
UC Davis
UC Davis Previously Published Works

Title
LeakSemantic: Identifying Abnormal Sensitive Network Transmissions in Mobile Applications

Permalink
https://escholarship.org/uc/item/7vf62685

Authors
Fu, Hao
Zheng, Zizhan
Bose, Somdutta
et al.

Publication Date
2017-05-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vf62685
https://escholarship.org/uc/item/7vf62685#author
https://escholarship.org
http://www.cdlib.org/


LeakSemantic: Identifying Abnormal Sensitive
Network Transmissions in Mobile Applications

Hao Fu∗, Zizhan Zheng†, Somdutta Bose∗, Matt Bishop∗, Prasant Mohapatra∗
∗Department of Computer Science, University of California, Davis, USA.
†Department of Computer Science, Tulane University, New Orleans, USA.

{haofu, sombose, bishop, pmohapatra}@ucdavis.edu, zzheng3@tulane.edu

Abstract—Mobile applications (apps) often transmit sensitive
data through network with various intentions. Some transmis-
sions are needed to fulfill the app’s functionalities. However,
transmissions with malicious receivers may lead to privacy
leakage and tend to behave stealthily to evade detection. The
problem is twofold: how does one unveil sensitive transmissions
in mobile apps, and given a sensitive transmission, how does one
determine if it is legitimate?

In this paper, we propose LeakSemantic, a framework that can
automatically locate abnormal sensitive network transmissions
from mobile apps. LeakSemantic consists of a hybrid program
analysis component and a machine learning component. Our pro-
gram analysis component combines static analysis and dynamic
analysis to precisely identify sensitive transmissions. Compared
to existing taint analysis approaches, LeakSemantic achieves
better accuracy with fewer false positives and is able to collect
runtime data such as network traffic for each transmission. Based
on features derived from the runtime data, machine learning
classifiers are built to further differentiate between the legal and
illegal disclosures. Experiments show that LeakSemantic achieves
91% accuracy on 2279 sensitive connections from 1404 apps.

I. INTRODUCTION

The exponential growth of mobile devices has raised signif-
icant security concerns. Due to the large amount of sensitive
data saved on these devices and the coarse-grained permission
management in mobile systems, they are vulnerable to various
privacy and malicious infringing behaviors, which is often
hard to detect by mobile users themselves. One reason is that
malicious apps have begun taking steps to avoid detection by
introducing logic bombs [23]. For instance, an app can hide
malicious transmissions by receiving certain commands from
remote servers. Even if a sensitive network transmission is
known, an end user often has trouble telling if it is necessary
since the legitimacy of a sensitive transmission depends on its
purpose. Therefore, it is critical to uncover security-sensitive
behaviors and understand the intention of them to detect the
abnormal ones.

In this paper, we focus on detecting abnormal sensitive
network transmissions in Android apps. These transmissions
either leak user private data to malicious servers, or collect
sensitive information for purposes such as advertisements that
do not contribute to fulfill the functionalities of the underlying
apps. Despite the fast-growing literature on mobile device
security and privacy, existing approaches are insufficient for
identifying abnormal sensitive network behaviors. In particu-
lar, their ability is limited by the complexity of the Android

API and runtime, which involves millions of lines of code.
Moreover, they focus on detecting sensitive transmissions only
and are often not able to distinguish between normal and
abnormal sensitive transmissions.

To address these limitations, we propose LeakSemantic, a
novel approach that combines program analysis and machine
learning to identify abnormal sensitive network transmissions
more accurately through a better understanding of network
semantics. LeakSemantic adopts a hybrid static-dynamic anal-
ysis approach to uncover sensitive transmissions (both normal
and abnormal). The hybrid approach not only produces better
results than a purely static or dynamic analysis approach, but
is also able to generate network traffic data in a proactive way,
which provides a better characterization of network behavior
than widely-used static program analysis based approach-
es [3, 4, 10, 14]. For example, the hostname of the mali-
cious server in the PJAPPS malware family is encrypted as
“ax3mkl4mgele2guoo9f1hc3ohm” and the real address
(xml.meego91.com) is only revealed at runtime. Without
running the code, static analysis methods fail to decrypt the
malicious hostname, which is an important feature for de-
tecting abnormal network transmissions. Instead, the dynamic
execution used by LeakSemantic enables tracking runtime
information including decrypted hostnames. The traffic data
generated are then fed to the machine learning component to
build classifiers for detecting abnormal transmissions. Note
that our program analysis component can potentially gather
more features than just network traffic, which can be useful
to differentiate between normal and abnormal flows. We focus
on network traffic in this work so that the learning model thus
built can be applied even when the app code is not available,
e.g., when it is integrated into a network-based intrusion
detection system. Thus, LeakSemantic can be used in various
settings. When deployed locally, it allows app market operators
to identify privacy leakage in an app before releasing it to the
market. Moreover, network administrators can benefit from the
detection model constructed by LeakSemantic to protect users
from unintended transmissions.

A major challenge of program analysis for mobile apps
is how to achieve both accuracy and precision. Static pro-
gram analysis examines the program dependencies in mobile
apps without actually executing them. Because of its static
nature, it cannot handle reflective calls whose target class or
method name is concatenated at runtime, and loading code



dynamically is becoming more common [13]. Static analysis
also introduces false alarms as an over-estimated method. In
contrast, dynamic analysis chases the runtime behavior of
apps and is applicable even when reflection is present. Unlike
static analysis that explores all code paths including infeasible
ones, dynamic analysis only proceeds to feasible paths and
therefore introduces lower false positive rate. Moreover, it
can obtain data that are not available in the static setting,
such as network traffic data using encrypted URLs. However,
by focusing only on the runtime behaviors, dynamic analysis
suffers from insufficient coverage and hence false negatives.

