixture of the two peptides 

(blue) on hybrid platform. Feature wavenumbers are listed above the peaks for individual 

amino acids. Bi-analyte analyses are done to validate that individual spectra are indeed from 

single molecules.  
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Fig 4.4. SERS of CD137 (red), MANF (blue), and a mixture of the two proteins (green) on a 

hybrid platform. Feature wavenumbers are listed above the peaks for individual amino acids. 

Bi-analyte analyses are done to validate that individual spectra are indeed from single 

molecules. 

Standard deviation was used to show the intensity variation of individual protein 

molecules. We define the change in intensity using the absolute change in intensity 

divided by the normalized average peak intensity to make all peaks comparable. For 

each type of protein we tested, standard deviation of peak intensity was calculated for 

multiple wavenumbers, including Tyr (850cm
-1

 and 1360 cm
-1

), Phe (1000 cm
-1

), C-N 

bonding (1140 cm
-1

) and CH3 (1386 cm
-1

) were calculated (Fig 4). The X- axis of the 

figure represents the atomic weight of the substances ranging from Substance P (5 

amino acid (aa)), Neurotensin (6aa) to Human MANF (182aa) and Human CD137 

(255aa). In Substance P peptide, Tyrosine only appears once in the peptide structure 
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and the standard deviation for the Tyrosine characteristic peak is 0.25. The two types 

of protein (Human MANF and Human CD137) have multiple Tyrosine in their 

protein structure, showing a low standard deviation of 0.06-0.07. Similar situation 

happens to the amino acid Phenylalanine. The standard deviation for Phe in 

Neurotensin peptide (2 Phe in its structure) is 0.18 while the standard deviation is 

0.06-0.07 for the two proteins. For the two peptides (Substance P and Neurotensin), 

the reason for their difference in amino acid characteristic peak is that Substance P 

contains only 1 Tyr while Neurotensin contains 2 Phe, leading to the two amino acid 

orientation counteract against one another. MANF and CD137 shows almost same 

deviation difference in peak corresponding to the 2 types of amino acid (Tyr and Phe). 

The two types of bonds (CH3 and C-N) appears in every amino acid, and this leads to 

smaller standard deviation than the two amino acids, which appears less frequently in 

the proteins. A clear trend of convergence in standard deviation with increasing 

protein size is observed. It can be concluded that orientation has less impact on 

spectral signature as the size of the molecules becomes larger.  
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Fig 4.5. Standard deviation (SD) value of the peak intensity for Tyr (850cm
-1

 and 1360 cm
-1

), 

C-N (1140 cm
-1

), CH3 (1386 cm
-1

) and Phe (1000 cm
-1

) peaks for the four types of protein. The 

SD values of different peak intensity for the two peptides (Substance 5 amino acid, Neurotensin 

6 amino acid) and two proteins (MANF 182 amino acid, CD137 255 amino acid). The SD value 

decrease from substance to MANF, and almost remain steady between MANF and CD137. 

4.5  Orientation dependence of secondary structure 

Amide III peaks containing secondary structure information of proteins such as 

protein-protein interaction and conformational changes are of vital importance for the 

study of protein functionality. By zooming in on the spectral region of 1180-1320 

cm
-1

 of the averaged Raman spectroscopy of all four proteins at single molecule 

concentration, Amide III peak is clearly visible as shown in Fig.6a. Peak 

corresponding to β-sheet (1230 cm
-1

), random (1250 cm
-1

) and α-helix (1320 cm
-1

) 

were all marked in the figure. 
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Fig 4.6. SERS spectrum of Amide III (1180-1320cm
-1

) for substance, neurotensin, MANF and 

CD137. Key peak related to secondary structure of protein: α-helix, β-sheet and random 

structure are shown in the spectra. 

When evaluating the orientation impact on secondary structure detection of protein 

using SERS, the standard deviation was calculated for the three important Amide III 

peaks as is shown in Fig. 6b. The highest value (0.062) of standard deviation appears 

for the substance β-sheet (1230 cm
-1

) peak with the comparable value of the α-helix 

(1320 cm
-1

) peak and (0.061) of Neurotensin. All other peaks are of the standard 

deviation value lower than 0.06, which is below experimental uncertainty, and the 

value does not show amino acid number (molecular weight) dependence. Compared 

with the simulation results in Fig. 5, all the standard deviation values of Amide III are 

below the convergence value calculated by simulation. This shows that the Amide III 
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peaks are stable for all protein tested. This observation indicates that SERS is a 

promising method in understanding protein secondary structure.  

