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ABSTRACT

SCRATCH is a server for predicting protein tertiary
structure and structural features. The SCRATCH soft-
ware suite includes predictors for secondary
structure, relative solvent accessibility, disordered
regions, domains, disulfide bridges, single mutation
stability, residue contacts versus average, individual
residue contacts and tertiary structure. The user
simply provides an amino acid sequence and selects
the desired predictions, then submits to the server.
Results are emailed to theuser. Theserver is available
at http://www.igb.uci.edu/servers/psss.html.

INTRODUCTION

Knowledge of a protein’s structure provides insight into how it
can interact with other proteins, DNA/RNA, and small
molecules. It is these interactions which define the protein’s
function and biological role in an organism. Thus, protein
structure and structural feature prediction is a fundamental
area of computational biology. Its importance is exacerbated
by large amounts of sequence data coming from genomics
projects and the fact that experimentally determining protein
structures remains expensive and time consuming.

Publicly available bioinformatics web servers allow
researchers from around the world to apply tools developed
in other laboratories to their own data and fully automated
systems provide a framework for high-throughput proteomics
and protein engineering projects. We have developed a web
server, SCRATCH, to predict protein tertiary structure and
structural features.

METHODS

The SCRATCH suite combines machine learning methods,
evolutionary information in the form of profiles, fragment
libraries extracted from the Protein Data Bank (PDB) (1),
and energy functions to predict protein structural features

and tertiary structures. See Table 1 for a summary of the
specific methods used by each predictor. The suite includes
the following main modules:

(i) SSpro (2): three class secondary structure.
(ii) SSpro8 (2): eight class secondary structure.

(iii) ACCpro (3): relative solvent accessibility.
(iv) CONpro (3): contacts with other residues compared to

average.
(v) DOMpro: domain boundaries.

(vi) DISpro: disordered regions.
(vii) MUpro: effect of single amino acid mutation on stability.

(viii) DIpro (4): disulfide bridges.
(ix) CMAPpro (5,6) : residue-residue contact maps.
(x) 3Dpro: tertiary structure.

Structural feature predictors

All predictors are trained in a supervised fashion using cur-
ated, non-redundant, datasets extracted from the PDB. SSpro,
SSpro8, ACCpro, CONpro, DISpro and DOMpro use
ensembles of one-dimensional recursive neural network
(1D-RNN) architectures (6). CMAPpro and DIpro predictors
use ensembles of 2D-RNN architectures (5,6). DIpro also uses
support vector machines (SVMs) to discriminate proteins with
disulfide bonds from proteins without disulfide bonds, and
graph matching algorithms to pair the cysteines. MUpro
uses feed-forward neural networks and SVMs.

These RNN architectures are based on the theory of prob-
abilistic graphical models (Bayesian networks) meshed with a
neural network parameterization to accelerate belief propaga-
tion and learning. These architectures systematically combine
standard information contained in a local input window with
more distant contextual information extracted by translation-
invariant recursive neural networks that are convolved along
the entire length of the protein (1D) or of the contact maps
(2D) from all possible directions.

All predictors, except 3Dpro and MUpro, directly leverage
evolutionary information in the form of input profiles derived
using PSI-BLAST (7) to include all homologous proteins
(8,9). In addition, for SSpro and ACCpro, very high levels
of local homology to known structures are used either directly
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or in combination with the prediction output to improve
accuracy. Whenever possible and useful, predictors leverage
the output of the other predictors (see Figure 1).

DOMpro produces domain predictions in three steps.
First, DOMpro predicts whether a residue belongs to a domain
boundary region or not. Residues within 20 amino acids from
the actual domain boundary in the CATH (10) database are
considered to be part of the domain boundary region. Second, a
statistical approach is used to infer the domain boundary from
the predicted states (boundary/non-boundary) of the individual
residues. Finally, the sequence segments separated by domain
boundary are assigned to domain numbers.

In addition to the standard 2D-RNN architectures (5,6) to
predict the entire contact map in one step, a variant architec-
ture is used to predict contacts from low-sequence separation
to high-sequence separation step by step. The predicted con-
tact maps at lower sequence separation are used as inputs for
the prediction of contact maps at higher sequence separation.
The raw output of CMAPpro is a matrix of contact probabil-
ities for all residue pairs.

Tertiary structure prediction

Our approach to tertiary structure prediction (3Dpro) com-
bines the use of predicted structural features (2,3,5,6), a frag-
ment library (11) and energy terms derived from the PDB
statistics. The structural features used are secondary structure,
relative solvent accessibility, and a residue level contact map at
a distance cut-off of 12 s. The predicted structural features are
used in the energy function. We use a database of protein
fragments of length nine, constructed from the structures in
the PDB (11).

Two terms in the energy function are based directly on
statistics from the PDB, one for residue environments
(11,12) and another for bond angles. To encourage the forma-
tion of b-strands into sheets, we use a simple, single vector,
representation of each strand and penalize unpaired strand
vectors.