Recent research efforts aim to combine static and dynamic
program analysis to ameliorate the above problems [18, 21,
22]. We continue this line of research and propose a novel
design of hybrid program analysis. LeakSemantic adopts light-
weight static analysis to flag potential vulnerabilities, and
creates an environment to dynamically confirm the suspicions.
Our static analysis provides precise modeling of the call
relationships inside an app component, which is crucial for the
integrated dynamic analysis component. We introduce a new
execution trace generation technique that enables LeakSeman-
tic to uncover malicious behaviors on which previous studies
would fail. As we will show in Section III-B, it is insufficient
to simply identify code paths leading to targeted APIs. To this
end, LeakSemantic dynamically spreads the code coverage and
computes the appropriate traces to trigger stealthy behaviors.
It also takes into account various sources of unknown variables
with an effective handling of unknowns, which further reduces
the number of false negatives.

To summarize, this paper presents the following contribu-
tions:

• We propose a novel hybrid static-dynamic program anal-
ysis technique to locate sensitive network transmissions
in mobile applications. Our approach not only enables
better accuracy and precision, but also helps derive more
detailed features, e.g., traffic URLs, that are important for
network behavior analysis.

• We present the design and implementation of LeakSe-
mantic, a detection system that combines program anal-
ysis and machine learning to identify networking related
abnormal behavioral patterns. Instead of classifying a w-
hole app as malicious or not as most previous work does,
our approach is able to distinguish malicious behavior
from normal behavior within an app. We also show that
network-level detection can benefit from the information
provided by program analysis.

• We evaluate the effectiveness of LeakSemantic using two
micro-benchmark suites and 1404 real-world apps. Our
hybrid program analysis produces better results than any
of the three state-of-the-art taint analysis tools used in
evaluations. Experiments further show that LeakSemantic
is fast and cheap, allowing it to identify true threats inside
the real apps with high accuracy.

The rest of the paper is organized as follows. We highlight
our system overview in Section II. The technical details are
included in Section III. After presenting the system imple-
mentation in Section IV, we show the evaluation results in

Section V. We discuss the limitations in Section VI and the
related work in Section VII. Finally, Section VIII concludes
the paper.

Fig. 1: System Architecture

II. OVERVIEW

Figure 1 depicts the architecture of LeakSemantic. From the
datasets of authentic apps and malwares, our system proceeds
in the following steps:

• Hybrid Program Analysis: The phase of hybrid program
analysis precisely identifies and characterizes the leaking
connections in the target app. We first perform static
analysis to retrieve the call graphs of the corresponding
app. To better model the lifecycles of app components
and runtime events, we create dummyMain() for each
component. The invocations of sensitive APIs (sources)
that collect private data with their entry points are identi-
fied through traversal of the graphs. We then construct
execution traces and run the program from the set of
traces. The information flow analysis is performed during
the execution. If a connection point (sink) is reached,
we record the dynamic data of the communication. To
achieve better coverage, we have designed methods to
generate execution traces and handle unknowns encoun-
tered during runtime.

• Transmission Classification: Having extracted traffic
information about the sensitive connections, we then
derive a set of features that can be used by the anomaly
detection system. Concretely, we concentrate on building
machine learning classifiers using lexical features derived
from URLs. Our novel design enables us to build models
for both host-based and network-based detection.

III. LEAKSEMANTIC

To model the runtime behavior of apps while achieving good
coverage, we use a hybrid program analysis that combines
static analysis and dynamic analysis. In Android, a medium-
sized app can contain dozens of components and thousands of
methods. Dynamic traversal of all possible paths is expensive
and infeasible in practice. Our approach leverages light-weight
static analysis to locate invocations of sensitive APIs and the
corresponding components. The output of static analysis will
help guide dynamic analysis. Machine learning models are
then constructed with the flows derived by dynamic analysis.
It is crucial that LeakSemantic can generate sensitive flows
with decrypted URLs. Finding 1 in Section V states that the



detection ratio decreases obviously if the training data does
not cover sufficient characteristics of the malicious flows.

 onCreate()

 onDestory()

 onClick()

 onLowMemory()

Fig. 2: The call graph of Activity1 modeled by the corresponding
dummyMain(). The solid lines indicate call relationships among the
callbacks and the dashed lines specify one possible execution trace
on the call graph.

A. Static Analysis
Static analysis is responsible for constructing the call graph

of the target app, which guides the upcoming dynamic analy-
sis. Unlike (desktop) programs written in C that contain a main
function as the entry point of the execution, Android applica-
tions do not contain a single main method. Instead, they are
composed of multiple components, where each Activity
or Service component is a Java class and has its own
lifecycle and event listeners. The lifecycle models transitions
such as creation, pause, resume, and termination, between
the states of a component. Event listeners allow applications
to respond to various types of runtime events such as UI
interactions or receiving SMS. The lifecycle and event listeners
are constructed from the corresponding callback methods and
every callback can be treated as an entry point because they
are implicitly called by the Android framework.