 

Fig 4.7. the SD for the three peaks respectively for the two peptides and two proteins.  

4.6 Conclusion 

We have shown through experimental study and simulation that for biomedically 

relevant protein, the distribution of the various angles of amino acids over SERS 

surfaces is not expected to degrade the specificity of protein identification. The four 

types of protein all show a high degree of uniformity in protein signature.  

Hundreds of SERS spectra from randomly oriented single molecules are 

systematically  

studied with emphasis on the impact of molecular orientation on SERS spectral 

features. The single molecule nature of each of the SERS spectrum is ensured by 

utilizing bi-analyte analysis and made possible by the single-molecule sensitivity of 
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the SERS substrate employed. The molecules are dispersed randomly over the SERS 

substrate surface with their orientation being distributed stochastically. The standard 

deviation in peak intensity of common peaks of amino acids is shown to be dependent 

monotonically on the size (and thus the number of amino acids) of individual protein 

molecules with orders of magnitude smaller standard deviation from proteins 

containing more than 13 amino acids. Numerical simulation has shown that 

orientation has little impact on SERS peak intensity variation of protein with more 

than 13 amino acids and have no impact on secondary structure detection regardless 

of protein size, consistent with the experimental observations. This study offers a 

plausible explanation of the reason that the random orientation of biomedically 

relevant proteins does not hinder the repeatedly demonstrated high level of specificity 

of SERS in identification of biological entities including proteins, exosomes and cells. 

This work provides a solid foundation for SERS to become an important tool for 

bio-medical applications.  
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Chapter 5  

Cerebrospinal fluid (CSF) diagnostic using SERS 

5.1  Introduction 

5.1.1  CSF and Alzheimer’s disease 

Alzheimer’s disease (AD) has affected several million people all over the world. The 

disease affects older adults and is the most common cause of dementia
1-4

. No cure or 

disease-modifying therapy exists
5
 currently and the disease inevitably progresses in 

all patients
6-8

. Besides, there is no currently a well-established single biomarker test to 

diagnose AD. Current diagnoses rely on medical history, cognitive testing, and a 

variety of biomarkers including brain imaging, proteins in cerebrospinal fluid (CSF), 
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proteins in blood, and genetic profiling
7,9,10

. As a result, diagnosing AD patients is a 

lengthy and costly process, which impediment patient care and increase healthcare 

cost. The development of a biomarker that allows detection of AD during the 

pre-symptomatic phase is critical to the discovery and development of effective AD 

diagnoses and treatments
11-13

.  

Cerebrospinal fluid is a liquid that surround brain and spinal cord and is frequently 

used for neurologic disorder disease diagnostic. As the fluid travels, it picks up 

supplies from the blood and gets rid of wastes from brain cells. Diseased CSFs can 

carry different contents compared to normal ones and thus can be used as a biomarker 

for multiple diseases.  

Body fluid such as CSF, plasma and urine are considered as potential source for 

biomarkers for AD diagnostic. CSF biomarkers are of the largest interest due to their 

low cost, minimal invasiveness, and high diagnostic accuracy. Compared to blood, 

CSF is in direct contact with the extracellular space of the brain due to the existence 

of blood brain barrier and can reflect the biochemical changes in side the brain. Some 

biomarkers such as Aβ42 and Tau protein exists in CSF
12,14-16

, and other unknown 

markers or a combination of multiple proteins might work together as a disease 

prediction signal. Some of the state to art biomarker progress are listed in the table 5.1. 

The limited number of published studies on using multi-model approaches yield only 

limited success. These findings highlight the importance of the highly heterogeneous 
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nature of AD pertaining to biomarker discovery. This leads to the proposed focus on 

multi-modal biomarker discovery approach.  

Table 5.1. Biomarkers used for disease diagnostic in CSF. 

Bio-marker Advantages Limitations Ref 

Aβ42, t-tau, 

p-tau/ 

Aβ42, t-tau/ 

Aβ42 

1. Can correlate AD 

directly, 

2. Highly sensitive and 

specific, 

3. Can detect AD 

progression. 