We include a contact-map energy term (13) based on a
binary map derived from the matrix of contact probabilities
predicted by CMAPpro. To select the contacts, we use a vari-
able, band-dependent, threshold determined by estimating the

Table 1. Summary of methods used in SCRATCH predictors

PDB
training set

PSI-BLAST
profile

Feed
forward NN

1D RNN 2D RNN SVM Graph
matching

Direct
homology

Fragment
database

SSpro D D D D
SSpro8 D D D
ACCpro D D D
CONpro D D D
DOMpro D D D
DISpro D D D
MUpro D D D
DIpro D D D D D
CMApro D D I D
3Dpro I I I I I D

‘D’ indicates a method is used directly, and ‘I’ indicates a method is used in one or more of the predictors that are used as an input to the predictor.
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Figure 1. Flow diagram for the SCRATCH server. DISpro, DOMpro, CONpro and DIpro are grouped together because they have the same inputs and their outputs
are not used by other predictors; however, they are standalone programs.
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total number of contacts in a band from the sum of all the
predicted contact probabilities in that band.

The conformational space is searched using a variant of
simulated annealing, where the moves we use to modify
our models are crankshaft moves (13) on one or more residues
and several forms of fragment replacement (11,12). These
moves are applied to sequence locations in the model that
are selected randomly. We also include a term to encourage
the secondary structure of the models to match the predicted
secondary structure. During each search, the model with the
lowest energy is kept and all the other models are discarded.
Many models are produced using different seeds randomly for
each search. The single model with the lowest score is returned
as the prediction.

New in SCRATCH

SCRATCH is continuously updated; as new methods are
developed, existing methods are improved and predictors
are retrained on larger datasets. The predictors DOMpro,
DISpro, MUpro and 3Dpro are all new. SSpro and ACCpro
have been improved by incorporating information from
structural templates directly when appropriate. DIpro has
been improved by adding secondary structure and relative
solvent accessibility as inputs to increase the accuracy of
disulfide bonds prediction. Also, the use of SVMs to discrim-
inate proteins having disulfide bonds from proteins without
disulfide bonds is new. One change to CMAPpro is the variant
architecture discussed in Methods.

INPUT AND OUTPUT FORMAT

Input

The input to the server is provided by the user through a simple
HTML form. The user must enter an email address for the
results to be sent to and the single letter code for an amino acid
sequence. The user may also enter a name for the submission.
The user may select multiple predictions for the same submis-
sion. MUpro is the exception to this simple input format. Input
for MUpro is the single letter code for an amino acid sequence,
single mutation site and a new residue to use for replacement.
The user may also provide a structure file in the PDB format,
but the field is optional. The MUpro prediction results are
displayed directly in the browser shortly after submission.

Output

The predictions are returned to the email address provided by
the user. The output from SSpro, SSpro8, ACCpro, CONpro,
DOMpro, DIpro and DISpro comes in the body of the email
with subject: ‘SCRATCH structural feature predictions’.
The CMAPpro predictions are included as an attachment to
the email. The 3Dpro prediction is returned as an attachment
in a separate email with subject: ‘SCRATCH tertiary structure
prediction’. Here we describe the output of the individual
predictors.

SSpro: ‘H’ helix, ‘E’ strand, ‘C’ other.
SSpro8: Single letter eight secondary structure class code

defined by DSSP (14).
ACCpro: ‘e’ exposed, ‘�’ buried.

CONpro: ‘+’ more contacts than average, ‘�’ fewer
contacts than average.

DISpro: ‘O’ ordered, ‘D’ disordered.
DOMpro: First and last residue of each domain.
DIpro: Two class prediction of whether or not the target has

disulfide bonds. Predicted bonding state of each cysteine in the
protein. Predicted cysteine pairs.

MUpro: A statement of whether the protein stability is pre-
dicted to be increased or decreased by the mutation, and a
confidence score. A score near 0 means unchanged stability.
Score near �1 means high confidence in decreased stability.
Score near +1 means high confidence in increased stability.

CMAPpro: The contact map predictions are included
as an attachment to the structural features email message.
Predictions come as attached raw files, with extension
contact_map.8a and contact_map.12a, for thresholds of 8
and 12 s, respectively. If the query is N amino acids long
the files are composed of N lines, each containing N space-
separated real numbers. The j-th number on line i-th represents
the estimated probability that amino acids i and j are in contact
(i.e. of their C-as being closer than the threshold).

3Dpro: The tertiary structure prediction is a PDB file sent in
a separate email message as an attachment, because it takes a
significantly longer time to produce than the other predictions.
The PDB file contains only the carbon alpha trace. To obtain
an all-atom model a user may use other software to add the
back bone, such as MaxSprout (15), and side chains, such as
MaxSprout and SCWRL (16).