To construct call graphs of applications, previous work
typically creates one or more dummy main routines that are
shared by multiple components. For example, FlowDroid [1]
creates a single dummy main for the entire application and
all components share that main. AppAudit [22] introduces a
shared dummy main for all components of the same category
(Activity or Service). However, analyses starting from
a shared dummy main may include components that do not
contribute to leakage. Moreover, a shared dummy main blurs
the connections between event listeners and components. It
is possible that an event listener may be linked to the wrong
component so that the latter can directly invoke the former
during the analysis, even though this would not happen in
a real setting. Instead of constructing a shared dummy main,
we let each component have its own dummy main to eliminate
the confusion and alleviate the overhead of dynamic analysis.
Each component thus has a call graph (an example is given
in the Figure 2). The event listeners such as onClick() and
onLowMemory() embedded with the component are regis-
tered after onCreate(). onClick() is a UI callback that
is invoked once the corresponding buttons are clicked, whereas
onLowMemory() is called once the available memory of the
device is lower than a threshold value.

Listing 1: An example component
1 class Acvitity1 extends Activity {
2 String url = ""
3 String imei = "";
4 String tmp = "";
5

6 void onCreate() {
7 /* initiate the activity */
8 ...
9 url = "gongfu188.com";

10 }
11

12 void onClick() {
13 tmp = <get phone

manager>.getDeviceId(); // source
14 }
15

16 void onLowMemory() {
17 url = url.concat(imei);
18 URLConnection conn = new

URL(url).openConnection(); // sink
19 imei = tmp; // tainted
20 }
21

22 void onDestroy() {
23 /* finish the activity */
24 ...
25 }
26 }

A source is an invocation of an API provided by the
Android framework to retrieve the sensitive information from
the underlying device. We use the list from Susi [17] to
locate the sources. An example source is the invocation of
getDeviceID() at line 13 shown in Listing 1. The program
is inspired by EventOrdering1 in DroidBench [1]. For
each source, the corresponding entry point of the compo-
nent in the call graph is extracted with applying a graph
traversal algorithm on the call graph. For instance, the entry
point onClick() of the component Activity1 in List-
ing 1 is located through breadth-first search beginning with
getDeviceID() on the call graph. The entries with relevant
call graphs serve as the starting points of dynamic analysis.
We will explain this in detail in the next subsection.

B. Dynamic Analysis

The dynamic analysis component of LeakSemantic consists
of an executor with a taint analysis module and a simulation
of the Android runtime. The executor is our own version
of the Dalvik virtual machine. It is able to directly unpack
Android package files and execute the bytecode instructions.
We feed a set of traces to the executor. The execution traces
are derived not only from the results of the static analysis,
but also from the execution procedure itself. The novel design
enables capturing the misbehavior missed by state-of-the-art
approaches, which we will discuss in detail later. During
the execution, whenever a sensitive source API is invoked,
the taint analysis module starts to track the propagation of
sensitive values associated with the source API. When one
or more sensitive values reach a network connection API call
(a sink) such as URL/openConnection() in line 18 in
Listing 1, which implies that the transmission is sensitive,



the corresponding runtime information such as the network
traffic data is recorded. We adopt general taint policies used
in previous work [5, 22] to specify the propagation procedure.
For example, one rule set x is tainted as long as one of the
operands in the instruction “x = y binop z” is tainted. To
improve the accuracy of the data flow analysis, we have further
developed libraries to emulate the fundamental behaviors of
the Android runtime. The implementation details are described
in Section IV. In the following, we discuss how LeakSemantic
constructs execution traces and how it handles unknown values
during the analysis.

1) Execution Trace Generation: We leverage the outcomes
of the static analysis phase to derive a set of basic execu-
tion traces, where each trace is a sequence of specific API
calls beginning with a lifecycle callback and ending with
an APT call where a source is triggered. For instance, for
the entry point onClick() in Activity1, LeakSemantic
builds an execution trace onCreate() → onClick() that
informs the executor to invoke onClick() after calling
onCreate(). The execution trace is generated by apply-
ing depth-first search to find a path from onCreate() to
onClick() in the call graph (Figure 2). The default values
of global variables are normally initialized at the lifecycle
callbacks such as onCreate() and onStart(). We choose
to execute from these callbacks to reduce unknown variables,
which in turn reduces unknown branches that need to be
explored and improves the efficiency of dynamic analysis.
Properly modeling the unknowns is challenging in general and
will be discussed in more detail in the following subsections.
In addition to reducing unknowns, our approach also enables
LeakSemantic to generate more complete URLs, which is
important for building accurate classifiers (see Section III-C).
As we can see in Listing 1, the connection in line 18 can only
be correctly triggered if url is properly assigned with the
hostname in line 9.

The de facto hybrid analysis approaches such as AppAudit,
Harvester [18] and IntelliDroid [21] only use code paths
with certain code locations (e.g., a sink) and terminate the
analysis once one such location is reached. However, reacha-
bility alone does not necessarily imply the exposure of true
malicious behavior. Reconsider the code snippet shown in
Listing 1. A direct invocation of onLowMemory() does not
lead to a leakage since the argument of the sink in line
18 may have an empty imei. Given that tmp is tainted
in onClick(), the correct order to trigger a real leakage
is to invoke onLowMemory() twice. The corresponding
execution sequence can be represented as onCreate() →
onClick() → onLowMemory() → onLowMemory().

To correctly generate the set of execution traces that trigger
the actual leakages (or other types of abnormal behavior),
we parse the code of the executable callbacks to determine
whether they contain statements that read the corresponding
newly tainted variables. A new execution trace is then con-
structed by expanding the existing trace with relevant callback-
s. For instance, after executing the trace onCreate() →
onClick(), onLowMemory() is identified since it reads
the value from the tainted variable tmp. A new execution

Listing 2: A logic bomb
1 String mRun = getSearchTask(); // commands
2 void doSearchTask() {
3 if (mRun == null) {
4 reportState(1);
5 if (mRun != null) {
6 runPackage(mPkgName); // leak
7 } else {
8 ...
9 }

10 } else {
11 ...
12 }
13 }

trace onCreate() → onClick() → onLowMemory()
is created. Similarly, LeakSemantics constructs onCreate()
→ onClick()→ onLowMemory()→ onLowMemory()
once finishing running onCreate() → onClick() →
onLowMemory(). We can set a threshold on the number
of execution traces to save analysis time in practice.