1. Invasive, sample has 

to be collected by lumbar 

puncture, 

2. Accuracy of 

diagnostic is not ideal.  

 

 

5.1.2 Machine learning and diagnostic 

Machine learning, together with artificial intelligence, has been providing inexpensive 

and available means to improve the healthcare condition worldwide. In recent years, 

advanced computational methods have been employed to meet the needs of sensitive 

and fast diagnostic
17,18

.  

Some mature technologies have been applied in disciplines such as oncology, 

pathology and rare diseases. Stanford University researchers have trained an 

algorithm to diagnose skin cancer using deep learning (CNN), by training the 

algorithm with 130,000 images of skin lesions representing over 2,000 diseases. New 
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platforms have appeared to diagnose rare disease based on facial dysmorphic features. 

It is currently available only to trained clinicians to prevent false positive, instead of 

having own diagnostic capability, but is still a huge step forward on the diagnostic 

frontier
19-21

.  

Here in this work, we try to apply advanced machine learning tools in the diagnostic 

of Alzheimer’s disease. Detailed methods used in the study will be detailed described 

in Experimental procedures section.  

5.1.3 Current diagnostic methods for AD 

Mini-mental state examination (MMSE) test is used extensively in clinical and 

research settings to measure cognitive impairment. Any score greater than or equal to 

24 points (out of 30) indicates a normal cognition. Clinical dementia rating (CDR) is a 

numeric scale used to quantify the severity of symptoms of dementia. The composite 

rating of the score is shown in Table 5.2. 

Table 5.2. Interpretation of CDR score. 

Composite Rating Symptoms 

0 None 

0.5 Very mild 

1 Mild 
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2 Moderate 

3 Severe 

The CDR test has shown a very high reliability, and appears to be a reliable and valid 

tool for assessing and staging dementia. However, the test takes a long time and it is 

not possible to capture changes over time.  

5.2 Experimental procedures  

5.2.1 Patient profile 

Thirty CSF samples were obtained from University of California, Irvine, Institute for 

Memory Impairment and Neurological Disorders, Alzheimer’s Disease Research 

Center (UCI MIND, ADRC), and John Ringman, MD, University of Southern 

California. Several characteristics of the patients CSF have already been measured, 

using standard procedures among ADRC’s. These include the levels of Aβ42, total-tau, 

and phospho-tau, as well as the Mini-mental state exam (MMSE) and the clinical 

dementia Rating (CDR). A statistical summary of the patient data is shown in Table 

5.3. This is the patient sample we are able to acquire for now.  

Table 5.3. Patient information summary 

 Healthy  Dementia FAD+ FAD - 

# of cases 10 9 5 4 



 

98 

 

 

Male/ Female 3/7 4/5 3/2 3/1 

Age (years) 76.6 (+/- 5.5) 79 (+/- 4.9) 36 (+/- 12.9) 34 (+/- 14.8) 

Adjusted age  NA NA -10 (+/- 10.6)  NA 

CSF Aβ42 

(pg/mL) 

645.6 (+/- 

353.0) 

375.9 (+/- 

305.8) 

186.2 (+/- 60.4) 418.8 (+/- 

174.9) 

CSF Total-Tau 

(pg/mL) 

364.9 (+/- 

265.3) 

570.6 (+/- 

529.4) 

516.9 (+/- 

363.3) 

312.1 (+/- 

266.8) 

CSF 

phospho-Tau 

(pg/mL) 

83.8 (+/- 43.7) 87.2 (+/- 43.6) 99.2 (+/- 50.8) 73.7 (+/- 39.8) 

MMSE (0-30) 29.9 (+/- 0.3) 19.6 (+/- 3.6) 25 (+/- 7.9) 28.8 (+/- 0.5) 

CDR-Sum of 

boxes (0-18) 

0.1 (+/- 0.2) 9.1 (+/- 2.0) 1.6 (+/- 3.0) 0.25 (+/- 0.5) 

CDR-global 

(0-3) 

0.1 (+/- 0.2) 1.44 (+/- 0.5) 0.2 (+/-0.45) 0.13 (+/- 0.25) 

5.2.2 Desalting process and ziptip 

The crystallization of salt in CSF makes it relatively difficult to get uniform SERS 

spectra. As is shown in Fig 5.1, majority of the surface is covered with crystallization 

and only ~40% of the places can obtain SERS signal (red spectra in Fig 5.2). 