SERVER IMPLEMENTATIONANDPERFORMANCE

Statistics

The SCRATCH system has handled �175 000 jobs since
March 2000, including submissions from more than 90
countries.

Implementation

The basic data flow of the SCRATCH system is portrayed in
Figure 1. The user submits the protein sequence through a
WWW form. The form data are processed by a Perl script
that produces a single Fasta file with the additional information
of the user’s predictor selections. The Perl script also adds the
file to the end of the job queue. The job manager, running on a
Sun front-end server, processes a single job by submitting it to
a single machine in our Linux cluster and starts another script
to run everything necessary to get the results requested by the
user. The only software developed outside our laboratory cur-
rently used in the pipeline are PSI-BLAST and BLAST (7).
PSI-BLAST is used to generate a multiple sequence alignment
and consensus sequence from the target sequence. BLAST is
used to identify homologs with high-sequence identity in the
PDB to improve SSpro and ACCpro predictions.

Appropriate usage

The SCRATCH predictors can be applied to any amino acid
sequence; however, in terms of performance versus other
methods they are most appropriate to use on targets without
high levels of sequence homology to one or more solved
structures. There are some exceptions to this caveat. SSpro
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and ACCpro may be used effectively on any protein sequence
because they use template structure information in their
predictions when appropriate. MUpro and DISpro are also
appropriate to use on any protein sequence.

Structural features prediction performance

The three class per-amino acid accuracy (Q3) of SSpro is
�77% (2). SSpro version 4.0 has been extensively evaluated
on EVA and has been consistently ranked as one of the top
secondary structure prediction servers (17). The accuracy of
ACCpro is �77% at the 25% exposure threshold (3). The
prediction accuracies are based on targets where template
homology is not used directly, and both systems perform better
when template homology can be applied. The eight class per-
amino acid accuracy (Q8) accuracy of SSpro8 is �63% (2).
The accuracy of CONpro is �72% (3). DOMpro predicts the
correct number of domains �69% of the time. The precision
and recall of disordered regions of DISpro are 75.4 and 38.8%,
respectively. For DIpro, the prediction accuracy of cysteine
bonding states is �87% (4). The average disulfide bond
prediction accuracy of DIpro is 53% (4). The accuracy of
mutation stability prediction is �86%. On a test set of proteins
with length <100 CMAPpro predicted contacts with 49%
accuracy and non-contacts with 96% accuracy (6).

Tertiary structure prediction performance

Our current version of 3Dpro is an ab initio predictor only.
For targets with significant homology to one or more solved
structures, comparative modeling (CM) methods consistently
produce more reliable models than ab initio methods. 3Dpro
is most appropriate to use with targets do not have good
structural templates. Tertiary structure prediction methods are
evaluated by the Critical Assessment of Structure Prediction
(CASP) experiments held every two years (18). CASP evalu-
ates predictions in three broad categories: CM, fold recogni-
tion (FR) and new fold (NF). The easiest targets to predict are
categorized as CM-easy, while the hardest are categorized as
NF. There is a continuous spectrum of difficulty and these
categories blur at the edges as do the methods that work
best on different types of targets. We took part in the most
recent experiment, CASP6. For complete results see http://
predictioncenter.llnl.gov/. Our tertiary structure predictor
‘baldi-group-server’ performed well on hard targets (those
in the NF and more difficult targets in the FR category) com-
pared with other fully automated predictors. For summarized
results for server groups on hard targets follow the link from
the SCRATCH home page.

Calculation times

The structural features email is returned in several minutes
for most sequences. The contact map prediction is the most
time consuming of the structural feature predictions and the
time increases quadratically with the length of the sequence.
If a contact map is requested for longer sequences, then
the structural features email will take a few more minutes
to be returned. The tertiary structure email will be returned
in <1 h if the sequence is short (length <125). The prediction
time increases significantly as the sequence length increases;
for this reason we only accept sequences up to length 400
for contact map and tertiary structure prediction through the

web interface. The maximum length sequence for the other
predictors is 1500. If the user has knowledge of the domains,
then it is appropriate to submit each domain separately. We
can accommodate longer sequences as well as high-throughput
projects with off-line runs.

FUTURE WORK

We are currently developing new methods to increase the
utility of SCRATCH. One important addition in development
is a CM component, which we will combine with 3Dpro to
make a more comprehensive tertiary structure predictor.
Another new method in development predicts b-sheet
pairings, which will be used in 3Dpro and made available
as a standalone predictor.

Our group is also working to improve current methods. The
next version of DOMpro will incorporate homology directly,
and then we will use DOMpro to automatically break sub-
missions into domains for 3Dpro to predict independently
and then combine. We are improving our tertiary structure
predictor directly by changing the physical representation
from a carbon alpha only representation to an all backbone
and side-chain centroid representation, and by adding energy
terms for realistic secondary structure packing.
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