2) Sources of Unknowns: During the execution, the dynam-
ic analysis may encounter unknown variables that have no
explicit assigned value to the executor. As mentioned earli-
er, running from onCreate() alleviates the issue through
initializing the component as completely as possible.

In addition to the above mentioned unknowns, we observe
that there are many cases where the accurate value of a variable
is dependent on the runtime context, which can be categorized
as follows:

• User input: input from end users during the interactions
with the user interface;

• Device status: the real time status, such as WiFi on/off
and the power level, of the underlying device;

• Natural environment: e.g., current temperature, coordi-
nate and time;

• Incoming information: the content of the SMS and the
network responses received while using the app.

Malicious apps may hide their behavior by leveraging some
of the factors mentioned above to create malicious code that
is only triggered under certain circumstances. For instance,
RCSAndroid waits for incoming SMS messages and check-
s whether these messages contain specific commands and
then decides whether to transmit the user data [6], and the
DroidDream malware family triggers its malicious payload
only at night [23]. As another example, consider the code
shown in Listing 2, which comes from a malware sample of
the DroidKunfu1 family. In line 1 the program contacts a
remote control server and retrieves the commands into mRun.
reportState() is responsible for collecting user private
data and it is only triggered when the malicious server replies
with certain characters. In other words, the dynamic context
causes the executor to generate different outcomes even for
the same input trace. To detect such malicious behavior, it is
therefore important to treat those variables whose values vary
over the context as unknowns.

3) Handling of Unknowns: To represent the set of variables
with unknown values, we maintain a symbolic state σ that
maps variables to symbolic expressions, and a symbolic path



constraint PC, which is a quantifier-free first-order formula
over symbolic expressions. Both σ and PC are updated during
the course of execution.

A conditional statement such as if inside the target pro-
gram may contain unknown values in its conditions. Unknown
branches during the execution interrupt the execution since the
executor does not know which direction to explore. Instead
of always following one path, which increases false negatives
significantly, LeakSemantic adopts a depth-first search scheme
while taking the symbolic path constraints of unknown vari-
ables into account to reduce the search space.

More specifically, whenever an unknown branch is encoun-
tered, LeakSemantic creates a snapshot to store the state of
the executor and pushes the snapshot onto a stack SnapStack.
The snapshot consists of a copy of the current running context
including the program counter and the values in the stack and
the heap, which enables the executor to restore the environ-
ment after the unknown branch is processed and continue the
analysis where it was left off. The executor then explores each
direction under the branch one by one, while using SnapStack
to save and restore the environment.

Consider again the code shown in Listing 2. The execution
starts with an empty symbolic state and a symbolic path
constraint true. As a result, σ = mRun 7→ mRun0, where
mRun0 is an initially unconstrained symbolic value. At every
unknown conditional statement if (e) then S1 else S2, PC is
updated to PC ∧ σ(e) for the then branch and PC ∧ ¬σ(e)
for the else branch. For instance, at the unknown condition
in line 3, a snapshot of the executor is saved. The executor
first updates the PC to mRun0 6= null and explores the
else branch of the condition. Once the execution terminates,
it restores the status from the snapshot and proceeds to
the then branch of the condition in line 3 with PC updat-
ed to mRun0 = null. The branch consists of a method
reportState() that stealthily exposes user’s private data,
and another unknown condition (line 5). The procedure to
handle the second unknown condition is similar to the first one.
In this case, however, the then branch has the path constraint
mRun0 = null ∧ mRun0 6= null leading to an infeasible
path. Therefore, the executor ignores the then branch and only
explores the else branch.

Code containing loops or recursion may result in an infinite
number of paths to be explored if the termination condition for
the loop or recursion is symbolic. Consider the code snippet
shown below:

1 String[] x = getHttpResponse();
2 int i = 0;
3 while (!x[i].equals("")) {
4 i++;
5 }
6

7 if (i > 3 && i < 10) {
8 transmit(longitude, latitude);
9 }

Since we do not know exactly how the server will respond in
line 1, the content and the length of string array x should be
treated as unknown, leading to an infinite number of code
paths. To address this problem, previous studies [18, 22]

simply set thresholds on analysis time or the number of
visited instructions. However, these approaches may lead to
an incorrect value of i after the loop, which should be equal
to the actual length of x. Importantly, the value of i is used
to determine whether to trigger the leakage in line 7.

Instead, we execute the block under the loop only once and
mark all the variables that accept new values within the block.
After exploration of the block, the tagged variables will be
modeled symbolically for the rest of the execution. By treating
i as a symbolic Integer with constraint i > 3∧ i < 10, the
sensitive transmission in line 8 will be successfully reached.
We also introduce some heuristics to further mitigate the issue
of path explosion, which will be discussed in Section IV.

C. Transmission Classification

Using the traffic flows generated by the dynamic analysis
component, we formulate the detection of abnormal sensitive
transmissions as a classification problem. LeakSemantic
uses a supervised learning approach to train classifiers that
can be used by host-based or network-based intrusion
detection systems. Specifically, we focus on lexical
features derived from the set of URLs in the traffic
traces. Lexical features often contain useful patterns to
distinguish between suspicious and benign traces. URLs
such as gad.ju6666.com/GetAd?&lo=(.*) and
api.openweathermap.org/forecast?&lon=(.*),
in which lo or lon is an abbreviation of “longitude”, have
the user’s location data embedded. The words GetAd and
forecast further provide hints about the purposes of
the transmissions: the former URL is sent as a request for
advertisement while the latter is composed to retrieve the
corresponding weather forecast. An effective detector should
be able to report the ad request as suspicious and release the
operational weather trace.