Desalting can be a relatively easy and stable method to increase the yield of SERS 

results.  
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Fig 5.1. Optical microscope image of CSF under 50 x magnifications. 

 

Fig 5.2. Spectral mapping of the grid area in Fig 5.1. 

The whole process is completed in the following steps: Aspirate 10 μL wetting 

solution into tip and dispense to waste. Repeat. Apsirate equilibration solution into tip 

and dispense to waste. Repeat. Bind peptides to ZipTip pipette tip by aspirating and 

dispensing 3-7 cycles (simple mixtures), up to 10 cycles (complex). Aspirate washing 

solution and dispense to waste. Repeat wash once. A 5% methanol in 0.1% TFA/water 

wash can improve desalting efficiency. Dispense 1-4 μL of elution solution into clean 

0.5 mL Eppendorf microcentrifuge tube using a standard pipette tip (Note: if μ-C-18, 
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dispense 0.5-2 μL of elution solution). Aspirate and dispense eluant through ZipTip at 

least 3 times without introducing air. Sample recovery can be improved by increasing 

elution volume to 10 μL (but at expense of concentration). 

To further make sure that the desalting process does not change the spectral features 

of SERS spectrum, a comparison between the original spectrum (CSF diluted 100 

times) and the ziptip result is done. Hierarchical clustering algorithm (HCA, see next 

section for more detail) is done to do the validation. 32 different CSF sample is tested 

using SERS and an averaged spectrum is calculated for each of them. We further did 

ziptip desalting for one of them (unlabeled, double blind) and did SERS with same 

condition and also calculated the average spectrum (sample 34). A comparison group 

is made for the same unknown CSF sample without the dilution (sample 33) HCA 

analysis is done for the 34 spectrum. We take the intensity at each wavenumber as one 

dimension and did HCA with the high dimension data. The result is shown in Fig 5.3, 

indicating that the ziptip sample is the same as sample 18, and we can further know 

that the spectral change after ziptip is even smaller than dilution. As a result, we are 

able to safely use ziptip for fast and accurate CSF analysis.  
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Fig 5.3. HCA analysis of the ziptip result (sample 32 and 34) with 30 different CSF samples.  

5.2.3. Machine learning analysis 

Hierarchical clustering algorithm (HCA) 

HCA is a classification method which builds a hierarchy of clusters by merging or 

splitting clusters in a greedy manner. In order to decide which clusters should be 

combined (for agglomerative method) or how the cluster should be split (for divisive 
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method), a distance matrix is formed to define the similarities between nodes and 

clusters.  

The least dissimilar pair is defined by the distance matrix: 

𝑑[(𝑟), (𝑠)] = 𝑚𝑖𝑛 𝑑[(𝑖), (𝑗)] 

where the minimum is over all pairs of clusters in the current clustering.  

Clusters with the highest similarities are merged and form a single cluster and the 

distance matrix can be further updated. The proximity between the new cluster, 

denoted (r,s) and old cluster (k) is then defined as: 

𝑑[(𝑘), (𝑟, 𝑠)] = 𝑚𝑖𝑛 𝑑[(𝑘), (𝑟)], 𝑑[(𝑘), (𝑠)] 

The analysis in this work is done using R. The function “hclust” is used to do the 

HCA analysis and the distance matrix is calculated by the function “dist”. Linkage 

method is changed by adding “method” in the “hclust” function. The result is plotted 

in a dendrogram format.  

5.2.4 CNN analysis 

Considering the collected SERS spectrum has only one dimension which covers the 

entire spectrum of interest, we employed a one-dimensional CNN to process and 

classify the SERS spectral data. The convolutional layers of our model use ReLU 

nonlinear activation function, the convolutional layers are connected by max-pooling 
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layers which down-sample the feature maps, the output of last max-pooling layer is fed 

to two consecutive fully-connected layer to give the final classification result. During 

the training process, we used the scalar sum of weighted losses to train the CNN model.  

To increase the training set, we performed the following data augmentation methods on 

the training data: (i) Random shifting of each spectrum by a few (1~2) wavenumbers. 

(ii) Introduction of a random noise onto each spectrum. (iii) We also randomly 

produced linear combinations of spectra collected from the same mapping procedure. 

The Adagrad algorithm was used to train the model, and early stopping was applied to 

prevent overfitting. 

 

5.3   Reproducibility analysis 

Being the first time to use the hybrid SERS platform in human fluid, we need to first 

validate that we have the ability to differentiate each individual. To prove that the 

platform can work as a clinically viable assay of cerebral spinal fluid (CSF) for 

diagnosis of neuro-degenerative diseases, 3 replicates of CSF sample from 5 

individuals are prepared for classification. The study was designed to be double-blind 

in which the identities of the samples are kept anonymous to the personnel conducting 

the measurements and data analysis. 

Each of the fifteen tubes of CSF samples was diluted by a factor of 100 and applied to 

the hybrid SERS platform. SERS spectra were acquired in the wavenumber range of 
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550-1650 cm
-1

. SERS mappings with a step size of 3μm (i.e., independent areas of 9 

µm
2
 each) are done with over 80 spectra being obtained for each sample. The 80 

spectra are then averaged to one representative spectrum. The averaging process by 

nature allows the biological variability of the patient CSFs be represented in a linearly 

proportional fashion, though the actual spectral spread of each sample has been lost.  

Direct observations of figure 1 show clearly that multiple samples share similar 

spectral features. The following samples share similar features in terms of the most 

intensive peaks: sample 1 and 4 (1405 cm
-1

, 1439 cm
-1

), sample 2, 6, and 12 (~750 

cm
-1

, 913cm
-1

, 1239 cm
-1

, 1578 cm
-1

), sample 5 and 7 (~1100cm
-1

, 1295cm
-1

, 1420 

cm
-1

), and sample 8 and 9 (816 cm
-1

 and 1297 cm
-1

).  

It is difficult to quantitatively determine the degree of similarity and dissimilarity 

between the 15 averaged spectra using naked eyes. To analyze the grouping of the 

samples, we use hierarchical clustering algorithm (HCA) to more scientifically group 

the replicates. Integration normalization is done when comparing samples. To do the 

HCA, we use intensity of each wavenumber of the averaged spectra as a dimension 

and try to group the samples using single linkage of aggregation hierarchical 

clustering.  
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Fig 5.4. SERS spectra of the 15 unknown CSF samples. 

Figure 5.4 shows that we are able to find five clear groups of samples by the peak 

intensity of each wavenumber. The degree of similarities between the various samples 

is indicated by the proximity to zero of the lines connecting them. The closer the 

connecting line to 0, the more similarities the two samples share.  
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Fig 5.5. HCA analysis for the 15 unknown CSF samples with 100% accurate clustering result.  

Comparison between the sample grouping of the double-blind study shown in Fig 5.5 

and the clinical diagnosis of the patients from whom the CSF samples were obtained 

shows that the accuracy of the grouping performed under double-blind condition is 

100%. This outcome shows convincingly that SIM has the promise of becoming a 

clinically viable assay for diagnosis of neuro-degenerative diseases, for which the 

only means to date is psychoanalysis (with debatable accuracy).  

The results of this double-blind study represents a giant step forward in establishing 

the power of the platform in analyzing patient samples despite of biological 

variability.   

To further examine the uniformity of each sample, we first performed training and 

evaluation in a leave-one-out approach. To be specific, each time, one spectrum was 
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picked out and used for testing while the rest data was used for training. The procedure 

was repeated until every spectrum was left out once, then the average accuracy across 

all the data was computed. The result shows an accuracy of 97.7% for spectrum of 

normal sample and 93.3% for spectrum of abnormal sample, which suggests there is a 

good uniformity over the SERS spectral data of normal and abnormal sample, and those 

two types of sample are differentiable. 

5.4  CSF as a diagnostic media 

We also performed leave-one-group-out evaluation on the dataset because 

leave-one-out evaluation cannot determine whether our model is capable of exploring 

the relationship between the SERS testing results on a subject’s CSF sample and the 

subject’s diagnosed syndrome (normal or abnormal), because the spectral data 

collected from the same CSF sample is likely to be dependent on that individual sample, 

thus forming a group of dependent data, so for a unseen sample that is to be classified, 

the correlation information of its spectral data should not be given to the model during 

training. Therefore, for each round of evaluation, we need to make sure that all the 

spectral data in the test set comes from groups that are not represented at all in the 

corresponding train set. Since we have a total of 17 CSF samples, leave-one-group-out 

evaluation is a suitable approach for us to know whether our model generalizes well on 

the unseen samples. In detail, during each evaluation, the entire SERS spectral data 

collected from one CSF sample was used for testing while the rest data was used for 
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training, this kind of evaluation was repeated until every group of spectral data was left 

out once. 