We utilize the simple yet powerful “bag-of-words” mod-
el [15] that is frequently used in spam detection to derive
features inside URLs. LeakSemantic divides a URL into to-
kens by treating certain characters as separators. Each distinct
token is then viewed as a separate feature and every data
flow collected is then converted to a vector of binary values.
Direct application of “bag-of-words” may produce a very large
feature space, which results in a heavy computational cost. As
stated in [19], one can limit the size of the feature set by
removing tokens that seldom appear in the flows.

IV. IMPLEMENTATION

In this section, we provide further details about the imple-
mentation of LeakSemantic. LeakSemantic is mostly written
in Java and consists of around 18,600 source lines of code.

LeakSemantic extends a part of FlowDroid for call graph
generation. We implemented our own executor with taint
analysis support to perform the dynamic analysis mentioned in
Section III-B. The executor leverages PATDroid1 to extract
bytecode and then interprets each bytecode instruction one
by one. During the execution, the sensitive data propagation

1https://github.com/mingyuan-xia/PATDroid



is tracked by the taint analysis plugin. Android applications
invoke the APIs provided by the Android SDK to interact
with the underlying operating system during runtime. How-
ever, the official Android SDK is missing critical parts of
the Android runtime, which are filled with “stubs” used for
compilation. The execution and taint analysis cannot proceed
correctly without precisely modeling of the Android runtime.
We therefore manually pad the incomplete Android SDK
and emulate the core functionalities offered by Android. Our
simulation of the Android system is similar to the Android
Device Implementation (ADI) used in DroidSafe [9]. But their
implementation is purely for static analysis and does not scale
well to support our dynamic analysis.

LeakSemantic is currently using the JaCoP2 to repre-
sent and update the path constraints. To alleviate the path
explosion caused by unknown branches, we heuristically
limit the number of unknown variables. We use the API
android.net.NetworkInfo/isConnected() to il-
lustrate the idea. isConnected() reveals the real time con-
nection capability of the device, so that the return value reflects
the device status. This should be treated as unknown in theory
as mentioned in Section III-B. However, the transmission can
be triggered only if the device is connected to the Internet.
We therefore force the API call to always return true instead.

We also simulate some commonly used third-party li-
braries to reduce performance overhead. For instance,
com.squareup.picasso is a widely used open-source
package to support downloading and presenting images. Since
no misbehavior in it has been detected, we do not check the
subroutines called by the package during execution. Instead,
we replace methods inside the official packages with our own
methods during the execution.

V. EVALUATION

We have conducted a comprehensive evaluation of LeakSe-
mantic. In this section, we report the evaluation results and our
findings. Our evaluation contains two steps. First, we leverage
micro-benchmark suites to evaluate the leakage detection accu-
racy of our hybrid program analysis module. Second, we apply
LeakSemantic to real-world apps and construct classifiers to
detect illegitimate exposures for different settings.
A. Benchmark Suites and Quality of Program Analysis

We compared LeakSemantic with the following state-of-the-
art taint analysis tools:

• Andrubis [13] is a dynamic analysis sandbox based
on TaintDroid. It generates nearly 8,000 pseudo-random
streams of external events and monitors the behavior of
the target app for 240 seconds3.

• FlowDroid is a flow-, field-, and object sensitive static
program analysis framework. The original FlowDroid
cannot track information flows across separate com-
ponents. We integrated FlowDroid with Epicc [12] to
partially support inter-component communications.

2https://jacop.osolpro.com/
3The official Andrubis service is no longer available. We installed Taint-

Droid on a real device and composed scripts to create an environment similar
to Andrubis.

• AppAudit is a hybrid taint analysis approach similar to
LeakSemantic. It also uses static analysis to mark poten-
tial leaking methods, and then prune candidate methods
through dynamic analysis. But the way it generates call
graphs and models the unknown variables is different
from LeakSemantic.

We executed LeakSemantic on a computer with an Intel
Core CPU E8500 @ 3.16GHz and 2GB of heap memory
for the JVM. Since Andrubis has fixed analysis time and
AppAudit does not provide installation package to run locally,
it is hard to compare the running times of the set of tools
directly. However, we observe that LeakSemantic exhibits
good performance on the apps with short analysis time.

We evaluated the detection accuracy of the above tools using
the following two micro-benchmark sets. LeakSemantic spent
12.4s on average for each app and FlowDroid took an average
of 13.2s per app:

1) DroidBench: DroidBench4 is an open-source benchmark
suite that contains a set of hand-crafted apps that exploit
various characteristics of the programming language to bypass
static taint analysis. It contains 118 apps in total, among which
we excluded 10 apps with leakage types unsupported by both
Andrubis and AppAudit, such as leaking user input passwords.

Table I summarizes the detection results over DroidBench.
We observe that LeakSemantic achieves the best quality among
the four taint analysis tools. Precise call graphs and the better
handling of unknowns enable LeakSemantic to generate zero
false alarms. Among the three baselines, Andrubis performs
best and successfully report most leakages. This is because
the dataset is originally designed to test static analysis tools
and difficulties for static analysis are typically not hard for
dynamic analysis. FlowDroid is able to locate more than 75%
of leaks. But its over-approximation also leads to the worst
precision. Also, FlowDroid is unable to generate runtime data
such as traffic flow, and therefore cannot be directly used to
build a traffic-based transmission classification model.

Since both AppAudit and LeakSemantic adopt hybrid pro-
gram analysis, we conducted a more detailed comparison be-
tween them. LeakSemantic achieves better detection accuracy
for several reasons. First, AppAudit terminates its execution
once a sink is touched. As we discussed in Section III-B,
reachability alone does not necessarily imply a sensitive
transmission. Second, AppAudit does not consider some types
of unknowns and always exploits one direction of an un-
known branch, which introduces false negatives. Moreover,
LeakSemantic provides a more complete implementation of
dynamic analysis to support various mechanisms used in
Android. In particular, LeakSemantic is able to locate event
handlers registered in the layout configurations and track
the communications among multiple components. AppAudit
does not support any of these Android features. Last, as we
mentioned in Section III-A, the inaccurate model of call graphs
used by AppAudit increases its false positives.

4The up-to-date stable release is DroidBench 2.0 (https://github.com/secure-
software-engineering/DroidBench/tree/master). We replaced all the sinks with
network transmissions since Andrubis and AppAudit do not treat certain sinks
as sensitive in some apps.



TABLE I: Detection results on DroidBench

Tools Missed Flows Accuracy FP Precision

Andrubis 15 84.2% 0 100%
FlowDroid 22 76.8% 10 56.6%
AppAudit 56 41.1% 2 91.3%
LeakSemantic 2 97.9% 0 100%

FP = False Positives

TABLE II: Accuracy on BombBench

Tools Missed Flows Accuracy

Andrubis 21 4.5%
FlowDroid 14 36.4%
AppAudit 12 45.5%
LeakSemantic 1 95.5%

LeakSemantic (and all the three baselines) misses two flows
that involve inter-application communications, which requires
modeling the behaviors across multiple apps. None of the
existing taint analysis tools can detect this kind of collusion
attack. Another unresolved challenge of LeakSemantic is con-
trol flow dependent taints, also a well acknowledged drawback
in most taint analysis tools [22].

2) BombBench: BombBench5 is another open-source
benchmark that contains 22 apps to test taint analysis tools.
Each app takes advantage of a kind of logic or time bomb
inspired by previous studies [18, 23, 25] to conceal a sensitive
flow. We show the results in Table II. LeakSemantic identifies
most leaks among all the four tools. We can see the sharp
decrease of accuracy in Andrubis, which indicates that current
random-events based testing toolkit is not powerful enough to
cover complicated program logic. Its limitation is fundamental
and cannot be simply settled with extension of analysis time.
For example, DevInfo2 triggers its payload only under
certain system language. Because, unlike LeakSemantic, they
do not count as unknown the variables obtaining values
from Locale/getDisplayName(), both Andrubis and
AppAudit fail to capture the disclosure flow. We notice that
FlowDroid also could not successfully mark this case, which
may be caused by inaccurate modeling of system functions.
LeakSemantic missed one flow because of a variable implicitly
assigned by a user-driven event. Although we model variables
who read the values from the UI-related API calls such as
EditText/getText() as unknowns, currently we do not
directly view the variables modified by the callbacks such as
onClick() as unknowns even they are correlated with user
interactions. We do this for performance concerns since there
might be plenty of variables influenced by the callbacks in real
apps. Excessive amount of unknowns leads to the exponential
size of code paths needed to be explored.

B. Real Apps and Transmission Classification

We then applied LeakSemantic to build a traffic classifica-
tion model using real apps. From the traffic generated by our
hybrid analysis tool, it is possible that multiple code paths lead
to the same connection, which results in separate transmissions

5https://github.com/bombbench/BombBench

Fig. 3: Detected malicious sensitive transmissions.

with an identical URL. We merged these transmissions with
the same URL into a single one within the target app.

We first collected malicious sensitive transmission from the
Android Malware Genome project, which contains 744 leaking
malwares [26]. LeakSemantic extracted 1223 malicious sensi-
tive transmissions and collected the corresponding traffic. We
first observe that these malicious transmissions cannot be cor-
rectly identified by existing commercial anti-virus solutions,
which motivates the need for a new detection approach. To
this end, we uploaded the URLs of these transmissions to
VirusTotal6, a popular website that scans submitted URLs
with latest 68 anti-virus engines. Surprisingly, 64 out of 68
engines did not report any alarms regarding the transmissions.
Figure 3 presents the detection results by the rest 4 engines.
Websence identified relatively more malicious URLs (436,
or 35.7%), but the number found is still far from 50% of all
malicious connections.

We then ran LeakSemantic on 660 apps crawled from
the categories that have legal sharing functionalities in app
markets7. Among them, LeakSemantic recognized 1056 sen-
sitive transmissions. The average analysis time for each app
is 135.3s, including the 744 malwares and the 660 authentic
apps. For each flow collected, we examined the destination
host name. If the host name belongs to an advertisement
or analytics server, we marked the flow as illegal. We then
checked the plain text content delivered through the flow to see
whether the response sent by the server is related to the sent
user data or not. There are cases in which the communication
between the phone and the server are encrypted. We leveraged
instrumentation and reverse engineering to block those flows.
We reran the modified app to see how blocking influences the
app. The flow was labeled as legal when the app’s functionality
is affected. Out of 1056 transmissions, 791 did not affect the
app’s functionality, so we labeled them as illegitimate. The
other 265 operational sensitive transmissions were collected
from 183 apps.

We used the labeled 2279 transmissions as training and test-
ing data with ten-fold cross-validation [11], which is a standard
approach for evaluating machine learning solutions. We ap-
plied Decision Tree as the learning classifier for LeakSemantic
since it is commonly used in traffic classification [16, 19].
As mentioned earlier in Section I, LeakSemantic can be
deployed as a host-based or network-based detection system.