We need to point out here that the data set is much smaller than usual machine 

learning training set and this experiment is for preliminary test only. Next step of the 

experiment is described in future work part. The data set will be enlarged and more 

accurate diagnosis result will be used (post-mortem). 

The final classification result also takes the group dependency into consideration. In 

each round of evaluation, after the trained CNN made predictions on every testing 

spectrum, all the predictions were then combined through a majority vote to produce 

the final prediction, i.e., the class with a higher percentage of predictions was 

considered to be the predicted class of the testing sample. We used the percentage of 

predictions leading to the predicted class as a score to represent the likelihood that the 

testing sample belongs to the predicted class. 

We tested on all 17 CSF samples and an overall 94% diagnostic rate has been achieved. 

Among which, normal sample has an accuracy of 8/8 (100%) and an average score of 

89.2, diseased sample has an accuracy of 8/9 (88.9%) and an average score of 72.0, as 

is shown in Table 5.4. 
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Table 5.4. Test score for 17 non-FAD samples. 

Sample Label Score 

A NORMAL 91.85 

F NORMAL 85.94 

G NORMAL 84.09 

H NORMAL 92.86 

I NORMAL 80.22 

M NORMAL 90.91 

X NORMAL 87.5 

AA NORMAL 100 

B DEMENTIA 54.55 

N DEMENTIA 88.64 

O DEMENTIA 86.11 

R DEMENTIA 31.25 

S DEMENTIA 100 

U DEMENTIA 89.80 

W DEMENTIA 57.81 

Y DEMENTIA 65.08 

AB DEMENTIA 75 

Within this table, we are able to see that sample R is the only one with a prediction 

score less than 50, indicating we are not able to tell R is a diseased sample. To further 

understand this sample, we refer to her cognitive test score. Her MMSE score is 25, 

which should be diagnosed as normal. However, her CDR test score is far away from 

normal (9 for CDRSUM and 1 for CDRGLOB). These scores present mixed 



 

110 

 

 

information for diagnostic and inevitably influence our test result. 

To further understand more complicated situation, such as FAD related patients, we 

do the same test based on our training of normal and diseased patients. FAD negative 

(normal sample) has an accuracy of 4/4 (100%) and an average score of 91.25, FAD 

positive sample has an accuracy of 4/5 (80%) and an average score of 80.0. The result 

is shown in Table 5.5. 

Table 5.5. Test score for FAD related samples 

Sample Label Score 

D FAD(+), -19 49 

E FAD(+), -5 100 

K FAD(-), -11 85 

L FAD(-), -17 100 

P FAD(-), 0 85 

Q FAD(+), 4 53 

Z FAD(+), -8 100 

AC FAD(+), -22 98 

AD FAD(-), -18 95 

Sample D has a test score of 49, indicating we are not able to accurately define 

whether she is diseased or not. When referring to her medical scores, we find that she 

has a MMSE score of 28 and CDRSUM of 0.5, indicating she has mild symptom of 

dementia. More analysis needs to be done in order to see the relationship between our 
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test score and the symptom or severity of the patients.  

Again, we need to point out here that the sample number of individuals with/without 

FAD is smaller than the usual data set used for machine learning and will be expanded 

once we get larger sample size. This result is a preliminary data to show the feasibility 

of the platform.  

5.5 Correlation analysis 

To further understand the feasibility of our diagnostic result, we have done correlation 

analysis for the diagnostic index with all Alzheimer’s disease related medical 

parameters. Several parameters are included in the analysis: sex, age, several 

biomarker level (Aβ42, t-Tau, p-Tau) and several cognitive test score (MMSE, 

CDRSUM and CDRGLOB). 

To better analyze the correlation, we first need to deal with the missing data. In the 

clinical information provided, t-Tau information of sample N, R,R S, T, W and X are 

missing, and p-Tau information of sample R is missing. According to literature, the 

t-Tau and p-Tau level in CSF is highly correlated and from the data provided, we see a 

highly linear relationship between the concentration of the two types of Tau protein 

with a correlation factor of r=0.8883. The prediction model can be easily shown by 

regression: 
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P = 0.1134T + 35.28 

Among which, P is the concentration for p-Tau protein and T is the concentration for 

t-Tau protein. We are able to fill in the missing t-Tau level with this correlation.  

For the missing data in sample R, a detailed correlation analysis is done, showing that 

the highest correlated parameter with the Tau protein level is MMSE, and the factor is 

only r=0.47. As a result, we will eliminate sample R when doing correlation analysis. 

The correlation coefficients between all the biomedical parameters are shown in Fig 

5.6. 
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Fig 5.6. Correlation analysis between prediction score and bio-medical matrix. 

We can see from the figure that our prediction index is highly correlated to all the 3 

cognitive test scores. The correlation coefficients are r = 0.79 with MMSE, r = -0.92 

with CDRSUM and r = -0.88 with CDRGLOB. Considering CDR scores are taken as 

an accurate method of diagnosing AD, our prediction index is accurate in the 

diagnostic. We have already discussed that one of the limitations of CDR score is that 

it takes a long time to collect and our method can be a good compensation for the 
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cognitive test. 

Besides, we can observe from the figure that the correlation between biomarkers (Aβ 

protein, Tau protein) and cognitive test score (MMSE and CDR) is relatively low, the 

highest correlation coefficient is r = 0.47 (between t-Tau and MMSE) further show 

that single biomarker is not accurate in AD diagnostic. 

5.5 Conclusion 

We have presented here a novel method to diagnose Alzheimer’s disease with high 

accuracy. By using a combination of SERS platform and machine learning analysis, 

preliminary result of 100% reproducibility with double blind experiment and 92% 

accuracy in disease diagnostic is acquired. Another analysis with the exact same 

procedure will be done once more samples are get, which can make the result more 

accurate. The correlation analysis further proves that our diagnostic system is more 

accurate than single bio-marker analysis and can be further applied to clinical usage. 
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Chapter 6  

Summary and Future Study 

6.1 Summary 

This thesis discusses the outstanding features of a novel graphene-Au pyramid hybrid 

platform and its applications in bio-medical disciplines. This SERS substrate has 

overcome the limitation of traditional SERS substrates and is highly bio-compatible, 

which opens up the possibility for bio-sensing using SERS. After combining with 

advanced data analysis methods, disease diagnostic has been realized with high 

accuracy.  

In this thesis, we have validated the quantification capability as well as the specificity 

of SERS substrate on protein level and have further applied these benefits to 

differentiate Aβ peptides at multiple time stages. Alzheimer’s disease patients are 

further distinguished from normal individuals using machine learning algorithms by 

testing the “fingerprints” of their CSF.  

The following is a summary of the resulting work presented herein: 
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In Chapter 2 and Chapter 3, the features of hybrid platform are validated. 

Outstanding quantification capability as well as specificity regardless of protein 

orientation has been proven. Two types of mechanism has been shown at different 

concentration regime. At high concentration, protein concentration is proportional to 

normalized peak intensity due to the built in marker of graphene; at lower concentration, 

protein concentration is proportional to the detection frequency of the analyte 

considering the coverage of SERS hotspots. 10
-18

 M detection limit is achieved using 

Aβ42 and 7 orders of magnitude dynamic range is shown using the same analyte. To 

prove the specificity of protein using SERS, orientation dependence is tested using the 

hybrid platform and extremely low standard deviation (<0.3) is shown both from 

experimental and simulation results. The low standard deviation shows that the SERS 

signal is stable for proteins regardless of their orientation. 

In Chapter 4, application of SERS hybrid platform is demonstrated using Aβ peptides. 

By applying principal component analysis (PCA), the two types of Aβ is differentiated 

using a 2 dimensional plot and the differences are further elaborated using the peak 

assignment. Decision tree is applied to tell the main differences between the spectra of 

each peptide and better show the differences from biological point of view. Monitoring 

the aggregation process is a major topic in Aβ studies and we benchmark the SERS 

spectrum change with other techniques (CD and TEM) to show that SERS is a faster 

and equally accurate method for protein analysis. 
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In Chapter 5, SERS application of the hybrid platform is extended to disease 

diagnostic. Cerebrospinal fluids of different individuals are collected and tested using 

the platform and analyzed using the combined platform of SERS and advanced data 

analyisis. Reproducibility of the system is proved using double blind experiment of 3 

replicates of 5 different samples at 100% accuracy. Spectra features of 26 individuals 

were further tested and the diagnostic accuracy for Alzheimer’s disease has reached 

over 90%. The correlation between    

6.2 Direction of future studies 

The potential future work on this study could focus on two aspects: (1) Apply the 

diagnostic system (hybrid platform together with data analysis methods) into other 

diseases to increase diagnostic capability; (2) Collect more patient data and expand the 

application into clinical usage.   