6https://www.virustotal.com/
7Google Play (https://play.google.com/store/apps) and Baidu App Market

(http://shouji.baidu.com)



TABLE III: Host-based Classification Results

Class TP Rate FP Rate Precision F-measure

Illegal 0.938 0.063 0.974 0.956
Legal 0.937 0.062 0.856 0.895

TABLE IV: Network-based Classification Results

Class TP Rate FP Rate Precision F-measure

Illegal 0.915 0.095 0.916 0.915
Legal 0.905 0.085 0.904 0.904

TP = True Positive, FP = False Positive

We conducted two experiments that reflected the effectiveness
of LeakSemanic in different scenarios. When LeakSemantic is
configured in a single host system, it automatically finds the
disclosure points and then picks the illegal instances based on
the flows generated. The classifier at host-level involves only
the flows of sensitive transmissions; the detection model at
network-level should be able to filter out the innocent flows
that do not carry any sensitive data.

1) Host-based Detection: Table III shows that LeakSeman-
tic has high precision and F-measure in identifying illegal
transmissions8. After manually inspecting the misidentified
instances, we found that their URLs were very similar to
the benign addresses. Also, they put the sensitive data into
their body rather than the URL, which makes the URL-based
detection more difficult to correctly label them. We note that
LeakSemantic is able to collect more information than URLs.
We plan to consider more features to further reduce the false
negatives in the future.

2) Network-based Detection: Based on the sensitive trans-
missions we collected, we added the non-sensitive traffic flows
to the legitimate class. This reflects the real environment of
the network-based detection. Table IV summarizes our results.
As we can see, the prediction incurs a slight loss in accuracy
compared to the results of the host-based detection. This is
expected as the addition of non-sensitive flows makes the
learning task more challenging.

During the experiments, we also observed the following
interesting phenomena:
Finding 1: Among the 1223 malicious leaking transmissions
extracted from the malware dataset, we found that 69.7%
of the transmissions used encryption to hide the hostnames.
Malware leverages encryption to evade traditional signature-
based detection approaches. As mentioned earlier, encryption
also hinders pure static analysis from explicitly detecting the
target behaviors. Without enough dynamic information, the
intrusion detection systems failed to locate many malicious
transmissions. To illustrate how important the decryption is,
we conducted an experiment that trained a model based
solely on unencrypted instances and tested the model on the
instances with encrypted hostnames. Among the 806 encrypted
instances, the model only recognized 578 (71.7%) of them.
Compared to the prediction results (91%) shown previously,
the accuracy decreased dramatically.

8Since the data is heavily skewed towards the illegal class, we used
SMOTE [2] to over-sample the legitimate class.

Finding 2: LeakSemantic identified more than 1223 mali-
cious transmissions in the malware dataset. However, it could
not properly generate traffic flows for a few transmissions
such as those from the DroidKunfu4 malware family. We
manually inspected the code and found that the hostnames
of the transmissions are not embedded either in the code or
in the resource files of the apps. Instead, the transmissions
dynamically retrieve the hostnames from a remote server with
the help of the command and control modules.
Finding 3: From the crawled apps, we noticed that 3 connec-
tions indirectly leak the private data. Instead of sending the
user data directly to a tracing server, they first grab the user’s
coordinates and query a legitimate popular location server
to get the corresponding description. They then transmit the
description to a suspicious server. Such behavior suggests the
need to track the influence of a connection even when the first
connection contacts a legitimate server.
Finding 4: LeakSemantic found no sensitive HTTPS connec-
tions in the malwares. However, 27 illegitimate HTTPS trans-
missions were identified in the authentic apps and they were all
built by third-party ads/analytics libraries. Although sensitive
HTTPS connections are not popular at the current time, we
foresee the necessity of inspecting HTTPS connections with
the techniques such as SSLsplit9 in the future.
Finding 5: We found that more than 60% of the 183 apps
that have legitimate sharing connections also contain illegal
transmissions inside for ad or analytics purposes. We also
found a weather application that only transmits users’ location
data to ad servers. It is highly probable that the users of these
apps will grant the app the permission to access sensitive
resources without knowing their private data will be collected
stealthily by unintended servers.

VI. LIMITATIONS

Our approach has the following limitations:
• If an adversary knows our approach, he could obfuscate

the flows to match our criteria. We envision that more
features need to be considered in the future.

• The technique most closely related to our dynamic anal-
ysis is concolic testing [8], which also leverages both
concrete and symbolic values to proceed its execution.
Our approach inherits its path explosion limitation; the
size of code paths is exponential in the number of un-
known branches. We currently remove most unnecessary
unknowns with our specific preprocessing and we will
look into more advanced relevant techniques soon.

VII. RELATED WORK

Dynamic and static taint analysis track sensitive data flows
in programs. TaintDroid [5] modifies the Dalvik virtual ma-
chine to monitor potential leaks at runtime. It only identifies
leakage that is actually triggered during execution, thus re-
quiring a driver with good code coverage. The static analysis
tools FlowDroid [1] and DroidSafe [9] overcome the coarse-
granularity through over-approximation. But they also suffer

9https://www.roe.ch/SSLsplit



from imprecision by visiting code paths that are not actually
feasible. AppAudit [22] leverages hybrid static-dynamic anal-
ysis in order to keep the advantages and avoid the drawbacks
of both. It only examines code paths determined statically and
explores one path when it encounters an unknown branch. In
contrast, our system dynamically extends the code coverage
and explores as many paths as feasible when an unknown
branch is found. ReCon [19] is a solely network-based detec-
tion that learns patterns from traffic traces, which is similar
to the transmission classification used in LeakSemantic. Our
program analysis approaches can further improve the perfor-
mance of network-based detection. All above approaches treat
any exposures of user data as illegitimate, which obscure the
true threats through generating large number of false alarms.