6.2.1 Increase diagnostic capability of SERS 

Due to the outstanding capabilities of SERS hybrid platform, it is reasonable and 

natural next step to apply the system into the diagnostic of other diseases. Considering 

the ultra-high sensitivity and the molecular specificity, diseases with target biomarker 

can be easily distinguished.  

Exosomes are extracellular vesicles that are produced in the endosomal compartment 

of most eukaryotic cells, and it is well studied that cell at different stages carries 
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exosomes with slightly different features. This is a perfect opportunity to apply SERS 

based diagnostic.  

Some preliminary results have been acquired using exosome. We compared the 

spectra of exosomes from different sources: the exosome from human serum (Fig 6.1 

A) and 2 different types of conditioned tissue-culture medium of a human lung cancer 

cell line HCC827 (Figure 6.1 B) and H1975 (Figure 6.1 C).  

 

Fig 6.1. SERS analysis and PCA of exosomes from different sources. (A−C) Raman spectra of 

exosomes from human serum (A) conditioned medium of the lung-cancer cell line HCC827 (B), 

and conditioned medium of the lung-cancer cell line H1975 (C). (D) PCA of exosomes from the 

different sources shown in panels A−C and the spectrum shown in Figure 3C demonstrating 

that they are distinguishable.  

Each sample showed uniquely identifiable spectral characteristics distinguished 
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primarily by the relative peak intensity.  

We then used PCA to analyze spectral differences and similarities in ~50 Raman 

spectra from each sample (Figure 6.1 D). The results showed that the exosomes from 

all four different sources clustered into distinguishable groups with 84%. Interestingly, 

the largest degree of overlap was not between the two sera or the two cell lines, but 

between FBS and the H1975 cell line (Figure 6D). These findings suggest that 

analysis of exosomes from the serum of two different species, cell culture media 

versus serum, and cell culture media from two cancer cell lines of the same human 

organ, lung, can be distinguished using our platform.  

These experiments, together with our previous anlaysis suggest that our platform have 

the potential for multiple diseases diagnostic. 

6.2.2 Expand into clinical application 

Though the capability for disease diagnostic (such as Alzheimer’s disease) has been 

addressed using the hybrid platform, the application of the system in clinical 

diagnostic is still unknown. Clinical application remains challenging due to the mass 

pre-clinical trial data required. The clinical trials may compare our new technology to 

a standard diagnostic method that is already available and the whole process is 

defined by the Food and Drug Administration (FDA). For diagnostic regime, the 

clinical trial refers to the practice of looking for better ways to identify a particular 
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disorder or condition and a diagnostic tool with high accuracy and high 

reproducibility is required. 

To address the key issues, our future research can focus on two parts: (1) recruit larger 

number of patients and increase the robustness of our diagnostic system; (2) improve 

the performance of our data analysis system to increase the diagnostic accuracy.  

To make our diagnostic result robust and to make the diagnostic statistically 

reasonable, we have started our collaboration with University College of Faisalabad in 

Pakistan under Pakistan-U.S. Science & Technology Cooperation Program to acquire 

more patient sample for study purpose. As patient number grows, we are able to train 

the data analysis system with more information and thus making the prediction model 

more accurate. 

Another direction for improving the system is to improve the data analysis algorithms. 

A basic diagnostic model have been built and proved effective, however, a lot remains 

to be done. Data pre-processing has remained to be problematic (noise filter, 

background removal, etc.) and the functionality of the current model is limited to 

yes/no differentiation.  

A natural next step for this research is to improve the capability for the diagnostic 

model, including adding preprocessing functions and make more detailed diagnostic 

predictions, such as the stage of the disease or the subtype of the disease. These can 

be done with more training data and with improved analysis algorithms. 