AppIntent [24] first stresses the necessity to justify the
sensitive transmissions in apps. Bayesdroid [20] proposes a
solution by treating the transmissions that carry less accurate
information as legal. However, a transmission could be very
harmful even if it only contains coarse information since it can
collude with others. FlowIntent [7] leverages front-page user
interfaces to discriminate location-sharing communications.
Its effectiveness depends on the content shown on the pages
and its underlying random fuzzing based approach, which is
similar to Andrubis [13], makes it hard to locate stealthy ma-
licious payloads. AAPL [14] is a static app auditing tool that
queries a commercial recommendation system to rank sensitive
disclosures. But as shown in [7], being in the same category
does not imply having the same functionality. Other static
analysis approaches including AsDroid [10] and DroidJust [3]
only treat connections that do not influence the user-observable
phone states as malicious. But a flow can still be malicious
even it leads to visible changes as it can also trigger the
underlying malicious payload simultaneously. LeakSemantic
looks beyond the mere surface of leaks by examining their
intention based on the corresponding traffic flows.

VIII. CONCLUSION

In this work, we developed a prototype called LeakSemantic
that can identify suspicious sensitive network transmissions
from mobile apps automatically. Its hybrid program analysis
component enables it to provide better accuracy and precision
than other state-of-the-art taint analysis approaches. Leak-
Semantic further constructs machine learning classifiers to
differentiate among the disclosures based on features derived
from the program analysis. Our evaluation on 2279 sensitive
connections collected from real-world 1404 apps shows that
LeakSemantic achieves a detection accuracy of 91%.

IX. ACKNOWLEDGEMENTS

The effort described in this article was partially sponsored
by the U.S. Army Research Laboratory Cyber Security Collab-
orative Research Alliance under Contract Number W911NF-
13-2-0045. The views and conclusions contained in this docu-
ment are those of the authors, and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes, notwithstanding any copy-
right notation hereon.

REFERENCES
[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. In PLDI, 2014.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial
intelligence research, 16:321–357, 2002.

[3] X. Chen and S. Zhu. Droidjust: automated functionality-aware privacy
leakage analysis for android applications. In WiSec, 2015.

[4] H. Choi, J. Kim, H. Hong, Y. Kim, J. Lee, and D. Han. Extractocol:
Autoatic extraction of application-level protocol behaviors for android
applications. In SIGCOMM, 2015.

[5] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. In OSDI, 2010.

[6] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna. Triggerscope: Towards detecting logic bombs in android
applications. In S&P, 2016.

[7] H. Fu, Z. Zheng, A. K. Das, P. H. Pathak, P. Hu, and P. Mohapatra.
Flowintent: Detecting privacy leakage from user intention to network
traffic mapping. In SECON, 2016.

[8] P. Godefroid. Compositional dynamic test generation. In POPL, 2007.
[9] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.

Rinard. Information flow analysis of android applications in droidsafe.
In NDSS, 2015.

[10] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. Asdroid: detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction. In ICSE, 2014.

[11] R. Kohavi et al. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, 1995.

[12] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. Iccta: Detecting
inter-component privacy leaks in android apps. In ICSE, 2015.

[13] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. Van Der Veen, and C. Platzer. Andrubis–1,000,000 apps later: A
view on current android malware behaviors. In BADGERS, 2014.

[14] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee,
and G. Jiang. Checking more and alerting less: Detecting privacy
leakages via enhanced data-flow analysis and peer voting. In NDSS,
2015.

[15] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond blacklists:
Learning to detect malicious web sites from suspicious urls. In KDD,
2009.

[16] A. Raghuramu, H. Zang, and C.-N. Chuah. Uncovering the footprints
of malicious traffic in cellular data networks. In PAM, 2015.

[17] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning approach for
classifying and categorizing android sources and sinks. In NDSS, 2014.

[18] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden. Harvesting run-
time values in android applications that feature anti-analysis techniques.
In NDSS, 2016.

[19] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. Recon:
Revealing and controlling pii leaks in mobile network traffic. In
MobiSys, 2016.

[20] O. Tripp and J. Rubin. A bayesian approach to privacy enforcement in
smartphones. In USENIX Security, 2014.

[21] M. Y. Wong and D. Lie. Intellidroid: A targeted input generator for the
dynamic analysis of android malware. In NDSS, 2016.

[22] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective real-time android
application auditing. In S&P, 2015.

[23] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. Appcon-
text: Differentiating malicious and benign mobile app behaviors using
context. In ICSE, 2015.

[24] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Appintent:
Analyzing sensitive data transmission in android for privacy leakage
detection. In CCS, 2013.

[25] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android
malware classification using weighted contextual api dependency graphs.
In CCS, 2014.

[26] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In S&P, 2012.


	Introduction
	Overview
	LeakSemantic
	Static Analysis
	Dynamic Analysis
	Execution Trace Generation
	Sources of Unknowns
	Handling of Unknowns

	Transmission Classification

	Implementation
	Evaluation
	Benchmark Suites and Quality of Program Analysis
	DroidBench
	BombBench

	Real Apps and Transmission Classification
	Host-based Detection
	Network-based Detection


	Limitations
	Related Work
	Conclusion
	ACKNOWLEDGEMENTS



